5
References 1. V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer, Berlin, 1980) 2. A. Aspect, J. Dalibard, G. Roger, Experimental test of Bell’s in-equalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982) 3. J. Bailey et al., Il Nuovo Cimento 9A, 369 (1972) 4. J.S. Bell, On the Einstein–Podolsky–Rosen paradox, Physics 1, 195–200 (1964), reprinted in [5] 5. J.S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987) 6. M.V. Berry, Regular and irregular motion, in Topics in Nonlinear Dynamics. Amer. Inst. Phys. Conf. Proceedings Nr, ed. by S. Jorna, vol. 46, (1978) p. 16 7. H. Bondi, Relativity and Common Sense (Heinemann, London, 1965) 8. I. Ciufolini, J.A. Wheeler, Gravitation and Inertia, Princeton Series in Physics (Princeton University Press, Princeton, 1995) 9. J.F. Clausner, M.A. Horne, A. Shimony, R.A. Holt, Proposed experiment to test local hidden- variable theories. Phys. Rev. Lett 23, 880–884 (1969) 10. R. Courant, D. Hilbert, Methods of Mathematical Physics II (Wiley, Chichester, 1953) 11. N. Dragon, BRST Cohomology, http://www.itp.uni-hannover.de/dragon 12. N. Dragon, N. Mokros, Relativistic Flight through Stonehenge (1999), http://www.itp.uni- hannover.de/dragon 13. C.W.F. Everitt et al., Gravity probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221–101 (2011) 14. J.C. Hafele, R.E. Keating, Around-the-world atomic clocks: predicted relativistic time gains. Science 177, 166–167 (1972): Around-the-world atomic clocks: observed relativistic time values, Science 177, 168–170 (1972) 15. R.A. d’Inverno, Introducing Einstein’s Relativity (Oxford University Press, Oxford, 1992) 16. J.D. Jackson, L.B. Okun, Historical roots of gauge invariance. Rev. Mod. Phys. 73, 663–680 (2001) 17. R. Kippenhahn, Light from the Depths of Time (Springer, Berlin, 1987) 18. A. Lampa, Wie erscheint nach der Relativitätstheorie ein bewegter Stab einem ruhenden Beobachter? Zeitschrift for Physik 27, 138–148 (1924) 19. D.-E. Liebscher, Einstein’s Relativity and the Geometries of the Plane (Wiley-VCH Verlag GmbH, Germany, 1998) 20. L.V. Lorenz, On the identity of the vibrations of light with electrical currents. Phil. Mag. Ser. 4(34), 287–301 (1867) N. Dragon, The Geometry of Special Relativity—a Concise Course, SpringerBriefs in Physics, DOI: 10.1007/978-3-642-28329-1, Ó The Author(s) 2012 139

References - Springer978-3-642-28329-1/1.pdf · References 1. V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer, Berlin, 1980) 2. A. Aspect, J. Dalibard, G. Roger,

  • Upload
    vuhanh

  • View
    226

  • Download
    0

Embed Size (px)

Citation preview

References

1. V.I. Arnold, Mathematical Methods of Classical Mechanics (Springer, Berlin, 1980)2. A. Aspect, J. Dalibard, G. Roger, Experimental test of Bell’s in-equalities using time-varying

analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)3. J. Bailey et al., Il Nuovo Cimento 9A, 369 (1972)4. J.S. Bell, On the Einstein–Podolsky–Rosen paradox, Physics 1, 195–200 (1964), reprinted

in [5]5. J.S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press,

Cambridge, 1987)6. M.V. Berry, Regular and irregular motion, in Topics in Nonlinear Dynamics. Amer. Inst.

Phys. Conf. Proceedings Nr, ed. by S. Jorna, vol. 46, (1978) p. 167. H. Bondi, Relativity and Common Sense (Heinemann, London, 1965)8. I. Ciufolini, J.A. Wheeler, Gravitation and Inertia, Princeton Series in Physics (Princeton

University Press, Princeton, 1995)9. J.F. Clausner, M.A. Horne, A. Shimony, R.A. Holt, Proposed experiment to test local hidden-

variable theories. Phys. Rev. Lett 23, 880–884 (1969)10. R. Courant, D. Hilbert, Methods of Mathematical Physics II (Wiley, Chichester, 1953)11. N. Dragon, BRST Cohomology, http://www.itp.uni-hannover.de/dragon12. N. Dragon, N. Mokros, Relativistic Flight through Stonehenge (1999), http://www.itp.uni-

hannover.de/dragon13. C.W.F. Everitt et al., Gravity probe B: final results of a space experiment to test general

relativity. Phys. Rev. Lett. 106, 221–101 (2011)14. J.C. Hafele, R.E. Keating, Around-the-world atomic clocks: predicted relativistic time gains.

Science 177, 166–167 (1972): Around-the-world atomic clocks: observed relativistic timevalues, Science 177, 168–170 (1972)

15. R.A. d’Inverno, Introducing Einstein’s Relativity (Oxford University Press, Oxford, 1992)16. J.D. Jackson, L.B. Okun, Historical roots of gauge invariance. Rev. Mod. Phys. 73, 663–680

(2001)17. R. Kippenhahn, Light from the Depths of Time (Springer, Berlin, 1987)18. A. Lampa, Wie erscheint nach der Relativitätstheorie ein bewegter Stab einem ruhenden

Beobachter? Zeitschrift for Physik 27, 138–148 (1924)19. D.-E. Liebscher, Einstein’s Relativity and the Geometries of the Plane (Wiley-VCH Verlag

GmbH, Germany, 1998)20. L.V. Lorenz, On the identity of the vibrations of light with electrical currents. Phil. Mag. Ser.

4(34), 287–301 (1867)

N. Dragon, The Geometry of Special Relativity—a Concise Course,SpringerBriefs in Physics, DOI: 10.1007/978-3-642-28329-1,� The Author(s) 2012

139

21. J. Moser, Stable and Random Motion in Dynamical Systems (Princeton University Press,Princeton, 1973)

22. T. Needham, Visual Complex Analysis (Clarendon Press, Oxford, 1997)23. P. Nemec, http://www.ohg-sb.de/lehrer/nemec/relativ.htmwww.ohg-sb.de/lehrer/nemec/

relativ.htm24. E. Noether, Invariante Variationsprobleme, Nachrichten von der Königlichen Gesellschaft

der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, pp. 235 – 257 (1918)25. J. O’Connor, E. Robertson, The MacTutor History of Mathematics Archive, http://www-

groups.dcs.st-and.ac.uk/history/BiogIndex.html26. P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, Berlin, 1986)27. B. Parkinson, J. Spilker (eds.), Global Positioning System: Theory and Applications, vol. I.

(American Institute of Aeronautics and Astronautics, Washington, 1996)28. Particle Data Group, K. Nakamura et al., J. Phys. G 37 075021 (2010), http://pdg.lbl.gov29. R. Penrose, The apparent shape of a relativistically moving sphere. Proc. Camb. Phil. Soc. 55,

137–139 (1959)30. G. Seeber, Satellite Geodesy: Foundations, Methods and Applications (de Gruyther, New

York, 1993)31. L. Stodolsky, The speed of light and the speed of neutrinos. Phys. Lett. B 201, 353 (1988)32. J.L. Synge, Relativity: The General Theory (North-Holland, Amsterdam, 1964) (The name

Synge is pronounced sing)33. J. Terrell, Invisibility of Lorentz Contraction. Phys. Rev. 116, 1041–1045 (1959)34. C.M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press,

Cambridge, 1993)35. C.M. Will, The Confrontation between General Relativity and Experiment, http://arxiv.org/

abs/gr-qc/010303636. http://mathworld.wolfram.com/Hyperboloid.html37. M.J.W. Nicholas, Special Relativity, Lecture Notes in Physics m6 (Springer, Berlin, 1992)

140 References

Index

SymbolsBe,y, 100MR,y[/], 102h, 104dm

n, 86, 123oL

oxm, 75, 115

O(p,q), 126SL(2, C), 133–137SO(p,q), 127~dk, 106eijk, 89–90c, 9–10dt, 72, 114Rp,q, 126Z2, 132

AAberration, 54–59, 137Acceleration, 4, 7, 69, 121Action, 75, 115Active transformation, 50Angular momentum, 83Axial vector, 90

BBackground radiation, 2, 85Bell’s inequality, 15, 18Boost, 51, 136

CCanonically conjugate

momentum, 81

Charge conservation, 94Comoving, 10Compton scattering, 65–66Conformal, 57, 117Conserved quantity, 59–66, 77–86Continuity equation, 94Contragredient, 87Coulomb potential, 99Cyclic variable, 81

Dd’Alembert operator, 104Decay, 64Degrees of freedom, 71Domain of dependence, 97, 105Doppler effect, 22, 27, 35, 54–59

EElectron radius, 122E = mc2, 63Energy, 59–66, 82, 83, 94, 95, 117Energy-momentum

tensor, 95, 117, 119Equilocal, 12Equitemporal, 12Euler derivative, 75, 115Euler-Lagrange equation, 75, 115

FFour-momentum, 63Four-potential, 103Functional, 73, 115Functional derivative, 74, 75

N. Dragon, The Geometry of Special Relativity—a Concise Course,SpringerBriefs in Physics, DOI: 10.1007/978-3-642-28329-1,� The Author(s) 2012

141

GGauge transformation, 104, 118Group, 53, 77

HHuygen’s principle, 106Hyperbola, 43

IImage of a moving body, 54Improvement terms, 116Induced representation, 78Inertia, 64Infinitesimal transformations, 79, 116

JJet space, 71, 114

LLagrangian, 73, 82, 115Laplace equation, 100Length contraction, 33–35, 45, 46Length squared, 40–44, 67–69Liénard Wiechert potential, 119Lift, 71, 114Light angle, 12Light coordinates, 38Light cone, 2, 6–9, 97, 105Lightlike, 41, 63Limit velocity, 14Local functional, 73Lorentz condition, 104Lorentz force, 91, 96Lorentz transformation, 49–53, 137Luminosity, 59

MMass, 62–66Maximum–minimum-principle, 102Maxwell equations, 7, 91Measuring rod, 33, 35Meter, 9Michelson, 6, 9Minkowski space, 126Möbius transformation, 123, 136–137Momentum, 59–66, 81, 95, 117Muon, 69

NNeutrino, 7, 85Noether theorem, 77–80, 116–118Normal subgroup, 132

OOne-dimensional motion, 83Orthogonality relation, 88, 124

PPassive transformation, 50Pauli matrices, 131Permutation, 103Photon, 7, 15–19, 54, 63, 65Poincaré transformation, 53Poisson equation, 100Poynting vector, 96Pressure, 96

RRapidity, 28Realisation, 78Referee, 11, 22Representation, 60, 78, 87Rigid body, 9, 15Rømer, 6

SSecond, 9Simultaneous, 10–15, 43Spacelike, 42, 97Spacetime, 1Speed of light, 6, 9Stereographic projection, 57Subgroup, 77Summation convention, 72, 123Superluminal speed, 15, 37Symmetry, 77, 79

TTachyon, 15, 65Teleportation, 15Tensor, 87Tensor product, 87Time dilation, 28, 35Timelike, 42Trace, 134

142 Index

Transformation, 77Twin paradox, 30–47

UUnimodular, 77Unitary transformation, 131, 133

VVelocity, 7, 9, 28, 53–54

WWave packet, 106Worldline, 7

Index 143