14
Physics of the Earth and Planetary Interiors, 7(1973) 365—378 © North’Holland Publishing Company, Amsterdam Printed in The Netherlands REGIONAL INDUCTION STUDIES: A REVIEW OF METHODS AND RESULTS ULRICH SCHMUCKER Institut für Geophysik, Gottingen (Germany) Accepted for publication February 2, 1973 The geomagnetic skin-effect is specified by setting three length scales in relation to each other: ~for the over- head source. L 2 for the lateral non-uniformity of the subsurface conductor, L3 for the depth of penetration of a quasi-uniform transient field into this conductor. Relations for the skin-effect of a quasi-uniform source in layered conductors are generalized to include sources of any given geometry by introducing response kernels as functions of frequency and distance. They show that only those non-uniformities of the source which occur within a distance comparable to L3 from the point of observation are significant. The skin-effect of a quasi-uniform source in a later- ally non-uniform earth is expressed by linear transfer functions for the surface impedance and the surface ratio of vertical/ horizontal magnetic variations. In the case of elongated structures and E-polarisation of the source, a modi- fied apparent resistivity is defined which as a function of depth and distance gives a first orientation about the in- ternal distribution of conductivity. The skin-effect of a non-uniform source in a non-uniform earth is considered for stationary and “running” sources. Recent observations on the sea floor and on islands indicate a deep-seated change of conductivity at the continent—ocean transition, bringing high conductivity close to the surface, a feature which may not prevail, however, over the full width of the ocean. There is increasingly reliable evidence for high conductivi- ties (0.02 to 0.1 [Z m 1) at subcrustal or even at crustal depth beneath certain parts of the continents, in some cases without obvious correlation to geological structure. 1. Introduction ly symmetric earth. Hence, they cannot give more than a mean internal conductivity downward to about This review is concerned with geomagnetic and 400 km depth as discussed in Rikitake’s contribution magneto-telluric sounding experiments which are per- to this volume. formed at a single site or at several sites within a The review is subdivided into two parts. In the bounded area. Hence, the electromagnetic skin-effect first of these, section 2, 1 consider methods of data to be studied is produced by eddy currents which do presentation and interpretation, assuming that the not form closed ioops within the boundaries of the data are given in the form of transfer functions in the surveyed area. They belong to current systems of frequency-distance domain. Typical sets of transfer much larger, usually global dimensions, matching in functions are the impedance tensor, connecting as a size those of the inducing external source field, function of frequency and location the horizontal Even though no exact knowledge may be available components of the electric and magnetic field varia- about this large-scale induction process, definite con- tions, and the matrix of W-coefficients, connecting clusions can be drawn about the internal distribution in a similar way the vertical and horizontal magnetic of electrical conductivity from local or regional ob- variations. Banks’ and Hermance’s contributions to servations of transient fields. In fact, such studies are this volume contain details about their actual deter- indispensable for the investigation of the earth’s crust mination from empirical data. and uppermost mantle which appear to be highly Section 3 summarizes recent observational results. heterogeneous with respect to their conductivity. Review articles on the same topic have been pub- Global induction studies with slow and deeply pene- lished within the last year by Porath and Dziewonski trating variations proceed from the concept of a radial. (197 ib), Rikitake (1971), and by Schmucker and

REGIONAL INDUCTION STUDIES: AREVIEW OF METHODS AND … · (cf. upper left graph in Fig.3). Differentation of the The method ofgeomagnetic deep sounding ac-cording to eqs.5 requires

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: REGIONAL INDUCTION STUDIES: AREVIEW OF METHODS AND … · (cf. upper left graph in Fig.3). Differentation of the The method ofgeomagnetic deep sounding ac-cording to eqs.5 requires

PhysicsoftheEarth andPlanetaryInteriors, 7(1973)365—378© North’HollandPublishingCompany,Amsterdam— Printedin TheNetherlands

REGIONAL INDUCTION STUDIES: A REVIEW OF METHODS AND RESULTS

ULRICH SCHMUCKERInstitut für Geophysik,Gottingen(Germany)

Acceptedfor publicationFebruary2, 1973

Thegeomagneticskin-effectis specifiedby settingthreelengthscalesin relationto eachother: ~for the over-headsource.L

2 for thelateralnon-uniformityofthe subsurfaceconductor,L3 for thedepthof penetrationof aquasi-uniformtransientfield into this conductor.Relationsfor the skin-effectof aquasi-uniformsourcein layeredconductorsaregeneralizedto includesourcesof anygivengeometryby introducingresponsekernelsas functionsoffrequencyanddistance.Theyshowthatonly thosenon-uniformitiesof thesourcewhichoccurwithin adistancecomparableto L3 from thepoint of observationaresignificant. Theskin-effectof aquasi-uniformsourcein alater-ally non-uniformearthis expressedby linear transferfunctionsfor the surfaceimpedanceandthesurfaceratio ofvertical/horizontalmagneticvariations.In the caseof elongatedstructuresandE-polarisationof thesource,amodi-fied apparentresistivity is definedwhichasafunctionof depthanddistancegivesafirst orientationaboutthe in-ternaldistributionof conductivity. Theskin-effectof anon-uniformsourcein anon-uniformearthis consideredforstationaryand“running” sources.Recentobservationson theseafloor andon islandsindicateadeep-seatedchangeof conductivityat thecontinent—oceantransition,bringing high conductivitycloseto thesurface,afeaturewhichmaynot prevail,however,overthefull width of theocean.Thereis increasinglyreliableevidencefor highconductivi-ties(0.02to 0.1 [Z m

1) atsubcrustalor evenat crustaldepthbeneathcertainpartsof thecontinents,in somecaseswithout obviouscorrelationto geologicalstructure.

1. Introduction ly symmetricearth.Hence,they cannotgivemorethana meaninternalconductivitydownwardto about

Thisreview is concernedwithgeomagneticand 400 km depthasdiscussedin Rikitake’scontributionmagneto-telluricsoundingexperimentswhich areper- to thisvolume.formedat a singlesite or at severalsiteswithin a The review is subdividedinto two parts.In theboundedarea.Hence,theelectromagneticskin-effect first of these,section2, 1 considermethodsof datatobe studiedisproducedby eddycurrentswhich do presentationandinterpretation,assumingthat thenot form closedioopswithin the boundariesof the dataare given in theform of transferfunctionsin thesurveyedarea.Theybelongto currentsystemsof frequency-distancedomain.Typical setsof transfermuchlarger,usuallyglobal dimensions,matchingin functionsare the impedancetensor,connectingasasizethoseof the inducingexternalsourcefield, function of frequencyandlocationthehorizontal

Even thoughno exactknowledgemaybe available componentsof the electricandmagneticfield varia-aboutthis large-scaleinductionprocess,definite con- tions,andthematrix of W-coefficients,connectingclusionscanbe drawnaboutthe internaldistribution in a similarway theverticalandhorizontalmagneticof electricalconductivity from local or regionalob- variations.Banks’andHermance’scontributionstoservationsof transientfields. In fact,suchstudiesare this volumecontaindetailsabouttheir actualdeter-indispensablefor the investigationof the earth’scrust minationfrom empiricaldata.anduppermostmantlewhichappeartobehighly Section3 summarizesrecentobservationalresults.heterogeneouswithrespectto theirconductivity. Reviewarticleson thesametopic havebeenpub-Globalinductionstudieswith slowanddeeplypene- lishedwithin the lastyearby PorathandDziewonskitratingvariationsproceedfrom the conceptof a radial. (197ib), Rikitake(1971),andby Schmuckerand

Page 2: REGIONAL INDUCTION STUDIES: AREVIEW OF METHODS AND … · (cf. upper left graph in Fig.3). Differentation of the The method ofgeomagnetic deep sounding ac-cording to eqs.5 requires

366 U. Schmucker,Regionalstudies

Jankowski(1972).The readeris referredalsoto cx- (a) ,“ (b) (a) (d)

by H; - H~e

2. Methodsof datapresentationandinterpretation _____ _________ y~ L3_______

0 ~ ‘~~.“—I ~

Theearth’ssurface,takentobe flat in regional Z _______ I ________ //

studies,formsthe planez = 0 of rectangularcoor- _____________ L’~

dinates,zdown. All relationsare writtenin M.K.S.- ~—-. —

unitsandrefer, if not statedotherwise,to the mag- Fig. 1. HorizontalcomponentH of transientsourcefIeldneticandelectricvectorsof the transientsurface for geomagneticinduction in conductinghalf-space(sche-field H= (H H H ) and£= (E E E ). The matic).Verticalandhorizontalboundariesseparateuniform

X’ y’ Z X’ 7’ Z blocks.(a) and(b): One-dimensionalskin-effect.(c) andfield componentsH~,Hr... are to oeunderstood (d): Disturbedskin-effect.L andL3: Lengthscalesforascomplex-valuedFounercoefficientswithexp sourcefield anddepthof penetrationat agivenfrequency.(iwt) asa factor in thetimedomain.Weshallas-sumethat theelectricvectorof thesourcefield is for this depthtakesalso their argumentsinto accounttangentialto theearth’ssurface(TE mode). Induc- (Schinucker,1970a;p.69).tive responsefunctionsof alayeredhalf-spaceare Thegeneralinductionproblemasseenfrom ob-usedfor the caseof asinusoidalTE sourcefield with servationsat oneparticularsurfacepointwill be in-exp [i(k~x+ k~y)]asa commonfactorof all Fourier dicatedby specifyingthreelengthscalesrelativecoefficientsin planesz = constant(cf. Weaver’scon- to eachother.They referto thespatial configura-tribution to this volume).Ifk= + k~denotes tion of thesourcefield, to thedegreeof lateralurn-theabsolutevalueof thetangential“wave number” formity of conductingMatter beneaththesurface,vectork= (kr, ky)~theseresponsefunctionsarethe andto thedepthof penetrationof the fields intoimpedanceZ(w,k), theinductive scalelength this conductor(~?ig.1).C(c~,k), andthe ratio of internalto externalparts LetL1 be thefirst lengthscalefor thespatialnon-S(~,.,k) of themagneticsurfacefield. Theyareinter- uniformity of theoverheadsourcefield. Thiscanbe,relatedas: for instance,theheightof anoverheadline-current.

jet or the reciprocalof the wavenumberk for aZ = it.ol.L0C (1) sinusoidalfield (seebelow). If thenon-uniformityis

mainly in onehorizontaldirection, sayin the direc-

S = (1 — kC)/(1 + kC) tion ofy, anappropiatevaluefor L1 is IH /H~,I,whereH = aH~IaYdenotesthe local grac?entof

Theconversioninto theequivalentapparentresistivi- variationsof thehorizontalcomponentH~,,(cf. eq.6).ty of a uniform half-spaceis givenby: Theconductingmatterof the lowerhalf-space

z>0 is subdividedwithverticalboundariesinto= w~jC 12 (2) stratifiedsectionsof differentconductivity.ThenL2

is definedas thedistancebetweenthepointof obser~

whenonly themoduli of the responsefunctionZ and vation andthenearestverticalboundary.Care to be consideredat a certainfrequency.An In thespecialcaseof sufficientlyuniform sourcealternativeconversioninto thedepthof aperfectsub- fields therealandnegativeimaginarypartsof thein-stituteconductor: ductivescalelengthcanbe interpretedas theweighted

meandepthof the inducedcurrentsin a stratified= Re{C} (3a) half-space(Weidelt, 1972;p.268).Hence, the limiting

valueof c fork-÷0isa convenientmeasurefor theandamodifiedapparentresistivity:

depthof penetrationat a given frequency.We shallp*(z*) = 2wp0(Im{C})

2 (3b) useits modulusfor the relevantstratifiedsectionas

Page 3: REGIONAL INDUCTION STUDIES: AREVIEW OF METHODS AND … · (cf. upper left graph in Fig.3). Differentation of the The method ofgeomagnetic deep sounding ac-cording to eqs.5 requires

U. Sc/smucker,Regionalstudies 367

the third scalelength andsetL3= lC(~.s,0)l.Clearly, aH~/a2= — a0Z(o.s,O)Hy IL3 will increasewith decreasingfrequency. (7)

aH~/~z= — c0Z(c~.,,0)H~2.1. Quasi-uniformsourcefieldandquasi-stratified

conductor:L1, L2 )‘L3. Any oneof therelations(4) to (7)can be usedtoThis is a one-dimensionalinductionproblembe- deriveone-dimensionalresponsefunctionsfrom ob-

causefor thepoint or areaunderconsideration servationsat a singlesiteor at adjacentsites,if fieldneitherthe exactconfigurationof thesourcefield gradientsareto beemployed.Bailey’s contributionnor theconductivityin adjacentstratifiedsections to this volumeshouldbeconsultedfor a discussionmatters(Fig. Ia). Insettingthesourcefield param- of theone-dimensionalinverseproblem,which ariseseterk formally tozero,we obtainthe field rela- whena conductivityversusdepthdistributionis totionsfor this so-calledCagniardcase(cf. Weaver’s befitted to a givensetof responsevalues.contribution): Hereit may suffacetopoint outthat in theactual

situationlateralgradientsof awill limit the frequencyE~= Z(~,0)11,, Ey = — Z(w,0)H~ (4) range,for which theresponsemayberegardedasone-

dimensional.In additiontherewill be randomerrors

= 0 S(w, 0) = 1 (5) connectedwith experimentallydeterminedresponsevalues.As a consequenceof bothdeficiencies,in-

Whenallowanceis madefor a smallsinusoidalmodu- verseprocedurescannotgivemore thanaveragedval-lationof thesourcefield with the constraintthat uesof a overa certaindepthrangewith certaincon-k IC(~.s,0)1 = L3/L1 ~ 1, verticalmagneticvaria- fidencelimits attachedto them.lions andtheratio of internalto externalpartsare An effectivetestfor consistencyof experimentalgiven approximatelyby: dataisprovidedby the applicationof two or more

(1 lax C(ao,0) .H~ I methodsconcurrently.The examplein Fig. 2 indi-H2 = (5a) catesthedegreeof consistencywhich we mayexpect

underfavorableconditions.1~/lcd,C(~,0) H~ Themethodof magnetotelluricdepth soundingin

S= 1 — 2kC(~,0) andTilthonov. It hasfoundwide applicationbecauseitthe form givenby eq.4 hasbeenintroducedby Cagniard

Notice that thecitedconstraintstill justifiestheuse is source-field-independentunderthe constraintscon-of the responsefunctionC for zerowavenumber sideredhere.(cf. upperleft graphin Fig.3).Differentationof the Themethodof geomagneticdeepsoundingac-

cordingto eqs.5requiresthe useof aproperlychoseneqs.4with respecttox andyleadsto: sourcefield vectork. Thisparameteris readilyavail-= C(~,0) (aH~/ax+ aHylay) (6) ableonly for fields of simplegeometryas is thecase

forsq-andD5~variations.A slight modificationwill

In thederivationusehasbeenmadeof thesecond takeaccountof the sphericityof theearth(cf.field equationcurlE — iw~.z0H,which impliesthat: Schmucker,1970b;Appendix).

Eq.6hasnotbeenusedto anyextentsofar be-aE~/ay— aE~Iax= ic.~,p0H2 causeexistinginstrumentsdo nothavethe resolving

powerto measurelateralgradientsof magnetichori-In thequasi-stationaryapproximationof thefirst zontalvariationswithsufficient accuracyovershortfield equation,curl H= c0E,we maydisregardthe distances.The first field experimentof this typewashorizontalgradientsofH2 for anyfinite subsurface carriedoutby Schmidt(1968)nearNiemegkobserva-conductivitya~= a(z = + 0). Hence,we havefor tory southof Berlin whereH2, however,is highlytheverticalgradientsofH~andH~,the relations anomalousbecauseof the closenessof theNorthau /az = — a0E~andaH~/az= ct0E,,.InsertingE~ Germananomaly.an~’E~from theeqs.4gives: Thepossibilityof undertakingsoundingexperi-

Page 4: REGIONAL INDUCTION STUDIES: AREVIEW OF METHODS AND … · (cf. upper left graph in Fig.3). Differentation of the The method ofgeomagnetic deep sounding ac-cording to eqs.5 requires

368 U. Schmucker,Regionalstudies

* 2.2. Non-uniformsourcefield andquasi-stratified

0.1 1 tim io ,oo conductor:L ~> L , LI Sourcefield dimensionsandthe depthof penetra-

km tion areof comparablesize (L1 ~L3), but thenearestverticalboundaryis still far enoughaway to

2 keepthe skin-effectproblemone-dimensional(Fig. ib).

100 - j ‘~~‘ Hence,in thecaseof sinusoidalsourcefields the same3 relationsapply asin section2.1 exceptthat there-

z~ sponsefunctionsZ,C, andShaveto be definednow

I for a finite wave numberk. Assumingfor simplicityI that thesourceis uniform in thex-directionand

200 -1 thusE,,=0, we obtain:.4

E~= iwji0C(w, k) - H~= ic~.sp0C(c~.s,k) [1 +S(w,k)]H,~

300 - ‘5 H2 = ik~C(c~.s,k) . Hy (8)

Fig.2.Intercomparisonof local soundingdatafor the third — eharmonicof S variations,givenasapparentresistivity p * H~— ~ k) - H~ H = — S(w,k) Hversusdepthe~timates(eq.3).1—3:Seafloorsoundingsoffshorefrom California,usingtheverticalgradientof D with k = 1k I. The indices“e” and“i” refer to fieldsvariations(1 and3) andtheseafloorimpedance(2). 4 and5: Y . .

SoundingsatthenearbyinlandobservatoryTucson,Ariz., of externalandinternalorigin, respectively.Noticeusingthe surfaceimpedanceENS/D(4) andthemagnetic thatZ/D ratio.Thereduceddepthofpenetrationz* at thecon-tinent—oceantransitionimplies anincreasedsubcrustalcon- H = — i sgn(ky) I-J~ductivity beneaththeocean.Datafrom LarsenandCox (9)(1966)— 1; Filloux (1967)— 2; Greenhouse(1972)StationLJG —3;Rooney(1935)andTucsonObservatoryYear- H = 1 sgn(k~). Hbookfor 1933 — 4. Calculationof4 and5 in Sq~effectivecoordinates(cf. Schmucker,1970b,Appendix). becauseboth fields are Laplacianfor z ~ 0 with

exp(+kz)andexp(—kz)asheight factors,respec-

mentswith theverticalgradientsofH~andH~,ac- tively.cordingtoeq.7hasbeenpointedoutby Meyer Any given surfacefield couldbe decomposednow(1966),but againinstrumentaldifficulties haveso into aspectrumof sinusoidalundulationsto whichfar preventedanysuccessfulapplicationon land — theeqs.8or their two-dimensionalequivalentsarewith observationsin deepminesorboreholes,for appliedindividually. Thishasbeendoneby Hermanceinstance.Recently,underwaterrecordingmagneto- andPeltier(1970),Hutton (1972),Huttonandmeterstationshavebecomeoperationalandhave Leggeat(1972),andOni andAlabi (1972)to evaluatebeeninstalledat thebottom of deepoceans(cf. surfaceobservationsbeneaththe equatorialandFilloux’s contributionto this volume).Herethe auroraljet. Theirconsentwas that thechoiceof thehigh andwell-known conductivityof seawateren- sourcefield parameterisnota critical onebecausesuresmaximumverticalgradientsof thehorizontal the respectiveresponsefunctionsaresmoothfunc-variations.Thevariationsat the seasurfacehaveto tionsof k for anychosenlayereddistribution of a.be inferredfrom nearbyobservationson land The decompositioninto spatialharmonicscanbe(Filoux, 1967;Greenhouse,1972).The first true circumventedaltogetherby expressingtherelationsgradientobservationshavebeenperformedin the betweenfield componentsin theform of con~olu-Arctic Ocean,whereSneyerandFonarev(1968, tion integrals.Theirkernelsas functionsof frequency1971)operatedsimultaneouslymagnetometersta- anddistanceare theFourier transformsof there-tionson a drifting floe andon theseafloor. sponsefunctionsfor sinusoidalfields abovea layered

Page 5: REGIONAL INDUCTION STUDIES: AREVIEW OF METHODS AND … · (cf. upper left graph in Fig.3). Differentation of the The method ofgeomagnetic deep sounding ac-cording to eqs.5 requires

369U. Sc/smucker,Regionalstudies

TABLE IResponsefunctionsandkernelsfor a stratifiedconductinghalf-space

f(w~k,,) F((..~,y)’ F(y)**

—isgn(k~) K(ITyY’ — 0—i 0

(ik~CY’ L (2/s tghOru)]

ik,,C M —(2hsinh(iru)]~ 0

C N ir~ - in (ctgh (~-wu)] C(~,0)

S P [2irh.(l+u2)]~ 1

(1 + S) . C Q (2ir)~- lii (1 + u2) 2 - C(~,0)

—isgn(k~).S R [ny.(1+u2)]’ 0

* Cf. eq.10.

** For perfectconductorat thedepthh; u = y/(2h)

conductor.Physicallythesekernelsrepresentthe in- with:ductive responseof alayeredhalf-spaceto a line-cur-rentsourceat zeroheight(Fig.3). H~= K * Hi H~= — K * HC (12)2 y Z y

Therequiredtransformationof a wavenumberre-sponsefunctionf(c~,k~)is: It shouldbenotedthata convolutionwith thekernel

K is equivalentto theapplicationof the operatorK,usedby SiebertandKertz(1957).An extensionto

F(w,y) = ~— f f(a~,/c~). exp (ik,,y)dk~ (10) two-dimensionalfields would involve two succes-sive convolutions.HobbsandPrice(1970,1971)describerelatedsurfaceintegralmethodsto separate

whereF(~.s,.iv) is thekernelfor directcalculationsin fields on a sphericalsurfaceinto two partsof internalthe distancedomain.Detailsaboutthenumericaleval- andexternalorigin.uation of the integralappearingin eq.10 are given Let uschooseasan examplea simpleconductivi-elsewhere(Schmucker,1971;p.159).Somebasic ty model,consistingof aperfectconductorat thetransformationpairscanbe foundin thefirst and depthz = h andzero conductivityforz ~ h. Its re-secondcolumnsof TableL sponsefunctionsfor sinusoidalfields areC(k) =

Apply theconvolutiontheoremto theproducts tgh (kh)/k andS(k) = exp (— 2k/i) asis readilyyen-on the righthandsidesof theeqs.8and9, insertthe fled from theheightfactorsof the internalandex-kernelsymbolsfrom TableI andobtain: ternalfields which areexp(+ k2) andexp(— k2),

respectively;t = z — h ~ 0. Thesefunctionsare real

E~= iwii0 ~N * H3,) = i~i.z~{ (2 * H } I andnaturally thesamefor all frequencies.Their

FouriertransformscanbefoundanalyticallyandH2 =M * H~ H3, = L * H2 ~(ll) arelistedin thethird column of TableI. They are

showngraphicallyin Fig. 3.

Themost importantcharacteristicof response= P * H~= — P * H = R* kernelsis their rapiddecreasewhenthedistancey

Page 6: REGIONAL INDUCTION STUDIES: AREVIEW OF METHODS AND … · (cf. upper left graph in Fig.3). Differentation of the The method ofgeomagnetic deep sounding ac-cording to eqs.5 requires

370 U. Schmucker,Regionalstudies

+700HJ~

1.0-...~~~ ______________ ____

05b° 7017 doeC/h -100 ‘‘‘‘‘~J200 km

0.5 0

0 I ______________

kh Try/h0 1 2 3 4 0 1 2 3 4 -200

+100 H

0 —~T, ,~

-

a/I 0.5\~ -200 H;

..-‘,‘Ph Mh/ / —

-300I I —- I . geomogn. latitude

0 Try/h 4 8 40° 50° 60° 70° 80°0 ~

zFig.3. Uppergraphs:ResponsefunctionCandresponse 100

\kernelN, connectingtheorthogonalhorizontalcomponents km *of theelectricandmagneticsurfacefield aboveaperfectconductoratthedepthz = h. 200 ~Lower graph:Variousresponsekernelsfor the samemodel(cf. eqs.11 andTableI). Flg.4..Appbeitioñof eqs.1~1.tO~theidealizedtWo-dimen-Physicalinterpretation:If thesourceis aline currentat sionalfield of thepolarelectrojet(PEJ)duringabaydistur-y 0 andz = — 0, yieldingHe = H0 - — 0) at 2 = 0 bance.Inductiontakesplacein aperfectconductorat200for acurrentof thestrength

3.~H0hin thenegativex-direc- km depth.Thenon-uniformityof thesourcefield produces

tion, the cprvesshownrepresent14 of the sourcefield aclearlyreducedandsmoothedinternalmagneticfield.(— Kh),H’ andH of theinternalfield (Th, Rh),andthe However,the one-dimensionalconversionof thelocalsur-electricfieldE~antiparallelto thecurrent(i(~)lh0hQ),all faceimpedanceinto thedepthz* of aperfectsubstitutefield componentsbeingnormalizedwith respectto H0. conductorrecoverstheinputof 200km quitewell except

nearto theflanksof thePEJ.

exceedsthedepthof penetrationfor a quasi-uni-form source— here thedepthh of theperfectcon- F, carriedout at this point, maybe written approxi.ductor. Thissimply illustratesthat the skin-effect mately as:at any givensurfacepoint doesnotdependcritically F * H~,= H3,(y0) . f(~,0)on the sourcefield configurationat a distancewhichis muchlargerthanthe relevantlengthscaleL3. This ruledoesnot apply,however,to there- where f(w, 0) = f F(w,y) dysponsefunctionL which has [2C(~, 0)] 1 asthe —asymptoticvalue fory -+ °°. Thelastidentity is readilyverified whenweexpress

Supposethefield componentto be convoluted, f(c~.,,k~)asaninverseFourier transformof F(a1.i,y)saylf~,,is nearlyuniform arounda surfacepoint andsetk3, = 0. Specificvaluesof the integralcanbey =y0 up to a distancecomparabletoL3 = C(c~s,0)I. foundin the lastcolumnof TableI.ThentheconvolutionofH3, with a responsefunction Theeqs.4and5 emergenow asspecialversionsof

Page 7: REGIONAL INDUCTION STUDIES: AREVIEW OF METHODS AND … · (cf. upper left graph in Fig.3). Differentation of the The method ofgeomagnetic deep sounding ac-cording to eqs.5 requires

U. Sc/smucker,Regionalstudies 371

theeqs.11 for the limiting caseof a nearlyuniform H2 = AH~+ BH~ (14)surfacefield, thusclarifyingthe conceptof “quasi-uniformity” in section2.1. By letting theeffect of neighbouringsectionsbe-

Theresponsekernelsof Fig.3 are appliedin Fig.4 comenegligible (L3/L2 -~0) the diagonalcoeffi-to anexternalfield which resemblesthesurface cients andZ3,3, disappear,while theoff-diago-field of thepolarjet alonga geomagneticmeridian. nal coefficientsasymptoticallyapproachthe one-Theskin-effectis producedby aperfectconductor dimensionalimpedanceZ(w, 0).at 200km depth.Theresultingimpedanceof the Eq.14 extendsthe original conceptof Parkinson-total(externalplusinternal)surfacefield is used Wieseinductionarrows to complexFouriercoeffi-to derivelocal estimatesof thedepthof a per- cientsof magneticvariations.Thetransferfunctionsfectsubstituteconductoralongthemeridanac- A andB for theverticalfield shouldrefer,if possible,cordingto eq.3a.Actually, this substitutionshould only to thedisturbedskin-effectandnotbecon-bemeaningfulonly for a quasi-uniformfield. We ob- nectedwith spatialgradientsof thesource field.tam,however,goodestimatesof the truemodel Hence,anysource-field-dependentcomponentofdepthof 200km exceptnearthe flanksof the polar H2 shouldberemovedwith theaid of eq.5aor 6 be-jet wherethehorizontalfield hasits strongestgra- fore derivingA andB from field observations.dients.Thisagainunderlinesthefact thata non-uni- Currentnumericalmethodsfor theskin-effectofformity of thesourcefield only mattersif it occurs aquasi-uniformsourcefield in laterally non-uniformwithin a distancefrom thepointunderconsideration, conductorsarereviewedin this volumeby Jones.which is comparableto the relevantlength scaleL3. Forall practicalpurposessuchcalculationsarere-

The applicationof the eqs.11 to field datare- strictedto two-dimensionalmodels,assuminglateralquiresthatthe convolutionintegralsareapproxi- uniformity of a in onehorizontaldirection,or tomatedby sums,yieldinga systemof linearequations non-uniformthin sheetsof variabletotalconducticityin accordancewith thenumberof sitesat which ob- or conductancer, assumingzero conductivityin theservationshavebeenmade, top layerof anyunderlyingstratifiedconducting

Its solutionwould give therespectiveresponseker- medium(cf. Ashour’scontributionto this volume).nel asa function of distance.No seriousattempthas The interpretationof empirical transferfunctionsbeenmadeyet,however,to exploit in this way the reliesat thepresenttime on curve-fittingtechniques,non-uniformityof naturalsourcefields for deep carriedouton selectedprofiles perpendicularto thesoundingat afixed frequency. strike of elongatedsubsurfacestructures.Thisspecial

choiceof ccordinatessplits theperturbationof the2.3. Quasi-uniformsourceandnon-uniformconductor: inducedfield into two distinctmodes:dependingon

L1 ~L2, L3 the orientationof thetangentialsourcefield vectorThedistanceto neighbouringsectionswith differ- we candistinguishbetweenE-polarisation(E parallel

entstratifiedconductivity is comparablewith the to thestrike)andH-polarisation(H parallelto thedepthof penetration.With L2 ~ L3 this leadsto a strike).disturbedskin-effectat thepointunderconsidera- In thefirst caseinducedcurrentsdo notcrosstion, while thesourcefield is regardedasquasi-uni- boundariesandflow parallelto the strike in planesform (Fig. ic). Thelastconstraintallows us to retain z = constant.Hence,anylocal perturbationof thetheconceptof lineartransferfunctionswhich, at a inducedfield is also a tangentialelectricTE field. Ingiven site(x, y) andfrequency,connectthevarious thesecondcaseinducedcurrentsdo crossboundariescomponentsof thesurfacefield vectors.In analogyto andtherewifi beup anddowngoingcurrentsneartheone-dimensionalcase(eq.4)the followingnota- vertical(or sloping)boundaries,generatinga tangent.tionsareused: ial magneticTM perturbationin the inducedfield. Its

magneticvectorishorizontalandparallelto theE~= Z~H~+ Z~,H3, strikewithin theconductinghalf-spaceand(in quasi-

(13) stationaryapproximation)zeroaboveit. NotethatE3, = — (ZYXHX+ Z~3,H3,) thecurrentsinvolved areinducedin eithercasein an

Page 8: REGIONAL INDUCTION STUDIES: AREVIEW OF METHODS AND … · (cf. upper left graph in Fig.3). Differentation of the The method ofgeomagnetic deep sounding ac-cording to eqs.5 requires

372 U. Sc/smucker,Regionalstudies

unboundedhalf-space,comingfrom andgoingto in-finity to form loopsof~inflnitesize. -100 0 km 100 200

Sinceno verticalmagneticvariationsoccurin the I I

Z --~:-—~—r-’r—c-—-—i 9100fLmcaseofH-polarisation,the transferfunctionsfor the 50 \ \ \ \ ~ \disturbedsurfacefield abovea two-dimensional km \ \ \lOfzm\

structuremaybe writtenas: 100\ \ \ \ \ \ \

E11=Z11-H1 9a ,

(13a) ~ ——————__~(~——---120_E1 = Z1 . H11 10 ~

cph 50

H2 =Aii ‘H1 (14a) 0.1 l5flm—

z*Thesubscripts“Ii” and“1” refer to orientationspar. 0

allel andperpendicularto thestrike. zNote thatE1 changesdiscontinuously,wherever k 50

vertical (or sloping)boundariesreachthesurfacebe- m — _~__ ~.6 — . — —

causetheinducedcurrentflow atthesubsurfacelevel 100 °h_.

z = + 0 mustbe divergence-free.Hence,E1 will bedeterminedmainlyby near-surfacechangesof conduc- 0 *

tivity providedthey occursufficientlyclosethat ~ ~

L2 ~L3. As a consequence,the impedanceforH- 50 T~—--. 200-———.—-polarisationZ1 may notresembleat all the one- km

dimensionalimpedanceZ(~.s,0) for thesite under 700 ~15flmconsideration,whenL3 is comparableto or larger Fig.5. Conversionof calculatedtransferfunctionsfor atwo-thanL2. dimensionalstep-model(top) in E-polarisationinto apparent

Theimpedanceof E-polarisationZ1~will do so, resistivities:(i)asafunctionof frequencyf anddistanceyhowever,particularlywhenat low frequenciesthe ~ (2)asafunctionof depthz anddistance(ps.Thein-depthof penetrationmayexceedthescalelengthof putmodelis recognizablein thecontoursof ~aandp’, thusyielding afirst orientationaboutthetrueresistivity structureanylateralnon-uniformityas shownby the large in thecaseof empiricaltransferfunctions.semi-circle,markedL , in Fig. 1.

Hereinliestheimportantdifferencein thebehav- a logarithmicverticalscaleto simulatethe increasingiour of the electricsurfacefield for E- andH-polar- depthof penetrationwithdecreasingfrequency.Inisation(cf. SchmuckerandJankowski,1972;Fig.5). thesecontoursthe generalappearanceof the orginal

Theconversionof Zil into apparentresistivity stepmodelis alreadyclearly recognizable.valuesaccordingto eq.2or 3 providesa first approxi- In the alternativeapproachof eq.3,therealpartmationto thechangeof true resistivitywith depth of Cu is interpretedas a depthz’. Curvesz*(y) foranddistance.This is demonstratedin Fig.5by means = constantreflect thechangingdepthof penetra-of a simplestepmodel. tion with distancey into thechosenmodel.Finally,

Firstly, the magneticandelectricsurfacefields a modifiedapparentresistivityp * is derivedfromarefoundby numericalmethods.Thena response Im {C11 } for thedepthz* at a given frequencyandfunctionC~= Ei1/(i~.~,.t0H1)is derivedfor eachsur- location.The resultingcontoursof p *(z*, y) in thefacepointy, varyingthefrequencyoverseveralorders verticaldepth-distanceplaneresemblerathercloselyof magnitude.Its modulusdefinesthe apparentresis- asmoothedversionof the inputmodel,yieldingativity ~a accordingto eq.2.Following Maddenand goodstartingdistribution for subsequentrefinedmodrSwift (1969), contoursof p5(~,y) are drawnin a elcalculationsin the caseof empirical transferfunc-distance-frequencyplane,plotting the frequencyon tions.

Page 9: REGIONAL INDUCTION STUDIES: AREVIEW OF METHODS AND … · (cf. upper left graph in Fig.3). Differentation of the The method ofgeomagnetic deep sounding ac-cording to eqs.5 requires

U. Sc/smucker,Regionalstudies 373

Supposethatlateralnon-uniformitiesmaybe re-gardedasbeingconfinedto a thin surfacelayerof o observed ~ ~L1.0variableconductancer(y). This conductancecanbe 7founddirectly from a given transferfunctionsZ~1or — —— e /—~ — — — - HA11 for E.polarisation(Schmucker,1971).Any strati- e + i,~ -1_fled conductivity distributionbeneaththislayer ______ e + i + / / //entersinto the inverseprocedure.Hence,if certain ~I _ — — — 0.5constraintscanbeplacedupon acceptablevaluesof — — — — ~ V

a modelfor theunderlyingstratifiedconductor — — — — — —

will evolve. In this waywell knownsurfacestruc- — _-_

turescanbe utilized for a deepsoundingexperiment —

(W’* 1O’7\ I I I ‘, 0,~ m er, .~, AYA ARE CAB PUC SIC CUS

If the surfacelayeris insulatedby ahigh-resistivi- — 0 4ty zonefrom anyconductingmatterat greaterdepth, _—-~ ~ ]continuity of the sheetcurrentforH-polarisationre- — — — — ....— ~ .::::..::.... ] H2quiresthat theproductE1r is constant.Hence,any — ~. — — ~‘ — I ~“°.~Jc’variability of r canbe inferreddirectly from the elec-tric field componentnormalto the trendof elongated -0 2

structures(Haak, 1970). . . Y — NS_800 Pacific a -490 km Andes 0

/),,,),,,,I, ~ ,,,,,1,,,),, ,,, ~, 02.4. Non-uniformsourcefieldandnon-uniformcon- ________ km

ductor:L1,L2,L3 0.001(flm[ 40Thesourcefield dimensions,thesizeof the later- \ \\ Z

ally uniform sectionsof the conductorandthe depth . . . . . . . ““ ‘~ . 80of penetrationareall of comparablemagnitude.A . : ,‘ ‘ . 002 .~ .~ :generalproblemof this type is posed,for instance,bytheinductionof the,diurnalvariationsin largeoceans, Fig. 6. Geomagneticinductionby theequatorialjet field inseparatedby moreor lessinsulatingcontinents, southernPeruduringday-timeevents.Thechosensource

As discussedin detailby Ashourin thisvolume, field oscifiatesin-phasealongtheprofile normalto thedipequatoraty 0with aperiodof onehour. Themductiontheproblemis treatedunderthesimplifying assump- takesplacein a iwo-layerearthmodelwith a slabof high con-

tion thatoceansandcontinentsform a thin sheetor ductivity undertheAndes.e: sourcefield, 1,~:internalfieldshell of variableconductance.In order topreventin- without slab,i~:perturbationof theinternalfield by the slab.ducedcurrentsfrom enteringor leaving thenon-uni- All field componentsarenormalizedwith respectto H3, atform sheetor shell,a perfectinsulatoris placedbe- theequatorandonly theirin-phasecomponentsareshown.tweenthemandany stratifiedconductorat greater Datapointsfrom Schmuckeretal. (1964).depth. If alternativelyanon-uniformlayerof finitethicknessis considered,sourcefield andconductor theprofile with aperiodof onehour.Theinducedmustbe two-dimensionalanduniform in the same field is calculatedfirst for the indicatedtwo-layermod-horizontaldirectionto keeptheresultingskin-effect el, omittingtheslab of highconductivityundertheproblemtwo-dimensionalandthussolvablewith exist- Andesandapplyingtheeqs.11 to thesourcefield.ing numericaltechniques.It maybe notedthat in either Thentheperturbationof the inducedfield dueto thecasewith theseconstraintswe haveeliminatedTM highconductivity slabis foundby numericalmethodsmodesfrom theinducedfield. andaddedto theexternalandundisturbedinternal

Two examplesmay illustratemodelcalculationsof field. The sourcefield andconductivitymodel havethesecondtype.Thefirst examplerefersto the Andean beenchosenby trial anderrorin thebestpossibleanomalyin magneticday-timevariationsin southern wayto explainthe observedvariationsequallywellPeru(Fig.6).The chosennon-uniformsourcefield, duringday-timeevents,whenthejet is present,andarising from theequatorialjet, oscillatesin-phasealong duringnight-timeevents,whentheoverheadsource

Page 10: REGIONAL INDUCTION STUDIES: AREVIEW OF METHODS AND … · (cf. upper left graph in Fig.3). Differentation of the The method ofgeomagnetic deep sounding ac-cording to eqs.5 requires

374 (1 Schmucker,Regionalstudies

~—2o0Okm-.i correspondsto the thirdharmonicof diurnalvaria-= l6000fL’ A 4O,OJl~B tions,progressingwith local time from eastto west.

350 kml Its wavelengthis onefifth of theearth’scircumfer-‘ ‘ \ \ ‘ ‘ ‘ ‘ ‘ ‘ ~ •s

+20 c1 t 0° ence2ira andappliestoa sphericalsurfaceharmonicof degreen = 4, settingk = (n + 1)/a.

Theconductivitymodel consistsof a thin sheetwith a conductanceof 16000fV

1, representingan-20 oceanof 4 km depth.The sheetis interruptedby a+20

_____________ _______________ width. A perfectconductorat 350km depthsimu-H3, lessconducting“continental”stripAB, 2000km in

‘ lateshigh conductivitiesin themantle.Theinducedsurfacefield for this modelhasbeen-20

foundby derivingfirst thecurrentdensityin the+20

thin sheet(cf. Schmucker,1971;p.962).Since thesourcehasa well defmedwavenumber,alocal esti-

~mateof theresponsefunctionC(w, 0) will beob-

-20 tamedaccordingto eq.5afrom C= H2/(ik3,H3,); here+20 e /‘ 90° H2 andH3, are tobeunderstoodas thesumsof

H~0 / I N. _________ their respectiveexternalandinternalpartsat agiven

-20 ~00A - Therealpartof C is shownas alocal estimateofsurfacepoint.

0 I thedepthof aperfectsubstituteconductor.A one-Z ~ ~/• \ ______ dimensionalcalculationofz~would havegiven

/ 104 km for theoceanand347km for thecontinent.200 /km Z*=Re(~~fr) \. It will benotedthat theselocal estimateswhich

y400 couldhavebeentheoutcomeof a soundingexperi-

mentat a singlesiteare fairly closeto their one-Fig.7. “Running” sourcefield overanoceanwith acontinen- dimensionalvaluesexceptnearto the “coastlines”attal strip AB aboveaperfectconductorat 350km depth.r:conductanceof surfacesheet.Wavelengthof thesource A andB.field andits speedof propagationsimulateprogressionofthird harmonicof diurnalvariationwith local time fromeast(right) to west(left). Horizontalandverticalcomponents 3. Resultsof theexternal(“e”) andinternal(“i”) field areshownfortwoinstancesof time, two hoursapart(~‘= 3’ 360°/day).Noteasymmetryof edgeeffectsatA andB dueto thesource The deeplypenetratingD~-recoveryphaseoffield progression.The dashedcurvein thedepth—distance magneticstormsappearstohavea globallyuniformplot at thebottomconnectslocal estimatesof thedepthof ratio of internal toexternalparts(Grafe,1964; tableaperfectsubstituteconductor,derivedfrom the surface 5).This suggestsradialsymmetryof conductivityinratio ofvertical/horizontalvariations.Theyaxe in goodagree-mentwith one-dimensionalvaluesof 2 * for the oceanicand thedeeperpartsof the uppermantle.continentalmodelsection(dottedlines)exceptnearto the TheinternalpartOf Sq~on theotherhand,is af-edgepointsA andB. Observethedifferencein agreementin fectedquiteclearlyby aregionallychangingdepthofluff andleeof thecontinentalstrip, penetration.This is seenmostconspicuouslyin the

diurnal variationsof Z (verticalmagneticcomponent).

from polardisturbancesisextremelyuniform. Amplitude andphaseof their harmoniccoefficientsIn thesecondexamplea sinusoidalsourcefield deviateat manyobservatoriesfrom their theoretical

He exp(ik,,y)with awavelength A = 2ir/k = values,derivedfrom a global analysiso S underthe8dbOkm moveswith 1000km perhourfrom the assumptionof radialsyminetry.The lates~analysisofleft to the right(Fig.?).Hence,oscillationswith a this kind hasbeenpublishedby Parkinson(1971).periodof 8 hourswill beobservedat a fixed site.This “Anomalous”Sq observatorieslie almostexclu-

Page 11: REGIONAL INDUCTION STUDIES: AREVIEW OF METHODS AND … · (cf. upper left graph in Fig.3). Differentation of the The method ofgeomagnetic deep sounding ac-cording to eqs.5 requires

U. Sc/smucker,Regionalstudies 375

sivelynearcoastlinesandon islands.Thissuggests HyndmanandCochraneexplaintheseobservationsbythe influenceof strongcurrentswhich areinduced acrustallayerof highconductivitybeneaththe shelf,in theoceansanddivertedaroundcontinentsand extendingfrom theshoreline to thecontinentalslope.islands(cf. Larsen’scontributionto this volume). Its causecouldbe a thick layerof sediments.TheHowever,whenFifioux (1967)madethe first mag- authorsdiscussalsovariousalternativeexplanations,neticobservationson theseaflooroffshorefrom amongthem thepossibilitythat theconductivityofcentralCalifornia,he found a surprisinglysmall at- the lowercrustislocally increasedby ahydrothermaltenuationof the diurnalvariationsinD(eastcorn- alteration.ponent).It amountedfor the secondharmonicto Cox(1971)proposesa similarprocessfor thebarely10%, whereasa continentaltype substructure origin of the shallowlayerofhigh conductivitybe-wouldhavegiven an attenuationof about40%.This neaththe oceanoffshorefrom centralCalifornia.observationimpliesa reducedstrengthof induction Themodelwhich Filloux (1967)derivedfrom mag-currentsin theseawaterand thusanoceanicsub- neto~telluricseafloorobservationsinvolvesresistivi-structurewhichis betterconductingthan acontinen- tiesof only a few ohm-metersat 15 to 35 km depth.tal one,to which all otherobservationshavereferred Coxsuggestson thebasisof recentlaboratoryex-so far. perimentsthat at this depthserpentinizationof ultra-

It appearsnow thatFilloux’s experimentmayhave maficmantlematerialtakesplace,leadingto avastlybeenperformedin alocally anomaloussituation, increasedmineralconductionthrougha fine dustofRecentseafloorexperimentsby Greenhouse(1972) magnetiteandotheriron-richoxides.in thesamegeneralarea,butat aslightly larger dis- The maskingof deepcontinentalstructuresbytancefrom thecontinentalshelf,haverevealedan at- sedimentarybasinshasbeenrealized,sincemagneto-tenuationof thesemi-diurnalharmonicin.D of about telluric soundingsrevealedthe largeconductance30%. Greenhousefinds thathis semi-diurnalharmonics which suchbasinsmayhave.Attentionis calledinin DandZareexplainedbestby aperfectconductor this contextto recentsoundingexperimentsbywhich risesfrom 500kmunderthecontinentto Vozoff (1972)in the Gulf Coastareaof Louisiana.300km beneaththe ocean. He reportssedimentswith a conductivityabove1 f1’

A detailedstudyof the “island” anomalyof geo- rn~throughouta thicknessof at least 10km. Theirmagneticvariationson Ohau(Hawaii)hasbeenused overallconductanceof morethan i0~~r1 is quiteby Klein (1972)to estimatethestrengthandphase comparableto the conductanceof deepoceans.of inductioncurrentsin the openoceanwhich are PorathandDziewonski(l971a)thereforesuggestdivertedaroundthe islandsof Hawaii. His calcula- thatoceaniciRductioncurrentsenterinto the sedi-tionsare basedon a disturbedflow of steady-state mentsof theGulf Coastareaandproduceadis-sheetcurrents.Fromthe knownconductivityof sea- placed“coasteffect” at the OuachitaMountainfrontwaterKlein hasthenderivedan estimateof the elec- in eastTexas.It appearsthat thehighly variableZ-tric field andtherebyof the responsefunctionsfor amplitudeof bay-typedisturbanceswhich Moseset al.thePacific OceannearHawaii, findingno evidence (1966)reportfrom the southeasternand,easternforunusuallyhigh conductivitiesat subcrustaldepth. UnitedStatesiscausedby similar interspersedbasins

Thetransitionfrom thecontinentto theocean of highconductance.offshorefrom Nova Scotiahasbeeninvestigatedby PorathandDziewonski(197ib) haveclassifiedSrivastavaandWhite (1971)andby Hyndmanand undertheseaspectsthepresentlyknowninlandCochrane(1971).Theyfind the expectedenhanèe- anomalieswhich cannotarisefrom mantlesourcesmentof Z-variationsat thecoastline,butexceedingly becauseof their smallhalf-width. A largegroup ofsmallZ-vanationson SableIslandwithin thecon- anomaliesis explainedsolely by sedimentarystructures.tinentalshelf.The superficialcoasteffectwouldhave Among them aretheNorthGermananomalyandgiven a much smootherdecreaseof Z towardthe open variousdistinctanomaliesin theGreatPlain provinceocean.Thediurnal variationsof the total field show of North America.also anunusualbehaviourat thecontinent—ocean A secondtype of anomalyoccurswheneverseatransition(Srivastava,1971). channelsconnectlargebodiesof water.Porathand

On the basisof two-dimensionalmodel studies

Page 12: REGIONAL INDUCTION STUDIES: AREVIEW OF METHODS AND … · (cf. upper left graph in Fig.3). Differentation of the The method ofgeomagnetic deep sounding ac-cording to eqs.5 requires

376 U. Schmucker,Regionalstudies

Dziewonskicite as anexamplethestrait of Bonifacio Similar crustalor subcrustallayersof high conduc-betweenCorsicaandSardinia. tivity havebeeninferredfrom magneto-telluricsound-

Anomaliesof a third type areconnectedwith the ingsat varioussites,but apparentlyin no obviouscoT-concentrationof shallowinductioncurrentsin upper relationto knowngeologicalstructures.Pertinentcrustallensesof highconductivityasdiscussedbelow, datahavebeenpublishedby Berdichevskijet al.A specialcaseis the leakageof oceanicinducedcur-. (1969) for Yakutia, by Adam(1970)for therentsthroughcontinentalbarriers,separatingfor in- Carpathianbasin,by HermanceandGrillot (1970)stanceinland seasfrom the openocean.An example for Iceland,by Dowling (1970)for Wisconsin,byis theanomalyin southernScotlandwherein the Mitchell andLandisman(1971)for Texas,by Oniextensionof the Firth of Fortha subsurfacecon- andAlabi (1972)for Nigeria. Fournier’streatiseductingconnexionseemstoexist betweenthe Irish (1970)shouldbe consultedfor further referencesSeaandtheNorth Sea(Edwardset al., 1971). anda descriptionof hisown results,concerninga

A newanalysisof diurnalvariationshasbeencorn- “coucheconductriceintercalaire”beneathwesternpletedby Camfield andGough(1973)for thenorth- Europe(fig.61). Supportingevidencefor the inter-westernUnitedStates,usingthe recordsof large mittent appearanceof highconductivitiesat shallowmagnetometerarrays.Theyfind no significantspatial depthcomesfrom anomaliesof geomagneticvaria-differencesinZ-variationsat the diurnal periods.This tionswith a smallspatialhalf-width,butwith noagreeswith Caner’s(1971)resultsfor westernCanada indication of a superficialorigin from sedimentaryandlimits the possibledownwardextentof high structures.Thisappliesin particularto theCentralmantleconductivitiesunderthenorthernRocky Plainsanomalyin North America(Camfieldet a!.,Mountains,which reducessomarkedlytheZ.ampli- 1971;Porathet al., 1971)andto anequallypro-tude of bay-typedisturbancesin this region.Hence, nouncedanomalywhichhasbeendetectedrecentlythe conclusionof Caneret al. (1969)that the dif- on theUkrainianshield(Rokitjanskij et al., 1969).ferencein deepconductivitybetweenthenorthern In eithercasewe mayexpecta crustallens ofRockyMountainsandtheGreatPlainprovinceis con high conductivitywithin theotherwisehighly resis-fined to a certainlayerat subcrustalor evenintra- tive crust.This lensmusthavea conductingconnec-crustaldepthnow finds additionalsupport.The cor- tion to a deeperdepthrange of comparableconduc-respondingconductivitycontrastin thesouthern tivity andlargelateralextent,from which inducedRocky Mountainsshouldextenddownward,however, currentsare drawninto the crustallens.Similar prob-to substantialdepthbecausetheZ-amplitudeof lemsareposedby theAndeananomalyin southerndiurnalvariationsdefinitely increasesat themountain Peruandby theAlert anomalyon EllesmereIslandfront, goingeastward(Schmucker,1970a). in theCanadianArctic (Niblett andWitham, 1970).

Caner(1971)andCaneret al. (1971)havesum- Theformer is explainedbestby a subcrustalchannelmarizedtheir results,concerningthetransitionfrom of highconductivity,following thetrendof thelow-Z regionstohigh-Z regionsin westernCanada. Andes(Fig.6).Geomagneticandmagneto-telluricobservationshave A first attemptto utilize a well known sedimentarybeencombinedin thesensethat two concentrated structurefor geomagneticsoundings(cf. section2.3)efforts weremadeto obtainwith magneto.telluric hasbeencarriedoutin the Rhinegrabenareabysoundingsthedownwardchangeof conductivity,one Winter (1973).Resistivitymeasurementsin borein the low-Z regionandtheother in thehigh-Z region. holesandtelluncobservationsby Haak(1970)allowThesesoundingsprovidedconstraintsfor thesubse- a fair estimateof the conductanceof sediments,fil-quentinterpretationof spatialdifferencesin Z. ling thegraben.In order toexplainthe observed

Canerandhisco-authorsconcludethat beneath Rhinegrabenanomalyof geomagneticvariationsbe-theCanadianRockiesahighconductivitylayerexists tween0.5 and6 cycles/hour,astratifiedconducting(a 0.1 ~r’m’) whichis absentundertheGreat substratumhasto be addedwith a layerof highcon-Plains.Its upperboundis placedat 15 km depth, ductivity (0.03~i~m~) between25 and75 kmwhereasits lowerboundis ill defmed,lying some- depth.Concurrentmagneto-telluricobservationsbe-wherebetween40 and60 km depth. tween4 and400cycles/hourby Scheelke(1972)

Page 13: REGIONAL INDUCTION STUDIES: AREVIEW OF METHODS AND … · (cf. upper left graph in Fig.3). Differentation of the The method ofgeomagnetic deep sounding ac-cording to eqs.5 requires

U. Sc/smucker,Regionalstudies 377

supportthis interpretation. Fournier,H., 1970,Contributionau developpementde Ia

In conclusionit maybe interestingto note that méthodemagnetotellurique,These,Univ. Paris.Grafe,A., 1964.Abh. 31 DtschAkad. Wiss, Geomagn.Inst.theoriginal modeldistributions“d” and“e”, which Potsdam.AkademieVerlag,Berlin.Lahiri andPrice (1939)derivedfrom global studies Greenhouse,J.P., 1972. GeomagneticTime Variations on thefor theearthasa whole,involved an outermostshell SeaFloor off southernCalifornia. Thesis,Univ. California,of highconductance,enclosingapoorly conducting SanDiego,Calif.

Haak,V., 1970. Daszeitlich sic/s andernde,erdelektrischeintermediatezonewith a highly conductingcore. Feld, beobac/stetaufeinemProfil uberdenRheingraben,Thissurfaceshellwasnecessaryto explainthe inter- DissertationUniv.München.nalpart of D andS with onemodel. Hermance,J.F.andGrillot, L.R., 1970.1.Geophys.Res.,

it qLahiri andPrice sawin its necessitythesmoothed- 75: 6582.

outeffectof the oceans,butpointedoutthat a Hermance,J.F. andPeltier,W.R., 1970.1. Geop/sys.Rex.,75: 3351.

highly conductinglayerat somedepthbeneaththe Hobbs,B.A., 1971. Geophys.1., 25: 481.surfacecouldbethe causealso.In exploringnewevi- Hobbs,B.A., andPrice,A.T., 1970.Geop/sys.1., 20: 49.dencefor this intermediatelayerof high conductivity Hutton,R., 1972. Geop/sys.1., 28: 267.global andregionalstudiesmeetandwemay expect Hutton, R. and Leggeat, A., 1972. Geophys..1., 28: 411.

that their sometimesconflicting resultswill eventally Hyndman, R.D. and Cochrane, N.A., 1971. Geophys..1.,mergeinto aunified conceptaboutthe deepdistribu- 25: 425.

Klein, D.P., 1972. GeomagneticTime-Variations,theIslandtion of electricalconductivitybeneathcontinentsand Effect,andElectromagneticDepthSoundingon Oceanicoceans. Island. Thesis, Univ. Hawaii.

Lahiri, B.N. andPrice,A.T., 1939..P/sios.Trans. R.Soc.Lond.,Ser.A, 237: 509.

References Larsen,J. andCox, C., 1966.1.Geophys.Res., 71: 4441.Madden,T.R. andSwift, C.M., 1969. Magnetotelluric

studiesof theelectricalconductivityof thecrustandAdam,A., 1970./. Geomagn.Geoelectr.,22: 223. uppermantle.In: P.J. Hart (Editor),The Earth’s CrustandBarsczus,H.G., 1970.Sondagesgiomagnitiquesbiblio- UpperMantle.AmericanGeophysicalUnion,Washington,

graphies.Orstom,Paris, 84PP~ D.C., p.469.Berdichevskij,M.N., BorisovaV.P.,Van’yan,L.L., Feldman, Meyer,J., 1966. GerlandsBeitr. Geophys.,75: 289.

1.5. andYakovlev, l.A., 1969.Izv.Akad.NaukS.S.S.R., Mitchell, B.J. andLandisman,M., 1971. Geophysics,36: 363.Ser. Fix. Zemli,10: ~ Moses,R., Elvers,D. andPerkins,D., 1966.A Reconnais-

Camfield,P.A. andGough,D.I., 1973.1. Geophys. Rex., in sanceofConductivityEffectsin the UnitedStates.U.S.press. CoastandGeodet.Survey,Washington,D.C., unpublished.

Camfield,P.A., Gough,D.l. andPorath,H.,1970.Geop/sys. Niblett, E.R. andWitham,K., 1970.1. Geomagn.Geoelec-1., 22: 201. tr., 22: 99.

Caner,B., 1971.1. Geop/sys.Rex.,76: 7202. Oni, E. andAlabi, A.O., 1972.Phys.Earth Planet.Inter.,Caner,B., Camfield,P.A., Andersen,F.andNiblett, E.R., 5~179.

1969.Can. 1. Earth Sci., 6:1245. Parkinson,W.D., 1971. GerlandsBeitr. Geophys.,80:199.Caner,B., Auld, D.R., Dragert,H. andCamfield, P.A., 1971. Porath,H. andDziewonski,A., 1971a.Geophysics,36: 382.

/. Geophys. Rex., 76: 7181. Porath, H. andDziewonski,A., 197lb. Rev.Geophys.SpaceCox, C.S., 1971.Theelectricalconductivityof the oceanic Phys., 9: 891.

lithosphere.In: J.G.Heacock(Editor),The Structure Porath,H., Gough,D.l. andCamfield,P.A., 1971. Geop/sys.andPhysicalPropertiesoft/seEarth’s Crust. American /., 23: 387.Geophysical Union, Washington, D.C., p. 227. Rikitake, T., 1971. Earth Sci.Rev.,7: 35.

Dowling, F.L., 1970.1. Geop/sys.Rex.,75: 2683. Rokitjanskij,I.I., Logvinov, LM.,andLugmi,na,N.A., 1969.

Edwards, R.N., Law, K.L., andWhite, A., 1971. Phios. Izv.Akad.NaukS.S.S.R.,Ser.Fiz. Zemli, 3: 100.Trans. R. Soc. Lond., Ser. A, 270: 289. Rooney, W., 1935. Terr. Magn., 40: 183.

Filloux, J., 1967. OceanicElectric Currents, Geomagnetic Scheelke,I., 1972. Magnetotellurisc/seMessungenim Rhein-Variations and the DeepElectricalConductivityStruc. grabenundihre Deutungmit zweidimensionalenModellen.ture of the Ocean—Continent Transition of Central Dissertation,Univ. Braunschweig.California. Thesis, Univ. California, San Diego, Calif. Schmidt, H., 1968. GerlandsBeitr. Geop/sys.,77: 50.

Fournier, H., 1969. Ensayohistoricosobrelosconocimientos Schmucker, U., 1970a. Anomalies of geomagnetic variationsMagnetoteluricos. Observatoriadel Ebro, Roquetas/ in the southwestern United States. Bull. ScrippsInst.Tarragona,32°PP’ Oceanogr.Univ. Calif., 13: 165.

Page 14: REGIONAL INDUCTION STUDIES: AREVIEW OF METHODS AND … · (cf. upper left graph in Fig.3). Differentation of the The method ofgeomagnetic deep sounding ac-cording to eqs.5 requires

378 U, Sc/smucker,Regionalstudies

Schmucker,U., 1970b.1. Geomagn.Geoelectr.,22: 9. Srivastava,S.P,,1971.Earth Planet. Sci. Lett., 10: 423.Schmucker,U., 1971. Geophysics,36:156. Srivastava,S.P.,andWhite, A., 1971.Can. 1. Earth ScL, 8: 204.Schmucker,U. andJankowski,J., 1972.Tectonophysics, Vozoff, K., 1972.Geophysics, 37: 98.

13: 233. Weidelt,P.,1972.Z.Geophys., 38: 257.Schmucker, U., Hartmann, 0., Giesecke, A.A., Casaverde, Winter, R., 1973. Electromagnetic induction studies in the

M. andForbush,S.E., 1964.CarnegieInst. Wash.,Year- Rhinegrabenarea.A modelfor theresistivitydistribu-book,63: 354. tion from geomagneticdepthsoundings.In: H. lilies and

Shneyer,V.S., 1971. Geomagn.Aeron.,11: 308. K. Fuchs (Editors), Approachesto Taphrogenesis.Shneyer,V.S. andFonarev,G.A., 1968.Geomagn.Aeron., Schweizerbart,Stuttgart,inpress.

8: 479.Siebert,M. andKertz, W., 1957.Nac/sr.Akad. Wiss. Göttingen,

Math.-Phys.KI., Abt.ha, No.5: 87.