28
References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] C. Huygens, Horologium Oscillatorium sive De Motu Pendulorum ad Horolo- gia aptato Demonstrationes Geometricae, Published in Paris, 1673. G. Hopkins, Experimental Science, Lindsay Publications Inc., 1987. C. S. Vaucher, Architectures for RF frequency synthesizers, Ph.D. thesis, Uni- versity of Technology Twente, 2001. R. E. Ziemer and W. H. Tranter, Principles of Communication, Houghton Mifflin Company, Boston, 3rd edition, 1990. J. W. S. Rayleigh, The Theory of Sound, Dover, New York, 2nd edition, 1894. B. van der Pol, “The nonlinear theory of electric oscillations,” Proceedings of the IRE, vol. 22, no. 9, pp. 1051–1086, Sept. 1934. H. von Barkhausen, Lehrbuch der Elektronen-Röhren, Band 3, Rückkopplung, Verlag S. Hirzel, 1935. N. Nyquist, “Regeneration Theory,” in Bell Systems Technical Journal, 1932, pp. 126–147. J. Groszkowski, Frequency of Self-Oscillations, Pergamon Press, New York, 1964. N. Kryloff and N. Bogoliuboff, Introduction to Non-linear Mechanics, Prince- ton University Press, Princeton, 1943. H. Bode, Network Analysis and Feedback Amplifier Design, D. van Nostrand Company, Inc., 1945. 291

References - Springer978-0-306-48716-3/1.pdf · C. S. Vaucher, Architectures for RF frequency synthesizers, Ph.D. thesis, Uni-versity of Technology Twente, ... “A New model for

  • Upload
    buinhu

  • View
    222

  • Download
    0

Embed Size (px)

Citation preview

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

C. Huygens, Horologium Oscillatorium sive De Motu Pendulorum ad Horolo-gia aptato Demonstrationes Geometricae, Published in Paris, 1673.

G. Hopkins, Experimental Science, Lindsay Publications Inc., 1987.

C. S. Vaucher, Architectures for RF frequency synthesizers, Ph.D. thesis, Uni-versity of Technology Twente, 2001.

R. E. Ziemer and W. H. Tranter, Principles of Communication, HoughtonMifflin Company, Boston, 3rd edition, 1990.

J. W. S. Rayleigh, The Theory of Sound, Dover, New York, 2nd edition, 1894.

B. van der Pol, “The nonlinear theory of electric oscillations,” Proceedings ofthe IRE, vol. 22, no. 9, pp. 1051–1086, Sept. 1934.

H. von Barkhausen, Lehrbuch der Elektronen-Röhren, Band 3, Rückkopplung,Verlag S. Hirzel, 1935.

N. Nyquist, “Regeneration Theory,” in Bell Systems Technical Journal, 1932,pp. 126–147.

J. Groszkowski, Frequency of Self-Oscillations, Pergamon Press, New York,1964.

N. Kryloff and N. Bogoliuboff, Introduction to Non-linear Mechanics, Prince-ton University Press, Princeton, 1943.

H. Bode, Network Analysis and Feedback Amplifier Design, D. van NostrandCompany, Inc., 1945.

291

292 References

W. A. Edson, “Noise in oscillators,” Proceedings of the IRE, vol. 48, no. 8, pp.1454–1466, Aug. 1960.

E. Hafner, “The Effects of Noise in Oscillators,” Proceedings of the IEEE, vol.54, no. 2, pp. 179–198, Feb. 1966.

D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Pro-ceedings of the IEEE, pp. 329–330, Feb. 1966.

A. Blaquière, Nonlinear System Analysis, Academic Press, New York, 1966.

K. Kurokawa, “Noise in synchronized oscillators,” IEEE Transaction on mi-crowave theory and techniques, vol. 16, no. 4, pp. 234–240, Apr. 1968.

A. Takaoka and K. Ura, “Noise analysis of nonlinear feedback oscillator withAM-PM conversion coefficient,” IEEE Transaction on microwave theory andtechniques, vol. 28, no. 6, pp. 654–662, June 1980.

A. A. Abidi, Effects of random and periodic excitations on relaxation oscilla-tors, Ph.D. thesis, University of California, Berkeley, 1981.

A. Abidi et al., “Noise in relaxation oscillators,” IEEE Journal of Solid-StateCircuits, vol. 18, no. 6, pp. 794–802, June 1983.

B. D. Bates and P. J. Kahn, “Stability of Multi-frequency Negative-ResistanceOscillators,” IEEE Transaction on microwave theory and techniques, pp. 1310–1318, Oct. 1984.

W. P. Robins, Phase Noise in Signal Sources, 9. IEE Telecomm., London, 2ndedition, 1996.

A. N. Riddle, Oscillator noise: Theory and characterization, Ph.D. thesis,North Carolina State University, 1986.

E. Vittoz et al., “High-performance crystal oscillator circuits: Theory and Ap-plication,” IEEE Journal of Solid-State Circuits, vol. 23, no. 3, pp. 774–783,Mar. 1988.

C. J. M. Verhoeven, First-order Oscillators, Ph.D. thesis, Delft University ofTechnology, 1990.

C. J. M. Verhoeven, “A New model for regenerative circuits,” in Midwestsymposium on circuits and systems, 1988, pp. 631–634.

B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE Journal ofSolid-State Circuits, vol. 31, no. 3, pp. 331–343, Mar. 1996.

J. A. McNeill, Jitter in Ring Oscillators, Ph.D. thesis, Boston University, 1994.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

References 293

J. McNeill, “Jitter in Ring Oscillators,” IEEE Journal of Solid-State Circuits,vol. 32, no. 6, pp. 870–879, June 1997.

A. Hajimiri et al., “A General Theory of Phase Noise in Electrical oscillators,”IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.

A. Hajimiri et al., “Corrections to ”A General Theory of Phase Noise in Elec-trical Oscillators”,” IEEE Journal of Solid-State Circuits, vol. 33, no. 6, June1998.

C. Samori et al., “Spectrum folding and phase noise in LC tuned oscillators,”IEEE Transactions on Circuits and Systems II, vol. 45, no. 7, pp. 781–789, July1998.

H. Darabi and A. A. Abidi, “Noise in RF-CMOS Mixers: A Simple PhysicalModel,” IEEE Journal of Solid-State Circuits, vol. 35, no. 1, pp. 15–25, Jan.2000.

J. J. Rael and A. A. Abidi, “Physical Processes of Phase Noise in DifferentialLC Oscillators,” in IEEE Custom Integrated Circuits Conf. (CICC), 2000, pp.569–572.

Q. Huang, “Phase Noise to Carrier Ratio in LC oscillators,” IEEE Transactionson Circuits and Systems I, vol. 47, no. 7, pp. 965–980, July 2000.

Q. Huang, “On the Exact Design of RF oscillators,” in IEEE Custom IntegratedCircuits Conf. (CICC), 1998, pp. 41–44.

C. Lin, Incremental Mixed-Signal Layout Generation Concepts, Theory & Im-plementation, Ph.D. thesis, Eindhoven University of Technology, 2002.

F. M. Gardner, Phase-lock Techniques, Wiley, New York, 2nd edition, 1979.

U.L. Rohde, RF and Microwave Digital Frequency Synthesizers, Wiley, NewYork, 1997.

B. Razavi, Monolithic Phase-locked Loops and Clock Recovery Circuits, IEEEPress, New York, 1996.

C. S. Vaucher and D. Kasperkovitz, “A Wide Band Tuning System for FullyIntegrated Satellite Receivers,” IEEE Journal of Solid-State Circuits, vol. 33,no. 7, pp. 987–997, July 1998.

R. J. Matthys, Crystal oscillator Circuits, Krieger Publishing Company, 1991.

M. Soyuer, “Design considerations for high-frequency crystal oscillators,”IEEE Journal of Solid-State Circuits, vol. 26, no. 6, pp. 889–893, June 1991.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

294 References

E. H. Nordholt et al., “Single-pin integrated crystal oscillators,” IEEE Trans-actions on Circuits and Systems, vol. 37, no. 2, pp. 175–182, Feb. 1990.

J. J. Goedbloed, Electromagnetic Compatibility, Prentice Hall International,Hertfordshire, 1992.

U. Rohde, “Designing SAW Resonators and DRO Oscillators Using NonlinearCAD tools,” in IEEE International Frequency Control Symposium (FCS), 1995,pp. 379–395.

H. Wu and A. Hajimiri, “A 10 GHz CMOS Distributed Voltage ControlledOscillator,” in IEEE Custom Integrated Circuits Conf. (CICC), 2000, pp. 581–584.

C. A. M. Boon et al., “Modeling the phase noise of RC multivibrators,” inMidwest symposium on circuits and systems, 1984, pp. 421–424.

B. M. Fleischer, Jitter in relaxation oscillators, Ph.D. thesis, Stanford Univer-sity, 1989.

C. J. M. Verhoeven, “A high-frequency electronically tunable quadrature oscil-lator,” IEEE Journal of Solid-State Circuits, vol. 27, no. 7, pp. 1097–1100, July1992.

J. Westra, High-Performance Oscillators and Oscillator Systems, Ph.D. thesis,Delft University of technology, 1998.

A. H. M. van Roermund, Noise and Accuracy in Switched Capacitor Modula-tion Circuits, Ph.D. thesis, Katholieke Universiteit Leuven, 1987.

J. van der Tang and D. Kasperkovitz, “A 0.9-2.2 GHz Monolithic QuadratureMixer Oscillator for Direct-Conversion Satellite Receivers,” in IEEE Interna-tional Solid-State Circuits Conf. (ISSCC), 1997, pp. 88–89.

J. van der Tang and S. Hahn, “A Monolithic 0.4 mW SOA LC Voltage-Controlled Oscillator,” in European Solid-State Circuits Conf. (ESSCIRC),1999, pp. 150–153.

J. van der Tang and D. Kasperkovitz, “Low Phase Noise Reference Oscillatorwith Integrated PMOS Varactors for Digital Satellite Receivers,” IEEE Journalof Solid-State Circuits, vol. 35, no. 8, pp. 1238–1243, Aug. 2000.

L. O. Chua, Introduction to Nonlinear Network Theory, McGraw-Hill Inc.,New York, 1969.

W. A. Edson, Vacuum-Tube Oscillators, John Wiley & Sons, Inc., New York,1953.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

References 295

W. Chen, Active Network and Feedback Amplifier Theory, Hemisphere Pub-lishing Corporation, 1980.

N. Nguyen, Monolithic microwave oscillators and amplifiers, Ph.D. thesis,University of California, 1991.

N. M. Nguyen and R. G. M. Meyer, “Start-up and Frequency Stability in High-Frequency Oscillators,” IEEE Journal of Solid-State Circuits, vol. 27, no. 5,pp. 810–820, May 1992.

Y. Sun, Monolithically Integrated Silicon Bipolar RF Oscillators, Ph.D. thesis,University of Technology Delft, 1999.

G. Gonzales, Microwave transistor amplifiers, analysis and design, Prentice-Hall, 2nd edition, 1997.

A. Zanchi et al., “Impact of AAC Design on Phase Noise Performance ofVCOs,” IEEE Transactions on Circuits and Systems I, vol. 48, no. 6, pp. 537–547, June 2001.

J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and Design,Van Nostrand Reinhold, New York, 1983.

R. Airiau et al., Circuit Synthesis with VHDL, Kluwer Academic Publishers,Norwell, 1994.

G. van der Plas et al., “AMGIE—A Synthesis Environment for CMOS AnalogIntegrated Circuits,” IEEE Transactions on Computer-Aided Design of Inte-grated Circuits and Systems, vol. 20, no. 9, pp. 1037–1058, Sept. 2001.

M. Ismail and J. Franca, Eds., Introduction to Analog VLSI Design Automation,Kluwer Academic Publishers, Norwell, 1990.

G. W. Roberts and A. S. Sedra, Spice, The Oxford Series in Electrical andComputer Engineering. Oxford University Press, 2nd edition, 1996.

K. S. Kundert, The Designer’s Guide to SPICE & SPECTRE, Kluwer Aca-demic Publishers, Norwell, 1995.

B. Martin, “Automation Comes to Analog,” IEEE Spectrum, pp. 70–75, June2001.

APLAC, www.aplac.com, APLAC User’s guide Vol. I.

Philips, ED&T/Analogue Simulation, Adapt User Manual, for Adapt 3.0, 1stedition, 2000.

S. Kirkpatrick et al., “Optimization by Simulated Annealing,” Science, vol.220, no. 4598, pp. 671–680, May 1983.

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

296 References

Z. Michalewicz, Genetic Algorithms + Data Structures Evolution Programs,Springer-Verlag, 1992.

K. Madsen et al., “Efficient Minimax Design of Networks without UsingDerivatives,” IEEE Transaction on microwave theory and techniques, vol. 23,no. 10, pp. 803–809, Oct. 1975.

W. H. Press et al., Numerical Recipes in C, Cambridge University Press, 1988.

M. del Mar Hershenson et al., “Design and optimization of LC oscillators,”in International Conference on Computer Aided Design (ICCAD), 1999, pp.65–69.

Cadence Design Systems, Cadence openbook documentation system, Spectr-eRF, 2000.

H. Chang et al., A Top-down Constraint-driven Design Methodology for AnalogIntegrated Circuits, Kluwer Academic Publishers, Norwell, 1997.

L. R. Carley et al., “Synthesis tools for mixed-signal ICs: Progress on front-end and back-end strategies,” in IEEE/ACM Design Automation Conf., 1996,pp. 298–303.

D.M.W. Leenaerts, TOPICS, A Contribution to Analog Design Automation,Ph.D. thesis, Eindhoven University of Technology, 1992.

F. El-Turky and E. E. Perry, “BLADES: An Artificial Intelligence Approach toAnalog Circuit Design,” IEEE Transactions on Computer-Aided Design, vol.8, no. 6, pp. 680–692, June 1989.

H. Koh et al., “OPASYN: a compiler for CMOS operational amplifiers”,” IEEETransactions on Computer-Aided Design, vol. 9, no. 2, pp. 113–125, Feb. 1990.

K. Lampaert et al., Analog Layout Generation for Performance and Manufac-turability, Kluwer Academic Publishers, Norwell, 1999.

C. De Ranter et al., “CYCLONE: Automated Design and Layout of RF LC-Oscillators,” in IEEE/ACM Design Automation Conf., 2000, pp. 11–14.

A. van Staveren, Structured electronic design of high-performance low-voltagereferences, Ph.D. thesis, Delft University of Technology, 1997.

C. A. Desoer and E. S. Kuh, Basic Circuit Theory, McGraw-Hill Book Com-pany, New York, 1969.

P. R. Gray and R. G. Meyer, Analysis and Design of Analog Integrated Circuits,John Wiley & Sons, New York, 3rd edition, 1993.

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

References 297

D. Leenaerts, J. van der Tang, and C. Vaucher, Circuit Design for RFTransceivers, Kluwer Academic Publishers, Boston, 2001.

B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, NewYork, 2001.

F. L. Walls et al., “Extending the Range and Accuracy of Phase Noise Mea-surements,” in IEEE International Frequency Control Symposium (FCS), 1988,pp. 432–441.

S. L. J. Gierkink, Control Linearity and Jitter of Relaxation Oscillators, Ph.D.thesis, Twente, University of Technology, 1999.

R. Poore, Phase Noise and Jitter, Agilent EEsof EDA, 2001, May.

N. Schmitt and D. Grant, Jitter Measurements of Agilent Technology OC-48Optical Transceivers using the OmniBER718, Agilent Technologies, 2001.

J. van der Tang and C. Vaucher, “Design and Optimization of a Low JitterClock-Conversion PLL for SONET/SDH Optical Transmitters,” in IEEE In-ternational Conference on Electronics, Circuits and Systems (ICECS), 2001,vol. I, pp. 31–34.

Maxim Integrated Products, Converting between RMS and Peak-to-Peak Jitterat a Specified BER, 2000, Application Note HFAN-4.0.2.

K. Sam Shanmugam, Digital and Analog Communication Systems, John Wiley& Sons, New York, 1985.

A. A. Abidi, “Direct-conversion radio transceivers for digital communications,”in IEEE International Solid-State Circuits Conf. (ISSCC), 1995, pp. 186–187.

B. Razavi, “Design Considerations for Direct-Conversion Receivers,” IEEETransactions on Circuits and Systems II, vol. 44, no. 6, pp. 428–435, June 1997.

K. R. Laker and W. M. C. Sansen, Design of Analog Integrated Circuits andSystems, McGRAW-Hill, Inc., New York, 1994.

C. A. M. Boon, Design of High-Performance Negative-Feedback Oscillators,Ph.D. thesis, Delft University of Technology, 1989.

R. J. Baker et al., CMOS Circuit Design, Layout, and Simulation, IEEE press,New York, 1998.

C. P. Yue et al., “A physical model for planar spiral inductors on silicon,” inInternational Electron Devices Meeting (IEDM), 1996, pp. 155–158.

H. Wang, “A 50 GHz VCO in 0.25 um CMOS,” in IEEE International Solid-State Circuits Conf. (ISSCC), 2001, pp. 372–373.

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

298 References

A. Hajimiri and T. H. Lee, Low Noise Oscillators, Kluwer Academic Publish-ers, 1999.

H. Wang, “Comments on ”Design Issues in CMOS Differential LC Oscilla-tors”,” IEEE Journal of Solid-State Circuits, vol. 35, no. 2, pp. 286–287, Feb.2000.

P. van de Ven, J. van der Tang, D. Kasperkovitz, and A. van Roermund, “Anoptimally coupled 5 GHz quadrature LC oscillator,” in Symposium on VLSICircuits, 2001, pp. 115–118.

A. Rofougaran et al., “A Single-Chip 900 MHz Spread-Spectrum WirelessTransceiver in 1-um CMOS–Part I: Architecture and Transmitter Design,”IEEE Journal of Solid-State Circuits, vol. 33, no. 4, pp. 515–534, Apr. 1998.

J. van der Kreek, Elektrische netwerken, Educaboek - Stam Technische Boeken,Culemborg, 2nd edition, 1983.

A. Buchwald and K. Martin, Integrated Fiber-Optic Receivers, Kluwer Aca-demic Publishers, Norwell, 1995.

M. Alioto and G. Palumbo, “Oscillation Frequency in CML and ESCL RingOscillators,” IEEE Transactions on Circuits and Systems I, vol. 48, no. 2, pp.210–214, Feb. 2001.

R. Wassenaar, Analysis of Analog CMOS Circuits, Ph.D. thesis, Twente Uni-versity of Technology, 1996.

M. Alioto and G. Palumbo, “CML and ECL: Optimized Design and Com-parison,” IEEE Transactions on Circuits and Systems I, vol. 46, no. 11, pp.1330–1341, Nov. 1999.

U. L. Rohde and P. Newkirk D, RF/Microwave Circuit Design for WirelessApplications, John Wiley & Sons, Inc., New York, 2000.

J. Rabaey, Digital Integrated Circuit, A Design Perspective, Prentice-Hall,Englewood Cliffs, 1996.

P. Andreani and S. Mattisson, “On the Use of MOS Varactors in RF VCO’s,”IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905–910, June 2000.

T. Soorapanth et al., “Analysis and Optimization of Accumulation-Mode Var-actor for RF ICs,” in Symposium on VLSI Circuits, 1998, pp. 32–33.

J. Maget et al., “A Physical Model of CMOS Varactor with High CapacitanceTuning Range and its Application to Simulate a Voltage Controlled Oscillator,”in International Semiconductor Device Research Symposium, 2001, pp. 609–612.

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

References 299

A. Porret et al., “Design of High-Q Varactors for Low-Power Wireless Applica-tions Using a Standard CMOS Process,” IEEE Journal of Solid-State Circuits,vol. 35, no. 3, pp. 337–345, Mar. 2000.

R. Casetllo et al., “A ±30% Tuning Range Varactor Compatible with futureScaled Technologies,” in Symposium on VLSI Circuits, 1998, pp. 34–35.

J. van der Tang, D. Kasperkovitz, H. Rumpt, and A van Roermund, “A Cost-Effective Multi-band LC Oscillator for Low-IF FM Radio Receivers,” in Euro-pean Solid-State Circuits Conf. (ESSCIRC), 2002, pp. 819–822.

N. Sneed, “A 2-GHz CMOS LC-Tuned VCO using Switched-Capacitors toCompensate for Bond Wire Inductance Variation,” M.S. thesis, University ofCalifornia, Berkeley, Dec. 2000.

Q. Huang et al., “Design and Implementation of a CMOS VXCO for FM StereoDecoders,” IEEE Journal of Solid-State Circuits, vol. 23, no. 3, pp. 784–793,June 1988.

F. Herzel et al., “A New Approach to Fully Integrated CMOS LC-Oscillatorswith a Very Large Tuning Range,” in IEEE Custom Integrated Circuits Conf.(CICC), 2000, pp. 573–576.

J. van der Tang, D. Kasperkovitz, and A. van Roermund, “A 9.8-11.5 GHzQuadrature Ring Oscillator for Optical Receivers,” IEEE Journal of Solid-StateCircuits, vol. 37, no. 3, pp. 438–442, Mar. 2002.

J. van der Tang, D. Kasperkovitz, and A. van Roermund, “A 9.8-11.5 GHz I/QRing Oscillator for Optical Receivers,” in IEEE Custom Integrated CircuitsConf. (CICC), 2001, pp. 323–326.

J. van der Tang, D. Kasperkovitz, and A. van Roermund, “A 2.7 V, 8 GHzMonolithic I/Q RC Oscillator with Active Inductive Loads,” in European Solid-State Circuits Conf. (ESSCIRC), 2000, pp. 304–307.

J. O. Voorman, The Gyrator As a Monolithic Circuit in Electronic Systems,Ph.D. thesis, Katholieke Universiteit Nijmegen, 1977.

A. Thanachayanont and A. Payne, “CMOS floating active inductor and its ap-plication to bandpass filter and oscillator designs,” IEE Proc. Circuits, Devicesand Systems, vol. 147, no. 1, pp. 42–48, Feb. 2000.

M. Gröezing et al., “A 2.5 V CMOS Differential Active Inductor with TunableL and Q For Frequencies up to 5 GHz,” in IEEE Radio Frequency IntegratedCircuits Symposium (RFIC), 2001, pp. 271–274.

A. Jayaraman et al., “A Fully Integrated Broadband Direct-Conversion Re-ceiver for DBS Applications,” in IEEE International Solid-State Circuits Conf.(ISSCC), 2000, pp. 140–141.

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

300 References

A. Kral et al., “RF-CMOS Oscillators with Switched Tuning,” in IEEE CustomIntegrated Circuits Conf. (CICC), 1998, pp. 555–558.

J. van der Tang, D. Kasperkovitz, and A. Bretveld, “A 65 mW, 0.4-2.3 GHzBandpass Filter for Satellite Receivers,” Analog Integrated Circuits and SignalProcessing, an international journal, vol. 31, no. 1, pp. 5–18, Apr. 2002.

F. Doorenbosch, A Monolithically Integrated Wide-Tunable Sine Oscillator,Ph.D. thesis, Delft University of Technology, 1982.

I. Young et al., “A PLL clock generator with 5 to 110 MHz lock range formicroprocessors,” in IEEE International Solid-State Circuits Conf. (ISSCC),1992, pp. 50–51.

L. Sun et al., “A 1.0V GHz Range 0.13 um CMOS Frequency Synthesizer,” inIEEE Custom Integrated Circuits Conf. (CICC), 2001, pp. 327–330.

K. A. Kouznetsov and R. G. Meyer, “Phase Noise in LC Oscillators,” IEEEJournal of Solid-State Circuits, vol. 35, no. 8, pp. 1244–1248, Aug. 2000.

F. Herzel et al., “Phase Noise in a Differential CMOS Voltage-Controlled Os-cillator for RF Applications,” IEEE Transactions on Circuits and Systems II,vol. 47, no. 1, pp. 11–15, Jan. 2000.

D. Triantis et al., “Thermal Noise Modeling for Short-Channel MOSFET’s,”IEEE Transactions on Electron Devices, vol. 43, no. 11, pp. 1950–1955, Nov.1996.

Y. Tsividis, Operation and Modeling of the MOS Transistor, McGraw-Hill,second edition, 1999.

J. van der Tang, P. van de Yen, D. Kasperkovitz, and A. van Roermund, “Anal-ysis and Design of an Optimally Coupled 5 GHz Quadrature LC Oscillator,”IEEE Journal of Solid-State Circuits, vol. 37, no. 5, pp. 657–661, May 2002.

A. Pruijmboom et al., “QUBiC3: A 0.5um BiCMOS Production Technol-ogy, with fT=30 GHz, fmax=60GHz and High-Quality Passive Componentsfor Wireless Telecommunication Applications,” in Bipolar Circuits and Tech-nology Meeting (BCTM), 1998, pp. 120–123.

L. Dai and R. Harjani, “Design of Low-Phase-Noise CMOS Ring Oscillators,”IEEE Transactions on Circuits and Systems I, vol. 49, no. 5, pp. 328–338, May2002.

L. Dai and R. Harjani, Design of High-Performance CMOS Voltage ControlledOscillators, Kluwer Academic Publishers, Norwell, 2002.

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

References 301

P. Andreani and H. Sjöland, “Tail Current Noise Suppression in RF CMOSVCOs,” IEEE Journal of Solid-State Circuits, vol. 37, no. 3, pp. 342–348, Mar.2002.

T. H. Lee and A. Hajimiri, “Oscillator Phase Noise: A Tutorial,” IEEE Journalof Solid-State Circuits, vol. 35, no. 3, pp. 326–336, Mar. 2000.

T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cam-bridge University Press, Cambridge, 1998.

A. Sempel and H. van Nieuwenburg, “A fully-integrated HIFI PLL FM-demodulator,” in IEEE International Solid-State Circuits Conf. (ISSCC), 1990,pp. 102–103.

J. van der Tang and D. Kasperkovitz, “Oscillator Design Efficiency: A NewFigure of Merit for Oscillator Benchmarking,” in IEEE International Sympo-sium on Circuits and Systems (ISCAS), 2000, vol. II, pp. 533–536.

J. van der Tang and D. Kasperkovitz, “Fast Phase Noise Analysis Methodfor Noise Optimization of Oscillators,” in European Solid-State Circuits Conf.(ESSCIRC), 1998, pp. 504–507.

“AC phase noise analysis concept,” Conversation with Dr. D. Kasperkovitz,1996, Philips Research Laboratories, Eindhoven.

B. de Smedt et al., “Accurate Simulation of Phase Noise in Oscillators,” inEuropean Solid-State Circuits Conf. (ESSCIRC), 1997, pp. 208–211.

F. Herzel, “An Analytical Model for the Power Spectral Density of a Voltage-Controlled Oscillator and Its Analogy to the Laser Linewidth Theory,” IEEETransactions on Circuits and Systems I, vol. 45, no. 9, pp. 904–908, Sept. 1998.

A. Demir et al., “Phase Noise and Timing Jitter in Oscillator,” in IEEE CustomIntegrated Circuits Conf. (CICC), 1998, pp. 45–48.

M. Randall and T. Hock, “General Oscillator Characterization Using LinearOpen-Loop S-Parameters,” IEEE Transaction on microwave theory and tech-niques, vol. 49, no. 6, pp. 1094–1100, June 2001.

L. Cascio, “Comments on ”General Oscillator Characterization Using LinearOpen-Loop S-Parameters”,” IEEE Transaction on microwave theory and tech-niques, vol. 50, no. 1, pp. 226–228, Jan. 2002.

A. van Staveren et al., Structure Electronic Design, High-Performance Har-monic Oscillators and Bandgap References, Kluwer Academic Publishers,Boston, 2000.

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

302 References

A. van Staveren and C. Verhoeven, “Optimizing a resonator tap for maximizingoscillator carrier-to-noise ratio,” in IEEE International Symposium on Circuitsand Systems (ISCAS), 2001, vol. 1, pp. 480–483.

J. K. A. Everard, “Low noise oscillators: theory and design.,” in 10th Interna-tional Conf. on European Freq. and Time, 1996, pp. 436–441.

J. K. A. Everard, “Minimum sideband noise in oscillators,” in IEEE Interna-tional Frequency Control Symposium (FCS), 1986, pp. 336–339.

A. Wagemans et al., “A 3.5 mW 2.5 GHz Diversity Receiver and a 1.2 mW 3.6GHz VCO in Silicon-On-Anything,” in IEEE International Solid-State CircuitsConf. (ISSCC), 1998, pp. 250–251.

Philips Semiconductors, Universal programmable RF modulator,1997, Datasheet TDA8822.

J. van der Tang and D. Kasperkovitz, “A Low Phase Noise Reference Oscilla-tor with Integrated PMOS Varactors for Digital Satellite Receivers,” in IEEEInternational Conference on Electronics, Circuits and Systems (ICECS), 1999,vol. I, pp. 181–184.

S. Brett and G. Stanton, “A Direct Conversion L-band Tuner for Digital DBS,”in IEEE International Solid-State Circuits Conf. (ISSCC), 1998, pp. 126–127.

K. Richter, “Zero IF Satellite Tuners for DBS,” in IEEE Conf. on ConsumerElectronics (ICCE), 1998, pp. 70–71.

P. Blaud, “A direct conversion IC for digital satellite TV,” in European Solid-State Circuits Conf. (ESSCIRC), 1997, pp. 124–127.

J. F. Wilson et al., “A single-chip VHF and UHF receiver for radio paging,”IEEE Journal of Solid-State Circuits, vol. 26, no. 12, pp. 1944–1950, Dec.1991.

EUTALSAT, Earth Station Standard EESS 500, 3 edition, Aug. 1996.

J. de Jong et al., “Single Polysilicon-Layer Advanced Super High Speed BiC-MOS Technology,” in Bipolar Circuits and Technology Meeting (BCTM), 1989.

K. Hadjizada et al., “TV and TVSAT Mixer-oscillator PLL ICs,” IEEE Trans-actions on Consumer Electronics, vol. 41, no. 3, pp. 942–945, Mar. 1995.

R. Velghe, “Compact MOS modelling for analogue circuit simulation,” inEuropean Solid-State Device Research Conf. (ESSDERC), 1994, pp. 833–836.

J. Hauenschild et al., “A plastic packaged 10 Gb/s BiCMOS Clock and DataRecovering 1:4-demultiplexer with external VCO,” IEEE Journal of Solid-StateCircuits, vol. 31, no. 12, pp. 2056–2059, Dec. 1996.

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

References 303

H. de Graaf et al., “Experience with the new compact MEXTRAM modelfor bipolar transistors,” in Bipolar Circuits and Technology Meeting (BCTM),1989, pp. 246–249.

B. Razavi, RF Microelectronics, Prentice Hall, New York, 1998.

J. Crols and M. Steyeart, “A Single-Chip 900 MHz CMOS Receiver Front-End with a High Performance Low-IF Topology,” IEEE Journal of Solid-StateCircuits, vol. 30, no. 12, pp. 1483–1492, Dec. 1995.

J. Fenk et al., “An RF Front-end for Digital Mobile Radio,” in Bipolar Circuitsand Technology Meeting (BCTM), 1990, pp. 244–247.

F. Behbahani et al., “An Adjustable Bipolar Quadrature LO Generator withan Improved Divide-by-2 stage,” in Bipolar Circuits and Technology Meeting(BCTM), 1996, pp. 157–160.

S. Navid et al., “Level-locked loop, A Technique for Broadband QuadratureSignal Generation,” in IEEE Custom Integrated Circuits Conf. (CICC), 1997,pp. 411–414.

D. Lovelace and J. Durec, “A Self Calibrating Quadrature Generator with WideFrequency Range,” in IEEE Radio Frequency Integrated Circuits Symposium,1997, pp. 147–150.

C. Park et al., “A 1.8 GHz Self-Calibrating Phase-Locked Loop with PreciseI/Q Matching,” IEEE Journal of Solid-State Circuits, vol. 36, no. 5, pp. 777–783, May 2001.

S. Nahm et al., “A Cordic-Based Digital Quadrature Mixer: Comparison withA ROM-based Architecture,” in IEEE International Symposium on Circuitsand Systems (ISCAS), 1998, vol. IV, pp. 385–388.

J. H. Bentley and K. M. Hess, A Programmed Review For Electrical Engineer-ing, Van Nostrand Reinhold Company, New York, 1978.

A. Abidi, “How Phase Noise Appears in Oscillators,” in Workshop on Advancesin Analog Circuit Design (AACD), 1997.

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

Literature on LC oscillator designs

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

D. Ham and A. Hajimiri‚ “Concepts and Methods in Optimization of IntegratedLC VCOs‚” IEEE Journal of Solid-State Circuits‚ vol. 36‚ no. 6‚ pp. 896–909‚June 2001.

A. Rofougaran et al.‚ “A 900 MHz CMOS LC-Oscillator with Quadrature Out-puts‚” in IEEE International Solid-State Circuits Conf. (ISSCC)‚ 1996‚ pp. 392–393.

J. Kim and B. Kim‚ “A Low-Phase-Noise CMOS LC Oscillator with a RingStructure‚” in IEEE International Solid-State Circuits Conf. (ISSCC)‚ 2000‚ pp.430–431.

P. Andreani‚ “A Low-Phase-Noise Low-Phase-Error 1.8GHz QuadratureCMOS VCO‚” in IEEE International Solid-State Circuits Conf. (ISSCC)‚ 2002‚pp. 290–291.

E. Hegazi et al.‚ “A Filtering Technique to Lower Oscillator Phase Noise‚” inIEEE International Solid-State Circuits Conf. (ISSCC)‚ 2001‚ pp. 364–365.

W. Chen and J. Wu‚ “A 2-V 2-GHz BJT Variable Frequency Oscillator‚” IEEEJournal of Solid-State Circuits‚ vol. 33‚ no. 9‚ pp. 1406–1410‚ Sept. 1998.

J. van der Tang and D. Kasperkovitz‚ “Low Phase Noise Reference Oscillatorwith Integrated PMOS Varactors for Digital Satellite Receivers‚” IEEE Journalof Solid-State Circuits‚ vol. 35‚ no. 8‚ pp. 1238–1243‚ Aug. 2000.

P. Vancorenland and M. Steyeart‚ “A 1.57 GHz Fully integrated Very Low PhaseNoise Quadrature VCO‚” in Symposium on VLSI Circuits‚ 2001‚ pp. 111–114.

305

306 Literature on LC oscillator designs

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

J. Kucera and B. Klepser‚ “3.6 GHz VCOs for multi-band GSM transceivers‚”in European Solid-State Circuits Conf. (ESSCIRC)‚ 2001.

R. Aparicio and A. Hajimiri‚ “A CMOS Differential Noise-Shifting ColpittsVCO‚” in IEEE International Solid-State Circuits Conf. (ISSCC)‚ 2002‚ pp.288–289.

M. Tiebout‚ “Low-Power Low-Phase-Noise Differentially Tuned QuadratureVCO Design in Standard CMOS‚” IEEE Journal of Solid-State Circuits‚ vol.36‚ no. 7‚ pp. 1018–1024‚ July 2001.

M. Soyuer et al.‚ “An 11-GHz 3-V siGe Voltage Controlled Oscillator withIntegrated Resonator‚” IEEE Journal of Solid-State Circuits‚ vol. 32‚ no. 9‚ pp.1451–1454‚ Sept. 1997.

J. Plouchart et al.‚ “Fully-Monolithic 3V SiGe Differential Voltage-ControlledOscillators for 5GHz and 17GHz Wireless Applications‚” in European Solid-State Circuits Conf. (ESSCIRC)‚ 1998‚ pp. 332–335.

P. Kinget‚ “A Fully Integrated 2.7V 0.35um CMOS VCO for 5 GHz WirelessApplications‚” in IEEE International Solid-State Circuits Conf. (ISSCC)‚ 1998‚pp. 226–227.

M. Soyeur et al.‚ “A 3V 4GHz nMOS Voltage-Controlled Oscillator with In-tegrated Resonator‚” in IEEE International Solid-State Circuits Conf. (ISSCC)‚1996‚ pp. 394–395.

M. A. T. Sanduleanu and J. P. Frambach‚ “1 GHz Tuning Range‚ LowPhase Noise‚ LC Oscillator with Replica Biasing Common-Mode Control andQuadrature Outputs‚” in European Solid-State Circuits Conf. (ESSCIRC)‚ 2001.

J. Craninckx and M. Steyaert‚ “A CMOS 1.8 GHz Low-Phase-Noise Voltage-Controlled Oscillator with Prescaler‚” in IEEE International Solid-State Cir-cuits Conf. (ISSCC)‚ 1995‚ pp. 266–267.

J. van der Tang and S. Hahn‚ “A Monolithic 0.4 mW SOA LC Voltage-Controlled Oscillator‚” in European Solid-State Circuits Conf. (ESSCIRC)‚1999‚ pp. 150–153.

M. Soyuer et al.‚ “A 2.4-GHz Silicon Bipolar Oscillator with Integrated Res-onator‚” IEEE Journal of Solid-State Circuits‚ vol. 31‚ no. 2‚ pp. 268–270‚ Feb.1996.

B. Razavi‚ “A 1.8GHz CMOS Voltage-Controlled Oscillator‚” in IEEE Inter-national Solid-State Circuits Conf. (ISSCC)‚ 1997‚ pp. 388–389.

N. M. Nguyen and R. G. Meyer‚ “A 1.8 GHz Monolithic LC Voltage-ControlledOscillator‚” in IEEE International Solid-State Circuits Conf. (ISSCC)‚ 1992‚ pp.158–159.

Literature on LC oscillator designs 307

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

J. J. Kucera‚ “Wideband BiCMOS VCO for GSM/UMTS Direct ConversionReceivers‚” in IEEE International Solid-State Circuits Conf. (ISSCC)‚ 2001‚pp. 374–375.

F. Svelto et al.‚ “A 1.3GHz CMOS VCO with 28% frequency tuning‚” in IEEECustom Integrated Circuits Conf. (CICC)‚ 1999‚ pp. 645–648.

L. Dauphinee et al.‚ “A Balanced 1.5 GHz Voltage Controlled Oscillator withan Integrated LC Resonator‚” in IEEE International Solid-State Circuits Conf.(ISSCC)‚ 1997‚ pp. 390–391.

T. Ahrens and T. Lee‚ “A 1.4-GHz 3-mW CMOS LC Low Phase Noise VCOUsing Tapped Bond Wire Inductances‚” in International Symposium on Low-Power Electronics and Design‚ 1998‚ pp. 16–19.

P. G. M. Baltus et al.‚ “A 3.5 mW‚ 2.5 GHz Diversity Receiver and a 1.2 mW‚3.6 GHz VCO in Silicon on Anything‚” IEEE Journal of Solid-State Circuits‚vol. 33‚ no. 12‚ pp. 2074–2075‚ Dec. 1998.

J. Lin‚ “An Integrated Low-Phase-Noise Voltage Controlled Oscillator forBase Station Applications‚” in IEEE International Solid-State Circuits Conf.(ISSCC)‚ 2000‚ pp. 432–433.

B. De Muer et al.‚ “A 1.8 GHz highly-tunable low-phase-noise CMOS VCO‚”in IEEE Custom Integrated Circuits Conf. (CICC)‚ 2000‚ pp. 585–588.

T. Lui‚ “A 6.5 GHz Monolithic CMOS Voltage-Controlled Oscillator‚” in IEEEInternational Solid-State Circuits Conf. (ISSCC)‚ 1999‚ pp. 404–405.

C. R. C. De Ranter and M. Steyaert‚ “A 0.25um CMOS 17GHz VCO‚” in IEEEInternational Solid-State Circuits Conf. (ISSCC)‚ 2001‚ pp. 370–371.

H. Wang‚ “A 9.8GHz Back-Gate Tuned VCO in 0.35um CMOS‚” in IEEEInternational Solid-State Circuits Conf. (ISSCC)‚ 1999‚ pp. 406–407.

A. Hajimiri and T. Lee‚ “Design Issues in CMOS Differential LC Oscillators‚”IEEE Journal of Solid-State Circuits‚ vol. 34‚ no. 5‚ pp. 717–724‚ May 1999.

A. Kral et al.‚ “RF-CMOS Oscillators with Switched Tuning‚” in IEEE CustomIntegrated Circuits Conf. (CICC)‚ 1998‚ pp. 555–558.

B. Jansen et al.‚ “Silicon Bipolar VCO Family for 1.1 to 2.2GHz with Fully-Integrated Tank and Tuning Circuits‚” in IEEE International Solid-State Cir-cuits Conf. (ISSCC)‚ 1997‚ pp. 392–393.

B. de Muer et al.‚ “A 2-GHz Low-Phase-Noise Integrated LC-VCO set withFlicker-Noise Upconversion Minimization‚” IEEE Journal of Solid-State Cir-cuits‚ vol. 35‚ no. 7‚ pp. 1034–1038‚ July 2000.

308 Literature on LC oscillator designs

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

M. Zannoth et al.‚ “A Fully Integrated VCO at 2 GHz‚” in IEEE InternationalSolid-State Circuits Conf. (ISSCC)‚ 1998‚ pp. 224–225.

J. Craninckx and M. S. J. Steyaert‚ “A 1.8-GHz Low-Phase-Noise CMOS VCOUsing Optimized Hollow Spiral Inductors‚” IEEE Journal of Solid-State Cir-cuits‚ vol. 32‚ no. 5‚ pp. 736–744‚ May 1997.

P. Van de Ven et al.‚ “An optimally coupled 5 GHz quadrature LC oscillator‚”in Symposium on VLSI Circuits‚ 2001‚ pp. 115–118.

T. Lui‚ “1.5 V 10-12.5 GHz Integrated CMOS Oscillators‚” in Symposium onVLSI Circuits‚ 1999‚ pp. 55–56.

T. Wakimoto and S. Konaka‚ “A 1.9 GHz Si Bipolar Quadrature VCO withFully-Integrated LC Tank‚” in Symposium on VLSI Circuits‚ 1998‚ pp. 30–31.

P. Andreani‚ “A Comparison between Two 1.8GHz CMOS VCOs Tuned byDifferent Varactors‚” in European Solid-State Circuits Conf. (ESSCIRC)‚ 1998‚pp. 380–383.

B. Razavi‚ “A 1.8 GHz CMOS Voltage-Controlled Oscillator‚” in IEEE Inter-national Solid-State Circuits Conf. (ISSCC)‚ 1997‚ pp. 388–389.

C. Lo and H. Luong‚ “2-V 900 MHz Quadrature Coupled LC Oscillators withImproved Amplitude and Phase Matchings‚” in IEEE International Symposiumon Circuits and Systems (ISCAS)‚ 1999‚ vol. II‚ pp. 585–588.

F. Herzel et al.‚ “Phase Noise in a Differential CMOS Voltage-Controlled Os-cillator for RF Applications‚” IEEE Transactions on Circuits and Systems II‚vol. 47‚ no. 1‚ pp. 11–15‚ Jan. 2000.

C. Lam and B. Razavi‚ “A 2.6GHz/5.2GHz CMOS Voltage-Controlled Os-cillator‚” in IEEE International Solid-State Circuits Conf. (ISSCC)‚ 1999‚ pp.402–403.

A. L. Coban et al.‚ “A Highly-Tunable 12 GHz Quadrature LC-VCO in SiGeBiCMOS process‚” in Symposium on VLSI Circuits‚ 2001‚ pp. 119–120.

Literature on ring oscillator designs

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

A. Buchwald and K. Martin‚ “High-speed voltage-controlled oscillator withQuadrature outputs‚” Electronic Letters‚ vol. 27‚ no. 4‚ pp. 309–310‚ 1990.

A. Hajimiri et al.‚ “Jitter and Phase Noise in Ring Oscillators‚” IEEE Journalof Solid-State Circuits‚ vol. 34‚ no. 6‚ pp. 790–804‚ June 1999.

A. Pottbacker and U. Langmann‚ “An 8 GHz Silicon Bipolar Clock-Recoveryand Data-Regenerator IC‚” in IEEE International Solid-State Circuits Conf.(ISSCC)‚1994‚ pp. 116–117.

M. Meghelli et al.‚ “SiGe BiCMOS 3.3V Clock and Data Recovery Circuitsfor 10Gb/s Serial Transmission Systems‚” in IEEE International Solid-StateCircuits Conf. (ISSCC)‚ 2000‚ pp. 56–57.

R. K. Montgomery et al.‚ “10 and 26 GHz differential VCOs using Inp HBTs‚”in Microwave Symposium Digest‚ 1996‚ vol. 3‚ pp. 1507–1510.

B. Razavi‚ “A Study of Phase Noise in CMOS Oscillators‚” IEEE Journal ofSolid-State Circuits‚ vol. 31‚ no. 3‚ pp. 331–343‚ Mar. 1996.

J. van der Tang et al.‚ “A 9.8-11.5 GHz I/Q Ring Oscillator for Optical Re-ceivers‚” in IEEE Custom Integrated Circuits Conf. (CICC)‚ 2001‚ pp. 323–326.

W. S. T. Yan and H. C. Luong‚ “A 900-MHz CMOS Low-Phase-Noise Voltage-Controlled Ring Oscillator‚” IEEE Transactions on Circuits and Systems II‚ vol.48‚ no. 2‚ pp. 216–221‚ Feb. 2001.

C. Park and B. Kim‚ “A Low-Noise‚ 900-MHz VCO in 0.6-um CMOS‚” IEEEJournal of Solid-State Circuits‚ vol. 34‚ no. 5‚ pp. 586–591‚ May 1999.

309

310 Literature on ring oscillator designs

[238]

[239]

[240]

[241]

[242]

[243]

[244]

J. van der Tang et al.‚ “A 2.7 V‚ 8 GHz Monolithic I/Q RC Oscillator withActive Inductive Loads‚” in European Solid-State Circuits Conf. (ESSCIRC)‚2000‚ pp. 304–307.

S. Butala and B. Razavi‚ “A CMOS Clock Recovery Circuit for 2.5-Gb/s NRZData‚” IEEE Journal of Solid-State Circuits‚ vol. 36‚ no. 3‚ pp. 432–439‚ Mar.2001.

B. Razavi‚ “A 2-GHz 1.6-mW Phase-Locked Loop‚” IEEE Journal of Solid-State Circuits‚ vol. 32‚ no. 5‚ pp. 730–735‚ May 1997.

J. van der Tang and D. Kasperkovitz‚ “A 0.9 -2.2 GHz Monolithic QuadratureMixer Oscillator for Direct-Conversion Satellite Receivers‚” in IEEE Interna-tional Solid-State Circuits Conf. (ISSCC)‚ 1997‚ pp. 88–89.

D. Jeong et al.‚ “CMOS Current-Controlled Oscillators Using Multiple-Feedback-Loop Ring Architectures‚” in IEEE International Solid-State CircuitsConf. (ISSCC)‚ 1997‚ pp. 386–387.

A. Buchwald et al.‚ “A 6 GHz Integrated Phase-Locked Loop Using Al-GaAs/GaAs Heterojunction Bipolar Transistors‚” in IEEE International Solid-State Circuits Conf. (ISSCC)‚ 1992‚ pp. 98–99.

L. Sun and T. A. Kwasniewski‚ “A 1.25-GHz 0.35-um Monolithic CMOS PLLBased on a Multiphase Ring Oscillator‚” IEEE Journal of Solid-State Circuits‚vol. 36‚ no. 6‚ pp. 910–916‚ June 2001.

About the Authors

Johan Van der Tang was born on April 21‚ 1970 in Wolvega‚ the Netherlands.From 1988 until 1992 he studied Electrical Engineering at the Technical College inLeeuwarden (NHL). He subsequently studied Electrical Engineering at the Universityof Twente in Enschede‚ the Netherlands. He successfully concluded his studies atTwente University in 1995 with a M.Sc. project at the Institute for Micro-electronicSystems in Darmstadt‚ Germany. In September 1995 Johan van der Tang started asresearch scientist in the field of integrated transceivers at Philips Research Labora-tories‚ Eindhoven. In this position he worked on analog integrated High-Frequencykey building-blocks for satellite‚ television‚ radio and optical front-ends. In 1996 hejoined the Centre of Technical Training (CTT) of Philips as a part-time lecturer. SinceFebruary 2000‚ Johan van der Tang works as an assistant professor in the Mixed-signal Microelectronics group at Eindhoven‚ University of Technology. In December2002‚ he gained his Ph.D. degree after defending his thesis titled “High-FrequencyOscillator Design for Integrated Transceivers”. For his thesis work he received the“Vederprijs 2002”. His current research interests are design of innovative integratedtransceivers varying from ultra low-power/low-bit rate transceivers to 30 GHz front-ends‚ reusable and programmable RF building blocks‚ and design methodology foranalog RF circuits.

Dieter Kasperkovitz got his B.Sc. in Mechanical Engineering‚ his M.Sc. in Experi-mental Physics and his Ph.D. in Theoretical (Nuclear) Physics in Vienna‚ Austria. Be-fore starting his industrial career he was engaged in a Postdoctoral Fellowship in SolidState Physics at the University of Cologne‚ Germany. He started his work at PhilipsResearch in Eindhoven‚ the Netherlands‚ with the design of new functional deviceslike ultra-fast switches and IMPATT oscillators‚ bi-stable elements‚ image sensors‚etc. Supporting innovative projects for the consumer market he designed the first digi-tal tuning system for TV tuners. Other areas of interest were serial and random access

311

312 About the Authors

mass memories‚ fully integrated FM receivers and Paging Receivers. Before his re-tirement from Philips Research he was also involved in the design of new architecturesfor integrated transceivers‚ in the development and evaluation of new technologies forRF-IC’s‚ and in adaptive signal processing for transmission channels with high levelsof noise and spurious signals. After retirement he co founded the innovative IC designcompany Semiconductor Ideas to the Market (ITOM).

Arthur H.M. van Roermund was born in Delft‚ The Netherlands in 1951. He re-ceived the M.Sc. degree in electrical engineering in 1975 from the Delft Universityof Technology and the Ph.D. degree in Applied Sciences from the K.U.Leuven‚ Bel-gium‚ in 1987. From 1975 to 1992 he was with Philips Research Laboratories inEindhoven. From 1992 to 1999 he has been a full professor at the Electrical Engi-neering Department of Delft University of Technology‚ where he was chairman of theElectronics Research Group and member of the management team of DIMES. From1992 to 1999 he has been chairman of a two-years post-graduate school for chartereddesigner. From 1992 to 1997 he has been consultant for Philips. October 1999 hejoined Eindhoven University of Technology as a full professor‚ chairing the Mixed-signal Microelectronics Group. Since September 2002 he is member of the facultyboard‚ with research portfolio. He is chairman of the board of ProRISC‚ a nation-widemicroelectronics platform‚ and senior member of the IEEE. Specific areas of interestcurrently are AD and DA conversion and high-frequency transceivers.

Index

Symbols1 / f noise‚ see flicker noise

noise‚ see white noise floornoise‚ see phase noisenoise‚ see flicker noise

see phase noise to carrier ratio

AAAC‚ see Automatic amplitude con-

trolAC phase noise simulation‚ 202ACPN‚ 202

example‚ 208‚ 211principle‚ 203simulation flow‚ 207

Active inductance‚ 149AGC‚ see Automatic gain controlAmplitude noise

multiplicative‚ 16removal‚ 16

Amplitude stabilization‚ 30‚ 203automatic gain control‚ 34modeling‚ 203self-limiting‚ 31

Analog circuit design‚ 38Automatic gain control‚ 34

BBalanced design‚ 80Barkhausen‚ 6

Barkhausen conditions‚ 22Behavior modeling

building blocks‚ 257Benchmark FOMs‚ 190

LC oscillator design efficiency‚ 195Normalized phase noise‚ 191Oscillator number‚ 191Ring oscillator design efficiency‚

197Breakdown‚ 83Buffers‚ 80

CCarrier amplitude

current limited‚ 179ideal‚ 108practical‚ 178saturation‚ 179voltage limited‚ 180

Carrier powerideal‚ 108practical‚ 178

Carrier to phase noise ratio‚ 71CCO‚ see Oscillator‚ CCOChristian Huygens‚ 1Circuit optimizers‚ 46

algorithms‚ 46analysis types‚ 47

Classification‚ see Oscillator‚ classifi-cation

313

314 Index

Closed-loop gain‚ 204Colpitts oscillator‚ 26

noise shifting‚ 176phase noise‚ 174

Complementary error function‚ 79Component mismatch‚ see device mis-

matchCrystal oscillator‚ 11Current limited region‚ 179

DDCR‚ 5‚ 242

half-rate‚ 242DECT‚ 3Design FOMs‚ 186

188frequency‚ 187tuning‚ 188

Design methods‚ 44expert systems‚ 47Figures of Merit‚ 49‚ 51FOM-based design‚ 50optimization tools‚ 46synthesis environments‚ 47trial-and-error‚ 45

Design phases‚ 40optimization and implementation‚

41specification and conceptualization,

41verification and documentation‚ 41

Design resources‚ 38‚ 40capitalization‚ 40

Device mismatch‚ 85Dielectric Resonator Oscillator (DRO)‚

19Differential pair‚ 261Distributed oscillators‚ 11

literature‚ 11Double loop PLL‚ 226Dynamic selectivity‚ 74

EElectrical energy‚ 90

FFDMA‚ 3Feedback modeling‚ 21

limitations‚ 22Figures of Merit‚ 51

benchmark FOMs‚ 55‚ 190normalized phase noise‚ 191oscillator design efficiency‚ 193oscillator number‚ 191

benefits‚ 56design FOMs‚ 53‚ 186

188frequency‚ 187tuning‚ 188

design margin‚ 56Flicker noise

corner‚ 72corner calculation‚ 176device 1/ f corner‚ 175reduction‚ 172region‚ 72

FM modulationsignal-to-noise ratio reduction‚ 76

FM radio‚ 142‚ 216FOM‚ see Figures of MeritFrequency‚ 113Functional specifications‚ 38‚ 39

inequality constraint‚ 39

GGSM

phase noise specification‚ 75type-approval template‚ 76

HHalf-circuit concept‚ 62Harmonics‚ 101

even‚ 17odd‚ 17

Hartley oscillator‚ 27Hartley receiver architecture‚ 82Heuristics‚ 42

II/Q matching‚ 81‚ 231

Index 315

I/Q signals‚ see Quadrature signalsIdeal limiter‚ 261Image rejection ratio‚ 81

formula‚ 82Impulse sensitivity function‚ 174

effective‚ 175Inductor choice‚ 189INSPEC‚ 8

LLC oscillator

circuit examples‚ 115complementary MOS‚ 117cross-coupled bipolar‚ 115design example‚ 216‚ 233differential equation‚ 90frequency deviation‚ 92ideal

behavioral model‚ 91frequency‚ 91multi-phase‚behavioral model‚

94multi-phase‚frequency‚ 95multi-phase‚tuning‚ 100multi-phase‚ waveform‚ 103tuning‚ 99waveform‚ 102

multi-phase‚circuit example‚ 122multi-phase,coupling strength‚ 120multi-phase,implementation exam-

ple‚ 164multi-phase‚multi-oscillation‚ 163

multi-phase‚optimal coupling‚ 162performance overview‚ 275practical

behavioral model‚ 113frequency‚ 113‚ 114multi-phase‚behavioral model‚

119multi-phase‚frequency‚ 118multi-phase‚operation‚ 119multi-phase‚phase noise (LTI)‚

161phase noise (LTI)‚ 156‚ 281phase noise (LTV)‚ 169waveform‚ 177

quality factor‚ 151LC Tank‚ see ResonatorLeeson‚ 155Leeson’s formula‚ 156LO leakage‚ 226Lorentz-function‚ 205Lorentzian‚ 206

MMagnetic energy‚ 90Marconi‚ 2Measurement

buffer isolation‚ 81Modeling

behavioral building blocks‚ 62behavioral level‚ 61circuit level‚ 63single-ended models‚ 62system level‚ 58transistor models‚ 64

MOS-varactor‚ see Varactor‚ MOS-typeMulti-oscillation‚ 27

elimination‚ 28Pierce oscillator‚ 27

Multi-phase LC oscillator‚ see LC os-cillator

Multi-phase ring oscillator‚ see Ringoscillator

JJitter‚ 16‚ 77

cycle-to-cycle‚ 77definition‚ 77generation‚ 78in PLLs‚ 77peak-to-peak‚ 79relation to 77rms‚ 79SONET(SDH)‚ 77unit intervals‚ 77

316 Index

NNarrow range system‚ 68Negative resistance modeling‚ 29Negative resistance oscillator‚ 29Noise shaping‚ 59

formula‚ 59Q definition‚ 59

NRZ data stream‚ 5

OOpen loop

gain‚ 24simulations‚ 24

Open loop gain‚ 24modeling‚ 203relation to phase noise‚ 161

Open loop transfer function‚ 26Oscillation conditions‚ 21

application‚ 23Barkhausen conditions‚ 22Bode plots‚ 25feedback modeling‚ 21gain condition‚ 22modeling limitations‚ 22negative resistance modeling‚ 29‚

30phase condition‚ 22root locus‚ 26start-up conditions‚ 23steady-state‚ 22

Oscillatorapplications‚ 3benchmarking‚ 190carrier amplitude‚ 108‚ 178carrier power‚ 108‚ 178CCO‚ 14classification‚ 17comparison‚ 190design examples‚ 215elementary properties‚ 89FM radio‚ 142frequency‚ 113ideal‚ 13‚ 90implementation principle‚ 17

inductor choice‚ 189Latin origin‚ 1layout‚ 9literature‚ 6LO‚ 3non-ideal‚ 15non-resonator based‚ 19output buffer‚ 80phase noise

LTI modeling‚ 155LTV modeling‚ 169

power dissipation‚ 181practical properties‚ 111resonator based‚ 17specifications‚ 67supply voltage‚ 181switching‚ 152tuning‚ 132tuning constant‚ 70VCO‚ 14waveform‚ 101‚ 177

Oscillator design efficiency‚ 193

PParasitic oscillations‚ 28Perpetuum mobile‚ 91Phase noise

slope‚ 72slope‚ 72

AC based simulation‚ 202AM-PM conversion‚ 170bipolar LC oscillator (LTI)‚ 156CML ring oscillator (LTI)‚ 168Colpitts oscillator‚ 174cross-coupled LC oscillators (LTV)‚

173dependency on Q‚ 160down-conversion‚ 171extrapolation‚ 72inductor choice‚ 189Leeson‚ 156LTI modeling‚ 59‚ 155LTV modeling‚ 169measurement‚ 72

Index 317

MOS LC oscillator (LTI)‚ 157noise source modulation‚ 172non-linear mechanisms‚ 170nonlinear modeling‚ 169optimum no. of ring oscillator stages‚

169power law curves‚ 71power spectral density‚ 71relation to loop gain‚ 161resulting angular phase deviation‚

73saturation effects‚ 172sidebands‚ 16simulation‚ 201single-sideband‚ 71switching diff. pair‚ 159tail noise filtering‚ 172up-conversion‚ 170voltage limited region‚ 180waveform symmetry‚ 176

Phase noise to carrier ratio‚ 71definition‚ 71dependency on power‚ 160LTI modeling‚ 155LTV modeling‚ 169valid region of 73

PLL‚ 11literature‚ 11

PN-junction varactor‚ see Varactor‚ PN-junction type

Pole locations‚ 30Pulling‚ 80

QQ‚ see Quality factorQuadrature signals‚ 15‚ 82

correct-by-construction‚ 82generation methods‚ 265

Quality factor‚ 25‚ 255active inductance‚ 149active varactor‚ 145at resonance‚ 60capacitor‚ 113frequency deviation‚ 114

inductor‚ 113LC oscillator‚ 281loaded‚ 117multi-phase oscillator‚ 61‚ 151‚ 161ring oscillator‚ 198‚ 287single-phase oscillator‚ 59switched capacitor‚ 141two-integrator oscillator‚ 166‚ 287visualization‚ 255

RReciprocal mixing‚ 74Relaxation oscillators‚ 11‚ 20

literature‚ 11Residual FM‚ 75Resonator

choice‚ 10energy storage‚ 25phase shift‚ 162practical model‚ 114quality factor‚ 10‚ 25

Ring oscillator‚ 97benchmarking‚ 251

circuit examples‚ 130design example‚ 242effective Q factor‚ 198frequency estimation‚ 129frequency when switching‚ 267ideal

behavioral model‚ 97frequency‚ 98tuning‚ 101waveform‚ 106

optimum number of stages‚ 169performance overview‚ 279practical

behavioral model‚ 128frequency‚ 129phase noise (LTI)‚ 165‚ 287phase noise (LTV)‚ 169tuning‚ 152waveform‚ 177

Q factor‚ 167time delay MOS stage‚ 132

318 Index

time-delay CML stage‚ 131two-stage topologies‚ 244

SSatellite receiver‚ 225SDH‚ 69Self-limiting‚ 31

cross-coupled differential pair‚ 32Self-reception‚ 226Settling time‚ 32Silicon on Anything‚ 216‚ 217

inductor Q‚ 219varactor Q‚ 220

Simulation‚ 201ACPN‚ 202

advantages‚ 202example‚ 208‚ 211flow‚ 207limitations‚ 203principle‚ 203

phase noise‚ 201pnoise analysis‚ 201PSS analysis‚ 201

SONET‚ 69Specifications‚ 67

carrier amplitude‚ 80carrier power‚ 80center frequency‚ 68chip area‚ 86design spec.‚ 67frequency‚ 68frequency grid‚ 68I/Q matching‚ 81jitter‚ 77nominal spec.‚ 67peak-to-peak jitter‚ 79phase noise to carrier ratio‚ 71power dissipation‚ 83process spread‚ 70‚ 84reciprocal mixing‚ 74rms jitter‚ 78SNR degradation‚ 75spurious emission‚ 76supply pushing‚ 83

supply voltage‚ 83technology‚ 86temperature‚ 84tuning constant‚ 70tuning range‚ 68unit intervals‚ 77waveform‚ 79

Spectral purity‚ 16Spurious emission‚ 76Stability

definition‚ 71long term‚ 5‚ 11short term‚ 5‚ 71

Start-up conditions‚ 23Supply pushing‚ 83

formula‚ 84Syntonic Wireless Telegraphy‚ 2

TTank circuit‚ see ResonatorThermal resistance‚ 85

formula‚ 85Three-terminal oscillator‚ 26Timing reference‚ 13Transconductor

limiting characteristic‚ 92‚ 261piece-wise linear‚ 93

Transistorbipolar 272bipolar 272generic model‚ 271MOS 272MOS 272simplified models‚ 271

Tuning‚ 132active capacitive‚ 144active inductive‚ 149band-switching‚ 140capacitor switching‚ 140delay interpolation‚ 153LC oscillators‚ 133oscillator switching‚ 152passive inductive‚ 147phase shift tuning‚ 150

Index 319

resistive‚ 153ring oscillator‚ 152two-integrator oscillator‚ 152varactor implementations‚ 136varactor tuning‚ 133

Tuning constant‚ 70linearity‚ 70too high‚ 140

Two-integrator oscillatorAGC‚ 35circuit example‚ 125design example‚ 225frequency estimation‚ 126ideal‚ 95

behavioral model‚ 96frequency‚ 96tuning‚ 101waveform‚ 106

practicalbehavioral model‚ 123frequency‚ 124phase noise (LTI)‚ 165‚ 287phase noise (LTV)‚ 169tuning‚ 152waveform‚ 177

Q factor‚ 166V/I converter‚ 127‚ 229

UUMTS‚ 69

VV/I converter‚ 127‚ 229Van der Pol‚ 6Van der Pol oscillator‚ 32

differential equation‚ 32output voltage‚ 32settling time‚ 32

Varactor133

active variable capacitance‚ 144‚236

compound‚ 134compound Q‚ 135

effective Q‚ 145measured performance‚ 139MOS-type‚ 136‚ 138‚ 233PMOS‚ 236PN-junction type‚ 135–137‚ 235

VCO‚ see Oscillator‚ VCOVCO gain constant‚ see tuning constantVHDL‚ 38Voltage limited region‚ 179

WWaveform‚ 101

relation to 1 / f corner‚ 176White noise floor‚ 16Wide range system‚ 68