28
References [1] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. Dover, 9th edition, 1972. [2] Y. Achdou, C. Bernardi, and F. Coquel. A priori and a posteriori analy- sis of finite volume discretizations of Darcy’s equations. Numer. Math., 96(1):17–42, 2003. [3] G. Acosta and R. G. Dur´an. An optimal Poincar´ e inequality in L 1 for convex domains. Proc. Amer. Math. Soc., 132(1):195–202 (electronic), 2004. [4] R. A. Adams and J. J. F. Fournier. Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition, 2003. ISBN 0-12-044143-8. [5] S. Agmon, A. Douglis, and L. Nirenberg. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math., 12:623–727, 1959. [6] M. Ainsworth and J. Coyle. Hierarchic finite element bases on unstruc- tured tetrahedral meshes. Internat. J. Numer. Methods Engrg., 58(14): 2103–2130, 2003. [7] H. Amann. Compact embeddings of vector-valued Sobolev and Besov spaces. Glas. Mat. Ser. III, 35(55)(1):161–177, 2000. [8] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci., 21(9):823–864, 1998. [9] N. Antoni´ c and K. Burazin. Graph spaces of first-order linear partial differential operators. Math. Commun., 14(1):135–155, 2009. [10] N. Antoni´ c and K. Burazin. Intrinsic boundary conditions for Friedrichs systems. Comm. Partial Differential Equations, 35(9):1690–1715, 2010. [11] N. Antoni´ c and K. Burazin. Boundary operator from matrix field for- mulation of boundary conditions for Friedrichs systems. J. Differential Equations, 250(9):3630–3651, 2011. [12] J. H. Argyris and S. Kelsey. Energy Theorems and Structural Analysis. Buttelworths, London, third edition, 1967. Publi´ e initialement dans

References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

References

[1] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions.Dover, 9th edition, 1972.

[2] Y. Achdou, C. Bernardi, and F. Coquel. A priori and a posteriori analy-sis of finite volume discretizations of Darcy’s equations. Numer. Math.,96(1):17–42, 2003.

[3] G. Acosta and R. G. Duran. An optimal Poincare inequality in L1 forconvex domains. Proc. Amer. Math. Soc., 132(1):195–202 (electronic),2004.

[4] R. A. Adams and J. J. F. Fournier. Sobolev spaces, volume 140 ofPure and Applied Mathematics (Amsterdam). Elsevier/Academic Press,Amsterdam, second edition, 2003. ISBN 0-12-044143-8.

[5] S. Agmon, A. Douglis, and L. Nirenberg. Estimates near the boundaryfor solutions of elliptic partial differential equations satisfying generalboundary conditions. I. Comm. Pure Appl. Math., 12:623–727, 1959.

[6] M. Ainsworth and J. Coyle. Hierarchic finite element bases on unstruc-tured tetrahedral meshes. Internat. J. Numer. Methods Engrg., 58(14):2103–2130, 2003.

[7] H. Amann. Compact embeddings of vector-valued Sobolev and Besovspaces. Glas. Mat. Ser. III, 35(55)(1):161–177, 2000.

[8] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. Vector potentialsin three-dimensional non-smooth domains. Math. Methods Appl. Sci.,21(9):823–864, 1998.

[9] N. Antonic and K. Burazin. Graph spaces of first-order linear partialdifferential operators. Math. Commun., 14(1):135–155, 2009.

[10] N. Antonic and K. Burazin. Intrinsic boundary conditions for Friedrichssystems. Comm. Partial Differential Equations, 35(9):1690–1715, 2010.

[11] N. Antonic and K. Burazin. Boundary operator from matrix field for-mulation of boundary conditions for Friedrichs systems. J. DifferentialEquations, 250(9):3630–3651, 2011.

[12] J. H. Argyris and S. Kelsey. Energy Theorems and Structural Analysis.Buttelworths, London, third edition, 1967. Publie initialement dans

Page 2: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

824 References

Aircraft Engrg., 26, pp. 347–356, 383–387, 394, 410–422, (1954) et 27,pp. 42–58, 80–94, 125–134, 145–158 (1955).

[13] D. N. Arnold. An interior penalty finite element method with discon-tinuous elements. SIAM J. Numer. Anal., 19:742–760, 1982.

[14] D. N. Arnold and G. Awanou. The serendipity family of finite elements.Found. Comput. Math., 11(3):337–344, 2011.

[15] D. N. Arnold, F. Brezzi, and M. Fortin. A stable finite element for theStokes equations. Calcolo, 21:337–344, 1984.

[16] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified anal-ysis of discontinuous Galerkin methods for elliptic problems. SIAM J.Numer. Anal., 39(5):1749–1779, 2001/02.

[17] D. N. Arnold, R. S. Falk, and R. Winther. Finite element exteriorcalculus, homological techniques, and applications. Acta Numer., 15:1–155, 2006.

[18] D. N. Arnold, R. S. Falk, and R. Winther. Finite element exteriorcalculus: from Hodge theory to numerical stability. Bull. Amer. Math.Soc. (N.S.), 47(2):281–354, 2010.

[19] J.-P. Aubin. Un theoreme de compacite. C. R. Acad. Sci. Paris, Ser.I, 256:5042–5044, 1963.

[20] J.-P. Aubin. Behavior of the error of the approximate solutions of bound-ary value problems for linear elliptic operators by Galerkin’s and finitedifference methods. Ann. Scuola Norm. Sup. Pisa (3), 21:599–637, 1967.

[21] J.-P. Aubin. Applied Functional Analysis. Pure and Applied Mathe-matics. Wiley-Interscience, New York, second edition, 2000.

[22] B. Ayuso and L. D. Marini. Discontinuous Galerkin methods foradvection-diffusion-reaction problems. SIAM J. Numer. Anal., 47(2):1391–1420, 2009.

[23] P. Azerad. Analyse des equations de Navier–Stokes en bassin peu pro-fond et de l’equation de transport. These de l’Univeriste de Neuchatel,1995.

[24] P. Azerad, 1999. Communication personnelle.[25] A. Aziz, R. Kellogg, and A. Stephens. Least-squares methods for elliptic

systems. Math. Comp., 44(169):53–70, 1985.[26] I. Babuska and J. Osborn. Eigenvalue problems. In Handbook of numer-

ical analysis, Vol. II, Handb. Numer. Anal., II, pages 641–787. North-Holland, Amsterdam, 1991.

[27] I. Babuska. The finite element method with Lagrangian multipliers.Numer. Math., 20:179–192, 1973.

[28] I. Babuska. The finite element method with penalty. Math. Comp., 27:221–228, 1973.

[29] I. Babuska and A. K. Aziz. Survey lectures on the mathematical founda-tions of the finite element method. In The mathematical foundations ofthe finite element method with applications to partial differential equa-tions (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972), pages1–359. Academic Press, New York, 1972.

Page 3: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

Part XII. Appendices 825

[30] I. Babuska and W. C. Rheinbolt. Error estimates for adaptive finiteelement method computations. SIAM J. Numer. Anal., 15:736–754,1978.

[31] I. Babuska and W. C. Rheinbolt. A posteriori error estimates for thefinite element method. Int. J. Numer. Methods Engrg., 12:1597–1615,1978.

[32] G. A. Baker. Finite element methods for elliptic equations using non-conforming elements. Math. Comp., 31(137):45–49, 1977.

[33] R. E. Bank and A. Weiser. Some a posteriori error estimators for ellipticpartial differential equations. Math. Comp., 44:283–301, 1985.

[34] R. E. Bank and H. Yserentant. On the H1-stability of the L2-projectiononto finite element spaces. Numer. Math., 126:361–381, 2014.

[35] R. Bartle. A modern theory of integration, volume 32 of Graduate Stud-ies in Mathematics. American Mathematical Society, Providence, RI,2001.

[36] F. Bassi and S. Rebay. A high-order accurate discontinuous finite el-ement method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys., 131(2):267–279, 1997.

[37] M. Bebendorf. A note on the Poincare inequality for convex domains.Z. Anal. Anwendungen, 22(4):751–756, 2003.

[38] R. Becker and M. Braack. A finite element pressure gradient stabiliza-tion for the stokes equations based on local projections. Calcolo, 38(4):173–199, 2001.

[39] R. Becker and R. Rannacher. An optimal control approach to a pos-teriori error estimation in finite element methods. Acta Numerica, 10:1–102, 2001.

[40] M. Bercovier and O. Pironneau. Error estimates for finite element so-lution of the Stokes problem in the primitive variables. Numer. Math.,33:211–224, 1979.

[41] J. Bergh and J. Lofstrom. Interpolation spaces. An introduction.Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathema-tischen Wissenschaften, No. 223.

[42] C. Bernardi. Optimal finite element interpolation on curved domains.SIAM J. Numer. Anal., 26:1212–1240, 1989.

[43] C. Bernardi and V. Girault. A local regularization operator for trian-gular and quadrilateral finite elements. SIAM J. Numer. Anal., 35(5):1893–1916 (electronic), 1998.

[44] C. Bernardi and Y. Maday. Spectral methods. In Handbook of numer-ical analysis, Vol. V, Handb. Numer. Anal., V, pages 209–485. North-Holland, Amsterdam, 1997.

[45] S. Bertoluzza. The discrete commutator property of approximationspaces. C. R. Acad. Sci. Paris, Ser. I, 329(12):1097–1102, 1999.

[46] M. S. Birman and M. Z. Solomyak. l2 -Theory of the Maxwell operatorin arbitrary domains. Russian Mathematical Surveys, 42(6):75, 1987.

Page 4: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

826 References

[47] A. Blouza and H. Le Dret. An up-to-the-boundary version of Friedrichs’slemma and applications to the linear Koiter shell model. SIAM J. Math.Anal., 33(4):877–895 (electronic), 2001.

[48] M. G. Blyth, H. Luo, and C. Pozrikidis. A comparison of interpolationgrids over the triangle or the tetrahedron. J. Engrg. Math., 56(3):263–272, 2006.

[49] P. Bochev. Experiences with negative norm least-square methods forthe Navier-Stokes equations. Electron. Trans. Numer. Anal., 6:44–62,1997.

[50] P. Bochev. Negative norm least-squares methods for the velocity-vorticity-pressure Navier-Stokes equations. Numer. Methods PartialDifferential Equations, 15(2):237–256, 1999.

[51] D. Boffi. Fortin operator and discrete compactness for edge elements.Numer. Math., 87(2):229–246, 2000.

[52] D. Boffi. Finite element approximation of eigenvalue problems. ActaNumer., 19:1–120, 2010.

[53] D. Boffi, F. Brezzi, and M. Fortin. Mixed finite element methods and ap-plications, volume 44 of Springer Series in Computational Mathematics.Springer, Heidelberg, 2013.

[54] M. E. Bogovskiı. Solutions of some problems of vector analysis, associ-ated with the operators div and grad. In Theory of cubature formulasand the application of functional analysis to problems of mathematicalphysics, volume 1980 of Trudy Sem. S. L. Soboleva, No. 1, pages 5–40,149. Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk, Russia,1980.

[55] J. Boland and R. Nicolaides. Stability and semistable low order finiteelements for viscous flows. SIAM J. Numer. Anal., 22:474–492, 1985.

[56] M. Boman. Estimates for the L2-projection onto continuous finite ele-ment spaces in a weighted Lp-norm. BIT, 46(2):249–260, 2006.

[57] A. Bonito, J.-L. Guermond, and F. Luddens. Regularity of the maxwellequations in heterogeneous media and lipschitz domains. J. Math. Anal.Appl., 2013. Submitted.

[58] A. S. Bonnet-Ben Dhia, P. Ciarlet, Jr., and C. M. Zwolf. Time harmonicwave diffraction problems in materials with sign-shifting coefficients. J.Comput. Appl. Math., 234(6):1912–1919, 2010.

[59] A.-S. Bonnet-Ben Dhia, L. Chesnel, and P. Ciarlet, Jr. T -coercivity forscalar interface problems between dielectrics and metamaterials. ESAIMMath. Model. Numer. Anal., 46(6):1363–1387, 2012.

[60] J. P. Boris and D. L. Book. Flux-corrected transport. I. SHASTA, a fluidtransport algorithm that works [J. Comput. Phys. 11 (1973), no. 1, 38–69]. J. Comput. Phys., 135(2):170–186, 1997. With an introductionby Steven T. Zalesak, Commemoration of the 30th anniversary of J.Comput. Phys.

Page 5: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

Part XII. Appendices 827

[61] L. Bos, M. Taylor, and B. Wingate. Tensor product Gauss-Lobattopoints are Fekete points for the cube. Math. Comp., 70(236):1543–1547(electronic), 2001.

[62] A. Bossavit. Electromagnetisme en vue de la modelisation, volume 14 ofSMAI Series on Mathematics and Applications. Springer-Verlag, Paris,France, 1993. See also Computational Electromagnetism, VariationalFormulations, Complementary, Edge Elements, Academic Press, 1998.

[63] A. Bossavit. Computational Electromagnetism, Variational Formula-tions, Complementary, Edge Elements, volume 2 of Electromagnetism.Academic Press, New York, NY, 1998.

[64] K. Boukir, Y. Maday, B. Metivet, and E. Razafindrakoto. A high-ordercharacteristics/finite element method for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids, 25(12):1421–1454,1997.

[65] A. Bowyer. Computing Dirichlet tesselations. Comput. J., 24:162–167,1981.

[66] M. Braack and E. Burman. Local projection stabilization for the Oseenproblem and its interpretation as a variational multiscale method. SIAMJ. Numer. Anal., 43(6):2544–2566, 2006.

[67] M. Braack and A. Ern. A posteriori control of modeling errors anddiscretization errors. Multiscale Model. Simul., 1(2):221–238, 2003.

[68] D. Braess. Finite elements. Cambridge University Press, Cambridge,third edition, 2007. Theory, fast solvers, and applications in elasticitytheory, Translated from the German by Larry L. Schumaker.

[69] J. H. Bramble and S. R. Hilbert. Estimation of linear functionals onSobolev spaces with application to Fourier transforms and spline inter-polation. SIAM J. Numer. Anal., 7:112–124, 1970.

[70] J. H. Bramble and S. R. Hilbert. Bounds for a class of linear functionalswith applications to Hermite interpolation. Numer. Math., 16:362–369,1970/1971.

[71] J. H. Bramble and J. E. Osborn. Rate of convergence estimates fornonselfadjoint eigenvalue approximations. Math. Comp., 27:525–549,1973.

[72] J. H. Bramble and J. E. Pasciak. Least-squares methods for Stokesequations based on a discrete minus one inner product. J. Comput.Appl. Math., 74(1-2):155–173, 1996.

[73] J. H. Bramble and A. H. Schatz. Rayleigh-Ritz-Galerkin-methodsfor Dirichlet’s problem using subspaces without boundary conditions.Comm. Pure Appl. Math., 23:653–675, 1970.

[74] J. H. Bramble and A. H. Schatz. Least squares for 2mth order ellipticboundary-value problems. Math. Comp., 25:1–32, 1971.

[75] J. H. Bramble and T. Sun. A negative-norm least squares method forReissner-Mindlin plates. Math. Comp., 67(223):901–916, 1998.

Page 6: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

828 References

[76] J. H. Bramble, J. E. Pasciak, and A. H. Schatz. The construction ofpreconditioners for elliptic problems by substructuring. I. Math. Comp.,47(175):103–134, 1986.

[77] J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel precondi-tioners. Math. Comp., 55(191):1–22, 1990.

[78] J. H. Bramble, R. D. Lazarov, and J. E. Pasciak. A least-squares ap-proach based on a discrete minus one inner product for first order sys-tems. Math. Comp., 66(219):935–955, 1997.

[79] J. H. Bramble, J. E. Pasciak, and P. S. Vassilevski. Computational scalesof Sobolev norms with application to preconditioning. Math. Comp., 69(230):463–480, 2000.

[80] J. H. Bramble, R. D. Lazarov, and J. E. Pasciak. Least-squares meth-ods for linear elasticity based on a discrete minus one inner product.Comput. Methods Appl. Mech. Engrg., 191(8-10):727–744, 2001.

[81] J. H. Bramble, J. E. Pasciak, and O. Steinbach. On the stability of theL2 projection in H1(Ω). Math. Comp., 71(237):147–156 (electronic),2002.

[82] J. Brandts, S. Korotov, and M. Krızek. Dissection of the path-simplexin Rn into n path-subsimplices. Linear Algebra Appl., 421(2-3):382–393,2007.

[83] J. Brandts, S. Korotov, M. Krızek, and J. Solc. On nonobtuse simplicialpartitions. SIAM Rev., 51(2):317–335, 2009.

[84] J. H. Brandts, S. Korotov, and M. Krızek. The discrete maximumprinciple for linear simplicial finite element approximations of a reaction-diffusion problem. Linear Algebra Appl., 429(10):2344–2357, 2008.

[85] H. Brass and K. Petras. Quadrature theory, volume 178 of MathematicalSurveys and Monographs. American Mathematical Society, Providence,RI, 2011. The theory of numerical integration on a compact interval.

[86] S. C. Brenner. Poincare-Friedrichs inequalities for piecewise H1 func-tions. SIAM J. Numer. Anal., 41(1):306–324, 2003.

[87] S. C. Brenner and L. R. Scott. The mathematical theory of finite elementmethods, volume 15 of Texts in Applied Mathematics. Springer-Verlag,New York, second edition, 2002.

[88] H. Brezis. Functional analysis, Sobolev spaces and partial differentialequations. Universitext. Springer, New York, 2011.

[89] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO, Anal. Num.,pages 129–151, 1974.

[90] F. Brezzi and R. S. Falk. Stability of a higher-order Hood–Taylormethod. SIAM J. Numer. Anal., 28:581–590, 1991.

[91] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods.Springer-Verlag, New York, NY, 1991.

[92] F. Brezzi, J. Douglas Jr., and L. Marini. Recent results on mixed fi-nite element methods for second order elliptic problems. In Vistas in

Page 7: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

Part XII. Appendices 829

applied mathematics, Transl. Ser. Math. Engrg., pages 25–43. Optimiza-tion Software, New York, 1986.

[93] F. Brezzi, J. Douglas Jr., R. Duran, and M. Fortin. Mixed finite elementsfor second order elliptic problems in three variables. Numer. Math., 51(2):237–250, 1987.

[94] F. Brezzi, G. Manzini, L. D. Marini, P. Pietra, and A. Russo. Discon-tinuous Galerkin approximations for elliptic problems. Numer. MethodsPartial Differential Equations, 16(4):365–378, 2000.

[95] F. Brezzi, L. D. Marini, and E. Suli. Discontinuous Galerkin methodsfor first-order hyperbolic problems. Math. Models Methods Appl. Sci.,14(12):1893–1903, 2004.

[96] A. Brooks and T. Hughes. Streamline Upwind/Petrov–Galerkin formu-lations for convective dominated flows with particular emphasis on theincompressible Navier–Stokes equations. Comput. Methods Appl. Mech.Engrg., 32:199–259, 1982.

[97] D. Brown, R. Cortez, and M. Minion. Accurate projection methods forthe incompressible Navier-Stokes equations. J. Comput. Phys., 168(2):464–499, 2001.

[98] A. Buffa and C. Ortner. Compact embeddings of broken Sobolev spacesand applications. IMA J. Numer. Anal., 4(29):827–855, 2009.

[99] R. Burden and J. Faires. Numerical Analysis. PWS Publishing Com-pany, Boston, Mass., 5th edition, 1993.

[100] E. Burman. A unified analysis for conforming and nonconforming sta-bilized finite element methods using interior penalty. SIAM J. Numer.Anal., 43(5):2012–2033 (electronic), 2005.

[101] E. Burman. On nonlinear artificial viscosity, discrete maximum principleand hyperbolic conservation laws. BIT, 47(4):715–733, 2007.

[102] E. Burman and A. Ern. Discrete maximum principle for Galerkin ap-proximations of the Laplace operator on arbitrary meshes. C. R. Math.Acad. Sci. Paris, 338(8):641–646, 2004.

[103] E. Burman and A. Ern. Stabilized Galerkin approximation ofconvection-diffusion-reaction equations: discrete maximum principleand convergence. Math. Comp., 74(252):1637–1652 (electronic), 2005.

[104] E. Burman and A. Ern. Continuous interior penalty hp-finite elementmethods for advection and advection-diffusion equations. Math. Comp.,76(259):1119–1140, 2007.

[105] E. Burman and A. Ern. A continuous finite element method with facepenalty to approximate Friedrichs’ systems. M2AN Math. Model. Nu-mer. Anal., 41(1):55–76, 2007.

[106] E. Burman and A. Ern. Discontinuous Galerkin approximation withdiscrete variational principle for the nonlinear Laplacian. C. R. Math.Acad. Sci. Paris, 346(17–18):1013–1016, 2008.

[107] E. Burman and P. Hansbo. Edge stabilization for Galerkin approxima-tions of convection-diffusion-reaction problems. Comput. Methods Appl.Mech. Engrg., 193(15-16):1437–1453, 2004.

Page 8: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

830 References

[108] E. Burman and B. Stamm. Minimal stabilization for discontinuousGalerkin finite element methods for hyperbolic problems. J. Sci. Com-put., 33:183–208, 2007.

[109] E. Burman and P. Zunino. A domain decomposition method for partialdifferential equations with non-negative form based on interior penalties.SIAM J. Numer. Anal., 44:1612–1638, 2006.

[110] E. Burman, A. Ern, and V. Giovangigli. Bunsen flame simulation byfinite elements on adaptively refined, unstructured triangulations. Com-bust. Theory Modelling, 2004.

[111] E. Burman, A. Quarteroni, and B. Stamm. Interior penalty continuousand discontinuous finite element approximations of hyperbolic equa-tions. J. Sci. Comput., 43(3):293–312, 2010.

[112] A. P. Calderon. Lebesgue spaces of differentiable functions and distri-butions. Proc. Sympos. Pure Math., 4:33–49, 1961.

[113] M. Campos Pinto and E. Sonnendrucker. Gauss-compatible Galerkinschemes for time-dependent Maxwell equations. Math. Comp., 2015. toappear.

[114] C. Canuto and A. Quarteroni. Approximation results for orthogonalpolynomials in Sobolev spaces. Math. Comp., 38(157):67–86, 1982.

[115] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectralmethods. Scientific Computation. Springer-Verlag, Berlin, 2006. Funda-mentals in single domains.

[116] S. Caorsi, P. Fernandes, and M. Raffetto. On the convergence ofGalerkin finite element approximations of electromagnetic eigenprob-lems. SIAM J. Numer. Anal., 38(2):580–607 (electronic), 2000.

[117] C. Carstensen. Quasi-interpolation and a posteriori error analysis infinite element methods. M2AN Math. Model. Numer. Anal., 33(6):1187–1202, 1999.

[118] C. Carstensen. Merging the Bramble-Pasciak-Steinbach and theCrouzeix-Thomee criterion for H1-stability of the L2-projection ontofinite element spaces. Math. Comp., 71(237):157–163 (electronic), 2002.

[119] C. Carstensen. An adaptive mesh-refining algorithm allowing for anH1 stable L2 projection onto Courant finite element spaces. Constr.Approx., 20(4):549–564, 2004.

[120] C. Carstensen and S. A. Funken. Constants in Clement-interpolationerror and residual based a posteriori error estimates in finite elementmethods. East-West J. Numer. Math., 8(3):153–175, 2000.

[121] C. Carstensen and R. Verfurth. Edge residuals dominate a posteriorierror estimates for low order finite element methods. SIAM J. Numer.Anal., 36(5):1571–1587 (electronic), 1999.

[122] H. Cartan. Cours de calcul differentiel. Collection Methodes. Hermann,Paris, 1997.

[123] J. Cea. Approximation variationnelle des problemes aux limites. Ann.Inst. Fourier (Grenoble), 14:345–444, 1964.

Page 9: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

Part XII. Appendices 831

[124] F. Chatelin. Spectral approximation of linear operators. Computer Sci-ence and Applied Mathematics. Academic Press Inc. [Harcourt BraceJovanovich Publishers], New York, 1983. With a foreword by P. Henrici,With solutions to exercises by Mario Ahues.

[125] Q. Chen and I. Babuska. Approximate optimal points for polynomialinterpolation of real functions in an interval and in a triangle. Comput.Methods Appl. Mech. Engrg., 128(3-4):405–417, 1995.

[126] L. Chesnel and P. Ciarlet, Jr. T-coercivity and continuous Galerkinmethods: application to transmission problems with sign changing co-efficients. Numer. Math., 124(1):1–29, 2013. ISSN 0029-599X.

[127] A. Chorin. Numerical solution of the Navier-Stokes equations. Math.Comp., 22:745–762, 1968.

[128] A. Chorin. On the convergence of discrete approximations to the Navier-Stokes equations. Math. Comp., 23:341–353, 1969.

[129] S. H. Christiansen and R. Winther. Smoothed projections in finite ele-ment exterior calculus. Math. Comp., 77(262):813–829, 2008.

[130] S.-K. Chua and R. L. Wheeden. Estimates of best constants for weightedPoincare inequalities on convex domains. Proc. London Math. Soc. (3),93(1):197–226, 2006.

[131] P. Ciarlet, Jr. Analysis of the Scott-Zhang interpolation in the fractionalorder Sobolev spaces. J. Numer. Math., 21(3):173–180, 2013.

[132] P. Ciarlet, Jr. and M. Vohralık. Robust a posteriori error control fortransmission problems with sign-changing coefficients using localizationof dual norms. Technical report, HAL, hal-01148476, 2015.

[133] P. G. Ciarlet. Mathematical elasticity. Vol. I, volume 20 of Studiesin Mathematics and its Applications. North-Holland Publishing Co.,Amsterdam, 1988. Three-dimensional elasticity.

[134] P. G. Ciarlet. Basic Error Estimates for Elliptic Problems, volume II:Finite Element Methods of Handbook of Numerical Analysis, chapter 2.North Holland, Amsterdam, 1991. P.G. Ciarlet and J.-L. Lions, editors.

[135] P. G. Ciarlet. Mathematical Elasticity II: Theory of Plates, volume 27of Studies in Mathematics and its Applications. Elsevier, Amsterdam,1997.

[136] P. G. Ciarlet. The finite element method for elliptic problems, volume 40of Classics in Applied Mathematics. Society for Industrial and AppliedMathematics (SIAM), Philadelphia, PA, 2002. Reprint of the 1978 orig-inal [North-Holland, Amsterdam; MR0520174 (58 #25001)].

[137] P. G. Ciarlet and P.-A. Raviart. Interpolation theory over curved ele-ments, with applications to finite element methods. Comput. MethodsAppl. Mech. Engrg., 1:217–249, 1972.

[138] P. G. Ciarlet and P.-A. Raviart. The combined effect of curved bound-aries and numerical integration in isoparametric finite element methods.In The mathematical foundations of the finite element method with appli-cations to partial differential equations (Proc. Sympos., Univ. Maryland,

Page 10: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

832 References

Baltimore, Md., 1972), pages 409–474. Academic Press, New York, NY,1972.

[139] P. G. Ciarlet and P.-A. Raviart. General Lagrange and Hermite interpo-lation in n with applications to finite element methods. Arch. RationalMech. Anal., 46:177–199, 1972.

[140] P. G. Ciarlet and P.-A. Raviart. Maximum principle and uniform con-vergence for the finite element method. Comput. Methods Appl. Mech.Engrg., 2:17–31, 1973.

[141] P. Clement. Approximation by finite element functions using local reg-ularization. RAIRO, Anal. Num., 9:77–84, 1975.

[142] R. Clough. The finite element method in plane stress analysis. InProc. 2nd ASCE Conference on Electronic Computation, Pittsburgh,PA, 1960.

[143] B. Cockburn. Static condensation, hybridization, and the devising ofhdg methods. In Building bridges: Connections and challenges in mod-ern approaches to numerical partial differential equations, 2015.

[144] B. Cockburn and P.-A. Gremaud. Error estimates for finite elementmethods for scalar conservation laws. SIAM J. Numer. Anal., 33(2):522–554, 1996.

[145] B. Cockburn and P.-A. Gremaud. A priori error estimates for numericalmethods for scalar conservation laws. I. The general approach. Math.Comp., 65(214):533–573, 1996.

[146] B. Cockburn, F. Coquel, and P. LeFloch. An error estimate for finitevolume methods for multidimensional conservation laws. Math. Comp.,63(207):77–103, 1994.

[147] B. Cockburn, G. Kanschat, and D. Schotzau. A note on discontinuousGalerkin divergence-free solutions of the Navier-Stokes equations. J.Sci. Comput., 31(1-2):61–73, 2007. ISSN 0885-7474.

[148] R. Codina. Comparison of some finite element methods for solving thediffusion–convection–reaction equations. Comput. Methods Appl. Mech.Engrg., 156:185–210, 1998.

[149] R. Codina. Stabilized finite element approximation of transient in-compressible flows using orthogonal subscales. Comput. Methods Appl.Mech. Engrg., 191(39-40):4295–4321, 2002.

[150] R. Cools. Monomial cubature rules since “Stroud”: a compilation. II.J. Comput. Appl. Math., 112(1-2):21–27, 1999. Numerical evaluation ofintegrals.

[151] R. Cools and P. Rabinowitz. Monomial cubature rules since “Stroud”:a compilation. J. Comput. Appl. Math., 48(3):309–326, 1993.

[152] M. Costabel. A remark on the regularity of solutions of Maxwell’s equa-tions on Lipschitz domains. Math. Methods Appl. Sci., 12(4):365–368,1990.

[153] M. Costabel. A coercive bilinear form for Maxwell’s equations. J. Math.Anal. Appl., 157(2):527–541, 1991.

Page 11: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

Part XII. Appendices 833

[154] M. Costabel and M. Dauge. Crack singularities for general elliptic sys-tems. Math. Nachr., 235:29–49, 2002.

[155] M. Costabel, M. Dauge, and S. Nicaise. Analytic regularity for linearelliptic systems in polygons and polyhedra. Math. Models Methods Appl.Sci., 22(8):1250015, 63, 2012.

[156] M. Costabel, M. Dauge, and S. Nicaise. Weighted analytic regularity inpolyhedra. Comput. Math. Appl., 67(4):807–817, 2014.

[157] J.-P. Croisille. Finite volume box schemes and mixed methods. M2ANMath. Model. Numer. Anal., 34(2):1087–1106, 2000.

[158] J.-P. Croisille and I. Greff. Some nonconforming mixed box schemes forelliptic problems. Numer. Methods Partial Differential Equations, 18(3):355–373, 2002.

[159] M. Crouzeix and P.-A. Raviart. Conforming and nonconforming finiteelement methods for solving the stationary Stokes equations. I. Rev.Francaise Automat. Informat. Recherche Operationnelle Ser. Rouge, 7(R-3):33–75, 1973.

[160] M. Crouzeix and V. Thomee. The stability in Lp and W 1p of the L2-

projection onto finite element function spaces. Math. Comp., 48(178):521–532, 1987.

[161] V. Daru and C. Tenaud. Evaluation of TVD high-resolution schemes forunsteady viscous shocked flows. Comput. Fluids, 30(1):89–113, 2001.

[162] M. Dauge. Elliptic boundary value problems on corner domains, volume1341 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1988.

[163] M. Dauge. Stationary Stokes and Navier-Stokes systems on two- orthree-dimensional domains with corners. I. Linearized equations. SIAMJ. Math. Anal., 20(1):74–97, 1989.

[164] R. Dautray and J.-L. Lions. Mathematical Analysis and NumericalMethods for Science and Technology. Vol. 4. Integral equations and nu-merical methods. Springer-Verlag, Berlin, Germany, 1990.

[165] R. Dautray and J.-L. Lions. Mathematical Analysis and NumericalMethods for Science and Technology. Vol. 5. Evolution problems, I.Springer-Verlag, Berlin, Germany, 1992.

[166] P. J. Davis and P. Rabinowitz. Methods of Numerical Integration. Com-puter Science and Applied Mathematics. Academic Press, New York,NY, 1975.

[167] C. Dawson, S. Sun, and M. F. Wheeler. Compatible algorithms forcoupled flow and transport. Comp. Meth. Appl. Mech. Eng., 193:2565–2580, 2004.

[168] B. Delaunay. Sur la sphere vide. Bul. Acad. Sci. URSS, Class. Sci. Nat.,pages 793–800, 1934.

[169] F. Demengel and G. Demengel. Functional spaces for the theory ofelliptic partial differential equations. Universitext. Springer, London;EDP Sciences, Les Ulis, 2012. Translated from the 2007 French originalby Reinie Erne.

Page 12: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

834 References

[170] L. Demkowicz, P. Monk, C. Schwab, and L. Vardapetyan. Maxwelleigenvalues and discrete compactness in two dimensions. Comput. Math.Appl., 40(4-5):589–605, 2000. ISSN 0898-1221.

[171] A. Demlow, D. Leykekhman, A. H. Schatz, and L. B. Wahlbin. Bestapproximation property in the W 1

∞ norm for finite element methods ongraded meshes. Math. Comp., 81(278):743–764, 2012.

[172] J. Deny and J.-L. Lions. Les espaces du type de Beppo Levi. Ann. Inst.Fourier, Grenoble, 5:305–370, 1954.

[173] A. Devinatz, R. Ellis, and A. Friedman. The asymptotic behavior ofthe first real eigenvalue of second order elliptic operators with a smallparameter in the highest derivatives. II. Indiana Univ. Math. J., 23:991–1011, 1973–1974. ISSN 0022-2518.

[174] D. A. Di Pietro and A. Ern. Discrete functional analysis tools for discon-tinuous Galerkin methods with application to the incompressible Navier-Stokes equations. Math. Comp., 79(271):1303–1330, 2010.

[175] D. A. Di Pietro and A. Ern. Mathematical Aspects of Discontinu-ous Galerkin Methods, volume 69 of Mathematiques & Applications.Springer-Verlag, Berlin, 2012.

[176] D. A. Di Pietro, A. Ern, and J.-L. Guermond. Discontinuous Galerkinmethods for anisotropic semi-definite diffusion with advection. SIAM J.Numer. Anal., 46(2):805–831, 2008.

[177] J. Douglas Jr. and T. Russell. Numerical methods for convection-dominated diffusion problems based on combining the method of char-acteristics with finite element or finite difference procedures. SIAM J.Numer. Anal., 19:871–885, 1982.

[178] M. Dryja. On discontinuous Galerkin methods for elliptic problemswith discontinuous coefficients. Comput. Methods Appl. Math., 3(1):76–85, 2003.

[179] M. Dubiner. Spectral methods on triangles and other domains. J. Sci.Comput., 6(4):345–390, 1991.

[180] N. Dunford and J. T. Schwartz. Linear Operators. I. General Theory.With the assistance of W. G. Bade and R. G. Bartle. Pure and AppliedMathematics, Vol. 7. Interscience Publishers, Inc., New York, 1958.

[181] T. Dupont and R. Scott. Polynomial approximation of functions inSobolev spaces. Math. Comp., 34(150):441–463, 1980.

[182] R. Duran and M. Muschietti. An explicit right inverse of the divergenceoperator which is continuous in weighted norms. Studia Math., 148(3):207–219, 2001.

[183] G. Duvaut and J.-L. Lions. Les inequations en mecanique et en physique.Dunod, Paris, 1972.

[184] A. Dziskariani. The least square and Bubnov-Galerkin methods. Z.Vycisl. Mat. i Mat. Fiz., 8:1110–1116, 1968.

[185] W. E and J. Liu. Projection method I: Convergence and numericalboundary layers. SIAM J. Numer. Anal., 32:1017–1057, 1995.

Page 13: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

Part XII. Appendices 835

[186] P. Erdos. Problems and results on the theory of interpolation. II. ActaMath. Acad. Sci. Hungar., 12:235–244, 1961.

[187] K. Eriksson and C. Johnson. Adaptive finite element methods forparabolic problems. II. Optimal error estimates in L∞L2 and L∞L∞.SIAM J. Numer. Anal., 32(3):706–740, 1995.

[188] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. ComputationalDifferential Equations. Cambridge Univ. Press, 1996.

[189] A. Ern and J.-L. Guermond. Discontinuous Galerkin methods forFriedrichs’ systems. I. General theory. SIAM J. Numer. Anal., 44(2):753–778, 2006.

[190] A. Ern and J.-L. Guermond. Discontinuous Galerkin methods forFriedrichs’ systems. II. Second-order elliptic PDEs. SIAM J. Numer.Anal., 44(6):2363–2388, 2006.

[191] A. Ern and J.-L. Guermond. Evaluation of the condition number inlinear systems arising in finite element approximations. M2AN Math.Model. Numer. Anal., 40(1):29–48, 2006.

[192] A. Ern and J.-L. Guermond. Discontinuous Galerkin methods forFriedrichs’ systems. III. Multi-field theories with partial coercivity.SIAM J. Numer. Anal., 46(2):776–804, 2008.

[193] A. Ern and J.-L. Guermond. Weighting the edge stabilization. SIAMJ. Numer. Anal., 51(3):1655–1677, 2013.

[194] A. Ern and J.-L. Guermond. Finite element quasi-interpolation and bestapproximation. Technical Report to be completed, arXiv, 2015.

[195] A. Ern and J.-L. Guermond. Mollification in strongly Lipschitz domainswith application to continuous and discrete de Rham complex. TechnicalReport to be completed, arXiv, 2015.

[196] A. Ern and M. Vohralık. A posteriori error estimation based on potentialand flux reconstruction for the heat equation. SIAM J. Numer. Anal.,48(1):198–223, 2010.

[197] A. Ern and M. Vohralık. Adaptive inexact Newton methods with aposteriori stopping criteria for nonlinear diffusion PDEs. SIAM J. Sci.Comput., 35(4):A1761–A1791, 2013.

[198] A. Ern, C. Douglas, and M. Smooke. Detailed chemistry modeling oflaminar diffusion flames on parallel computers. Int. J. Supercomput.Appl., 9:167–186, 1995.

[199] A. Ern, J.-L. Guermond, and G. Caplain. An intrinsic criterion for thebijectivity of Hilbert operators related to Friedrichs’ systems. Comm.Partial Differ. Eq., 32:317–341, 2007.

[200] A. Ern, S. Nicaise, and M. Vohralık. An accurateH(div) flux reconstruc-tion for discontinuous Galerkin approximations of elliptic problems. C.R. Math. Acad. Sci. Paris, 345(12):709–712, 2007.

[201] A. Ern, A. F. Stephansen, and P. Zunino. A discontinuous Galerkinmethod with weighted averages for advection-diffusion equations withlocally small and anisotropic diffusivity. IMA J. Numer. Anal., 29(2):235–256, 2009.

Page 14: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

836 References

[202] L. C. Evans. Partial differential equations, volume 19 of Graduate Stud-ies in Mathematics. American Mathematical Society, Providence, RI,1998.

[203] R. Eymard, T. Gallouet, and R. Herbin. Convergence of finite volumeschemes for semilinear convection diffusion equations. Numer. Math.,82(1):91–116, 1999.

[204] V. Faber and T. Manteuffel. Necessary and sufficient conditions for theexistence of a conjugate gradient method. SIAM J. Numer. Anal., 21(2):352–362, 1984. ISSN 0036-1429.

[205] R. Falk. Nonconforming finite element methods for the equations oflinear elasticity. Math. Comp., 57:529–550, 1991.

[206] L. Fejer. Lagrangesche Interpolation und die zugehorigen konjugiertenPunkte. Math. Ann., 106(1):1–55, 1932.

[207] L. Ferracina and M. N. Spijker. An extension and analysis of the Shu-Osher representation of Runge-Kutta methods. Math. Comp., 74(249):201–219, 2005.

[208] M. Fortin. An analysis of the convergence of mixed finite element meth-ods. RAIRO, Anal. Num., 11:341–354, 1977.

[209] L. Franca and S. Frey. Stabilized finite element methods: II. The in-compressible Navier–Stokes equations. Comput. Methods Appl. Mech.Engrg., 99:209–233, 1992.

[210] K. Friedrichs. Symmetric positive linear differential equations. Comm.Pure Appl. Math., 11:333–418, 1958.

[211] K. O. Friedrichs. The identity of weak and strong extensions of differ-ential operators. Trans. Amer. Math. Soc., 55:132–151, 1944.

[212] G. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I, volume 38 of Springer Tracts in Natural Phi-losophy. Springer-Verlag, New York, NY, 1994.

[213] F. D. Gaspoz, C.-J. Heine, and K. G. Siebert. Optimal gradingof the newest vertex bisection and H1-stability of the L2-projection.Technical Report 2014-015, Stuttgart University, 2014. URL http:

//www.mathematik.uni-stuttgart.de/preprints.[214] A. George and J. Liu. Computer solution of large sparse positive definite

systems. Prentice-Hall Inc., Englewood Cliffs, NJ, 1981. Prentice-HallSeries in Computational Mathematics.

[215] A. George, J. Gilbert, and J. Liu, editors. Graph Theory and SparseMatrix Computation, volume 56 of The IMA Volumes in Mathematicsand its Applications. Springer-Verlag, New York, NY, 1993.

[216] P.-L. George and H. Borouchaki. Delaunay Triangulation and Meshing.Application to Finite Elements. Editions Hermes, Paris, France, 1998.

[217] D. Gilbarg and N. S. Trudinger. Elliptic partial differential equationsof second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001.Reprint of the 1998 edition.

Page 15: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

Part XII. Appendices 837

[218] V. Girault and P.-A. Raviart. Finite Element Methods for Navier-StokesEquations. Theory and Algorithms. Springer Series in ComputationalMathematics. Springer-Verlag, Berlin, Germany, 1986.

[219] V. Girault and L. R. Scott. Analysis of a two-dimensional grade-twofluid model with a tangential boundary condition. J. Math. Pures Appl.(9), 78(10):981–1011, 1999.

[220] K. Goda. A multistep technique with implicit difference schemes forcalculating two- or three-dimensional cavity flows. J. Comput. Phys.,30:76–95, 1979.

[221] G. Golub and C. van Loan. Matrix Computations. John Hopkins Uni-versity Press, Baltimore, second edition, 1989.

[222] S. Gottlieb, D. I. Ketcheson, and C.-W. Shu. High order strong stabilitypreserving time discretizations. J. Sci. Comput., 38(3):251–289, 2009.

[223] P. Grisvard. Elliptic problems in nonsmooth domains, volume 24 ofMonographs and Studies in Mathematics. Pitman (Advanced PublishingProgram), Boston, MA, 1985.

[224] P. Grisvard. Singularities in boundary value problems, volume 22 ofRecherches en Mathematiques Appliquees [Research in Applied Mathe-matics]. Masson, Paris, 1992.

[225] C. Grossmann and H.-G. Roos. Numerical treatment of partial differ-ential equations. Universitext. Springer, Berlin, 2007. Translated andrevised from the 3rd (2005) German edition by Martin Stynes.

[226] J.-L. Guermond. Some practical implementations of projection methodsfor Navier-Stokes equations. M2AN Math. Model. Numer. Anal., 30:637–667, 1996. Also in C. R. Acad. Sci. Paris, Serie I, 319:887–892,1994.

[227] J.-L. Guermond. Stabilization of Galerkin approximations of transportequations by subgrid modeling. M2AN Math. Model. Numer. Anal., 33(6):1293–1316, 1999.

[228] J.-L. Guermond. Un resultat de convergence d’ordre deux en tempspour l’approximation des equations de Navier-Stokes par une techniquede projection incrementale. M2AN Math. Model. Numer. Anal., 33(1):169–189, 1999. Also in C. R. Acad. Sci. Paris, Serie I, 325:1329–1332,1997.

[229] J.-L. Guermond. Subgrid stabilization of Galerkin approximations oflinear monotone operators. IMA J. Numer. Anal., 21:165–197, 2001.

[230] J.-L. Guermond. Subgrid stabilization of Galerkin approximations oflinear contraction semi-groups of class C0 in Hilbert spaces. Numer.Methods Partial Differential Equations, 17:1–25, 2001.

[231] J.-L. Guermond. A finite element technique for solving first-order PDEsin LP . SIAM J. Numer. Anal., 42(2):714–737 (electronic), 2004.

[232] J.-L. Guermond and M. Nazarov. A maximum-principle preserving c0

finite element method for scalar conservation equations. Comput. Meth-ods Appl. Mech. Engrg., 272:198–213, 2013.

Page 16: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

838 References

[233] J.-L. Guermond and B. Popov. An optimal L1-minimization algorithmfor stationary Hamilton-Jacobi equations. Commun. Math. Sci., 7(1):211–238, 2009.

[234] J.-L. Guermond and B. Popov. Error estimates of a first-order lagrangefinite element technique for nonlinear scalar conservation equations.SIAM J. Sci. Comput., 2015.

[235] J.-L. Guermond and L. Quartapelle. On sensitive vector Poisson andStokes problems. Math. Mod. Meths. Appli. Sci. (M3AS), 7(5):681–698,1997.

[236] J.-L. Guermond and L. Quartapelle. On the approximation of the un-steady Navier–Stokes equations by finite element projection methods.Numer. Math., 80(5):207–238, 1998.

[237] J.-L. Guermond and J. Shen. Quelques resultats nouveaux sur lesmethodes de projection. C. R. Acad. Sci. Paris, Ser. I, 333:1111–1116,2001.

[238] J.-L. Guermond and J. Shen. On the error estimates for the rotationalpressure-correction projection methods. Math. Comp., 2003. to appear.

[239] R. Gunttner. Evaluation of Lebesgue constants. SIAM J. Numer. Anal.,17(4):512–520, 1980.

[240] B. Guo and I. Babuska. Regularity of the solutions for elliptic problemson nonsmooth domains in R3. I. Countably normed spaces on polyhedraldomains. Proc. Roy. Soc. Edinburgh Sect. A, 127(1):77–126, 1997.

[241] B. Guo and I. Babuska. Regularity of the solutions for elliptic problemson nonsmooth domains in R3. II. Regularity in neighbourhoods of edges.Proc. Roy. Soc. Edinburgh Sect. A, 127(3):517–545, 1997.

[242] R. J. Guyan. Reduction of stiffness and mass matrices. J. Am. Inst.Aeron. and Astro., 3:380, 1965.

[243] J. Guzman, D. Leykekhman, J. Rossmann, and A. H. Schatz. Holderestimates for Green’s functions on convex polyhedral domains and theirapplications to finite element methods. Numer. Math., 112(2):221–243,2009.

[244] W. Hackbusch. Multigrid Methods and Applications, volume 4 ofSpringer Series in Computational Mathematics. Springer-Verlag, Berlin,Germany, 1985.

[245] J. Hadamard. Le probleme de Cauchy et les equations aux deriveespartielles lineaires hyperboliques. MSM. Hermann, Paris, France, 1932.

[246] P. C. Hammer and A. H. Stroud. Numerical integration over simplexes.Math. Tables Aids Comput., 10:137–139, 1956.

[247] A. Hansbo and P. Hansbo. An unfitted finite element method, basedon Nitsche’s method, for elliptic interface problems. Comput. MethodsAppl. Mech. Engrg., 191(47-48):5537–5552, 2002.

[248] I. Harari and T. J. R. Hughes. What are C and h?: inequalities for theanalysis and design of finite element methods. Comput. Methods Appl.Mech. Engrg., 97(2):157–192, 1992.

Page 17: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

Part XII. Appendices 839

[249] F. Hecht. Construction d’une base de fonctions P1 non conforme adivergence nulle dans R3. RAIRO, Anal. Num., 15(2):119–150, 1981.

[250] F. Hecht. Construction of a basis at free divergence in finite element andapplication to the Navier-Stokes equations. In Numerical solutions ofnonlinear problems (Rocquencourt, 1983), pages 284–297. INRIA, Roc-quencourt, France, 1984.

[251] M. Hestenes and E. Stiefel. Method of conjugate gradients for solvinglinear systems. J. Res. Nat. Bur. Standards, 49:409–436, 1952.

[252] J. S. Hesthaven. From electrostatics to almost optimal nodal sets forpolynomial interpolation in a simplex. SIAM J. Numer. Anal., 35(2):655–676, 1998.

[253] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb. Spectral methods fortime-dependent problems, volume 21 of Cambridge Monographs on Ap-plied and Computational Mathematics. Cambridge University Press,Cambridge, 2007.

[254] N. Heurer. On the equivalence of fractional-order sobolev semi-norms.Technical Report http://arxiv.org/abs/1211.0340, arXiv, 2014.

[255] I. Higueras. Representations of Runge-Kutta methods and strong sta-bility preserving methods. SIAM J. Numer. Anal., 43(3):924–948, 2005.

[256] R. Hiptmair. Finite elements in computational electromagnetism. ActaNumerica, 11:237–339, 1 2002.

[257] S. Hofmann, M. Mitrea, and M. Taylor. Geometric and transforma-tional properties of Lipschitz domains, Semmes-Kenig-Toro domains,and other classes of finite perimeter domains. J. Geom. Anal., 17(4):593–647, 2007.

[258] P. Houston, I. Perugia, A. Schneebeli, and D. Schotzau. Interior penaltymethod for the indefinite time-harmonic Maxwell equations. Numer.Math., 100:485–518, 2005.

[259] P. Houston, I. Perugia, A. Schneebeli, and D. Schotzau. Mixed discon-tinuous Galerkin approximation of the Maxwell operator: the indefinitecase. M2AN Math. Model. Numer. Anal., 39(4):727–753, 2005.

[260] P. Houston, D. Schotzau, and T. P. Wihler. Energy norm a posteri-ori error estimation of hp-adaptive discontinuous Galerkin methods forelliptic problems. Math. Models Methods Appl. Sci., 17(1):33–62, 2007.

[261] N. Hu, X. Guo, and I. Katz. Bounds for eigenvalues and conditionnumbers in the p-version of the finite element method. Math. Comp.,67(224):1423–1450, 1998.

[262] T. Hughes, L. Franca, and G. Hulbert. A new finite element formulationfor computational fluid dynamics: VIII. The Galerkin/Least-Squaresmethod for advection-diffusive equations. Comput. Methods Appl. Mech.Engrg., 73:173–189, 1989.

[263] M. Jensen. Discontinuous Galerkin Methods for Friedrichs Sys-tems with Irregular Solutions. PhD thesis, University of Oxford,www.comlab.ox.ac.uk/research/na/thesis/thesisjensen.pdf,2004.

Page 18: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

840 References

[264] D. Jerison and C. Kenig. The Neumann problem in Lipschitz domains.Bull. Amer. Math. Soc. (N.S.), 4(2):203–207, 1981.

[265] D. Jerison and C. Kenig. The inhomogeneous Dirichlet problem in Lip-schitz domains. J. Func. Anal., 130(1):161–219, 1995.

[266] B. Jiang. The Least-Squares Finite Element Method. Scientific Compu-tation. Springer, 1998.

[267] X. Jiang and R. H. Nochetto. Effect of numerical integration for ellipticobstacle problems. Numer. Math., 67(4):501–512, 1994.

[268] F. Jochmann. An Hs-regularity result for the gradient of solutionsto elliptic equations with mixed boundary conditions. J. Math. Anal.Appl., 238:429–450, 1999.

[269] F. Jochmann. Regularity of weak solutions of Maxwell’s equations withmixed boundary-conditions. Math. Methods Appl. Sci., 22(14):1255–1274, 1999.

[270] C. Johnson. Numerical Solution of Partial Differential Equations by theFinite Element Method. Cambridge University Press, Cambridge, 1987.

[271] C. Johnson and J. Pitkaranta. An analysis of the discontinuous Galerkinmethod for a scalar hyperbolic equation. Math. Comp., 46(173):1–26,1986.

[272] C. Johnson and A. Szepessy. On the convergence of a finite elementmethod for a nonlinear hyperbolic conservation law. Math. Comp., 49(180):427–444, 1987.

[273] C. Johnson, U. Navert, and J. Pitkaranta. Finite element methods forlinear hyperbolic equations. Comput. Methods Appl. Mech. Engrg., 45:285–312, 1984.

[274] G. Kanschat and F. Suttmeier. A posteriori error estimates for noncon-forming finite element schemes. Calcolo, 36:129–141, 1999.

[275] O. A. Karakashian and F. Pascal. A posteriori error estimates for adiscontinuous Galerkin approximation of second-order elliptic problems.SIAM J. Numer. Anal., 41(6):2374–2399, 2003.

[276] G. Karniadakis and S. Sherwin. Spectral/hp Element Methods for Com-putational Fluid Dynamics. Numerical Mathematics and Scientific Com-putation. Oxford University Press, New York, NY, second edition, 2005.

[277] T. Kato. Estimation of iterated matrices, with application to the vonNeumann condition. Numer. Math., 2:22–29, 1960. ISSN 0029-599X.

[278] R. B. Kellogg and J. E. Osborn. A regularity result for the Stokesproblem in a convex polygon. J. Functional Analysis, 21(4):397–431,1976.

[279] F. Kikuchi. On a discrete compactness property for the Nedelec finiteelements. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36(3):479–490, 1989.

[280] K. Y. Kim. A posteriori error estimators for locally conservative meth-ods of nonlinear elliptic problems. Appl. Numer. Math., 57(9):1065–1080, 2007.

Page 19: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

Part XII. Appendices 841

[281] V. A. Kondrat′ev. Boundary value problems for elliptic equations indomains with conical or angular points. Trudy Moskov. Mat. Obsc., 16:209–292, 1967.

[282] J. F. B. M. Kraaijevanger. Contractivity of Runge-Kutta methods. BIT,31(3):482–528, 1991.

[283] A. Kroo. On the exact constant in the L2 Markov inequality. J. Approx.Theory, 151(2):208–211, 2008.

[284] A. Kroo and S. Revesz. On Bernstein and Markov-type inequalities formultivariate polynomials on convex bodies. J. Approx. Theory, 99(1):134–152, 1999.

[285] S. N. Kruzkov. First order quasilinear equations with several indepen-dent variables. Mat. Sb. (N.S.), 81 (123):228–255, 1970.

[286] D. Kuzmin and S. Turek. Flux correction tools for finite elements.Journal of Computational Physics, 175(2):525–558, 2002.

[287] N. N. Kuznecov. The accuracy of certain approximate methods for thecomputation of weak solutions of a first order quasilinear equation. Z.Vycisl. Mat. i Mat. Fiz., 16(6):1489–1502, 1627, 1976.

[288] M. G. Larson and A. J. Niklasson. Analysis of a nonsymmetric discon-tinuous Galerkin method for elliptic problems: stability and energy errorestimates. SIAM J. Numer. Anal., 42(1):252–264 (electronic), 2004.

[289] J. E. Lavery. Nonoscillatory solution of the steady-state inviscid Burg-ers’ equation by mathematical programming. J. Comput. Phys., 79(2):436–448, 1988.

[290] J. E. Lavery. Solution of steady-state one-dimensional conservation lawsby mathematical programming. SIAM J. Numer. Anal., 26(5):1081–1089, 1989.

[291] P. D. Lax. Functional analysis. Pure and Applied Mathematics (NewYork). Wiley-Interscience [John Wiley & Sons], New York, 2002.

[292] M. Lenoir. Optimal isoparametric finite elements and error estimatesfor domains involving curved boundaries. SIAM J. Numer. Anal., 23(3):562–580, 1986.

[293] J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace.Acta Math., 63(1):193–248, 1934.

[294] P. Lesaint. Sur la resolution des sytemes hyperboliques du premier ordrepar des methodes d’elements finis. PhD thesis, University of Paris VI,1975.

[295] P. Lesaint and P.-A. Raviart. On a finite element method for solvingthe neutron transport equation. In C. de Boors, editor, Mathematicalaspects of Finite Elements in Partial Differential Equations, pages 89–123. Academic Press, 1974.

[296] P. Lesaint and P.-A. Raviart. On a finite element method for solvingthe neutron transport equation. In Mathematical Aspects of Finite Ele-ments in Partial Differential Equations, pages 89–123. Publication No.33. Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press,New York, 1974.

Page 20: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

842 References

[297] S. Levy. Structural analysis and influence coefficients for delta wings.J. Aeronaut. Sci., 20, 1953.

[298] J.-L. Lions. Quelques resultats d’existence dans des equations auxderivees partielles non lineaires. Bull. Soc. Math. France, 87:245–273,1959.

[299] J.-L. Lions. Problemes aux limites non homogenes a donneesirregulieres: Une methode d’approximation. In Numerical Analysis ofPartial Differential Equations (C.I.M.E. 2 Ciclo, Ispra, 1967), pages283–292. Edizioni Cremonese, Rome, Italy, 1968.

[300] J.-L. Lions. Quelques methodes de resolution des problemes aux limitesnon lineaires, volume 1. Dunod, Paris, France, 1969.

[301] J.-L. Lions and E. Magenes. Non-homogeneous boundary value problemsand applications. Vols. I, II. Springer-Verlag, New York-Heidelberg,1972. Translated from the French by P. Kenneth, Die Grundlehren dermathematischen Wissenschaften, Band 181-182.

[302] J. M.-S. Lubuma and S. Nicaise. Dirichlet problems in polyhedral do-mains. I. Regularity of the solutions. Math. Nachr., 168:243–261, 1994.

[303] J. M.-S. Lubuma and S. Nicaise. Dirichlet problems in polyhedral do-mains. II. Approximation by FEM and BEM. J. Comput. Appl. Math.,61(1):13–27, 1995.

[304] A. Lucka. The rate of convergence to zero of the residual and the errorfor the Bubnov-Galerkin method and the method of least squares. InProc. Sem. Differential and Integral Equations, No. I (Russian), pages113–122. Akad. Nauk Ukrain. SSR Inst. Mat., Kiev, Ukraine, 1969.

[305] B. Lucquin and O. Pironneau. Introduction to Scientific Computing.John Wiley & Sons, 1998.

[306] Y. Maday, O. Mula, A. T. Patera, and M. Yano. The generalized Em-pirical Interpolation Method: stability theory in Hilbert spaces with anapplication to the Stokes equation. Technical Report hal-01032168, Uni-versity Pierre et Marie Curie, 2014.

[307] J. Maly and W. P. Ziemer. Fine Regularity of Solutions of EllipticPartial Differential Equations, volume 51 of Mathematical Surveys andMonograph. American Mathematical Society (AMS), 1997.

[308] J. E. Marsden and T. J. R. Hughes. Mathematical foundations of elas-ticity. Dover Publications Inc., New York, 1994. Corrected reprint ofthe 1983 original.

[309] G. Matthies, P. Skrzypacz, and L. Tobiska. A unified convergence anal-ysis for local projection stabilisations applied to the Oseen problem.M2AN Math. Model. Numer. Anal., 41(4):713–742, 2007.

[310] G. Matthies, P. Skrzypacz, and L. Tobiska. Stabilization of local projec-tion type applied to convection-diffusion problems with mixed boundaryconditions. Electron. Trans. Numer. Anal., 32:90–105, 2008. ISSN 1068-9613.

[311] V. G. Maz′ja and B. A. Plamenevskiı. Weighted spaces with inhomo-geneous norms, and boundary value problems in domains with conical

Page 21: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

Part XII. Appendices 843

points. In Elliptische Differentialgleichungen (Meeting, Rostock, 1977),pages 161–190. Wilhelm-Pieck-Univ., Rostock, 1978.

[312] W. McLean. Strongly elliptic systems and boundary integral equations.Cambridge University Press, Cambridge, 2000.

[313] C. Meray. Observations sur la legitimite de l’interpolation. Ann. Sci.Ecole Normale Sup., 3(1):165–176, 1884.

[314] N. Meyers and J. Serrin. H = W . Proc. Nat. Acad. Sci. U.S.A., 51:1055–1056, 1964.

[315] P. Monk. Analysis of a finite element method for Maxwell’s equations.SIAM J. Numer. Anal., 29(3):714–729, 1992.

[316] P. Monk. Finite element methods for Maxwell’s equations. NumericalMathematics and Scientific Computation. Oxford University Press, NewYork, 2003.

[317] P. Monk and L. Demkowicz. Discrete compactness and the approxi-mation of Maxwell’s equations in R3. Math. Comp., 70(234):507–523,2001.

[318] P. Monk and E. Suli. The adaptive computation of far-field patternsby a posteriori error estimation of linear functionals. SIAM J. Numer.Anal., 36(1):251–274, 1999.

[319] P. Morin, R. H. Nochetto, and K. G. Siebert. Data oscillation andconvergence of adaptive FEM. SIAM J. Numer. Anal., 38(2):466–488(electronic), 2000.

[320] K. W. Morton, A. Priestley, and E. Suli. Stability of the Lagrange-Galerkin method with non-exact integration. RAIRO, Anal. Num., 22(4):625–653, 1988.

[321] J. Necas. Sur une methode pour resoudre les equations aux deriveespartielles de type elliptique, voisine de la variationnelle. Ann. ScuolaNorm. Sup. Pisa, 16:305–326, 1962.

[322] J.-C. Nedelec. Mixed finite elements in R3. Numer. Math., 35(3):315–341, 1980.

[323] J.-C. Nedelec. A new family of mixed finite elements in R3. Numer.Math., 50:57–81, 1986.

[324] J.-C. Nedelec. Notions sur les techniques d’elements finis. SMAI Serieson Mathematics and Applications. Ellipses, Paris, 1991.

[325] L. Nirenberg. remarks on strongly elliptic partial differential equations.Comm. Pure Appl. Math., 8:649–675, 1955.

[326] J. Nitsche. Ein Kriterium fur die Quasi-Optimalitat des Ritzschen Ver-fahrens. Numer. Math., 11:346–348, 1968.

[327] J. Nitsche. Uber ein Variationsprinzip zur Losung von Dirichlet-Problemen bei Verwendung von Teilraumen, die keinen Randbedingun-gen unterworfen sind. Abh. Math. Sem. Univ. Hamburg, 36:9–15, 1971.

[328] J. Oden. Finite Elements: An Introduction, volume II : Finite ElementMethods, chapter 1. North Holland, Amsterdam, 1991. P.G. Ciarletand J.L. Lions, diteurs, Handbook of Numerical Analysis.

Page 22: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

844 References

[329] J. Oden, I. Babuska, and C. Baumann. A discontinuous hp finite elementmethod for diffusion problems. J. Comput. Phys., 146(2):491–519, 1998.

[330] E. T. Olsen and J. Douglas Jr. Bounds on spectral condition numbers ofmatrices arising in the p-version of the finite element method. Numer.Math., 69(3):333–352, 1995.

[331] J. E. Osborn. Spectral approximation for compact operators. Math.Comput., 29:712–725, 1975.

[332] P. Oswald. On a BPX-preconditioner for p1 elements. Computing, 51:125–133, 1993.

[333] R. G. Owens. Spectral approximations on the triangle. R. Soc. Lond.Proc. Ser. A Math. Phys. Eng. Sci., 454(1971):857–872, 1998.

[334] S. Ozisik, B. Riviere, and T. Warburton. On the constants in inverseinequalities in L2. Technical Report TR10-19, Rice University, 2010.

[335] A. T. Patera. Spectral methods for spatially evolving hydrodynamicflows. In Spectral methods for partial differential equations (Hampton,Va., 1982), pages 239–256. SIAM, Philadelphia, PA, 1984.

[336] L. E. Payne and H. F. Weinberger. An optimal Poincare inequality forconvex domains. Arch. Rational Mech. Anal., 5:286–292, 1960.

[337] I. Perugia and D. Schotzau. The hp-local discontinuous Galerkin methodfor low-frequency time-harmonic Maxwell equations. Math. Comp., 72(243):1179–1214, 2003.

[338] O. Pironneau. On the transport-diffusion algorithm and its applicationsto the Navier- Stokes equations. Numer. Math., 38:309–332, 1982.

[339] O. Pironneau. Methodes des elements finis pour les fluides. Masson,Paris, France, 1983.

[340] R. J. Plemmons. M -matrix characterizations. I. Nonsingular M -matrices. Linear Algebra and Appl., 18(2):175–188, 1977.

[341] M. J. D. Powell and M. A. Sabin. Piecewise quadratic approximationson triangles. ACM Trans. Math. Software, 3(4):316–325, 1977.

[342] J. Proriol. Sur une famille de polynomes a deux variables orthogonauxdans un triangle. C. R. Acad. Sci. Paris, 245:2459–2461, 1957.

[343] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differ-ential Equations, volume 23 of Springer Series in Computational Math-ematics. Springer-Verlag, second edition, 1997.

[344] R. Rannacher. On Chorin’s projection method for the incompressibleNavier-Stokes equations. In The Navier-Stokes Equations II—Theoryand Numerical Methods (Oberwolfach, 1991), volume 1530 of LectureNotes in Math., pages 167–183. Springer, Berlin, Germany, 1992.

[345] R. Rannacher and R. L. Scott. Some optimal error estimates for piece-wise linear finite element approximations. Math. Comp., 38(158):437–445, 1982.

[346] R. Rannacher and S. Turek. Simple nonconforming quadrilateral Stokeselement. Numer. Methods Partial Differential Equations, 8(2):97–111,1992.

Page 23: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

Part XII. Appendices 845

[347] J. Rauch. Boundary value problems with nonuniformly characteristicboundary. J. Math. Pures Appl. (9), 73(4):347–353, 1994.

[348] P.-A. Raviart and J.-M. Thomas. A mixed finite element method forsecond order elliptic problems. In E. M. I. Galligani, editor, Mathemat-ical Aspects of the Finite Element Method, volume 606 of Lecture Notesin Mathematics. Springer–Verlag, New York, 1977.

[349] P.-A. Raviart and J. M. Thomas. Primal hybrid finite element methodsfor 2nd order elliptic equations. Math. Comp., 31(138):391–413, 1977.

[350] P.-A. Raviart and J.-M. Thomas. Introduction a l’analyse numeriquedes equations aux derivees partielles. Masson, 1983.

[351] S. Rebay. Efficient unstructured mesh generation by means of Delaunaytriangulation and Bowyer-Watson algorithm. J. Comput. Phys., 106:125–138, 1993.

[352] S. I. Repin. Computable majorants of constants in the Poincare andFriedrichs inequalities. J. Math. Sci. (N. Y.), 186(2):307–321, 2012.Problems in mathematical analysis. No. 66.

[353] B. Riviere, M. Wheeler, and V. Girault. Improved energy estimates forinterior penalty, constrained and discontinuous Galerkin methods forelliptic problems. I. Comput. Geosci., 8:337–360, 1999.

[354] B. Riviere, M. F. Wheeler, and V. Girault. A priori error estimates forfinite element methods based on discontinuous approximation spaces forelliptic problems. SIAM J. Numer. Anal., 39(3):902–931 (electronic),2001.

[355] T. J. Rivlin. An introduction to the approximation of functions. DoverPublications Inc., New York, 1981. Corrected reprint of the 1969 origi-nal, Dover Books on Advanced Mathematics.

[356] M. E. Rognes, R. C. Kirby, and A. Logg. Efficient assembly of H(div)and H(curl) conforming finite elements. SIAM J. Sci. Comput., 31(6):4130–4151, 2009/10.

[357] V. Ruas. Circumventing discrete Korn’s inequalities in convergenceanalyses of nonconforming finite element approximations of vector fields.Z. Angew. Math. Mech., 76(8):483–484, 1996.

[358] W. Rudin. Real and complex analysis. McGraw-Hill Book Co., NewYork, third edition, 1987. ISBN 0-07-054234-1.

[359] C. Runge. Uber empirische Funktionen and die Interpolation zwischenaquidistanten Ordinaten. Zeit. Math. Physik, 46:224–243, 1901.

[360] T. Russell. Time stepping along characteristics with incomplete iter-ation for a Galerkin approximation of miscible displacement in porousmedia. SIAM J. Numer. Anal., 22:970–1013, 1985.

[361] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS PublishingCompany, Boston, 1996.

[362] Y. Saad and M. Schultz. GMRES: a generalized minimal residual algo-rithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist.Comput., 7:856–869, 1986.

Page 24: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

846 References

[363] G. Savare. Regularity results for elliptic equations in Lipschitz domains.J. Func. Anal., 152:176–201, 1998.

[364] F.-J. Sayas. Aubin-Nitsche estimates are equivalent to compact embed-dings. BIT, 44(2):287–290, 2004.

[365] A. H. Schatz. An observation concerning Ritz-Galerkin methods withindefinite bilinear forms. Math. Comp., 28:959–962, 1974.

[366] A. H. Schatz and L. B. Wahlbin. On the quasi-optimality in L∞ of theH1-projection into finite element spaces. Math. Comp., 38(157):1–22,1982.

[367] J. Schoberl. Commuting quasi-interpolation operators for mixed finiteelements. Technical Report ISC-01-10-MATH, Texas A&M University,2001. URL www.isc.tamu.edu/publications-reports/tr/0110.pdf.

[368] J. Schoberl. A multilevel decomposition result in h(curl). In P. Wessel-ing, C. W. Oosterlee, and P. Hemker, editors, Multigrid, Multilevel andMultiscale Methods, EMG 2005, 2005.

[369] J. Schoberl. A posteriori error estimates for Maxwell equations. Math.Comp., 77(262):633–649, 2008.

[370] J. Schoberl and C. Lehrenfeld. Domain decomposition preconditioningfor high order hybrid discontinuous Galerkin methods on tetrahedralmeshes. In Advanced finite element methods and applications, volume 66of Lect. Notes Appl. Comput. Mech., pages 27–56. Springer, Heidelberg,2013.

[371] J. Schoberl and S. Zaglmayr. High order Nedelec elements with localcomplete sequence properties. COMPEL, 24(2):374–384, 2005.

[372] C. Schwab. p- and hp-finite element methods. Numerical Mathemat-ics and Scientific Computation. The Clarendon Press Oxford UniversityPress, New York, 1998. Theory and applications in solid and fluid me-chanics.

[373] R. Scott and S. Zhang. Finite element interpolation of nonsmooth func-tions satisfying boundary conditions. Math. Comp., 54(190):483–493,1990.

[374] I. Sebestova and T. Vejchodsky. Two-sided bounds for eigenvalues ofdifferential operators with applications to Friedrichs, Poincare, trace,and similar constants. SIAM J. Numer. Anal., 52(1):308–329, 2014.

[375] J. Shen. On pressure stabilization method and projection method forunsteady Navier-Stokes equations. In R. V. D. K. G. Richter, editor,Advances in Computer Methods for Partial Differential Equations, pages658–662. IMACS, 1992.

[376] J. Shen. On error estimates of projection methods for the Navier-Stokesequations: first-order schemes. SIAM J. Numer. Anal., 29:57–77, 1992.

[377] J. Shen. A remark on the projection-3 method. Int. J. Numer. MethodsFluids, 16(3):249–253, 1993.

[378] J. Shen. On error estimates of projection methods for the Navier-Stokes equations: second-order schemes. Math. Comp., 65(215):1039–1065, 1996.

Page 25: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

Part XII. Appendices 847

[379] R. Showalter. Monotone Operators in Banach Spaces and NonlinearPartial Differential Equations, volume 49 of Mathematical Surveys andMonographs. American Mathematical Society (AMS), 1996.

[380] C. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes, ii. J. Comput. Phys., 83:32–78,1989.

[381] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys., 77(2):439 – 471,1988.

[382] J. Simon. Compact sets in the space Lp(0, T ;B). Ann. Mat. Pura Appl.(4), 146:65–96, 1987.

[383] S. Sobolev. Sur un theoreme d’analyse fonctionnelle. Rec. Math. [Mat.Sbornik] N.S., 4(46):471–497, 1938.

[384] S. L. Sobolev. Applications of Functional Analysis in MathematicalPhysics, volume VII of translations of Mathematical Monographs. Amer-ican Mathematical Society (AMS), second edition, 1963.

[385] V. A. Solonnikov. Lp-estimates for solutions of the heat equation in adihedral angle. Rend. Mat. Appl. (7), 21(1-4):1–15, 2001.

[386] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linearsystems. SIAM J. Sci. Statist. Comput., 10(1):36–52, 1989.

[387] R. J. Spiteri and S. J. Ruuth. A new class of optimal high-orderstrong-stability-preserving time discretization methods. SIAM J. Nu-mer. Anal., 40(2):469–491 (electronic), 2002.

[388] E. Stein. Singular Integrals and Differentiability Properties of Functions.Princeton, NJ, Princeton University Press, 1970.

[389] R. Stevenson. Optimality of a standard adaptive finite element method.Found. Comput. Math., 7(2):245–269, 2007.

[390] R. Stevenson. The completion of locally refined simplicial partitionscreated by bisection. Math. Comp., 77(261):227–241 (electronic), 2008.

[391] G. Strang. Variational crimes in the finite element method. In A. Aziz,editor, The Mathematical Foundations of the Finite Element Methodwith Applications to Partial Differential Equations, New York, NY,1972. Academic Press.

[392] G. Strang and G. J. Fix. An Analysis of the Finite Element Method.Prentice-Hall Inc., Englewood Cliffs, NJ, 1973. Prentice-Hall Series inAutomatic Computation.

[393] J. C. Strikwerda and Y. S. Lee. The accuracy of the fractional stepmethod. SIAM J. Numer. Anal., 37(1):37–47, 1999.

[394] A. H. Stroud. Approximate Calculation of Multiple Integrals. PrenticeHall, Englewood Cliffs, 1971.

[395] E. Suli. Convergence and nonlinear stability of the Lagrange-Galerkinmethod for the Navier-Stokes equations. Numer. Math., 53(4):459–483,1988.

[396] D. B. Szyld. The many proofs of an identity on the norm of obliqueprojections. Numer. Algorithms, 42(3-4):309–323, 2006.

Page 26: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

848 References

[397] E. Tadmor. Convergence of spectral methods for nonlinear conservationlaws. SIAM J. Numer. Anal., 26(1):30–44, 1989.

[398] L. Tartar. An introduction to Sobolev spaces and interpolation spaces,volume 3 of Lecture Notes of the Unione Matematica Italiana. Springer,Berlin; UMI, Bologna, 2007.

[399] M. Taylor, B. Wingate, and R. Vincent. An algorithm for computingFekete points in the triangle. SIAM J. Numer. Anal., 38(5):1707–1720(electronic), 2000.

[400] R. Temam. Sur l’approximation de la solution des equations de Navier-Stokes par la methode des pas fractionnaires ii. Arch. Rat. Mech. Anal.,33:377–385, 1969.

[401] R. Temam. Navier–Stokes Equations, volume 2 of Studies in Mathemat-ics and its Applications. North-Holland, 1977.

[402] A. ten Eyck and A. Lew. Discontinuous Galerkin methods for non-linearelasticity. Internat. J. Numer. Methods Engrg., 67(9):1204–1243, 2006.

[403] V. Thomee. Galerkin finite element methods for parabolic problems,volume 25 of Springer Series in Computational Mathematics. Springer,1997.

[404] L. Timmermans, P. Minev, and F. van de Vosse. An approximate pro-jection scheme for incompressible flow using spectral elements. Int. J.Numer. Methods Fluids, 22:673–688, 1996.

[405] L. Tobiska and R. Verfurth. Analysis of a streamline diffusion finiteelement method for the Stokes and Navier–Stokes equations. SIAM J.Numer. Anal., 33(1):107–127, 1996.

[406] S. Turek. Efficient Solvers for Incompressible Flow Problems. An Al-gorithmic and Computational Approach, volume 6 of Lecture Notes inComputational Science and Engineering. Springer-Verlag, Berlin, Ger-many, 1999.

[407] M. Turner, R. Clough, H. Martin, and L. Topp. Stiffness and deflectionanalysis of complex structures. J. Aero. Sci., 23:805–823, 1956.

[408] H. van der Vorst. Bi-CGStab: a more stably converging variant of CG-Sfor the solution of nonsymmetric linear systems. SIAM J. Sci. Statist.Comput., 13:631–644, 1992.

[409] J. van Kan. A second-order accurate pressure-correction scheme forviscous incompressible flow. SIAM J. Sci. Statist. Comput., 7(3):870–891, 1986.

[410] A. Veeser and R. Verfurth. Poincare constants for finite element stars.IMA J. Numer. Anal., 32(1):30–47, 2012.

[411] T. Vejchodsky and P. Solın. Discrete maximum principle for Poissonequation with mixed boundary conditions solved by hp-FEM. Adv. Appl.Math. Mech., 1(2):201–214, 2009.

[412] R. Verfurth. Error estimates for a mixed finite element approximationof the Stokes equation. RAIRO, Anal. Num., 18:175–182, 1984.

[413] R. Verfurth. A posteriori error estimations and adaptive mesh-refinement techniques. J. Comput. Appl. Math., 50:67–83, 1994.

Page 27: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

Part XII. Appendices 849

[414] R. Verfurth. A Review of a Posteriori Error Estimation and AdaptiveMesh-Refinement Techniques. Wiley, Chichester, UK, 1996.

[415] R. Verfurth. On the constants in some inverse inequalities for finiteelement functions. Technical report, Ruhr-Universitat Bochum, 2004.

[416] R. Verfurth. Robust a posteriori error estimates for nonstationaryconvection-diffusion equations. SIAM J. Numer. Anal., 43(4):1783–1802, 2005.

[417] R. Verfurth. A posteriori error estimation techniques for finite elementmethods. Numerical Mathematics and Scientific Computation. OxfordUniversity Press, Oxford, 2013.

[418] M. Vohralık. On the discrete Poincare-Friedrichs inequalities for non-conforming approximations of the Sobolev space H1. Numer. Funct.Anal. Optim., 26(7-8):925–952, 2005.

[419] T. Warburton and J. S. Hesthaven. On the constants in hp-finite elementtrace inverse inequalities. Comput. Methods Appl. Mech. Engrg., 192(25):2765–2773, 2003.

[420] A. J. Wathen. Realistic eigenvalue bounds for the Galerkin mass matrix.IMA J. Numer. Anal., 7(4):449–457, 1987.

[421] D. Watson. Computing the n-dimensional Delaunay tesselation withapplications to Voronoı polytopes. Comput. J., 24:167–172, 1981.

[422] W. L. Wendland. Strongly elliptic boundary integral equations. In Thestate of the art in numerical analysis (Birmingham, 1986), volume 9 ofInst. Math. Appl. Conf. Ser. New Ser., pages 511–562. Oxford Univ.Press, New York, 1987.

[423] M. Wheeler. A priori L2 error estimates for Galerkin approximationsto parabolic partial differential equations. SIAM J. Numer. Anal., 10:723–759, 1973.

[424] M. F. Wheeler. An elliptic collocation-finite element method with inte-rior penalties. SIAM J. Numer. Anal., 15:152–161, 1978.

[425] H. Whitney. Geometric Integration Theory. Princeton University Press,Princeton, NJ, 1957.

[426] D. R. Wilhelmsen. A Markov inequality in several dimensions. J. Ap-proximation Theory, 11:216–220, 1974.

[427] J. Xin, N. Guo, and W. Cai. On the construction of well-conditionedhierarchical bases for tetrahedral H(curl)-conforming Nedelec element.J. Comput. Math., 29(5):526–542, 2011.

[428] J. Xu and L. Zikatanov. A monotone finite element scheme forconvection-diffusion equations. Math. Comp., 68(228):1429–1446, 1999.

[429] J. Xu and L. Zikatanov. Some observations on Babuska and Brezzitheories. Numer. Math., 94(1):195–202, 2003.

[430] K. Yosida. Functional Analysis. Classics in Mathematics. Springer-Verlag, Berlin, Germany, 1995. Reprint of the sixth (1980) edition.

[431] S. T. Zalesak. Fully multidimensional flux-corrected transport algo-rithms for fluids. J. Comput. Phys., 31(3):335–362, 1979.

Page 28: References - math.tamu.eduguermond/M661_FALL_2015/ref.pdf · Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition,

850 References

[432] E. Zeidler. Applied Functional Analysis, volume 108 of Applied Mathe-matical Sciences. Springer-Verlag, New York, NY, 1995.

[433] M. Zlamal. Curved elements in the finite element method. I. SIAM J.Numer. Anal., 10:229–240, 1973.

[434] M. Zlamal. Curved elements in the finite element method. II. SIAM J.Numer. Anal., 11:347–362, 1974.