13
Regional variation in Argentinean populations of Bromus catharticus (Poaceae) as measured by morphological divergence associated with environmental conditions by Mónica B. Aulicino 1 * & Miguel J. Arturi 2 1 Instituto Fitotécnico Santa Catalina, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, CC 4 (1836) Llavallol, Buenos Aires, Argentina 2 Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, CC 31 (1900) La Plata, Buenos Aires, Argentina * Corresponding author: Benavidez 195 (1842) Monte Grande, Buenos Aires, Argentina Tel-Fax: 0054-11-4282-0233. E-mail: [email protected] Abstract Aulicino, M.B. & Arturi, M.J. 2008. Regional variation in Argen- tinean populations of Bromus catharticus (Poaceae) as measured by morphological divergence associated with environmental con- ditions. Anales Jard. Bot. Madrid 65(1): 135-147. Thirty-one populations of Bromus catharticus Vahl., collected from the Pampean Dominion (Argentina), were classified using twenty four highly heritable traits by numerical taxonomic meth- ods. After implementing a stepwise discriminant analysis, 18 traits were chosen as classificatory variables. Eight population groups were classified in two main clusters. Different morpho- types, primarily associated with panicle architecture and micro floral traits, were found. The patterns in the morphological varia- tion seem to correspond to a gradient of humidity and tempera- ture that diminishes from the NE to the SW. This pattern of clas- sification reflects the geographical origin for most of the sampled populations, although there was some noise. Our results fit the patchy variation model, where populations are genetically select- ed for macro and micro environmental conditions. Keywords: Bromus catharticus, genetic variation, morpho- types, numerical taxonomy, phenotypic variation, quantitative traits, rescue grass. Resumen Aulicino, M.B. & Arturi, M.J. 2008. Modelo de variación regional en germoplasma de Bromus catharticus (Poaceae) en Argentina asociado con las condiciones ambientales. Anales Jard. Bot. Madrid 65(1): 135-147 (en inglés). Treinta y una poblaciones de Bromus catharticus Vahl., recolec- tadas en el dominio Pampeano (Argentina), fueron clasificadas utilizando 24 caracteres altamente heredables por métodos de taxonomía numérica. Tras implementar el análisis discriminante del paso a paso (Stepwise), 18 variables fueron seleccionadas como variables clasificatorias. Ocho grupos de poblaciones fue- ron clasificadas en dos clusters principales. Diferentes morfoti- pos, principalmente asociados a la arquitectura de las panojas y a variables microflorales, fueron encontrados. El patrón de va- riación morfológico parece responder a un gradiente de hume- dad y temperatura que disminuye desde el NE al SW. Además, dicho patrón de clasificación refleja un origen geográfico para la mayoría de las poblaciones, aunque hubo algo de ruido. Nue- stros resultados se ajustan a un modelo de variación en parches, donde las poblaciones están genéticamente seleccionadas por condiciones micro y macro ambientales. Palabras clave: Bromus catharticus, variación genética, mor- fotipos, taxonomía numérica, variación fenotípica, variables cuantitativas, cebadilla criolla. Introduction Bromus L. is a taxonomically difficult genus with a wide distribution (> 150 species) over temperate re- gions of both hemispheres (Clayton & Renvoize, 1986; Saarela & al., 2007). Bromus sect. Ceratochloa (P. Beauv.) Griseb. contains an extensive polyploid complex based on x = 7: B. carinatus Hook & Arn oc- toploid complex and B. catharticus hexaploid complex (Stebbins & Tobgy, 1944; Armstrong, 1981; Stebbins, 1981). In South America Smith (1970) recognized sev- en species in the B. catharticus complex: B. catharticus Vahl., B. brevis Nees ex Steud., B. bonariensis Parodi & Anales del Jardín Botánico de Madrid Vol. 65(1): 135-147 enero-junio 2008 ISSN: 0211-1322

Regional variation in Argentinean populations of Bromus … · 2019. 10. 25. · Regional variation in Argentinean populations of Bromus catharticus (Poaceae) as measured by morphological

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Regional variation in Argentinean populations of Bromus … · 2019. 10. 25. · Regional variation in Argentinean populations of Bromus catharticus (Poaceae) as measured by morphological

Regional variation in Argentinean populations ofBromus catharticus (Poaceae) as measured by morphological

divergence associated with environmental conditions

by

Mónica B. Aulicino1 * & Miguel J. Arturi2

1 Instituto Fitotécnico Santa Catalina, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata,CC 4 (1836) Llavallol, Buenos Aires, Argentina

2 Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata,CC 31 (1900) La Plata, Buenos Aires, Argentina

* Corresponding author: Benavidez 195 (1842) Monte Grande, Buenos Aires, ArgentinaTel-Fax: 0054-11-4282-0233. E-mail: [email protected]

Abstract

Aulicino, M.B. & Arturi, M.J. 2008. Regional variation in Argen-tinean populations of Bromus catharticus (Poaceae) as measuredby morphological divergence associated with environmental con-ditions. Anales Jard. Bot. Madrid 65(1): 135-147.

Thirty-one populations of Bromus catharticus Vahl., collectedfrom the Pampean Dominion (Argentina), were classified usingtwenty four highly heritable traits by numerical taxonomic meth-ods. After implementing a stepwise discriminant analysis, 18traits were chosen as classificatory variables. Eight populationgroups were classified in two main clusters. Different morpho-types, primarily associated with panicle architecture and microfloral traits, were found. The patterns in the morphological varia-tion seem to correspond to a gradient of humidity and tempera-ture that diminishes from the NE to the SW. This pattern of clas-sification reflects the geographical origin for most of the sampledpopulations, although there was some noise. Our results fit thepatchy variation model, where populations are genetically select-ed for macro and micro environmental conditions.

Keywords: Bromus catharticus, genetic variation, morpho-types, numerical taxonomy, phenotypic variation, quantitativetraits, rescue grass.

Resumen

Aulicino, M.B. & Arturi, M.J. 2008. Modelo de variación regionalen germoplasma de Bromus catharticus (Poaceae) en Argentinaasociado con las condiciones ambientales. Anales Jard. Bot.Madrid 65(1): 135-147 (en inglés).

Treinta y una poblaciones de Bromus catharticus Vahl., recolec-tadas en el dominio Pampeano (Argentina), fueron clasificadasutilizando 24 caracteres altamente heredables por métodos detaxonomía numérica. Tras implementar el análisis discriminantedel paso a paso (Stepwise), 18 variables fueron seleccionadascomo variables clasificatorias. Ocho grupos de poblaciones fue-ron clasificadas en dos clusters principales. Diferentes morfoti-pos, principalmente asociados a la arquitectura de las panojas ya variables microflorales, fueron encontrados. El patrón de va-riación morfológico parece responder a un gradiente de hume-dad y temperatura que disminuye desde el NE al SW. Además,dicho patrón de clasificación refleja un origen geográfico para lamayoría de las poblaciones, aunque hubo algo de ruido. Nue-stros resultados se ajustan a un modelo de variación en parches,donde las poblaciones están genéticamente seleccionadas porcondiciones micro y macro ambientales.

Palabras clave: Bromus catharticus, variación genética, mor-fotipos, taxonomía numérica, variación fenotípica, variablescuantitativas, cebadilla criolla.

Introduction

Bromus L. is a taxonomically difficult genus with awide distribution (> 150 species) over temperate re-gions of both hemispheres (Clayton & Renvoize, 1986;Saarela & al., 2007). Bromus sect. Ceratochloa (P. Beauv.) Griseb. contains an extensive polyploid

complex based on x = 7: B. carinatus Hook & Arn oc-toploid complex and B. catharticus hexaploid complex(Stebbins & Tobgy, 1944; Armstrong, 1981; Stebbins,1981). In South America Smith (1970) recognized sev-en species in the B. catharticus complex: B. catharticusVahl., B. brevis Nees ex Steud., B. bonariensis Parodi &

Anales del Jardín Botánico de MadridVol. 65(1): 135-147

enero-junio 2008ISSN: 0211-1322

Page 2: Regional variation in Argentinean populations of Bromus … · 2019. 10. 25. · Regional variation in Argentinean populations of Bromus catharticus (Poaceae) as measured by morphological

J.A. Cámara, B. coloratus Steud., B. parodii Covas &Itria, B. stamineus E. Desv., and B. valdivianus Phil.Gutiérrez & Pensiero (1998) also included in Bromussect. Ceratochloa, B. lithobius Trin., B. mango E. Desv.,B. tunicatus Phil., and B. cebadilla Steud. (taxonomicsynonyms of B. stamineus and B. valdivianus). Intrae-specific variability was also cited (Gutiérrez & Pen-siero, 1998). Planchuelo (1991) suggested that B. bonariensis, B. brevis, and B. catharticus must beconsidered conspecific. Massa & al. (2004) recognizedtwo subspecies: B catharticus ssp. catharticus and B. catharticus ssp. stamineus (E. Desv.) A.N. Massa. Ina previous paper, Peterson & Planchuelo (1998) iden-tified two varieties within the B. catharticus complex:B. catharticus var. catharticus and B. catharticus var. ru-pestris (Speg.) Planchuelo & P.M. Peterson.

In Argentina, B catharticus (syn. B. willdenowiiKunth, B. unioloides Kunth) ‘rescue grass’ or ‘prairiegrass’ is widely distributed in the Pampas (Burkart,1969). It grows spontaneously in natural and disturbedareas. This region offers a large diversity of plant habi-tats due to heterogeneity of landscapes, soils and cli-mates (Cappannini, 1968; Tricart, 1973); however, agri-cultural exploitation is reducing natural areas and theenvironmental quality of habitats. Due to this process,drastic genetic erosion might be occurring in this re-gion in natural populations of plants (Richards, 1986).

Bromus catharticus is a facultative autogamousspecies where self-fertilization is more common thanintercrossing (Ragonese & Marcó, 1941; Pérez López,1975). Previous studies on prairie grass pointed outhigh phenotypic variability between populations,plastic responses to differing habitats, and low heri-tability for vegetative and reproductive traits (Pahlen,1986; Garcia & Arturi, 1992; Szpiniak & al., 1995;Wolff & al., 1996; Pistorale & al., 1999; Aulicino &Arturi, 2002). Analysis of molecular markers con-firmed low levels of genetic variability (Puecher & al.,2001; Massa & al., 2004). Low levels of variabilitycould be explained by the autogamous reproductivesystem and by increased levels of habitat disturbance(Fischer, 2004). Inbreeding obviously restricts geneflow but should also increase genetic differentiationamong populations (Loveless & Hamrick, 1984).

In systematics, the choice of characters is oftenproblematic (Dunn & Everitt, 1982). It becomesmore difficult when herbarium material is evaluatedor when a repetitive experimental design in differentenvironments is used. As Anderson (1989) pointedout, morphometric studies of plants, grown in a uni-form environment, do not demonstrate a clear patternof divergence among taxa when plastic variables areused. One of the most important steps is to decide

M.B. Aulicino & M.J. Arturi

which are the most suitable traits to determine the ge-netic distance which reflects the degree of relation-ship between populations (Arunachalam, 1981). Theuse of high heritable and stable traits has demonstrat-ed to be useful for discrimination of taxa (Sánchez &al., 1993). In a previous study, we assessed the con-stancy and heritability ratios of 39 vegetative and re-productive characters of B. catharticus across differentArgentinean populations (Aulicino & Arturi, 2002).As a consequence of this, we selected as descriptorsthe quantitative variables with higher heritability toclassify the populations.

Those surveyed B. catharticus populations werealso included in this paper to further investigate therelationships between phenotypic variation and eco-logical factors. This may help conserve and protectthe native germplasm simply by adding new popula-tions to the existing collections that are currently be-ing conserved in the germplasm bank at the InstitutoFitotécnico de Santa Catalina, Universidad Nacionalde La Plata, Buenos Aires. A “core collection” will bedeveloped and will facilitate future use of thegermplasm (Marshall & Brown, 1975; Brown, 1989).

The aims of our research were: a) to identify diver-gent groups of B. catharticus populations using highlyheritable traits, and b) to associate the pattern of clas-sification with the collecting site and environmentalfactors.

Materials and methods

Sampling

Samples from 31 populations of B. catharticus werecollected in 30 locations of the Province of BuenosAires, distributed in four different geographic re-gions: Ondulating Pampa, Sandy Pampa, InterhillPampa, and Depressed Pampa. Original informationdescribing the material sampled and places of collec-tion is presented in Table 1. The sampling wasplanned to cover geomorphological and climatic dif-ferences.

Fifty mature reproductive tillers (belonging to dif-ferent individuals) were collected in different loca-tions, from an ecological homogeneous area. Tencaryopses per panicle were taken out to make a poolper each population. Seed pools were used to plantthe trials.

Design of the experiment

Two trials were conducted during two consecutiveyears, using a randomized block design with fourreplications. Four rows 2.25 m long, spaced 0.40 m

136

Anales del Jardín Botánico de Madrid 65(1): 135-147, enero-junio 2008. ISSN: 0211-1322

Page 3: Regional variation in Argentinean populations of Bromus … · 2019. 10. 25. · Regional variation in Argentinean populations of Bromus catharticus (Poaceae) as measured by morphological

Regional variation model in Bromus catharticus 137

Anales del Jardín Botánico de Madrid 65(1): 135-147, enero-junio 2008. ISSN: 0211-1322

Ave

rag

eA

vera

ge

Ab

solu

teA

bso

lute

Pop

ula

tio

nId

enti

fi-

Lati

tud

eLo

ng

itu

de

Reg

ion

sm

axim

um

min

imu

mm

axim

um

min

imu

mA

vera

ge

Ave

rag

eR

elat

ive

cati

on

Sou

thW

est

tem

per

atu

rete

mp

erat

ure

tem

per

atu

rete

mp

erat

ure

tem

per

atu

rep

reci

pit

atio

nh

um

idit

y(º

C)

(ºC

)(º

C)

(ºC

)(º

C)

(mm

)(%

)

San

Vic

ente

SVIC

E35

º 01

’58

º 25

’O

ndul

atin

g Pa

mpa

s22

.50

11.7

39.0

– 4

17.1

1003

72.0

Cañ

uela

sC

UE

35º

03’

58º

46’

Dep

ress

ed P

ampa

s22

.40

11.6

38.9

– 4

17.0

1003

72.0

Gra

l. La

s H

eras

LHER

A34

º 47

’58

º 51

’O

ndul

atin

g Pa

mpa

s22

.00

11.4

39.0

– 4

16.7

1110

72.0

Gra

l. Ro

dríg

uez

GRO

DR

34º

40’

58º

57’

Ond

ulat

ing

Pam

pas

22.2

011

.439

.5–

416

.811

8173

.0Pi

lar

PILA

R34

º 28

’58

º 55

’O

ndul

atin

g Pa

mpa

s22

.30

11.5

40.5

– 4

16.9

1241

75.0

Belé

n de

Esc

obar

ESC

OB

34º

21’

58º

48’

Ond

ulat

ing

Pam

pas

22.8

011

.339

.3–

5.6

17.1

1111

76.0

Balc

arce

BALC

A37

º 52

’58

º 15

’In

terh

ill P

ampa

s19

.70

8.2

38.0

– 4,

013

.993

279

.0M

erce

des

MER

CE

34º

40’

59º

26’

Ond

ulat

ing

Pam

pas

22.3

011

.740

.54

14.2

1006

72.0

Chi

vilc

oyC

HIV

I34

º 48

’59

º 42

’D

epre

ssed

Pam

pas

22.3

510

.941

.23

15.8

1013

73.5

Brag

ado

BRA

GA

35º

07’

60º

30’

Sand

y Pa

mpa

s22

.50

10.5

42.3

216

.310

1974

.5C

arlo

s C

asar

es

CC

ASC

35º

37’

61º

22’

Sand

y Pa

mpa

s22

.40

9.9

43.1

216

.199

375

.0C

arlo

s C

asar

es b

CC

ASB

35º

37’

61º

22’

Sand

y Pa

mpa

s22

.40

9.9

43.1

216

.199

375

.0Pe

huaj

óPE

HU

A35

º 48

’61

º 54

’Sa

ndy

Pam

pas

22.2

09.

543

.42

15.0

968

76.0

Tren

que

Lauq

uen

TLA

UQ

35º

58’

62º

44’

Sand

y Pa

mpa

s22

.80

9.9

43.7

216

.495

568

.0G

irond

oG

IRO

N35

º 59

’61

º 37

’Sa

ndy

Pam

pas

22.2

09.

542

.92

17.0

954

75.0

Boliv

arBO

LIV

36º

14’

61º

07’

Sand

y Pa

mpa

s22

.20

9.5

42.4

215

.894

174

.0O

lava

rría

OLA

VA

36º

32’

60º

54’

Inte

rhill

Pam

pas

21,0

07.

540

.11

15.8

930

72.0

Azu

lA

ZUL

36º

47’

59º

51’

Inte

rhill

Pam

pas

21,0

07.

940

.61

14.4

1004

78.0

Tapa

lqué

TAPA

L36

º 21

’60

º 01

’D

epre

ssed

Pam

pas

21.6

08.

540

.62

16.4

968

76.0

Llav

allo

lLL

AV

A34

º 48

’58

º 26

’O

ndul

atin

g Pa

mpa

s22

.30

10.6

41.2

– 5.

116

.493

873

.0Le

zam

aLE

ZAM

35º

52’

57º

54’

Dep

ress

ed P

ampa

s21

.30

9.0

39.7

– 7.

415

.289

181

.0M

aipú

MA

IPU

37º

06’

57º

50’

Dep

ress

ed P

ampa

s21

,00

7.0

39.6

– 7.

714

.085

666

.0M

ar d

el P

lata

MA

RDE

38º

00’

57º

33’

Inte

rhill

Pam

pas

18.7

010

.638

.6–

3.2

14.6

1011

77.0

Mag

dale

naM

AG

DA

35º

05’

57º

31’

Ond

ulat

ing

Pam

pas

21.1

010

.937

.7–

4.4

16.0

1000

77.0

Pipi

nas

PIPI

N35

º 32

’57

º 20

’O

ndul

atin

g Pa

mpa

s23

.90

11.1

42.6

– 7.

317

.586

068

.0C

aste

llíC

AST

E36

º 06

’57

º 48

’D

epre

ssed

Pam

pas

21.3

09.

039

.7–

7.4

15.2

891

81.0

San

Cle

men

teSC

LEM

36º

22’

56º

24’

Dep

ress

ed P

ampa

s19

.20

11.8

45.6

– 6.

615

.586

585

.0H

ende

rson

HEN

DER

36º

18’

61º

42’

Sand

y Pa

mpa

s22

.20

9.0

42.5

217

.093

943

.0La

s Fl

ores

LFLO

R36

º 01

’59

º 06

’D

epre

ssed

Pam

pas

21.5

08.

138

.7–

7.9

14.8

959

76.0

Parq

ue P

erey

raPE

REY

34º

50’

58º

08’

Ond

ulat

ing

Pam

pas

21.3

010

.737

,0–

4.5

16.0

1051

79.0

Punt

a La

raPL

ARA

34º

55’

57º

57’

Ond

ulat

ing

Pam

pas

20.9

011

.537

.4–

4.1

16.2

885

80.0

Tab

le 1

.C

olle

ctio

n de

tails

of s

peci

men

s fr

om 3

1 na

tura

l pop

ulat

ions

of B

rom

us c

atha

rtic

us a

nd c

limat

ic v

aria

bles

of e

ach

loca

tion.

Page 4: Regional variation in Argentinean populations of Bromus … · 2019. 10. 25. · Regional variation in Argentinean populations of Bromus catharticus (Poaceae) as measured by morphological

apart were the experimental units. Two hundred andfifty six seeds separated by 0.15 m were planted perplot (64 seeds per row). The trial were located inLlavallol, Buenos Aires (34º47’S 58º27’W), on anArgiudoll typical soil. Ten reproductive and com-pletely developed but immature tillers were collectedto measure floral attributes. Subsequently, they weredried and mounted on herbarium sheets. As conse-quence, vegetative and reproductive traits were mea-sured over 40 dried tillers in each population and en-vironment (number of specimens = 80).

Environmental factors

The selected sampling sites cover a gradient of hu-midity and temperature that diminishes from thenortheast to the southwest.

The geomorphological areas have particularedaphic conditions. The Ondulating Pampa, a steepregion that presents numerous ridges, is located in thenorthern portion of the province and has loamy well-structured soils probably due to higher humidity inthe atmosphere. Sandy Pampa region has weaklystructured sandy soils, probably due to less precipita-tion particularly in the western areas. Interhill Pampasregion has tablelands with loess. The Depressed Pam-pa is a heterogeneous area that has a large diversity ofhabitats: depressions, plains with microsites of basinswith saline and alkaline soils, riversides (Salado river),old packsaddles of marine deposits and coastal sandystrips (Cappannini, 1968; Tricart, 1973).

Geomorphological characteristics of the samplingsites were extracted from the soils chart of the BuenosAires Province (Mapas de suelos de la Provincia deBuenos Aires, 1989). Climatic variables were takenfrom statistical charts (Estadísticas meteorológicas dela década 1981-1990 del Servicio Meteorológico Na-cional, 1996) from meteorological stations nearest tothe sampled localities (Ten years average) [see Table 1].

Abbreviations

DA - Discriminant analysis; CA - Cluster analysis;BSS - Between cluster sums of squares; PCA - Principalcomponent analysis; KMO - Kaiser-Mayer-Olkin test.

Morphological traits and selection of characters

Floral attributes were estimated by averaging twoglumes and lemmas per panicle. Number of floretsper spikelet (NFS) and length of spikelets (LS) wereobtained by averaging the measurements of fourspikelets per panicle. Panicle attributes were estimat-ed by averaging two primary branches per each pani-cle node. Distance between spikelets of the branches

M.B. Aulicino & M.J. Arturi

at the first node (DSFN) and distance betweenspikelets of the branches at the second node (DSSN)were estimated as a ratio between the length of theportion with flowers (of the branches at the first orsecond node) and the number of spikelets on this por-tion. The penultimate leaf is the uppermost one. Mor-phological traits, their units, and abbreviations areshown in Table 2.

Twenty-six variables with heritability over 20%were chosen. Heritabilities were estimated applying agenetic model using the univariate method describedin Aulicino & Arturi (2002).

Given that some traits contained redundant infor-mation or were not good to discriminate populations,a stepwise discriminant analysis (DA) was used forcharacter selection. A criterion based on the squaredpartial correlation was applied using the SAS PROCSTEPDISC procedure of the SAS program (SAS In-stitute Inc., Cary, USA). All variables with p value lessor equal to 0.15 were selected (Costanza & Afifi,1979). The adequacy of sampling was estimatedthrough the Kaiser-Meyer-Olkin (KMO) test, whichwas performed with the PROC FACTOR ANALYSISof the SAS program.

Statistical analyses

We used population means of the selected variablesto classify populations. The analysis began with a pri-ori grouping of population using cluster analysis (Le-gendre & Legendre, 1998). The operational taxonom-ic units (OTUS) were the 31 populations. Since thecharacters were measured in different units, the datawere standardized to zero for means and standard de-viation equal to 1. After standardization, a distancematrix based on average taxonomic distance was com-puted (Sneath & Sokal, 1973). A comparison of dis-tance matrices was done through a correlation Manteltest between matrices of the two years (Mantel, 1967),using NTSYS-pc 2.0 program (Rohlf, 1998).

Ward’s minimum variance clustering method wasused to classify populations a priori. To determine theexact number of clusters a pseudo t2 statistic was dis-played and then a plot of the pseudo t2 statistic againstthe number of clusters was built (Khattree & Naik,2000). The between cluster sum of squares (BSS) wasused to measure the magnitude of the dissimilarity be-tween clusters. An analysis of variance and a TukeyTest (using a significance level of p < 0.05) were per-formed to prove significant differences among the ob-tained population groups.

The unweighted pair-group and arithmetic averageclustering method (UPGMA) and a principal compo-nent analysis (PCA) were used to corroborate the re-

138

Anales del Jardín Botánico de Madrid 65(1): 135-147, enero-junio 2008. ISSN: 0211-1322

Page 5: Regional variation in Argentinean populations of Bromus … · 2019. 10. 25. · Regional variation in Argentinean populations of Bromus catharticus (Poaceae) as measured by morphological

sults of the cluster analysis based on Ward’s minimumvariance and to reveal the way in which individual de-scriptors contributed to the observed group struc-ture. Euclidean distances from standardized descrip-tors were used to construct a dendrogram based onthe average-linkage UPGMA. The cophenetic corre-lation coefficient (CCC) was used to determine thegoodness of fit of the dendrogram (Sneath & Sokal,1973) using the SAS PROC CLUSTER option. PCAwas performed using a dissimilarity matrix based onthe Pearson product-moment correlation coefficient(Sneath & Sokal, 1973). Those variables with a corre-lation coefficient higher than 0.65 were used to dis-criminate among populations (Sneath & Sokal, 1973),using the NTSYS-pc 2.0 program (Rohlf, 1998).Frontier’s broken stick criterion allowed to evaluatethe significance of the differences between the mainPCA axes (Legendre & Legendre, 1998).

Environmental analysis

A multivariate linear regression analysis was con-ducted to determine the effect of the climate variables

Regional variation model in Bromus catharticus

on the pattern of classification using SAS PROC REGprogram (Khattree & Naik, 2000). The projectionscores of populations on the first three principal com-ponents (PCA1, PCA2 and PCA3) were used as re-sponse (dependent) variables, while environmentalvariables were used as predictor (independent) vari-ables. The coefficient of determination R2 and the Fstatistic test were taken as indices to measure the ade-quacy of the fitted model.

Results

Eighteen out of twenty-six morphological traitswere chosen using the Partial Root Squares and F’ val-ues obtained by the stepwise procedure (Table 3)[Khattree & Naik, 2000]: upper glume width (FGW),average number of flowers per spikelets (NFS), lem-ma length (LL), lower glume width (SGW), flag leaflength (FLL), lemmatal awn length (LAL), averagenumber of primary branches at the first and secondpanicle nodes (NBFSN), upper glume length (FGL),flag leaf sheath length (FSL), lemma width (LW),

139

Anales del Jardín Botánico de Madrid 65(1): 135-147, enero-junio 2008. ISSN: 0211-1322

N.º Traits Abbreviation

Morphological vegetative

1 Flag Leaf Length, in cm FLL2 Flag leaf Width, in cm FLW3 Flag leaf sheath length, in cm FSL4 Penultimate leaf length, in cm PLL5 Penultimate leaf sheath length, in cm PSL

Morphological reproductive

6 Number of nodes per panicle NNP7 Total number of primary branches per panicle NPB8 Total number of spikelets per panicle NSP9 Average number of florets per spikelet NFS

10 Average Length of the spikelets, in cm LS11 Average number of primary branches at the first and second panicle nodes NBFSN12 Average number of primary branches at third and fourth panicle nodes NBTFN13 Average number of spikelets at the branches of the first and second panicle nodes NSFSN14 Average number of spikelets at the branches of the third and fourth panicle nodes NSTFN15 Distance between spikelets of the branches at the first node, in cm DSFN16 Distance between spikelets of the branches at the second node, in cm DSSN17 Upper glumes length, in cm FGL18 Upper glumes width, in cm FGW19 Number of nerves in the upper glumes NNFG20 Lower glumes length, in cm SGL21 Lower glumes width, in cm SGW22 Number of nerves in the lower glumes, in cm NNSG23 Lemma length, in cm LL24 Lemma width, in cm LW25 Number on nerves in lemma NNL26 Lemmatal awn length, in cm LAL

Table 2. Morphological heritable traits (h2 > 20%) measured on vegetative and reproductive organs of Bromus catharticus: namesand abbreviations.

Page 6: Regional variation in Argentinean populations of Bromus … · 2019. 10. 25. · Regional variation in Argentinean populations of Bromus catharticus (Poaceae) as measured by morphological

M.B. Aulicino & M.J. Arturi

number of nodes per panicle (NNP), penultimate leafwidth (PLL), lower glume length (SGL), number ofnerves in the second glume (NNSG), distance be-tween spikelets of the branches at the second node(DSSN), total number of primary branches per pani-cle (NPB), average length of the spikelets (LS) and av-erage number of spikelets at the branches of the thirdand fourth panicle nodes (NSTFN). Eight traits wereassociated with floral morphology (FGW, LL, SGW,LAL, FGL, LW, SGL and NNSG), seven traits weredirectly associated with diaspore production, includ-ing panicle shape (NFS, NBFSN, NNP, DSSN, NPB,LS and NSTFN), and three variables were associatedwith vegetative, leaf and sheath characteristics (FLL,FSL and PLL).

Congruence between classificationsfrom successive years

These same 18 traits were used to build a popula-tion pairs distance matrix for each year. The Z value

140

Anales del Jardín Botánico de Madrid 65(1): 135-147, enero-junio 2008. ISSN: 0211-1322

Step Selected Partial F pnumber traits R square value value

1 FGW 0.25 2.44 0.00012 NFS 0.28 2.75 0.00013 LL 0.27 0.62 0.00014 SGW 0.27 0.53 0.00015 FLL 0.26 2.62 0.00016 LAL 0.29 2.47 0.00017 NBFSN 0.26 2.92 0.00018 FGL 0.25 2.44 0.00019 FSL 0.23 2.38 0.0002

10 LW 0.21 2.06 0.001811 NNP 0.22 1.79 0.009812 PLL 0.22 1.90 0.005013 SGL 0.22 1.94 0.003914 NNSG 0.22 1.92 0.004615 DSSN 0.22 1.86 0.006716 NPB 0.20 1.66 0.021617 LS 0.16 1.32 0.138018 NSTFN 0.16 1.29 0.1457

Table 3. Stepwise selection summary of statistic parameters for the 18 selected traits of Bromus catharticus. Abbreviations asin Table 2.

Fig. 1. Cluster analysis of a complete dataset based in 18 highly heritable traits of Bromus caharticus. Dendrogram built using Ward’sminimum variance. Abbreviations as in Table 1.

Page 7: Regional variation in Argentinean populations of Bromus … · 2019. 10. 25. · Regional variation in Argentinean populations of Bromus catharticus (Poaceae) as measured by morphological

Regional variation model in Bromus catharticus

obtained for the comparison between the two yearmatrices was statistically non significant (p: 1), there-fore, data from both experiments were pooled to ob-tain a unique pattern of classification.

Numerical taxonomy

The phenogram obtained from minimum varianceclustering method showed the separation of the pop-ulations into eight groups distributed in two mainclusters (Fig. 1). A local peak in the plot of pseudo t2

statistic against the number of clusters confirmed thateight different clusters could explain the phenotypicvariability (Fig. 2). Means, coefficients of variation (inpercentage), and minimum and maximum valueswere calculated for each cluster. Statistical compar-isons of means were carried out by one-way analysis ofvariance and a Tukey’s test (Table 4). The eight dis-covered clusters were not significantly different forfour reproductive (LAL, NNP, NPB and NSTFN)and for one vegetative (PLL) characters (Table 4).

141

Anales del Jardín Botánico de Madrid 65(1): 135-147, enero-junio 2008. ISSN: 0211-1322

Fig. 3. Cluster analysis of a complete morphological dataset based in 18 highly heritable traits of Bromus catharticus. Dendrogrambased on UPGMA clustering method. Population symbols represent the main group I (white) and II (black) and the eight clusters dis-covered by Minimum variance method. Cluster I-A (◆◆), Cluster I-B (▲▲), Cluster I-C (■■), Cluster II-A (■), Cluster II-B(▲▲), Cluster II-C (◆),Cluster II-D (●), Cluster II (E) (+). Abbreviations as in Table 1.

Fig. 2. Two dimensional plot of the pseudo t2 statistic com-pared to the number of clusters obtained in the multivariateanalysis of Bromus catharticus.

Page 8: Regional variation in Argentinean populations of Bromus … · 2019. 10. 25. · Regional variation in Argentinean populations of Bromus catharticus (Poaceae) as measured by morphological

M.B. Aulicino & M.J. Arturi142

Anales del Jardín Botánico de Madrid 65(1): 135-147, enero-junio 2008. ISSN: 0211-1322

CLUS

TER

TRAI

TSFG

WNF

SLL

SGW

FLL

LAL

NBFS

NFG

LFS

LLW

NNP

PLL

SGL

NNSG

DSSN

NPB

LSNS

TFN

(cm)

(cm)

(cm)

(cm)

(cm)

(cm)

(cm)

(cm)

(cm)

(cm)

(cm)

(cm)

I-AM

EAN

0.84

A6.

73 B

1.88

B0.

58Á

21.1

7 B

0.41

A2.

64 A

B1.

25 A

B12

.55

B1.

25 A

6.94

A24

.46

A0.

96 A

B6.

27 A

B0.

96 A

B18

.15

A3.

10 A

B6.

54 A

CV%

5.76

9.52

5.37

5.71

15.7

342

.92

20.5

24.

967.

588.

2820

.66

16.8

616

.93

7.39

16.9

323

.68

5.64

37.8

4M

IN0.

7.4

5.57

1.74

0.51

16.7

30.

192.

061.

1410

.74

1.03

4.75

19.6

80.

755.

30.

7511

.62

2.87

3M

AX0.

917.

642.

090.

6428

.01

0.73

3.85

1.39

14.3

41.

419

331.

277.

11.

2725

3.36

9.79

I-BM

EAN

0.81

A B

7.08

A B

1.88

B0.

59 A

20.6

4 B

0.48

A2.

57 A

B1.

25 A

B12

.9 B

1.20

A B

6.6A

24.3

3 A

0.99

A6.

71 A

0.95

A B

17.7

2 A

3.16

A B

6.12

ACV

%5.

3210

.23.

966.

5510

.04

36.5

619

.86

6.02

6.85

5.65

22.7

715

.04

7.42

13.1

511

.80

22.7

69.

3736

.76

MIN

0.71

6.15

1.76

0.53

16.3

80.

221.

91.

1211

.27

1.07

4.67

18.4

30.

895.

40.

8011

.54

2.63

2.64

MAX

0.91

9.08

2.08

0.63

23.8

60.

763.

441.

4714

.76

1.31

9.1

29.7

1.22

8.5

1.22

234.

069.

35

I-CM

EAN

0.82

A6.

82 B

1.96

A0.

58 A

22.2

8 A

B0.

49 A

2.88

A1.

27 A

13.5

A B

120

A B

6.66

A26

.21

A1.

0 A

6.34

A B

0.99

A18

.8 A

3.19

A B

6.61

ACV

%4.

818.

414.

226.

3412

.41

38.8

423

.98

4.26

5.6

5.54

21.2

617

.14

5.46

10.3

712

.64

23.0

46.

1733

.9M

IN0.

75.

51.

740.

4916

.93

0.21

21.

1511

.76

1.08

4.44

18.0

80.

875.

30.

7911

.52.

732.

9M

AX0.

918.

822.

180.

6729

.99

0.88

4.5

1.38

15.2

21.

368.

836

.84

1.14

7.9

1.42

263.

8110

.44

II-A

MEA

N0.

80 B

C6.

58 B

1.86

B0.

57 A

B21

.98

B0.

43 A

2.89

A1.

2 B

12.8

3 B

1.18

A B

6.65

A25

.78

A0.

93 B

6.26

A B

0.93

B19

.24

A3.

04 B

6.98

ACV

%5.

810

.06

5.7

7.2

12.1

646

.58

23.7

16.

785.

935.

8920

.33

15.3

88.

499.

0914

.32

23.5

26.

7333

.99

MIN

0.66

5.5

1.64

0.46

16.3

30.

22

1.04

11.4

71.

054.

5719

.66

0.8

5.1

0.72

12.3

2.64

3.32

MAX

0.87

8.58

2.07

0.65

27.5

90.

764.

181.

3814

.62

1.35

8.7

34.3

41.

147

1.25

293.

6210

.3

II-B

MEA

N0.

77 B

C6.

46 B

1.95

A0.

53 B

21.9

6 B

0.51

A3.

28 A

1.19

B13

.58

A B

1.17

A B

7.15

A2S

.54

A0.

91 B

5.69

B1.

00 A

2139

A3.

08 A

B8.

09 A

SD4.

888.

914.

765.

0513

A1

30.2

521

.92

3.94

4.7

7.19

20.7

16.0

25.

866.

1212

.82

20.5

16

28.4

8M

IN0.

715.

51.

850.

4918

.95

0.33

2.35

1.13

12.8

91.

065.

521

.77

0.86

5.2

0.76

15.7

2.76

4.95

MAX

0.81

7.16

2.14

0.58

27.3

80.

74.

171.

2614

.73

1.3

934

.41

16.

21.

1227

.92

3.39

10.7

1

II-C

MEA

N0.

79 B

C7.

24 A

1.88

B0.

56 B

21.1

6 B

0.44

A2.

46 B

1.21

B13

.21

B1.

19 A

B6.

72 A

24.9

2 A

0.94

B6.

22 B

0.92

B17

.51

A3.

17 A

B6.

46 A

SD4.

949.

314.

586.

4410

.17

36.1

117

.22

5.88

76.

3921

.39

15.1

16.

769.

4410

.30

19.1

97.

1633

.91

MIN

0.68

5.91

1.68

0.47

16.7

0.21

1.85

1.06

10.8

61.

044.

6718

.03

0.82

5.1

0.71

10.8

2.54

2.75

MAX

0.86

8.92

2.04

0.64

28.7

60.

773.

351.

3615

.04

1.33

935

.63

1.07

7.6

1.15

23.8

3.72

10.6

II-D

MEA

N0.

78 B

C6.

96 B

1.92

A B

0.56

B21

.84

B0.

52 A

2.71

AB

122B

13.1

9 B

1.16

B6.

52 A

25.8

8 A

0.95

B63

5 A

B0.

93 B

18.1

8 A

3.17

A B

6.75

ACV

%6.

1710

.15

4.41

6.11

12.8

138

.37

22.2

15.

25.

856.

4820

.97

18.1

56.

9610

.64

12.6

223

.09

6.58

39.6

8M

IN0.

685.

111.

740.

4816

.29

0.23

21.

0811

.31.

044.

5617

.66

0.82

5.22

0.76

10.7

82.

762.

33M

AX0.

868.

52.

070.

6228

.03

0.85

41.

3514

.69

1.32

8.67

35.2

91.

098.

11.

2424

.44

3.86

11.2

8

II-E

MEA

N0.

76 C

6.95

A1.

88 B

0.55

B25

.2 A

0.51

A2.

32 B

1.18

B14

.22

A1.

20 A

B6.

26 A

29.4

9 A

0.91

B6.

42 A

B0.

89 B

17.5

4 A

3.29

A7.

47 A

SD8

10.1

94.

668.

4818

.99

41.6

610

.26

3.74

6.72

7.49

15.9

520

.87

5.44

15.8

9.88

14.5

28.

9936

.94

MIN

0.68

5.9

1.77

0.48

16.5

10.

32.

051.

112

.44

1.04

5.12

19.1

80.

835.

10.

7515

.22

2.84

4.55

MAX

0.83

8.32

2.01

0.63

31.1

20.

842.

691.

2315

.36

1.28

7.44

37.0

50.

987.

71.

0121

.38

3.83

11.6

9

F tes

t6.

934.

366.

914.

893.

341.

314.

446.

585.

762.

110.

41.

846.

822.

552.

371.

462.

230.

9P

valu

e**

****

****

ns**

****

*ns

ns**

**

ns*

ns

Tab

le 4

.Mea

ns, c

oeff

icie

nt o

f var

iatio

n in

per

cent

age

(CV

%),

min

imum

(MIN

) and

max

imum

(MA

X) v

alue

s pe

r clu

ster

for t

he s

elec

ted

trai

ts o

f Bro

mus

cat

hart

icus

. F s

tatis

tic te

st o

f the

AN

OV

A(F

) and

p v

alue

. Clu

ster

s w

ith th

e sa

me

lett

er a

re n

ot s

igni

fican

tly d

iffer

ent a

t the

5 %

leve

l of T

ukey

’s te

st. S

igni

fican

ce le

vels:

ns:

p>0.

05;*

: p<0

.05;

**:

p<0

.01;

Abb

revi

atio

ns a

s in

Tab

le 2

.

Page 9: Regional variation in Argentinean populations of Bromus … · 2019. 10. 25. · Regional variation in Argentinean populations of Bromus catharticus (Poaceae) as measured by morphological

Regional variation model in Bromus catharticus 143

Anales del Jardín Botánico de Madrid 65(1): 135-147, enero-junio 2008. ISSN: 0211-1322

Characters FGW, SGW, FGL, SGL, LW, LL andDSSN showed significant differences between Clus-ter I and II (p < 0.01) (results not shown). The rest ofsignificant variables allowed to discriminate betweensubgroups inside the two principal clusters (group Iand group II) (Table 4).

UPGMA clustering method, and PCA ordinationmethod were used to distinguish between data-de-pendent and method-dependent features of the re-sults (following Dickinson & Phipps, 1985). TheKMO test gave a value of 0.84, which indicated an ad-equate plant sampling further supporting the accura-cy of the PCA analysis (Almeida Piñeiro de Carvalho& al., 2004). Populations scores were projected on thethree principal components (Fig. 4) and factor load-ings for these components were calculated (Table 5).The first three components were significant and theircumulative percentages accounted for 66.3% of thetotal variability. PCA allowed us to identify the mostimportant traits (Table 5). Reproductive characterssuch as NSTFN, FGW, SGW and LW contributed

most to the separation of accessions along PCA axis 1(26.8 %), while characters LL, NBFSN, FGL andSGL contributed most to the separation along axis2 (22.9 %). Moreover, LS and NNP were the most important attributes along the third component(16.5%). However, some of these main attributes se-lected by PCA showed non-significant differences between clusters when the Tukey test was used (e.g.NNP and NSTFN) (Table 4).

The Euclidean distance-based UPGMA dendro-gram showed a good fit to the model (CCC = 0.81).Both methods, UPGMA and PCA (Figs. 3 and 4),produced similar results and differed slightly from thegrouping structure obtained by minimum varianceclustering method (Fig. 1). The groups I-B, I-C andII-C were recovered in all analyses. The group I-Afrom the dendrogram built using Ward’s minimumvariance (Fig. 1) was dismounted and its populationCCACB and populations of the groups II-A and II-Dwere joined together in the dendrogram based on UPGMA (Fig. 3). This dendrogram clearly separated

Fig. 4. Three-dimensional plot of the PCA performed with the complete morphological data set of Bromus catharticus. Variables withthe highest loading for each component were inserted into squares. The three principal components of the correlation matrix accounted for 26.8%, 22.9% and 16.5% of the total variance, respectively. Population symbols represent the main group I (white)and II (black) and the eight clusters discovered by Minimum variance method. Cluster I-A (◆◆), Cluster I-B (▲▲), Cluster I-C (■■ ), ClusterII-A (■), Cluster II-B(▲), Cluster II-C (◆), Cluster II-D (●), Cluster II (E) (+). Abbreviations as in Table 1.

Page 10: Regional variation in Argentinean populations of Bromus … · 2019. 10. 25. · Regional variation in Argentinean populations of Bromus catharticus (Poaceae) as measured by morphological

M.B. Aulicino & M.J. Arturi144

Anales del Jardín Botánico de Madrid 65(1): 135-147, enero-junio 2008. ISSN: 0211-1322

the populations PLARA, MAIPU, BALCA and PE-HUA from the rest of the clusters.

Populations were separated into two main groupsin the dendrogram based on Ward’s minimum vari-ance (Fig. 1). Group I includes populations with longand wide glumes and lemmas (Table 4) whereasGroup II includes populations with short and narrowglumes and lemmas. The two main groups (I and II)also showed different panicle morphotypes: laxbranching versus condensed branching (with the ex-ception of BALCA, Group II-B, that also had laxbranches). The majority of the populations in group Iwere collected from Ondulating Pampa and InterhillPampa (Fig. 5). With the exception of group II-D (thenortherly populations) and the population BALCA(group II-B), populations included in group II wereassociated with Sandy Pampas and Depressed Pam-pas. Sandy soils are common in the Sandy Pampa andin some Depressed Pampa areas near the drainage ofthe Río Salado or near the coast of the Río de la Plata(Tricart, 1973).

The geographic distribution of our sampled popu-lations revealed that those populations sampled nearone another tended to form alliances. For example,individuals from MARDE, OLAVA and AZUL popu-lations (Cluster I-B) were all collected from the Inter-hill Pampas. Cluster I-C GRODRI, PILAR, LHERA,ESCOB, SVICE and CHIVI populations and clusterII-A populations were collected in the OndulatingPampa and the Sandy Pampa, respectively (Fig. 5).

In the multivariate linear regression analysis boththe F statistic and the R2 indicated that the PC2 had agood fit to the lineal model. Climatic variables relatedto absolute maximum temperature (ºC) and relativehumidity (%) showed a significant effect on the pop-ulation projection scores on the PC2 (Table 6). Theanalysis also revealed that no environmental variableshad a significant contribution to the model in thecomponents 1 and 3.

Discussion

The aim of this research was to classify Bromuscatharticus populations using highly heritable traitssince they are under strong genetic control and mightbe less affected by environmental factors (Amurrio &al., 1995). The proved congruence between classifica-tions obtained in two consecutive years for the two ex-perimental environments confirmed that the use ofhighly heritable traits is apparently an efficient tool

Fig. 5. Geographic location of the sampled populations of Bromus catharticus; the eight clusters of the dendrogram are in-dicated on the map. Symbols of the populations represent twomain groups I (white) and II (black); and the eight clusters discov-ered by Minimum variance method. Cluster I-A (◆◆), Cluster I-B(▲▲), Cluster I-C (■■ ), Cluster II-A (■), Cluster II-B(▲), Cluster II-C(◆), Cluster II-D (●), Cluster II (E) (+). Abbreviations as in Table 1.

Table 5. Contribution of the 18 selected morphological traits ofBromus catharticus to the main PCA components. Percentage ofvariability explained by the three principal components is indi-cated (PC1, first component; PC2, second component; PC3,third component). Abbreviations as in Table 2.

PC1 (26.8 %) PC2 (22.9%) PC3 (16.5%)

FLL 0.60 0.33 0.44FSL 0.34 0.33 0.61PLL 0.63 0.30 0.43NNP – 0.03 0.11 – 0.74NPB 0.48 0.63 – 0.46NBFSN 0.26 0.77 – 0.36NSTFN 0.84 0.25 – 0.28NFS – 0.37 – 0.52 0.47LS – 0.25 0.01 0.77DSSN – 0.15 0.61 – 0.07FGL – 0.52 0.71 0.17SGL – 0.62 0.68 0.28NNSG – 0.46 0.03 0.27LL 0.01 0.78 0.32FGW – 0.7 0.47 – 0.26SGW – 0.68 0.36 0.02LW – 0.65 0.39 – 0.30LAL 0.27 0.43 0.39

Page 11: Regional variation in Argentinean populations of Bromus … · 2019. 10. 25. · Regional variation in Argentinean populations of Bromus catharticus (Poaceae) as measured by morphological

for removing non-genetic components when a repli-cation trial (multi-locations or multi-years) is used.

Both univariate and multivariate methods alloweddiscovering the most useful attributes to discriminategroups. Several reproductive variables related to the floral structures (FGW, SGW, LW, FGL, SGL,NNSG, LS, LL) and panicle shape (NSTFN, NBFSN,DESN, NFS) and some morphological vegetative traits(FLL and FSL) were selected by ANOVA and PCA.This might indicate that some genes associated to fit-ness are possibly segregating as response to differentialselection pressure. By contrast, only two vegetativetraits associated to flag leaf were selected as classificato-ry variables. Aulicino & Arturi (2002) pointed out anarrow genetic variability for such attributes due toplastic responses. Since selection does not seem to af-fect plastic traits (Anderson, 1989), it is expected thatsuch traits had not weight in systematic studies.

The ranges of variation of all quantitative morpho-logical characters showed overlapping distributionsamong clusters, suggesting an outcrossing rate largerthan that reported in the literature (García & Arturi,1992). Previous systematic studies of the B. catharticuscomplex showed controversial results (Peterson &Planchuelo, 1998; Massa & al., 2004). These authorsalso found overlapping variation among infraspecificdiscontinuities (subspecies) based on only one quanti-tative trait, the length of lemmatal awn. However, in-fraespecific differentiation was easily recognized whenDNA fragments and other qualitative attributes wereused (Massa & al., 2001, Peterson & Planchuelo, 1998).Although the lemmatal awns showed non-significantdifferences between groups, the range of variation ofthis traits encountered in this study was similar to thatdescribed by Massa & al. (2004) in B. catharticus Vahlsubsp stamineus. However, all the groups had mini-mum values < 3 mm long, coinciding with B. catharticusvar catharticus Planchuelo & P.M. Peterson. It is possi-

Regional variation model in Bromus catharticus 145

Anales del Jardín Botánico de Madrid 65(1): 135-147, enero-junio 2008. ISSN: 0211-1322

ble that these subespecific discontinuities found byothers authors are associated to large distances be-tween collection sites. The application of a systematicalsampling following an environmental gradient could bemore efficient in discovering variation patterns.

In spite of the low levels of morphological variabil-ity observed, dendrograms and graphics confirmedphenotypic diversity. As suggested by Dickinson &Phipps (1985), the level at which such discontinuitiesshould be recognized taxonomically is another mat-ter. However, given that only highly heritable traitswere used, we can confirm that populations groupedin the same cluster are more genetically similar to oneanother and that these groups reflect genetic diver-gence as portrayed by morphological characteristics.

Although the group structure depends on the sort-ing algorithm used, some groups were constant in allanalyses (groups I-B, I-C and II-C) confirming theirphenetic integrity. The populations PLARA, MAIPU,PEHUA and BALCA showed an outlier behaviourdue to their extreme variation or to their shared traitswith different groups. Since they were collected frommarginal locations, they could represent samples ofsurrounding new groups.

Based on the above mentioned results, we proposea non-formal taxonomic treatment of the groups andrecognize the discontinuities as morphotypes. We rec-ognized the differentiation of 7 morphotypes basedon those traits that were selected by PCA and ANO-VA, simultaneously.

A key to aid in the identification of the morpho-types of Bromus catharticus Vahl is presented below.

DICHOTOMOUS KEY TO THE MORPHOTYPES

1. Upper glume > 8 cm wide, � 1.25 cm long; Lower glume> 5.8 cm wide, � 0.98 cm long ........................................ 2Upper glume < 8 cm wide, < 1.25 cm long; Lower glume < 5.8 cm wide, < 0.98 cm long ......................................... 4

2. Lemma < 1.90 cm long; flag leaf < 24.5 cm long; flag leafsheath < 13 cm long ........................................................ 3Lemma > 1.95 cm long; flag leaf > 25.5 cm long; flag leafsheath > 13.5 cm long ................................. Morphotype A

3. Number of flower/ spikelets > 7 .................... Morphotype BNumber of flower/ spikelets < 7 ................... Morphotype C

4. Distance between spikelets < 0.94 cm long (condensedbranches); Number of primary branches at the first and sec-ond nodes < 2.8 ............................................................... 5Distance between spikelets > 0.99 cm long (lax branches);Number of primary branches at the first and second nodes > 3 ............................................................... Morphotype D

5. Number of flowers/ spikelets > 7 ...................................... 6Number of flowers/ spikelets < 7 .................. Morphotype E

6. Flag leaf > 25 cm long; Penultimate leaf > 29 cm long; flagleaf sheath > 14 cm ...................................... Morphotype FFlag leaf < 25 cm long; Penultimate leaf < 29 cm long; flagleaf sheath < 14 cm ..................................... Morphotype G

Table 6. Multivariate lineal regression analysis calculated be-tween environmental variables and the Bromus catharticus pop-ulation’s projections scores on the resulting PC axes (PCA1,PCA2 and PCA3). F statistic test. Significance levels: ns, not sig-nificant; *, p < 0.05; **, p < 0.01.

Environmental variables PCA1 PCA2 PCA3

Model 0.33 ns 4.55* 1.08 nsAverage maximum temperature (ºC) 0.65 ns 0.15 ns 1.37 nsAverage minimum temperature (ºC) 0.19 ns 0.58 ns 0.00 nsAbsolute maximum temperature (ºC) 0.50 ns 5.80* 0.01 nsAbsolute minimum temperature (ºC) 0.00 ns 0.41 ns 0.05 nsAverage temperature (ºC) 0.31ns 0.52 ns 2.10 nsAverage precipitation (mm) 0.61 ns 1.59 ns 2.20 nsRelative humidity (%) 0.02 ns 5.31 * 1.55 ns

Page 12: Regional variation in Argentinean populations of Bromus … · 2019. 10. 25. · Regional variation in Argentinean populations of Bromus catharticus (Poaceae) as measured by morphological

It was not possible to distinguish between MAIPUand the cluster I-C and between cluster II-A and II-D.To clarify this question, a correspondence betweenmorphotypes and groups built with the minimumvariance clustering method is cited as following: Mor-photype A: MAIPU and the group I-C (CHIVI, PI-LAR, ESCOB, LHERA, GRODRI, SVICE, TAPAL).Morphotype B: group I-B (AZUL, MARDE, OLA-VA). Morphotype C: PLARA. Morphotype D: BAL-CA (group II-B). Morphotype E: CCASB and thegroups II-A (MERCE, PEREY, CAÑUE, LLAVA)and II-D (GIRON, HENDE, BOLIV, TLAUQ).Morphotype F: PEHUA (group II-E). MorphotypeG: Group II-C (BRAGA, SCLEM, LEZAM, PIPIN,MAGDA, CASTE, LFLOR, CCASC).

Pattern of classification associatedwith the environment

We found differential panicle forms that couldhave an adaptive importance. The condensed branch-es would offer better protection for reproductiveparts, especially in dry or saline habitats. Szpiniak &al. (1995) pointed out that drought and salinity mightbe important factors to select for shorter and narrow-er B. catharticus panicles.

The tendency for populations collected from near-by sites to group near to each other might be ex-plained by the hypothesis of a common genetic originor by a similar environmental response. In contrast ofthat, Morphotype G (cluster II-C) contains very geo-graphically distant populations that are grouped to-gether, possibly in response to the existence of inter-rupted areas or patches with a similar habitats, thatare found in the depression of the Río Salado drainage(Sandy and Depressed Pampas) [Fig. 5]. In contrastpopulations CCASC and CCASB, sampled fromnearby one another, were placed in different clustersby the third component. When using only the firstand second components these same populationsformed a single cluster (Fig. 3). This indicates thatsome variables such as spikelet length (LS) and num-ber of nodes per panicle (NNP) could be selected bymicro rather than macro environmental conditions.

Our collecting locations cover a gradient of humid-ity and temperature that diminishes from the North-east to the Southwest of Buenos Aires province. Wesuggest that lemma and glume length, and the numberof branches, which are the most important variablesin the second component, might have a role in theadaptation of populations to this gradient. The factthat temperature and humidity were significantly cor-related with the scores of the populations on PC2(Table 6) seems to support this idea. Our conclusion

M.B. Aulicino & M.J. Arturi146

Anales del Jardín Botánico de Madrid 65(1): 135-147, enero-junio 2008. ISSN: 0211-1322

was further confirmed since the northernmost popu-lation (morphotype A) presented the largest lemmasand glumes and numerous branches (Table 4). Coin-cidently, Smith (1981) and Sales (1994) associated thevariation in lemmas, glumes and fruit size with floata-bility and water availability.

When a characteristic is genetically fixed and is cor-related with ecological and physical factors of thehabitat it is defined as an ecotype (Bradshaw, 1965).The morphotypes that are associated with environ-mental factors could be recognized as B. catharticusecotypes. They seemed to be determined by micro-environment factors such as the landscape, which ismainly defined by topography and soil geomorpholo-gy, and some climatic factors such as the temperatureand humidity. These results suggest that new germ-plasm would be found if we extend the present sam-pling to include all the geographic, climatic, and eco-logical variation found across the native distributionarea of B. catharticus.

In conclusion, a patchy variation model seems tobest explain the distribution of populations as mea-sured by these 18 morphological heritable traits. Ourdata supports the classification or grouping of mor-phologically and genetically similar populations col-lected at neighboring areas with similar environmen-tal conditions. As a consequence, the pattern of classi-fication reflects the geographical origin, althoughthere is still some noise with this model.

Acknowledgements

The authors are grateful to the Facultad de Ciencias Agrarias,Universidad Nacional de Lomas de Zamora, for use of the SAScomputer software and to Dr. Nora Abiati for help programmingthe SAS computer procedures. This research was supported by theConsejo Nacional de Investigaciones Científicas y Técnicas (CON-ICET) and Grants from the Universidad Nacional de la Plata. Weare grateful to Drs P.M. Peterson and M. Pimentel for their valu-able comments to the manuscript and for the English revision.

References

Almeida-Pinheiro de Carvalho, M.A. Wilcock, C.C., Marques DosSantos, T.M., Vale-Lucas, I.C., Teixeira-Ganança, J.F.,Thangadurai, D., Muralidhara-Rao, D. & Freitas-Sousa, D.2004. A review of the genus Semele (Ruscaceae) systematic inMadeira. Botanical Journal of the Linnean Society 146: 483-497.

Amurrio, J.M., Ron, A.M. De & Zeven, A.C. 1995. Numerical tax-onomy of Iberian pea landraces based on quantitative and qual-itative characters. Euphytica 82: 195-205.

Anderson, S. 1989. Phenotypic plasticity in Crepis tectorum (As-teraceae). Plant Systematic and Evolution 168: 19-38.

Armstrong, K.C. 1981. The evolution of Bromus inermis and re-lated species of Bromus Sect Pnigma. Botanische Jahrbücher Sys-tematisch 102: 427-443.

Page 13: Regional variation in Argentinean populations of Bromus … · 2019. 10. 25. · Regional variation in Argentinean populations of Bromus catharticus (Poaceae) as measured by morphological

Arunachalam, S. 1981. Genetic distance in plant breeding. Annalsof Botany 72: 515-520.

Aulicino, M.B. & Arturi, M.J. 2002. Phenotypic diversity in Ar-gentinean populations of Bromus catharticus (Poaceae). Ge-netic and environmental components of quantitative traits.New Zealand Journal of Botany 40(2): 223-234.

Bradshaw, A.D. 1965. Evolutionary significance of phenotypicplasticity in plants. Advance in Genetics 13: 115-155.

Brown, A.H.D. 1989. Core collections: a practical approach to ge-netic resources management. Genome 31: 818-824.

Burkart, A. 1969. Flora ilustrada de Entre Ríos (Argentina).Gramíneas Parte II. In: Colección Científica del INTA. BuenosAires. Argentina. VI: 65-70.

Cappannini, D. 1968. Principales unidades edáficas de la provinciade Buenos Aires. Gramíneas Parte II. In: Colección Científicadel INTA. Buenos Aires. Argentina.

Clayton, W.D. & Renvoize, S.A. 1986. Genera Graminum. Grass-es of the world. Kew Bulletin Additional Series 13: 1-389.

Costanza, M.C. & Afifi, A.A. 1979. Comparison of stopping rulesin forward stepwise discriminant analysis. Journal of AmericanStatistical Association 74: 777-785.

Dickinson, T.A. & Phipps, J.B.P. 1985. Studies in Crataegus L.(Rosaceae: Maloideae). XIII. Degree and pattern of phenotyp-ic variation in Crataegus sect Crus-galli in Ontario. SystematicBotany 10(3): 322-337.

Dunn, G. & Everitt, B.S. 1982. An introduction to mathematicaltaxonomy. Cambridge University Press, Cambridge.

Fischer, M. 2004. Evolutionary plant ecology in the heterogeneouscultural landscape. In: Abstract of the 13 Symposium on Plantpopulation ecology and genetics in the cultural landscape.Giessen, Germany 13-17 September 2004. T13-01.

García, M. & Arturi, M. 1992. Variabilidad fenotípica en proge-nies de Bromus catharticus Vahl. originadas de flores chas-mógamas y cleistógamas. Revista de la Facultad de Agronomíade La Plata 68: 27-33. Argentina.

Gutiérrez, H.F. & Pensiero, J.F. 1998. Sinopsis de las especies ar-gentinas del Género Bromus (Poaceae). Darwiniana 35: 75-114.

Khattree, R. & Naik, D.N. 2000. Multivariate data reduction anddiscrimination with SAS Software. In: Wiley, J. & Sons (eds.).Cary, North Caroline.

Legendre, P. & Legendre, L. 1998. Numerical Ecology. Secondedition. Amsterdam: Elsevier.

Loveless, M.D. & Hamrick, J.L. 1984. Ecological determinants ofgenetic structure in plant populations. Annual Review of Sys-tematic and Ecology 15: 65-95.

Mantel, N.A. 1967. The detection of disease clustering and gener-alized approach. Cancer Research 27: 209-220.

Mapas de Suelos de la Provincia de Buenos Aires (Escala 1:500.000). 1989. In: INTA-CIRN Departamento de suelos ySecretaría de Agricultura, Ganadería y Pesca. Buenos Aires.Argentina.

Marshall, D.R. & Brown, A.H.D. 1975. Optimum sampling strate-gies in genetic conservation. Crop genetic resources for today andtomorrow. In: Frankel, O.H., & Hawkes, J.G. (eds). CambridgeUniversity Press. Cambridge. Pp 53-80.

Massa, A.N., Jensen, K.B., Larson, S.R. & Hole, D.J. 2004. Mor-phological variation in Bromus sect. Ceratochloa germoplasmof Patagonia. Canadian Journal of Botany 82: 136-144.

Pahlen, A.W. Von Der. 1986. Evaluation of genetic variability ofsome native forage plants. Boletín de Genética del Instituto Fi-totécnico 14: 1-6.

Pérez López, F. 1975. Estudio de la variabilidad de Bromusunioloides de diferentes hábitats. M Sc Thesis, Escuela de Gra-

Regional variation model in Bromus catharticus 147

Anales del Jardín Botánico de Madrid 65(1): 135-147, enero-junio 2008. ISSN: 0211-1322

duación en Ciencias Agropecuarias. INTA. Castelar. Argen-tina.

Peterson, P.M. & Planchuelo, A.M. 1998. Bromus catharticus inSouth America (Poaceae: Bromeae). Novon 8: 53-60.

Pistorale, S., Wolf, R. & Bazzigalupi, O. 1999. Dormancy and seedgermination in natural populations of Bromus catharticus Vahl.(cebadilla criolla). Journal of Genetics and Breeding 53: 47-55

Planchuelo, A.M. 1991. Estudios sobre el complejo Bromuscatharticus (Poaceae) I. Evaluación estadística de los caracterestaxonómicos. Kurtziana 21: 243-257.

Puecher, D.I., Robredo, C.G., Rios, R.D. & Rimieri, P. 2001. Ge-netic variability measures among Bromus catharticus Vahl.populations and cultivars with RAPDS and AFLP markers. Eu-phytica 121: 229-236.

Ragonese, A.E. & Marcó, P.R. 1941. Observaciones sobre la biología floral de la cebadilla criolla. Revista de la Facultad deAgronomía de La Plata 8: 197-199.

Richards, A.J. 1986. Plant breeding systems. In: Allen, Ch. I., & Un-win (eds.). London.

Rohlf, F.J. 1998. NTSYS-pc. Numerical taxonomy and multivariateanalysis system (version 2.0f). Exeter Software Publishers Ltd.Setanket. New York.

Saarela, J.M, Peterson, P.M., Keane, R.M., Cayouette, J., & Gra-ham, S.W. 2007. Molecular phylogenetics of Bromus (Poaceae:Pooideae) based on chloroplast and nuclear DNA sequencedata. Aliso 23: 379-396.

Sales, F. 1994. Evolutionary tendencies in some annual species ofBromus (Bromus L. Sect. Genea Dum. (Poaceae). BotanicalJournal of the Linnean Society 115: 197-210.

Sánchez, J.J., Goodman, M.M. & Rawlings, J.O. 1993. Appropri-ate characters for racial classification in maize. Economy Botany47: 44-59.

Smith, P.M. 1970. Taxonomy and nomenclature of the Brome-grasses. Proceeding of Royal Botanic Garden of Edinburgh 30:361-375.

Smith, P.M. 1981. Ecotypes and subspecies in annual brome grass-es (Bromus, Gramineae). Botanische Jahrbücher Systematisch102: 497-509.

Sneath, P.H.A. & Sokal, R.R. 1973. Numerical Taxonomy: Theprinciples and practice of numerical classification. In: Freeman,W.H., & Co (eds.). San Francisco.

Stebbins, G.L. 1981. Chromosome and evolution in the genus Bro-mus (Gramineae). Botanische Jahrbücher Systematisch 102: 359-379.

Stebbins, G.L. & Tobgy, H.A. 1944. The cytogenetics of hybridsin Bromus. I. Hybrids within the section Ceratochloa. Ameri-can Journal of Botany 31: 1-11.

Szpiniak, B., Ferreira, V., Sepliarsky, A. & Irico, M. 1995. Análisisde la variación de Bromus catharticus Vahl. en ambientes sub-húmedos-secos de la República Argentina con fines de mejo-ramiento. Mendeliana 11: 84-98.

Tricart, J.L.F. 1973. Geomorfología de la Pampa Deprimida. Basespara los estudios edafológicos y agronómicos. In: Colección Cien-tífica del INTA. Buenos Aires. Argentina.

Wolff, R., Abbott, L. & Pistorale, S. 1996. Reproductive behaviorof Bromus catharticus Vahl. (Cebadilla criolla) in natural andcultivated populations. Journal of Genetics and Breeding 50:121-128.

Associated Editor: P. CatalánReceived: 10-IX-2007Accepted: 7-IV-2008