33
References i Acker CI, Souza AC, Pinton S, Rocha JT, Friggi CA, Zanella R and Nogueira CW (2011). Repeated malathion exposure induces behavioral impairment and AChE activity inhibition in brains of rat pups. Ecotoxicol. Environ. Safety 74: 2310-2315. Aebi H (1984). Catalase in vitro. Methods Enzymol.105: 121-126. Ahameda M, Michael K, Michael G, John R, Saber MH, John J. S and Yiling H (2008). DNAdamage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol. Appl. Phamacol. 233(3): 404-410. Ahsan MK, Lekli I, Ray D, Yodoi J and Das DK (2009). Redox regulation of cell survival by the thioredoxin superfamily: an implication of redox gene therapy in the heart. Antioxid. Redox. Signal 11: 2741–2758. Aisen P, Enns C and Wessling-Resnick M (2001). Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell Biol. 33: 940–959. Aisen P, Wessling-Resnick M and Leibold EA (1999). Iron metabolism. Curr. Opin. Chem. Biol. 3: 200-206. Akerman ME, Chan WCW, Laakkonen P, Bhatia SN and Ruoslahti E (2002). Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. U.S.A. 99: 12617–12621. Allen TM and Cullis PR (2004). Drug delivery systems: entering the mainstream. Science. 303: 1818–1822. Andersen JK (2004). Oxidative stress in neurodegeneration: cause or consequence? Nat. Med. 10:S18–25. Anderson GJ (2007). Mechanisms of iron loading and toxicity. Am. J. Hematol. 82(S12): 1128-1131. Ankamwar B, Lai TC, Huang JH, Liu RS, Hsiao M and Chen CH (2010). Biocompatibility of Fe 3 O 4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology. 21: 75102. Anzai Y, Piccoli CW, Outwater EK, Stanford W, Bluemke DA and Nurenberg P (2003). Evaluation of neck and body metastases to nodes with ferumoxtran 10- enhanced MR imaging: phase III safety and efficacy study. Radiology. 228: 777-88. 141 Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

i

Acker CI, Souza AC, Pinton S, Rocha JT, Friggi CA, Zanella R and Nogueira CW

(2011). Repeated malathion exposure induces behavioral impairment and

AChE activity inhibition in brains of rat pups. Ecotoxicol. Environ. Safety 74:

2310-2315.

Aebi H (1984). Catalase in vitro. Methods Enzymol.105: 121-126.

Ahameda M, Michael K, Michael G, John R, Saber MH, John J. S and Yiling H

(2008). DNAdamage response to different surface chemistry of silver

nanoparticles in mammalian cells. Toxicol. Appl. Phamacol. 233(3): 404-410.

Ahsan MK, Lekli I, Ray D, Yodoi J and Das DK (2009). Redox regulation of cell

survival by the thioredoxin superfamily: an implication of redox gene therapy

in the heart. Antioxid. Redox. Signal 11: 2741–2758.

Aisen P, Enns C and Wessling-Resnick M (2001). Chemistry and biology of

eukaryotic iron metabolism. Int. J. Biochem. Cell Biol. 33: 940–959.

Aisen P, Wessling-Resnick M and Leibold EA (1999). Iron metabolism. Curr. Opin.

Chem. Biol. 3: 200-206.

Akerman ME, Chan WCW, Laakkonen P, Bhatia SN and Ruoslahti E (2002).

Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. U.S.A. 99: 12617–12621.

Allen TM and Cullis PR (2004). Drug delivery systems: entering the mainstream.

Science. 303: 1818–1822.

Andersen JK (2004). Oxidative stress in neurodegeneration: cause or consequence?

Nat. Med. 10:S18–25.

Anderson GJ (2007). Mechanisms of iron loading and toxicity. Am. J. Hematol.

82(S12): 1128-1131.

Ankamwar B, Lai TC, Huang JH, Liu RS, Hsiao M and Chen CH (2010).

Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity

assays using normal, glia and breast cancer cells. Nanotechnology. 21: 75102.

Anzai Y, Piccoli CW, Outwater EK, Stanford W, Bluemke DA and Nurenberg P

(2003). Evaluation of neck and body metastases to nodes with ferumoxtran 10-

enhanced MR imaging: phase III safety and efficacy study. Radiology. 228:

777-88.

141

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 2: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

ii

Apopa PL, Qian Y, Shao R, Guo NL, Schwegler-Berry D and Pacurari M (2009). Iron

oxide NPs induce human microvascular endothelial cell permeability through

reactive oxygen species production and microtubule remodeling. Part Fibre

Toxicol 6:1-14.

Arbab AS, Wilson LB, Ashari P, Jordan EK, Lewis BK and Frank JA (2005). A

model of lysosomal metabolism of dextran coated superparamagnetic iron

oxide (SPIO) nanoparticles: implications for cellular magnetic resonance

imaging. NMR Biomed. 18: 383-399.

Auffan M, Decome L, Rose J, Orsiere T, De Meo M and Briois V (2006). In vitro

interactions between DMSA-coated maghemite nanoparticles and human

fibroblasts: a physicochemical and cyto-genotoxical study. Environ. Sci.

Technol. 40: 436773.

Baigorri R, Garcia-Mina JM, Aroca RF and Alvarez-Puebla RA (2008). Optical

Enhancing Properties of Anisotropic Gold Nanoplates Prepared with Different

Fractions of a Natural Humic Substance. Chem. Mater. 20(4): 1516-1521.

Barnham KJ, and Bush AI (2008). Metals in Alzheimer’s and Parkinson’s diseases.

Curr. Opin. Chem. Biol. 12:222–228.

Beal MF (1992). Does impairment of energy metabolism results in excitotoxic

neuronal death in neurodegenerative illnesses. Ann. Neurol.31: 119–130.

Beal MF (2000). Energetics in the pathogenesis of neurodegenerative diseases.

TINS.23: 298–304.

Begley DJ (1996). The blood–brain barrier: principles for targeting peptides and drugs

to the central nervous system. J. Pharm. Pharmacol. 48: 136–146.

Begum G, Rao JC and Srikanth K (2006). Oxidative stress and change in locomotor

behavior and gill morphology of Gamnusia affinis exposed to chromium.

Toxicol. Environ. Chem. 88: 355-365.

Berg D and Youdim MB (2006). Role of iron in neurodegenerative disorders. Top.

Magn. Reson. Imaging 17:5-17.

Berry CC, Wells S, Charles S and Curtis AS (2003). Dextran and albumin derivatised

iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials. 24:

4551-4557.

142

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 3: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

iii

Berry CC, Wells S, Charles S, Aitchison G, Curtis AS (2004). Cell response to

dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials.

25: 5405-5413.

Bhasin G, Kauser H and Athar M (2002). Iron augments stage-I and stage-II tumor

promotion in murine skin. Cancer Lett. 183: 113-122.

Bhushan B (2003). Introduction to nanotechnology. Springer Nanotechnology,

Springer Publication, Berlin.

Bilbao G, Gomez-Navarro J, Curiel D and Walden P (1998). Targeted adenoviral

vectors for cancer gene therapy. New York: Plenum Press. 365–374.

Bjonerud A (2002). Proton relaxation properties a particulate iron oxide MR contrast

agent in differnt tissue systems, Implications for imaging. Comprehensive

summaries of Uppasala dissertations from the faculty of medicine.

Bodian D, and Howe HA (1941). The rate of progression of poliomyelitis virus in

nerves. Bull. Johns Hopkins Hosp 69: 79-85.

Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R and

Wood S (2006). Research strategies for safety evaluation of nanomaterials.

Part V. Role of dissolution in biological fate and effects of nanoscale particles.

Toxicol. Sci. 90: 23–32.

Borm PJ and Muller-Schulte D (2006). Nanoparticles in drug delivery and

environmental exposure: same size, same risks. Nanomedicine.1: 235–249.

Brooking J, Davis SS and Illum L (2001). Transport of nanoparticles across the rat

nasal mucosa. J. Drug Targeting. 9: 267–279.

Brown DM, Stone V, Findlay P, MacNee W and Donaldson K (2000). Increased

inflammation and intracellular calcium caused by ultrafine carbon black is

independent of transition metals or other soluble components. Occup. Environ.

Med. 57: 685–691.

Brown DM, Wilson MR, MacNee W, Stone V and Donaldson K (2001). Size-

dependent proinflammatory effects of ultrafine polystyrene particles: a role for

surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol.

Appl. Pharmacol. 175: 191–199.

143

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 4: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

iv

Brück J, Görg B, Bidmon,HJ, Zemtsova I, Qvartskhava N, Keitel V, Kircheis G and

Häussinger D (2011). Locomotor impairment and cerebrocortical oxidative

stress in portal vein ligated rats in vivo. J. Hepatol. 54: 251-257.

Brunner TJ, Wick P, Manser P, Spohn P, Grass RN and Limbach LK (2006). In vitro

cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the

effect of particle solubility. Environ Sci Technol. 40: 4374-4381.

Budni P, de Lima MN, Polydoro M, Moreira JC, Schroder N and Dal-Pizzol F (2007).

Antioxidant effects of selegiline in oxidative stress induced by iron neonatal

treatment in rats. Neurochem. Res. 32: 965-972.

Bulte JWM, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H,

Miller B, van Gelderen P, Moskowitz BM, Duncan ID and Frank JA (2001).

Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking

of stem cells. Nat. Biotechnol. 19: 1141–1147.

Busca G (2006). The surface acidity and basicity of solid oxides and zeolites. Metal

Oxides, Chemistry and Applications Edited by J . L . G . Fierro. CRC Press.

247–318.

Bush AI and Curtain CC (2008). Twenty years of metallo-neurobiology: where to

now? Eur. Biophys. J. Biophys. Lett. 37: 241-245.

Buyukhatipoglu K and Clyne AM (2011). Superparamagnetic iron oxide

nanoparticles change endothelial cell morphology and mechanics via reactive

oxygen species formation. J. Biomed. Mater. Res. 96:187-95.

Calderon-Garciduenas L, Reed W, Maronpot RR, Henriquez-Roldan C, Delgado-

Chavez R, Calderon-Garciduenas A, Dragustinovis I, Franco-Lira M, Aragon-

Flores M, Solt AC, Altenburg M, Torres-Jardon R and Swenberg JA (2004).

Brain inflammation and Alzheimer’s like pathology in individuals exposed to

severe air pollution. Toxicol. Pathol. 32: 650–658.

Calvo P, Gouritin B, Chacun H, Desmaele D, D’Angelo J, Noel JP, Georgin D, Fattal

E, Andreux JP and Couvreur P (2001). Long-circulating PEGylated

polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm.

Res. 18: 1157–1166.

144

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 5: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

v

Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C,

Mendez LB and Kleinman M (2005). Particulate matter in polluted air may

increase biomarkers of inflammation in mouse brain. Neurotoxicology 26:

133–140.

Campbell DJ, Olson JA, Calderon CE, Doolan PW, Mengelt EA, Ellis AB and

Lisensky GC (1999). Chemistry with refrigerator magnets: from modeling of

nanoscale characterization to composite fabrication. J. Chem. Educ. 76: 1205–

1211.

Casarino DS and Bennett Jr JP (1999). An evaluation of the role of mitochondria in

neurodegenerative diseases: mitochondrial mutations and oxidative pathology,

protective nuclear responses, and cell death in neurodegeneration. Brain Res.

Rev. 29: 1–25.

Catalá A (2009). Lipid peroxidation of membrane phospholipids generates

hydroxyalkenals and oxidized phospholipids active in physiological and/or

pathological conditions. Chem. Phys. Lipids 157: 1-11.

Cengelli F, Maysinger D, Tschudi-Monnet F, Montet X, Corot C, Petri-Fink A,

Hofmann H and Juillerat-Jeanneret L (2006). Interaction of functionalized

superparamagnetic iron oxide nanoparticles with brain structures. J.

Pharmacol. Exp. Ther. 318: 108–116.

Chan DCF, Kirpotin DB and Bunn Jr PA (1993). Synthesis and evaluation of

colloidal magnetic iron oxides for the site specific radio- frequency-induced

hyperthermia of cancer. J. Magn. Magn. Mater.122: 374–378.

Chan VS (2006). Nanomedicine: an unresolved regulatory issue. Regul. Toxicol.

Pharmacol. 46: 218–224.

Chance B, Sies H and Boveris A (1979). Hydroperoxide metabolism in mammalian

organs. Physiol. Rev. 59: 527-605.

Chatterjee J, Haik Y and Chen CJ (2003). Size dependent magnetic properties of iron

oxide nanoparticles. J. Magn. Magn. Mater. 257: 113–118.

Chen J, Patil S, Seal S and McGinnis JF (2006). Rare earth nanoparticles prevent

retinal degeneration induced by intracellular peroxides. Nat. Nanotechnol. 1:

142–150.

145

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 6: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

vi

Chen Y, Wang C, Ma Z and Su Z (2007). Controllable colours and shapes of silver

nanostructures based on pH: application to surface-enhanced Raman

scattering. Nanotechnology. 18:325602-325606.

Chen Z, Chen H, Meng H, Xing G, Gao X, Sun B, Shi X, Yuan H, Zhang C, Liu R,

Zhao F, Zhao Y and Fang X (2008). Bio-distribution and metabolic paths of

silica coated CdSeS quantum dots. Toxicol. Appl. Pharmacol. 230: 364–371.

Chouly C, Pouliquen D, Lucet I, Jeune P and Pellet JJ (1996). Development of

superparamagnetic nanoparticles for MRI: effect of particles size, charge and

surface nature on biodistribution. J. Microencapsul.13: 245–255.

Clarkson PM and Thompson HS (2000). Antioxidants: What role do they play in

physical activity and health. Am. J. Clin. Nutr. 72: 637S–646S.

Colton CA and Gilbert DL (1987). Production of superoxide anions by a CNS

macrophage, the microglia. FEBS Lett. 223: 284–288.

Colvin VL (2003). The potential environmental impact of engineered nanomaterials.

Nat. Biotechnol. 21: 1166–1170.

Contag PR, Olomu IN, Stevenson DK and Contag CH (1998). Bioluminescent

indicators in living mammals. Nat. Med. 4: 245–247.

Cornell RM and Schwertmann U (2003). The Iron Oxides: Structure, Properties,

Reactions, Occurrences and Uses, second Ed. Wiley-VCH, Weinheim.

Corot C, Petry KG, Trivedi R, Saleh A, Jonkmanns C, Le Bas JF, Blezer E, Rausch

M, Brochet B, Foster-Gareau P, Baleriaux D, Gaillard S and Dousset V

(2004). Macrophage imaging in central nervous system and in carotid

atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in

magnetic resonance imaging. Invest. Radiol. 39: 619–625.

Cotter TG and Al-Rubeai M (1995). Cell death (apoptosis) in cell culture systems.

Trends Biotechnol. 13: 150–155.

Cuatrecasas P and Roth TF editors (1983). Receptor-mediated endocytosis.

Dordrecht: Kluwer Academic Publishers Hardbound. ISBN. 0-412: 24820-

24824.

146

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 7: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

vii

Da Silva PF, Garcia VA, DA Dornelles AS, Da SilvaVK, Maurmann N, Poral BCD,

Ferreria RDP, Piazza FC, Roesler R and Schroder N (2012). Memory

impairment induced by brain iron overload is accompanied by reduced H3K9

acetylation and ameliorated by sodium butyrate. Neuroscience 200: 42-49.

Dawling A (2004).Development of nanotechnologies.Nanotoday.30-35.

De Lima MN, Polydoro M, Laranja DC, Bonatto F, Bromberg E, Moreira JC, Dal-

Pizzol F and Schröder N (2005). Recognition memory impairment and brain

oxidative stress induced by postnatal iron administration. Eur. J. Neurosci. 21:

2521-2528.

De Lorenzo AJ, In: Wolstenholme G and Knight J Editors (1970). The olfactory

neuron and the blood-brain barrier: Taste and Smell in Vertebrates. Churchill,

London. 151–176.

Deibel MA, Ehmann WD and Markesbery WR (1996). Copper, iron and zinc

imbalances in severely degenerated brain regions in Alzheimer’s disease:

possible relation to oxidative stress. J. Neurol. Sci. 143: 137-142.

Derfus AM, Chan WCW and Bhatia SN (2004). Probing the cytotoxicity of

semiconductor quantum dots. Nano Lett. 4: 11–18.

Devasagayam TP and Tarachand U (1987). Decreased lipid peroxidation in rat kidney

during gestation. Biochem. Biophy. Commun.145: 134-138.

Dickinson DK and Connor JR (1998). Immunohistochemical analysis of transferring

receptor: regional and cellular distribution in the hypotransferrinemic (hpx)

mouse brain. Brain Res. 801: 171–181.

Donaldson K (2006). Resolving the nanoparticles paradox. Nanomedicine.1: 229–234.

Donaldson K and Stone V (2003). Current hypotheses on the mechanisms of toxicity

of ultrafine particles. Ann. Ist. Super. Sanita. 39: 405-410.

Donaldson K, Mills N, MacNee W, Robinson S and Newby D (2005). Role of

inflammation in cardiopulmonary health effects of PM. Toxicol. Appl.

Pharmacol. 207: 483–488.

147

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 8: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

viii

Donaldson K, Stone V, Borm PJ, Jimenez LA, Gilmour PS, Schins RP, Knaapen AM,

Rahman I, Faux SP, Brown DM and MacNee W (2003). Oxidative stress and

calcium signaling in the adverse effects of environmental particles (PM10).

Free Radic. Biol. Med. 34: 1369–1382.

Drachman DB, Frank K, Dykes-Hiberg M, Teismann P, Almer G and Przedborski S

(2002). Cyclogenase 2 inhibition protects motor neurons and prolongs survival

in a transgenic mouse model of ALS. Ann. Neurol. 52: 771–778.

Dunham NW and Miya TS (1957). A note on a simple apparatus for detecting

neurological defects in rats and mice. J. Am. Pharmaceutical Assoc; Scientific

Edition XIVI. 208.

Dusek P, Jankovic J and Le W (2012). Iron dysregulation in movement disorders.

Neurobiol Dis. 46: 1-18.

Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A,

Ito Y, Finkelstein J and Oberdorster G (2006). Translocation of inhaled

ultrafine manganese oxide particles to the central nervous system. Environ.

Health Perspect. 114: 1172–1178.

Elias A and Tsourkas A (2009). Imaging circulating cells and lymphoid tissues with

iron oxide nanoparticles. Hematology Am. Soc. Hematol. Educ. Program. 720:

6.

Ellman GL, Courtney D, Andres V Jr and Featherstone RM (1961). A new and rapid

colorimetric determination of acetylcholinesterase activity. Biochem.

Pharmacol. 7: 88.

Enochs WS, Harsh G, Hochberg F and Weissleder R (1999). Improved delineation of

human brain tumors on MR images using a long-circulating,

superparamagnetic iron oxide agent. J. Magn. Reson. Imag. 9: 228–232.

Evola M, Hall A, Wall T, Young A and Grammasn P (2010). Oxidative stress impairs

learning and memory in apoE knockout mice. Pharmacol. Biochem. Behav.

96: 181-186.

Fan C, Gao W, Chen Z, Fan H, Li M, Deng F and Chen Z (2011). Tumor selectivity

of stealth multifunctionalized superparamagnetic iron oxide nanoparticles.

Intl. J. Pharma. 404: 180-190.

148

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 9: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

ix

Faux SP, Francis JE, Smith AG and Chipman JK (1992). Induction of 8-

hydroxydeoxyguanosine in Ah-responsive mouse liver by iron and Aroclor

1254. Carcinogenesis. 13: 247-250.

Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B and Barsoum J (1994).

Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad.

Sci. U.S.A. 91: 664–678.

Florence AT, Hillery AM, Hussain N and Jani PU (1995). Factors affecting the oral

uptake and translocation of polystyrene nanoparticles: histological and

analytical evidence. J. Drug Target. 3: 65–70.

Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF and Seta P (2002). Cellular

localisation of a water-soluble fullerene derivative. Biochem. Biophys. Res.

Commun. 294: 116–119.

Francis G, Blankenberg P, Katsikis D, Storrs RW, Beaulieu C, Spielman D, Chen JY,

Naumovski L and Tait JF (1997). Quantitative analysis of apoptotic cell death

using proton nuclear magnetic resonance spectroscopy. Blood. 89: 3778–3786.

Fried NM, Choi B and Welch AJ (1999). Radiometric surface temperature

measurements during dye-assisted laser skin closure: in vitro and in vivo

results. Lasers Surg. Med. 25: 291–303.

Frings M, Boenisch R, Gerwig M, Diener HC and Timmann D (2004). Learning of

sensory sequences in cerebellar patients. Learn. Mem. 11: 347-355.

Gaasch JA, Geldenhuys WJ, Lockman PR, Allen DD and Van der Schyf CJ (2007).

Brain iron toxicity: Differential responses of astrocytes, neurons and

endothelial cells. Neurochem. Res. 32: 1196-208.

Garry M, Nesslany F, Aliouat E, Haguenoer JM and Marzin D (2003). Hematite

(Fe2O3) enhances benzo[a]pyrene genotoxicity in endotracheally treated rat, as

determined by Comet Assay. Mutat. Res. 538: 19-29.

Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T and Discher DE (2007).

Shape effects of filaments versus spherical particles in flow and drug delivery.

Nat. Nanotechnol. 2: 249–255.

149

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 10: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

x

Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM and Barakat AI (2007).

Induction of inflammation in vascular endothelial cells by metal oxide

nanoparticles: effect of particle composition. Environ. Health Perspect. 115:

403–409.

Gopinath PG, Gopinath G and Kumar A (1978). Target site of intranasally sprayed

substances and their transport across the nasal mucosa: a new insight into the

intranasal route of drug delivery. Curr. Ther. Res. 23: 596–607.

Goppert TM and Muller RH (2005). Polysorbate-stabilized solid lipid nanoparticles as

colloidal carriers for intravenous targeting of drugs to the brain: comparison of

plasma protein adsorption patterns. J. Drug. Target. 13: 179–187.

Gordon RT, Hines JR and Gordon D (1979). Intracellular hyperthermia. A

biophysical approach to cancer treatment via intracellular temperature and

biophysical alterations. Med. Hypothesis. 5: 83-102.

Gupta AK and Curtis AS (2004). Surface modified superparamagnetic nanoparticles

for drug delivery: interaction studies with human fibroblasts in culture. J.

Mater. Sci. Mater. Med. 15: 493-496.

Gupta AK and Curtis ASG (2003). Lactoferrin and ceruloplasmin derivatized

superparamagnetic iron oxide nanoparticles: preparation, characterization and

their influence on human dermal fibroblasts in culture. Proceedings of the 30th

Annual Symposium of Controlled Release of Bioactive Materials. 30: 788.

Gupta AK and Gupta M (2005). Synthesis and surface engineering of iron oxide

nanoparticles for biomedical applications. Biomaterials. 26: 3995-4021.

Gupta AK and Gupta M (2005). Synthesis and surface engineering of iron oxide

nanoparticles for biomedical applications. Biomaterials. 26: 3995–4021.

Gupta AK, Berry C, Gupta M and Curtis A (2003). Receptor-mediated targeting of

magnetic nanoparticles using insulin as a surface ligand to prevent

endocytosis. IEEE Trans Nanobiosc. 2: 256–261.

Häfeli UO, Riffle JS, Harris-Shekhawat L, Carmichael-Baranauskas A, Mark F,

Dailey JP, and Bardenstein D (2009). Cell uptake and in vitro toxicity of

magnetic nanoparticles suitable for drug delivery. Mol Pharm. 6: 1417-1428.

150

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 11: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xi

Halliwell B (1992). Oxygen radicals as key mediators in neurological disease: fact or

fiction. Ann. Neurol. 32: 10-5.

Halliwell B and Gutteridge JMC (1990). The role of free radicals and catalytic metal

ions in human disease: an overview. Methods Enzymol. 186: 1-85.

Halliwell B and Gutteridge JMC (1989). Free Radicals in Biology and Medicine.

Clarendon Press, Oxford. 2

Halliwell B and Gutteridge JMC (2007). Free radicals in biology and medicine. New

York: Oxford University Press.

Hamley IW (2003). Nanotechnology with soft materials. Angewandte Chemie.

International Edition. 42: 1692–1712.

Handgretinger R, Lang P, Schumm M, Taylor G, Neu S, Koscielnak E, Niethammer

D and Klingebiel T (1998). Isolation and transplantation of autologous

peripheral CD34+ progenitor cells highly purified by magnetic-activated cell

sorting. Bone Marrow Transplant.21: 987–993.

Haneda K and Morrish AH (1977). Vacancy ordering in γ-Fe2O3 small particles. Solid

State Communications 22: 779-782.

Hanes J, Celand JL and Langer R (1997). New advances in microscope-based single

dose vaccines. Adv Drug Deliv Rev. 28: 97-119.

Hardas SS, Sultana R, Warrier G, Dan M, Florence RL, Wu P, Grulke EA, Tseng MT,

Unrine JM, Graham UM, Yokel RA and Butterfield DA, (2012). Rat brain

pro-oxidant effects of peripherally administered 5 nm ceria 30 days after

exposure. Neurotoxicology (Article in press)

Hautot D, Pankhurst QA, Morris CM, Curtis A, Burn J and Dobson J (2007).

Preliminary observation of elevated levels of nanocrystalline iron oxide in the

basal ganglia of neuroferritinopathy patients. Biochimica et Biophysica Acta.1:

21-25.

Hiura TS, Li N, Kaplan R, Horwitz M, Seagrave JC and Nel AE (2000). The role of a

mitochondrial pathway in the induction of apoptosis by chemicals extracted

from diesel exhaust particles. J Immunol. 165: 2703-2711.

151

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 12: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xii

Hohnholt MC, Mark Geppert M and Dringen R (2011). Treatment with iron oxide

nanoparticles induces ferritin synthesis but not oxidative stress in

oligodendroglial cells. Acta Biomaterialia 7. 3946–3954.

Hood E (2004). Nanotechnology: looking as we leap. Environ. Health Perspect. 112:

A740–749.

Horak D, Babic M, Jendelova P, Herynek V, Trchova M, Likavcanova K, Kapcalova

M, Hajek M and Sykova E (2009). Effect of different magnetic nanoparticles

coatings on the efficiency of stem cell labeling. J. Magn. Magn. Mater. 321:

1539-1547.

Hu R, Zheng L, Zhang T, Gao G, Cui Y, Cheng Z, Cheng J, Hong M, Tang M and

Hong F (2011). Molecular mechanism of hippocampal apoptosis of mice

following exposure to titanium dioxide nanoparticles. J. Hazard. Mater. 191:

32-40.

Hu Yu-Lan and Gao Jian-Qing (2008). Potential neurotoxicity of nanoparticles. Int. J.

Pharm. 394: 115-121.

Hubbel JA and Langer R (1995). Tissue engineering. Chem. Eng. News. 42-54.

Huber DL (2005). Synthesis, properties, and applications of iron nanoparticles.

Small.1: 482-501.

Huh YM, Jun YW, Song HT, Kim S, Choi JS, Lee JH, Yoon S, Kim KS, Shin JS, Suh

JS and Cheon J (2005). In vivo magnetic resonance detection of cancer by

using multifunctional magnetic nanocrystals. J. Am. Chem. Soc. 127: 12387–

12391.

Hunter DD and Dey RD (1998). Identification and neuropeptide content of trigeminal

neurons innervating the rat nasal epithelium. Neuroscience 83:591-599.

Hunter DD and Undem BJ (1999). Identification of substance P content of vagal

afferent neurons innervating the epithelium of the guinea pig trachea. Am. J.

Respir. Crit. Care Med. 159: 1943-1948.

Hussain SM, Hess KL, Gearhart JM, Geiss KT and Schlager JJ (2005). In vitro

toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro. 19: 975-

983.

152

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 13: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xiii

Hyeon T (2003). Chemical synthesis of magnetic nanoparticles. Chem. Commun.

927–934.

Isom HC, McDevitt EI and Moon MS (2009). Elevated hepatic iron: a confounding

factor in chronic hepatitis C. Biochim. Biophys Acta. 1790: 650-662.

Ito A, Shinkai M, Honda H and Kobayashi T (2005). Medical application of

functionalized magnetic nanoparticles. J. Biosci. Bioeng. 100:1–11.

Jan E and Kotov NA (2007). Successful differentiation of mouse neural stem cells on

layer-by-layer assembled single-walled carbon nanotube composite. Nano

Lett. 7:1123–1128.

Jeng HA and Swanson J (2006). Toxicity of metal oxide nanoparticles in mammalian

cells. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 41: 2699-

2711.

Johnson GA, Benveniste H, Black RD, Hedlund LW, Maronpot RR and Smith BR

(1993). Histology by magnetic resonance microscopy. Mag. Reson. 9: 1–30.

Joo SH, Feitz AJ and Waite TD (2004). Oxidative degradation of the carbothioate

herbicide, molinate, using nanoscale zerovalent iron. Environ. Sci. Technol.

38: 2242–2247.

Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, Yoon S, Kim KS, Shin JS, Suh

JS and Cheon J (2005). Nanoscale size effect of magnetic nanocrystals and

their utilization for cancer diagnosis via magnetic resonance imaging. J. Am.

Chem. Soc. 127: 5732–5733.

Kadiiska MB, Burkitt MJ, Xiang QH and Mason RP (1995). Iron supplementation

generates hydroxyl radical in vivo. An ESR spin-trapping investigation. J

.Clin. Invest. 96: 1653-1657.

Karakoti AS, Hench LL and Seal S (2006). The potential toxicity of nanomaterials-the

role of surfaces. J. Min. Met. Mater. Soc. 58: 77–82.

Karlsson HL, Cronholm P, Gustafsson J and Moller L (2008a). Copper oxide

nanoparticles are highly toxic: a comparison between metal oxide

nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 21: 1726-1732.

153

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 14: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xiv

Karlsson HL, Gustafsson J, Cronholm P and Moller L (2009). Size dependent toxicity

of metal oxide particles a comparison between nano and micrometer size.

Toxicol. Lett. 188: 112-118.

Karlsson HL, Holgersson A and Moller L (2008b). Mechanisms related to the

genotoxicity of particles in the subway and from other sources. Chem. Res.

Toxicol. 21: 726-731.

Kashiwada S (2006). Distribution of nanoparticles in the seethrough medaka (Oryzias

latipes). Environ. Health Perspect. 114: 1697–1702.

Khan MI, Mohammad A, Patil G, Naqvi SAH, Chauhan LKS and Ahmad I (2012).

Induction of ROS, mitochondrial damage and autophagy in lung epithelial

cancer cells by iron oxide nanoparticles. Biomaterials 33: 1477-1488.

Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee JK and

Cho MH (2006). Toxicity and tissue distribution of magnetic nanoparticles in

mice. Toxicol. Sci. 89:338–347.

Kircher MF, Mahmood U, King RS, Weissleder R and Josephson L (2003). A

multimodal nanoparticle for preoperative magnetic resonance imaging and

intraoperative optical brain tumor delineation. Cancer Res. 63: 8122–8125.

Klein J (2007). Probing the interactions of proteins and nanoparticles. Proc. Natl.

Acad. Sci. U.S.A. 104: 2029–2030.

Kleinman MT, Araujo JA, Nel A, Sioutas C, Campbell A, Cong PQ, Li H and Bondy

SC (2008). Inhaled ultrafine particulate matter affects CNS inflammatory

processes and may act via MAP kinase signaling pathways. Toxicol. Lett. 178:

127–130.

Klimuk SK, Semple SC, Nahirney PN, Mullen MC, Bennett CF, Scherrer P and Hope

MJ (2000). Enhanced anti-inflammatory activity of a liposomal intercellular

adhesion molecule-1 antisense oligodeoxynucleotide in an acute model of

contact hypersensitivity. J. Pharmacol. Exper. Therap. 292(2): 480–488.

Klotz S, Steinle-Neumann G, Strässle T, Philippe J, Hansen T, and Wenzel MJ

(2008). Magnetism and the Verwey transition in Fe3O4 under pressure. Phys.

Rev. B, 77:12411.

154

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 15: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xv

Knauth P and Schooman L (2002). ―Nano-structure-materials‖, Klunwer Academic

Publisher, NewYork.

Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J,

Godefroy S, Pantarotto D, Briand JP, Muller S, Prato M and Bianco A (2007).

Cellular uptake of functionalized carbon nanotubes is independent of

functional group and cell type. Nat. Nanotechnol. 2: 108–113.

Koziara JM, Lockman PR, Allen DD and Mumper RJ (2006). The blood–brain barrier

and brain drug delivery. J. Nanosci. Nanotechnol. 6: 2712–2735.

Kozlowski H, Janicka-Klos A, Brasun J, Gaggelli E, Valensin D, Valensin G

(2009).Copper, iron, and zinc ions homeostasis and their role in

neurodegenerative disorders (metal uptake, transport, distribution and

regulation). Coord. Chem.Rev. 253: 2665–2685.

Kreuter J (2001). Nanoparticulate systems for brain delivery of drugs. Adv. Drug

Deliv. Rev. 47: 65–81.

Kreuter J (2004). Influence of the surface properties on nanoparticle-mediated

transport of drugs to the brain. J. Nanosci. Nanotechnol. 4: 484–488.

Kreuter J, Alyautdin RN, Kharkevich DA and Ivanov AA (1995). Passage of peptides

through the blood–brain barrier with colloidal polymer particles

(nanoparticles). Brain Res. 674: 171–174.

Krotz F, Sohn HY, Gloe T, Plank C and Pohl U (2003b). Magnetofection potentiates

gene delivery to cultured endothelial cells. J. Vasc. Res. 40: 425–434.

Krotz F, Wit C, Sohn HY, Zahler S, Gloe T, Pohl U and Plank C (2003a).

Magnetofection—a highly efficient tool for antisense oligonucleotide delivery

in vitro and in vivo. Mol. Ther. 7: 700–710.

Lafuente JV, Sharma A, Patnaik R, Muresanu DF and Sharma HS (2012). Diabetes

exacerbates nanoparticles induced brain pathology. CNS & Neurol. Disorders

Drug Targets. 11(1): 26-39.

Lam CW, James JT, McCluskey R and Hunter RL (2004). Pulmonary toxicity of

single wall carbon nanotubes in mice 7 and 90 days after intratracheal

instillation. Toxicol. Sci. 77: 126–134.

155

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 16: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xvi

Lauffenburger DA In: Lauffenburger DA and Linderman JJ editors (1993). Receptors:

models for binding, trafficking, and signaling. New York, Oxford, Oxford

University Press.

Laurent S, Forge D, Port M, Roch A, Robic C and Vander Elst L (2008). Magnetic

iron oxide nanoparticles: synthesis, stabilization, vectorization,

physicochemical characterizations, and biological applications. Chem. Rev.

108: 2064-2110.

Lee J, Kim J and Hyeon T (2006). Recent progress in the synthesis of porous carbon

materials. Adv. Mater.18: 2073–2094.

Lee SM, Cho SN and Cheon, J (2003). Anisotropic shape control of colloidal

inorganic nanocrystals. Adv. Mater. 15: 441–444.

Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden T and Weissleder R

(2000). Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking

and recovery of progenitor cells. Nat. Biotechnol.18: 410–414.

Lewinski N, Colvin V and Drezek R (2008). Cytotoxicity of nanoparticles. Small 4:

26-49.

Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J

and Nel A (2003). Ultrafine particulate pollutants induce oxidative stress and

mitochondrial damage. Environ Health Perspect. 111(4):455-460.

Lin L (2006). Nanotechnology: What you can’t see harm you. The triple helix fall. 1:

8-10.

Little EE and Finger SE (1990). Swimming behavior as an indicator of sublethal

toxicity in fish. Environ. Toxicol. Chem. 9: 13-19.

Linas R, Lang EJ and Welsh JP (1997). The cerebellum, LTD and memory:

alternative views. Learn. Mem. 3: 444-445.

Lobel B, Eyal O, Kariv N and Katzir A (2000). Temperature controlled CO2 laser

welding of soft tissues: Urinary bladder welding in different animal models

(rats, rabbits, and cats). Lasers Surg. Med. 26: 4–12.

Long TC, Saleh N, Tilton RD, Lowry GV and Veronesi B (2006). Titanium dioxide

(P25) produces reactive oxygen species in immortalized brain microglia

156

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 17: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xvii

(BV2): implications for nanoparticle neurotoxicity. Environ. Sci. Technol. 40:

4346–4352.

Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, Hester S, Lowry GV and

Veronesi B (2007). Nanosize titanium dioxide stimulates reactive oxygen

species in brain microglia and damages neurons in vitro. Environ. Health

Perspect. 115: 1631–1637.

Lowry OH, Rosenbrough NJ, Farr AI and Randall RJ (1951). Protein measurements

with the Folin-phenol reagent. J. Biol. Chem. 193: 265-275.

Lu Y and Liu JW (2006). Functional DNA nanotechnology: emerging applications of

DNAzymes and aptamers. Curr. Opin. Biotechnol. 17: 580–588.

Luderer AA, Borrelli NF, Panzarino JN, Mansfield GR, Hess DM, Brown JL and

Barnett EH (1983). Glass-ceramic-mediated, magnetic- field-induced localized

hyperthermia: response of a murine mammary carcinoma. Radiat. Res. 94:

190–198.

Maaroufi K, Had-Aissouni L, Melon C, Sakly M, Abdelmelek H, Poucet B and Save

E (2009). Effects of prolonged iron overload and low frequency

electromagnetic exposure on spatial learning and memory in the young rat.

Neurobiol. Learn. Mem. 92: 345-355.

Mahmoudi M, Sant S, Wang B, Laurent S and Sen T (2010a). Superparamagnetic iron

oxide nanoparticles (SPIONs): Development, surface modification and

applications in chemotherapy. Adv. Drug. Deliv. Rev. 63:24- 46

Mahmoudi M, Simchi A, Imani M, Shokrgozar MA, Milani AS and Hafeli UO

(2010b). A new approach for the in vitro identification of the cytotoxicity of

superparamagnetic iron oxide nanoparticles. Colloids Surf. B. Biointerfaces.

75: 300-309.

Mahmoudi M, Simchi A, Imani M, Shokrgozar MA, Milani AS, Häfeli UO and

Stroeve P (2010). A new approach for the in vitro identification of the

cytotoxicity of superparamagnetic iron oxide nanoparticles. Colloids and

Surfaces B: Biointerfaces 75: 300-309.

157

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 18: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xviii

Mahmoudi M, Simchi A, Imani M, Milani AS and Stroeve P (2009a). An in vitro

study of bare and poly(ethylene glycol)-co-fumaratecoated superparamagnetic

iron oxide nanoparticles: a new toxicity identification procedure.

Nanotechnology. 20: 1-8.

Mahmoudi M, Simchi A, Vali H, Imani M, Shokrgozar MA and Azadmanesh K

(2009b). Cytotoxicity and cell cycle effects of bare and polyvinyl alcohol

coated iron oxide nanoparticles in mouse fibroblasts. Adv. Eng. Mat. 11: 243-

250.

Malecki EA, Devenyi AG, Beard JL and Cornor JR (1999). Existing and emerging

mechanisms for transport of iron and manganese to the brain. J. Neurosci. Res.

56: 113-122.

Manda K, Ueno M and Anzai K (2008). Memory impairment, oxidative stress and

apoptosis induced by space radiation: Ameliorative potential of α-lipoic acid.

Behav. Brain. Res. 187: 387-395.

Marklund S and Marklund G (1974). Involvement of the superoxide anion radical in

the autooxidation of pyrogallol and a convenient assay for superoxide

dismutase. Eur. J. Biochem. 47: 469-474.

Marnett LJ (1999). Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res-

Fund Mol Mech. Mutagen. 424: 83-95.

Mates JM, Perez-Gomez C and Nunez de Castro I (1999). Antioxidant enzymes and

human diseases. Clin. Biochem. 32: 595–603.

Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdoerster G, Philbert

MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ and Warheit

DB (2006). Safe handling of nanotechnology. Nature. 444: 267–269.

Maynard AM and Kuempel ED (2005). Airborne nanostructured particles and

occupational health. J. Nanopart. Res. 7: 587-614.

Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI and Radomski MW

(2007). Nanoparticles: pharmacological and toxicological significance. Br. J.

Pharmacol. 150: 552–558.

Meili C (2006). Nano-Regulation Report (The Innovation Society). St. Gallen.

158

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 19: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xix

Meng H, Xia T, George S and Nel AE (2009). A predictive toxicological paradigm

for the safety assessment of nanomaterials. ACS Nano. 3: 1620-1627.

Michaelis K, Hoffmann MM, Dreis S, Herbert E, Alyautdin RN, Michaelis M,

Kreuter J and Langer K (2006). Covalent linkage of apolipoprotein to albumin

nanoparticles strongly enhances drug transport into the brain. J. Pharmacol.

Exp. Ther. 317: 1246–1253.

Mistry A, Stolnik S and Illum L (2009). Nanoparticles for direct nose-to-brain

delivery of drugs. Int. J. Pharm. 379: 146–157.

Miwa CP, de Lima MN, Scalco F, Vedana G, Mattos R, Fernandez LL, Hilbig A,

Schröder N and Vianna MR (2011). Neonatal iron treatment increases

apoptotic markers in hippocampal and cortical areas of adult rats. Neurotox.

Res. 19: 527-535.

Mohanakumar KP, de Bartolomeis A, Wu RM, Yeh KJ, Sternberger LM, Peng SY,

Murphy DL and Chiueh CC (1994). Ferrous-citrate complex and nigral

degeneration: evidence for free-radical formation and lipid peroxidation. Ann.

New York Acad. Sci. 738: 392-399.

Moore A, Marecos E, Bogdanov Jr A and Weissleder R (2000). Tumoral distribution

of long-circulating dextran-coated iron oxide nanoparticles in a rodent model.

Radiology. 214: 568-574.

Moos T, Rosengren Nielsen T, Skjorringe T and Morgan EH (2007). Iron trafficking

inside the brain. J. Neurochem. 103: 1730–1740.

Mossman T (1983). Rapid colorimetric assay for cellular growth and survival:

application to proliferation and cytotoxicity assays. J. Immunol. Met. 65:55-

63.

Muller RM, Roch A, Colet JM, Oukakissim A and Gillis P (2001). Particulate

magnetic contrast agents: The chemistry of contrast agents in the medical

magnetic resonance imaging. Chichester; Wiley. 417-435.

Murray CB, Sun SH, Doyle H and Betley T (2001). Monodisperse 3d transition-

metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle

superlattices.MRS Bull. 26: 985–991.

159

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 20: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xx

Naqvi S, Samim M, Abdin MZ, Ahmed FJ, Maitra AN and Prashant CK (2010).

Concentration dependent toxicity of iron oxide nanoparticles mediated by

increased oxidative stress. Intl. J. Nanomed. 5:983-989.

Naya M, Kobayashi N, Ema M, Kasamoto S, Fukumuro M, Takami S, Nakajima M,

Hayashi M and Nakanishi J (2012). In vivo genotoxicity study of titanium

dioxide nanoparticles using comet assay following intratracheal instillation in

rats. Regul. Toxicol. Pharmacol. 62: 1-6.

Nel A, Xia T, Madler L and Li N (2006). Toxic potential of materials at the nanolevel.

Science. 311: 622-627.

Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A and Fischer I (2004).

Reevaluation of in vitro differentiation protocols for bone marrow stromal

cells: disruption of actin cytoskeleton induces rapid morphological changes

and mimics neuronal phenotype. J. Neurosci. Res. 77: 192-204.

Nigam S and Schewe T (2000). Phospholipase A(2)s and lipid peroxidation. Biochim.

Biophys. Acta 1488: 167-181.

Novotna B, Jendelova P, Kapcalova M, Rossner Jr P, Turnovcova K, Bagryantseva Y,

Babic M, Horak D and Sykova E (2012). Oxidative damage to biological

macromolecules in human bone marrow mesenchymal stromal cells labeled

with various types of iron oxide nanoparticles. Toxicol. Lett. 210: 53-63.

Nunn AVW, Barnard ML, Bhakoo K, Murray J, Chilvers EJ and Bell JD (1996).

Characterization of secondary metabolites associated with neutrophil

apoptosis. FEBS Lett. 392: 295–298.

Oberdörster E (2004). Manufactured nanomaterials (fullerenes, C60) induce oxidative

stress in the brain of juvenile largemouth bass. Environ. Health Perspect.112:

1058–1062.

Oberdörster E (2004b). Manufactured nanomaterials (Fullerenes, C60) induce

oxidative stress in the brain of juvenile largemouth bass. Environ. Health.

Perspect. 112: 1058-1062.

Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K,

Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D

and Yang H (2005a). Principles of characterizing the potential human health

160

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 21: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xxi

effects from exposure to nanomaterials: Elements of screening strategy. Part.

Fibre Toxicol. 2: 8

Oberdörster G, Oberdörster E and Oberdörster J (2005b). Nanotoxicology: An

emerging discipline evolving from studies of ultrafine particles. Environ.

Health. Perspect. 113(7): 823–839.

Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W and Cox C

(2004a). Translocation of inhaled ultrafine particles to the brain. Inhal.

Toxicol. 16: 437-445.

Oberdörster G, Stone V and Donaldson K (2007). Toxicology of nanoparticles: a

historical perspective. Nanotoxicology. 1: 2-25.

Olsvik O, Popovic T, Skjerve E, Cudjoe KS, Hornes E, Ugelstad J and Uhlen M

(1994). Magnetic separation techniques in diagnostic microbiology. Clin.

Microbiol. Rev.7: 43–54.

Ostomel TA, Shi QH and Stucky GD (2006a). Oxide hemostatic activity. J. Am.

Chem. Soc. 128: 8384–8385.

Ostomel TA, Shi QH, Tsung CK, Liang HJ and Stucky GD (2006b). Spherical

bioactive glass with enhanced rates of hydroxyapatite deposition and

hemostatic activity. Small. 2: 1261–1265.

Ostomel TA, Stoimenov PK, Holden PA, Alam HB and Stucky GD (2006c).

Hostguest composites for induced hemostasis and therapeutic healing in

traumatic injuries. J. Thromb. Thrombol. 22: 55–67.

Papanikolaou and Pantopoulos K (2005). Iron metabolism and toxicity. Toxicol.

Applied. Pharmacol. 202: 199-211.

Park J, Bauer S, von der Mark K and Schmuki P (2007). Nanosize and vitality: TiO2

nanotube diameter directs cell fate. Nano Lett. 7: 1686–1691.

Paul V, Balasubramaniam E and Kazi M (1994). The neurobehavioral toxicity of

endsosulfan in rats: a serotonergic involvement in learning impairment. Eur. J.

Pharmacol. Env. Toxicol. Pharmacol. 270:1.

161

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 22: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xxii

Payne JF, Mathew A, Melving W and Fancey LL (1996). Acetylcholinesterase, an old

biomarker with a new future? Field trail in association with two urban rivers

and a paper mill in Newfoundland. Mar. Pollut. Bull. 32: 225-231.

Perez VP, de Lima MN, da Silva RS, Dornelles AS, Vedana G, Bogo MR, Bonan CD

and Schröder N (2010). Iron leads to memory impairment that is associated

with a decrease in acetylcholinesterase pathways. Curr. Neurovasc. Res. 7: 15-

22.

Peters A, von Klot S, Heier M, Trentinaglia I, Hormann A, Wichmann HE and Lowel

H (2004). Exposure to traffic and the onset of myocardial infarction. N. Engl.

J. Med. 351: 1721–1730.

Peters T, Giovaniello TJ, Apt L and Ross JF (1956). A simple improved method for

the determination of serum iron. J. Lab. Clin. Med. 48(2): 280-288.

Petersen E and Nelson B (2010). Mechanisms and measurements of nanomaterial

induced oxidative damage to DNA. Anal. Bioanal. Chem 398: 613-650.

Pisanic TR, Blackwell JD, Shubayev VI, Finones RR and Jin S (2007). Nanotoxicity

of iron oxide nanoparticle internalization in growing neurons. Biomaterials.

28: 2572–2581.

Pisanic TR, Jennifer D, Blackwell, Veronica I, Shubayev and Finones RR (2007).

Nanotoxicity of iron oxide nanoparticle internalization in growing neurons.

Biomaterials.28: 2572-2581.

Ponka P, Beaumont C and Richardson DR (1998). Function and regulation of

transferring and ferritin, Semin. Hematol.35: 35–54.

Poptani H, Puumalainen A, Grohn OHJ, Loimas S, Kainulainen R, Yla-Herttuala S

and Kauppinen RA (1998). Monitoring thymidine kinase and gancyclovir

induced changes in rat malignant glioma in vivo by nuclear magnetic

resonance imaging. Cancer Gene Ther. 5: 101–109.

Pratsinis SE and Vemury S (1996). Particle formation in gases-a review. Powder

Technol. 88: 267.

Qian ZM and Shen X (2001). Brain iron transport and neurodegeneration. Trends

Mol. Med. 7: 103-108.

162

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 23: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xxiii

Qian ZM, Li H, Sun H and Ho K (2002). Targeted drug delivery via transferrin

receptor-mediated endocytosis pathway. Pharmacol Rev. 54: 561–587.

Radu M, Munteanu MC, Petrache S, Serban AI, Dinu, D, Hermenean A, Sima C and

Dinischiotu A (2010). Depletion of intracellular glutathione and increased

lipid peroxidation mediate cytotoxicity of hematite nanoparticles in MRC5

cells. Biochim. Pol. 57: 355-360.

Rahman MF, Wang J, Patterson TA, Saini UT, Robinson BL, Newport GD, Murdock

RC, Schlager JJ, Hussain SM and Ali SF (2009). Expression of genes related

to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles.

Toxicol. Lett. 187: 15–21.

Rahman MF, Wang J, Patterson TA, Saini UT, Robinson BL, Newport GD, Murdock

RC, Schlager JJ, Hussain SM and Ali SF (2009). Expression of genes related

to oxidative stress in the mouse brain after exposure to silver25 nanoparticles.

Toxicol. Lett. 187: 15-21.

Reddy BM (2006). Redox properties of metal oxides. Metal Oxides, Fierro, J. L. G.

(Ed.),

Richardson DR and Ponka P (1997).The molecular mechanisms of the metabolism

and transport of iron in normal and neoplastic cells. Biochim. Biophys. Acta.

1331: 1–40.

Rodoslav S, Laibin L, Eisenberg A and Dusica M (2003). Micellar nanocontainers

distribute to defined cytoplasmic organelles. Science. 300: 615–618.

Roney C, Kulkarni P, Arora V, Antich P, Bonte F, Wu A, Mallikarjuana NN,

Manohar S, Liang HF, Kulkarni AR, Sung HW, Sairam M and Aminabhavi

TM (2005). Targeted nanoparticles for drug delivery through the blood–brain

barrier for Alzheimer’s disease. J. Control. Release.108: 193–214.

Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG and Hoekstra WG

(1973). Selenium: biochemical role as a component of glutathione peroxidase.

Science. 179: 588-590.

Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, Ramsay

JDF, Sing KSW and Unger KK (1994). Recommendations for the

characterization of porous solids. Pure Appl. Chem. 66: 1739–1758.

163

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 24: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xxiv

Rubin R and Farber JL (1984). Mechanism of the killing of cultured hepatocytes by

hydrogen peroxide. Arch. Biochem. Biophys. 228: 450–459.

Sadeghiani N, Barbosa LS, Silva LP, Azevedo RB, Morais PC and Lacava ZGM

(2005). Genotoxicity and inflammatory investigation in mice treated with

magnetite nanoparticles surface coated with polyaspartic acid. J. Magnetism

Magnetic Materials. 289: 466-468.

Salvador DA and Oteiza PI (2011). Iron overload triggers redox-sensitive signals in

human IMR 32neuroblastoma cells. NeuroToxicology 32: 75-82.

Samori B and Zuccheri G (2005). DNA codes for nanoscience. Angew. Chem. Int. Ed.

44: 1166–1181.

Samudralwer DL, Diprete CC, Ni BF, Ehmann WD and Markesbery WR (1995).

Elemental imbalances in the olfactory pathway in Alzheimer’s disease. J.

Neurol. Sci. 130: 139-145.

Sarikaya M, Tamerler C, Jen AKY, Schulten K and Baneyx F (2003). Molecular

biomimetics: nanotechnology through biology. Nat. Mater. 2: 577–585.

Sayes C, Fortner J, GuoW, Lyon D, Boyd AM and Ausman KD et al (2004). The

differential cytotoxicity of watersoluble fullerenes. Nano Lett. 4: 1881–1887.

Sayre LM, Perry G and Smith MA (1999). Redox metals and neurodegenerative

disease. Curr. Opin. Chem. Biol. 3: 220-225.

Scandalios JG (2002). Oxidative stress response - what genome scale- studies taught

us. Genome Biol. 3: 1–6.

Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, Gansbacher B

and Plank C (2002). Magnetofection: enhancing and targeting gene delivery

by magnetic force in vitro and in vivo. Gene Ther. 9: 102–109.

Schetinger MR, Proto NM, Moretto MB, Morsch VM, Rocha JB, Vieira V, Moro F,

Neis RT, Bittencourt S, Bonacorso HG and Zanatta N (2000). New

benzodiazepines alter acetylcholinesterase and ATPase activities. Neurochem.

Res. 25: 949-955.

Schipper HM (2004). Brain iron deposition and the free radical-mitochondrial theory

of ageing. Ageing Res. Rev. 3: 265–301.

164

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 25: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xxv

Schipper HM (2009). Chapter 123. Metal accumulation during aging, in: L.R. Squire

(Ed.), Encyclopedia of Neuroscience, Academic Press, Oxford. 811–818.

Schipper HM (2012). Neurodegeneration with brain iron accumulation-Clinical

syndromes and neuroimaging. Biochimica et Biophysica Acta. 1822: 350-360.

Schipper HM and Ponka P(2009). Inherited disorders of brain iron homeostasis, in:

S.Yehudah, D.I. Mostofsky (Eds.), Iron Deficiency and Overload: From Basic

Biology to Clinical Medicine, Human Press Inc., Totowa, NJ. 251–276.

Schoepf U, Marecos E, Jain R and Weissleder R (1998). Intracellular magnetic

labelling of lymphocytes for in vivo trafficking studies. BioTechniques.24:

642–651.

Schrand AM, Rahman MF, Hussain SM, Schlager JJ,Smith DA and Syed AF (2010).

Metal-based nanoparticles and their toxicity assessment. Nanomed.

Nanobiotech. 2: 544-567.

Schröder N, Fredriksson A, Vianna MR, Roesler R, Izquierdo I and Archer T (2001).

Memory deficits in adult rats following postnatal iron administration. Behav.

Brain Res. 124: 77-85.

Schroeder U, Sommerfeld P and Sabel BA (1998). Efficacy of oral dalargin-loaded

nanoparticles delivery across the blood–brain barrier. Peptides. 19: 777–780.

Schulze E, Ferrucci JT, Poss K, Lapointe L, Bogdanova A and Weissleder R (1995).

Cellular uptake and trafficking of a prototypical magnetic iron oxide label in

vitro. Invest. Radiol. 30: 604-610.

Schwertmann U and Cornell RM (1991). Iron oxide in the laboratory. Winheim-New

York-Basel-Cambridge VCH.

Segal AW and Abo A (1993). The biochemical basis of the NADPHoxidase of

phagocytes. Trends Biochem. Sci. 18: 43–47.

Seidner G, Alvarez MG, Yeh JI, O'Driscoll KR, Klepper J, Stump TS, Wang D,

Spinner NB, Birnbaum MJ and De Vivo DC (1998). GLUT-1 deficiency

syndrome caused by haplo insufficiency of the blood-brain barrier hexose

carrier. Nat. Genet. 18(2): 188–191.

165

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 26: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xxvi

Sharma HS (2005). Methods to induce brain hyperthermia. In: Current Protocols in

Toxicology (Solicited Contribution). Suppl 23, Unit 11.14. Wiley, New York,

USA.1–26.

Sharma HS (2006a). Hyperthermia influences excitatory and inhibitory amino acid

neurotransmitters in the central nervous system. An experimental study in the

rat using behavioural, biochemical, pharmacological, and morphological

approaches. J. Neural. Transm. 113: 497–519.

Sharma HS (2006b). Hyperthermia induced brain oedema: current status and future

perspectives. Indian J. Med. Res. Review. 123: 629–652.

Sharma HS and Sharma A (2007). Nanoparticles aggravate heat stress induced

cognitive deficits, blood–brain barrier disruption, edema formation and brain

pathology. Prog. Brain Res. 162: 245-273.

Sharma HS, Drieu K and Westman J (2003a). Antioxidant compounds EGB-761 and

BN-52021 attenuate brain edema formation and hemeoxygenase expression

following hyperthermic brain injury in the rat. Acta Neurochir. Suppl. (Wien).

86: 313–319.

Sharma HS, Sjoquist PO and Alm P (2003b). A new antioxidant compound H-290151

attenuates spinal cord injury induced expression of constitutive and inducible

isoforms of nitric oxide synthase and edema formation in the rat. Acta

Neurochir. Suppl. (Wien). 86: 415–420.

Shaw SY, Westly EC, Pittet MJ, Subramanian A, Schreiber SL and Weissleder R

(2008). Perturbational profiling of nanomaterial biologic activity. Proc. Natl.

Acad. Sci. U. S. A.105: 7387–7392.

Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina

YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans

DE, Ku BK, Ramsey D, Maynard A, Kagan VE, Castranova V and Baron P

(2005). Unusual inflammatory and fibrogenic pulmonary responses to single-

walled carbon nanotubes in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 289:

698–708.

Shvedova AA, Kisin ER, Murray A, Kommineni C, Vallyathan V and Castranova V

(2004). Pro/antioxidant status in murine skin following topical exposure to

166

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 27: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xxvii

cumene hydroperoxide throughout the ontogeny of skin cancer. Biochemistry

(Mosc).69: 23–31.

Siegel GJ, Agranoff BW, Albers RW, Fischer SK and Uhler MD (eds) (1985) Basic

neurochemistry: molecular, cellular and medical aspects, 6th edn. Lippincott

Raven, Philadelphia.

Singh N (2009). Conference scene-nanotoxicology: health and environmental

impacts. Nanomedicine (Lond). 4: 385-390.

Singh N, Jenkins GJS, Nelson BC, Marquis BJ, Maffeis TGG, Brown AP, Williams

PM, Wright CJ and Doak SH (2012). The role of iron redox state in the

genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles.

Biomaterials. 33: 163-170

Singh N, Jenkinsa GSG, Asadib R and Doak SH (2010). Potential toxicity of

superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 1.

Skaper SD, Floreani M, Ceccon M, Facci L and Giusti, P (1999). Excitotoxicity,

oxidative stress, and the neuroprotective potential of melatonin. Ann. N. Y.

Acad. Sci. 890: 107–118.

Sneed PK, Stea B, In: Seegenschmiedt MH, Fessenden P and Vernon CC editors

(1996). Thermoradiotherapy and thermochemotherapy. Berlin: Springer. 2

Sobotka TJ, Whitaker P, Sobotka JM, Brodie RE, Quander DY and Robl, M (1996).

Neurobehavioral dysfunctions associated with dietary iron overload. Physiol.

Behav. 59: 213-219.

Sodum RS and Chung FL (1988). 1,N2-ethenodeoxyguanosine as a potential marker

for DNA adduct formation by trans-4- hydroxy-2-nonenal. Cancer Res. 48:

320-323.

Soenen SJ, Himmelreich U, Nuytten N, Pisanic 2nd TR, Ferrari A and De Cuyper M

(2010). Intracellular nanoparticle coating stability determines nanoparticle

diagnostics efficacy and cell functionality. Small 6: 2136-2245.

Soenen SJ, Nuytten N, De Meyer SF, De Smedt SC and De Cuyper M (2010b). High

intracellular iron oxide nanoparticle concentrations affect cellular cytoskeleton

and focal adhesion kinase-mediated signaling. Small 6: 832-842.

167

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 28: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xxviii

Soenen SJH, Himmelreich U, Nuytten N and Cuyper MD (2011). Cytotoxic effects of

iron oxide nanoparticles and implications for safety in cell labeling.

Biomaterials 32: 195-205.

Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R and Richards-Kortum

R (2003). Real-time vital optical imaging of pre-cancer using anti-epidermal

growth factor receptor antibodies conjugated to gold nanoparticles. Cancer

Res. 63: 1999–2004.

Song HT, Choi JS, Huh YM, Kim S, Jun YW, Suh JS and Cheon J (2005). Surface

modulation of magnetic nanocrystals in the development of highly efficient

magnetic resonance probes for intracellular labeling. J. Am. Chem. Soc. 127:

9992–9993.

Sorensen M, Autrup H, and Moller P (2003). Linking exposure to environmental

pollutants with biological effects. Mutat. Res. 544: 255-271.

Starke PE and Farber JL (1985). Ferric iron and superoxide ions are required for the

killing of cultured hepatocytes by hydrogen peroxide. Evidence for the

participation of hydroxyl radicals formed by an iron-catalyzed Haber-Weiss

reaction. J. Biol. Chem. 260: 10099-10104.

Steiniger SC, Kreuter J, Khalansky AS, Skidan IN, Bobruskin AI, Smirnova ZS,

Severin SE, Uhl R, Kock M, Geiger KD and Gelperina SE (2004).

Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles.

Int. J. Cancer. 109: 759–767.

Stevens RG, Jones DY, Micozzi MS and Taylor PR (1988). Body iron stores and the

risk of cancer. N. Engl. J. Med. 319: 1047-1052.

Storm G, Belliot SO, Daemen T and Lasic DD (1995). Surface modification of

nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv.

Drug. Del. Rev.17: 31–48.

Stroh A, Zimmer C, Gutzeit C, Jakstadt M, Marschinke F and Jung T (2004). Iron

oxide particles for molecular magnetic resonance imaging cause transient

oxidative stress in rat macrophages. Free Radic. Biol. Med. 36: 9760-9784.

Suh WH, Suslick KS , Stucky GD and Suh YH (2009). Nanotechnology,

nanotoxicology, and neuroscience. Prog. Neurobiol. 87: 133–170.

168

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 29: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xxix

Sui J, Tleugabulova D and Brennan JD (2005). Direct and indirect monitoring of

peptide-silica interactions using time-resolved fluorescence anisotropy.

Langmuir. 21: 4996–5001.

Sun ZX, Su FW, Forsling W and Samskog PO (1998). Surface characteristics of

magnetite in aqueous suspension. J. Colloid. Interface Sci. 197: 151–159.

Swan EEL, Popat KC and Desai TA (2005a). Peptide-immobilized nanoporous

alumina membranes for enhanced osteoblast adhesion. Biomaterials. 26:

1969–1976.

Swan, EEL, Popat KC, Grimes CA and Desai TA (2005b). Fabrication and evaluation

of nanoporous alumina membranes for osteoblast culture. J. Biomed.

Mater.Res. Part A 72A: 288–295.

Taher AT, Musallam MK and Inati A (2009). Iron Overload: Consequences,

Assessment, and Monitoring. Hemoglobin. 33(s1): S46-S57.

Taniguchi N (1974). On the Basic Concept of Nano-Technology. Proc. Intl. Conf.

Prod. Eng. Tokyo, Part II, Japan Society of Precision engineering.

Teja AS and Koh PY (2009). Synthesis, properties, and applications of magnetic iron

oxide nanoparticles. Prog. Crystal Growth Character. Mater. 55: 22-45

Thach WT (1996). On the specific role of cerebellum in motor learning and cognition:

clues from PET activation and lesion studies in man. Behav. Brain Sci. 19:

411-431.

Thoeny HC, Triantafyllou M, Birkhaeuser FD, Froehlich JM, Tshering DW and

Binser T (2009). Combined ultrasmall superparamagnetic particles of iron

oxide-enhanced and diffusion weighted magnetic resonance imaging reliably

detect pelvic lymph node metastases in normal-sized nodes of bladder and

prostate cancer patients. Eur. Urol. 55: 761-769.

Thompson CB (1995).Apoptosis in the pathogenesis and treatment of disease. Science

267: 1456–1462.

Thompson KJ, Shoham S and Connor JR (2001). Iron and neurodegenerative

disorders. Brain Res. Bull. 55: 155-164.

169

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 30: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xxx

Torres-Mortinez CL, Kho R, Mian OI and Mehra RK (2001). Efficient photocatalytic

degradation of environmental pollutants with mass-produced ZnS nancrystals.

J. Colloid. Interface Sci. 240: 525-532.

Toyokuni S (1996). Iron-induced carcinogenesis: the role of redox regulation. Free

Radic. Biol. Med. 20: 553-566.

Toyokuni S (2002). Iron and carcinogenesis: from Fenton reaction to target genes.

Redox Rep.7: 189-197.

Upadhyay D, Panduri V, Ghio A and Kamp DW (2003). Particulate matter induces

alveolar epithelial cell DNA damage and apoptosis: role of free radicals and

the mitochondria. Am. J. Respir. Cell Mol. Biol. 29: 180-187.

Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M and Telser J (2007). Free

radicals and antioxidants in normal physiological functions and human

disease. Int. J Biochem. Cell Biol. 39: 44-84.

Vander AJ, Sherman JH and Luciano DS (2001). Human physiology: The

mechanisms of body function, 8th ed. Boston: McGraw-Hill.

Varanda LC, Jafelicci M, Tartaj P, Grady KO, Carreno TG and Morales MP (2002).

Structural and magnetic transformation of monodispersed iron oxide particles

in a reducing atmosphere. J. Appl. Phy. 92: 2079–2085.

Veranth JM, Kaser EG, Veranth MM, Koch M and Yost GS (2007). Cytokine

responses of human lung cells (BEAS-2B) treated with micron-sized and

nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol. 4: 2.

Veronesi B, Makwana O, Pooler M and Chen LC (2005). Effects of subchronic

exposures to concentrated ambient particles. VII. Degeneration of

dopaminergic neurons in Apo E-/- mice. Inhal. Toxicol. 17: 235–241.

Walshe JM and Cox DW (1998). Effect of treatment of Wilson’s disease on natural

history of haemochromatosis. Lancet 352: 112-3.

Wang B, Feng W, Zhu M, Wang Y, Wang M, Gu Y, Ouyang H, Wang H, Li M, Zhao

Y, Chai Z and Wang H (2009). Neurotoxicity of low-dose repeatedly

intranasal instillation of nano- and submicron-sized ferric oxide particles in

mice. J. Nanopart. Res. 11: 41-53.

170

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 31: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xxxi

Wang B, Feng WY, Wang M, Shi JW, Zhang F, Ouyang H, Zhao YL, Chai ZF,

Huang YY, Xie YN, Wang HF and Wang J (2007). Transport of intranasally

instilled fine Fe2O3 particles into the brain: micro-distribution, chemical states,

and histopathological observation. Biol. Trace Elem. Res. 118: 233–243.

Wang J, Chen C, Liu Y, Jiao F, Li W, Lao F, Li Y, Li B, Ge C, Zhou G, Gao Y, Zhau

Y and Chai Z (2008). Potential neurological lesion after nasal instillation of

TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol. Lett. 183:

72-80.

Wang Y, Wang B, Zhu MT, Li M , Wang HJ, Wang M, Ouyang H, Chai ZF, Feng

WY and Zhao YL (2011). Microglial activation, recruitment and phagocytosis

as linked phenomena in ferric oxide nanoparticle exposure. Toxicol. Lett. 205:

26- 37.

Wang YXJ, Hussain SM and Krestin GP (2001). Superparamagnetic iron oxide

contrast agents: physicochemical characteristics and applications in MR

imaging. Eur. Radiol. 11: 2319–2331.

Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM and Webb TR

(2004). Comparative pulmonary toxicity assessment of single wall carbon

nanotubes in rats. Toxicol. Sci. 77:117–125.

Wei Wu, Quanguo He and Changzhong Jiang (2008). Magnetic Iron Oxide

Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale

Res. Lett. 3(11): 397–415.

Weissleder R, Bogdanov A, Neuwelt EA and Papisov M (1995). Long circulating iron

oxides for MR imaging. Adv. Drug. Deliv. Rev.16: 321-334.

Weissleder R, Cheng HC, Bogdanova A and Bogdanov A (1997). Magnetically

labelled cells can be detected by MR imaging. J. Magn. Reson.

Imaging.7:258–263.

Winer JL, Liu CY and Apuzzo ML (2011). The use of nanoparticles as contrast media

in neuroimaging: A statement on toxicity. World Neurosurg.

Wu J, Liu W, Xue C, Zhou S, Lan F, Bi L, Xu H, Yang X and Zeng F (2009).

Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine

skin after subchronic dermal exposure. Toxicol. Lett. 191: 1–8.

171

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 32: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xxxii

Xia T, Kovochich M, Liong M, Zink JI and Nel AE (2008). Cationic polystyrene

nanosphere toxicity depends on cell-specific endocytic and mitochondrial

injury pathways. ACS. Nano. 2: 85–96.

Xia YD, Yang ZX and Mokaya R (2006). Simultaneous control of morphology and

porosity in nanoporous carbon: graphitic mesoporous carbon nanorods and

nanotubules with tunable pore size. Chem. Mater. 18: 140–148.

Xu H, Vanhooren H, Verbeken E, Nemery B and Hoet PHM (2003). Pulmonary

toxicity of polyvinyl chloride particles after a single intratracheal instillation in

rats. Time course and comparison with silica. Toxicol. Appl. Pharmacol. 194:

111-121.

Xu HH, Smith DT and Simon CG (2004). Strong and bioactive composites containing

nano-silica-fused whiskers for bone repair. Biomaterials. 25: 4615–4626.

Yamamoto A, Honma R, Sumita M and Hanawa T (2004). Cytotoxicity evaluation of

ceramic particles of different sizes and shapes. J. Biomed. Mater. Res. Part A

68A: 244–256.

Yamazaki M and Ito M (1990). Deformation and instability of membrane structure of

phospholipid vesicles caused by osmophobic association: mechanical stress

model for the mechanism of poly(ethylene glycol)-induced membrane fusion.

Biochemistry.29: 1309–1314.

Yeh TC, Zhang W, Ldstad ST and Ho C (1993). Intracellular labeling of T-cells with

superparamagnetic contrast agents. Magn. Reson. Med.30: 617–625.

Ying JY, Mehnert CP and Wong MS (1999). Synthesis and applications of

supramolecular- templated mesoporous materials. Angew. Chem. Int. Ed. 38:

56–77.

Yoshida K, Morita M and Mishina H ( 2003). Cytotoxicity of metal and ceramic

particles in different sizes. JSME Int. J. C: Mech. Syst. 46: 1284–1289.

Zdravkov BD, Cermak JJ, Sefara M and Janku J (2007). Pore classification in the

characterization of porous materials: a perspective. Cent. Eur. J. Chem. 5:

385–395.

172

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Page 33: References - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/33754/8/...References v Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C, Misra C, Mendez LB and Kleinman

References

xxxiii

Zhang Y, Kohler N and Zhang M (2002). Surface modification of superparamagnetic

magnetite nanoparticles and their intracellular uptake. Biomaterials. 23: 1553–

1561.

Zhao M, Beauregard DA, Loizou L, Davletov B and Brindle KM (2001). Non-

invasive detection of apoptosis using magnetic resonance imaging and a

targeted contrast agent. Nat. Med.7: 1241–1244.

Zhou Y and Yokel R (2005). The chemical species of aluminum influence its

paracellular flux and uptake into Caco-2 cells, a model of gastrointestinal

absorption. Toxicol. Sci. 87:15–26.

Zhou YM, Zhong CY, Kennedy IM and Pinkerton KE (2003). Pulmonary responses

of acute exposure to ultrafine iron particles in healthy adult rats. Environ

Toxicol 18: 227-235.

Zhu L, Chang DW, Dai L and Hong Y (2007). DNA damage induced by multiwalled

carbon nanotubes in mouse embryonic stem cells. Nano Lett. 7: 3592–3597.

Zhu MT, Feng WY, Wang B, Wang TC, Gu YQ, Wang M, Wang Y, Ouyang H, Zhao

YL and Chai ZF (2008). Comparative study of pulmonary responses to nano-

and submicron-sized ferric oxide in rats. Toxicology 247: 102-111.

Zhu MT, Wang B, Wang Y, Yuan L, Wang HJ, Wang M, Ouyang H, Chai ZF, Feng

WY and Zhao YL (2011). Endothelial dysfunction and inflammation induced

by iron oxide nanoparticles exposure: Risk factors for early atherosclerosis.

Toxicol. Lett. 203: 162-171.

Zhuo YM, Zhong CY, Ian MK and Kent EP (2003). Pulmonary responses of acute

exposure to ultrafine iron particles in healthy adult rats. Environ. Toxicol. 18.

Zorov DB, Juhaszov M and Sollot JS (2006). Mitochondrial ROS-induced ROS

release: An update and review. J. Exp. Med. 192: 1001.

173

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.