30
References Abramowitz, M. & Stegun, I. A. (eds) (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, New York. Ait-Sahalia, Y. (1996). Testing continuous-time models for the spot interest rate, Rev. Financial Studies 9: 385–426. Ait-Sahalia, Y. & Lo, A. (2000). Non-parametric estimation of state-price densities implicit in financial asset prices, J. Finance 53: 499–548. Albanese, C. & Chen, O. X. (2005). Discrete credit barrier models. Quant. Finance 5(3): 247–256. Andersen, L. & Andreasen, J. (2000). Volatility skews and extensions of the LIBOR market model, Appl. Math. Finance 7: 1–32. Ansel, J. P. & Stricker, C. (1994). Couverture des actifs contingents, Ann. Inst. H. Poincar´ e Probab. Statist. 30: 303–315. Arrow, K. J. (1965). Aspects of the Theory of Risk-Bearing, Helsinki: Yrj¨o Hahnsson Foundation. Artzner, P., Delbaen, F., Eber, J. M. & Heath, D. (1997). Thinking coherently, Risk 10: 68–71. Bachelier, L. (1900). Th´ eorie de la sp´ eculation, Annales de l’Ecole Normale Sup´ erieure, Series 3 17: 21–86. Bajeux-Besnainou, I. & Portait, I. (1997). The numeraire portfolio: A new perspec- tive on financial theory, The European Journal of Finance 3: 291–309. Bakshi, G., Cao, C. & Chen, Z. (1997). Empirical performance of alternative option pricing models, J. Finance LII: 2003–2049. Barndorff-Nielsen, O. (1977). Exponentially decreasing distributions for the loga- rithm of particle size, Proceedings of the Royal Society of London, Series A 353: 401–419. Barndorff-Nielsen, O. (1978). Hyperbolic distributions and distributions on hyper- bolae, Scand. J. Statist. 5: 151–157. Barndorff-Nielsen, O. (1995). Normal-Inverse Gaussian processes and the modelling of stock returns, Technical report, University of Aarhus. 300. Barndorff-Nielsen, O. (1998). Processes of normal inverse Gaussian type, Finance Stoch. 2(1): 41–68. Barndorff-Nielsen, O. & Blaesild, P. (1981). Hyperbolic distributions and ramifi- cations: Contributions to theory and application, in C. Taillie, G. P. Patil & B. A. Baldessari (eds), Statistical Distributions in Scientific Work, Vol. 4, Rei- del, Dordrecht, pp. 19–44. E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance, Springer Finance, © Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010

References - link.springer.com978-3-540-47856-0/1.pdf · 670 References Clewlow, L. & Xu, X. ... Arbitrage pricing with stochastic volatility, Proceedings of AFFI Conference, Paris

  • Upload
    buinhan

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

References

Abramowitz, M. & Stegun, I. A. (eds) (1972). Handbook of Mathematical Functionswith Formulas, Graphs, and Mathematical Tables, Dover, New York.

Ait-Sahalia, Y. (1996). Testing continuous-time models for the spot interest rate,Rev. Financial Studies 9: 385–426.

Ait-Sahalia, Y. & Lo, A. (2000). Non-parametric estimation of state-price densitiesimplicit in financial asset prices, J. Finance 53: 499–548.

Albanese, C. & Chen, O. X. (2005). Discrete credit barrier models. Quant. Finance5(3): 247–256.

Andersen, L. & Andreasen, J. (2000). Volatility skews and extensions of the LIBORmarket model, Appl. Math. Finance 7: 1–32.

Ansel, J. P. & Stricker, C. (1994). Couverture des actifs contingents, Ann. Inst. H.Poincare Probab. Statist. 30: 303–315.

Arrow, K. J. (1965). Aspects of the Theory of Risk-Bearing, Helsinki: Yrjo HahnssonFoundation.

Artzner, P., Delbaen, F., Eber, J. M. & Heath, D. (1997). Thinking coherently, Risk10: 68–71.

Bachelier, L. (1900). Theorie de la speculation, Annales de l’Ecole NormaleSuperieure, Series 3 17: 21–86.

Bajeux-Besnainou, I. & Portait, I. (1997). The numeraire portfolio: A new perspec-tive on financial theory, The European Journal of Finance 3: 291–309.

Bakshi, G., Cao, C. & Chen, Z. (1997). Empirical performance of alternative optionpricing models, J. Finance LII: 2003–2049.

Barndorff-Nielsen, O. (1977). Exponentially decreasing distributions for the loga-rithm of particle size, Proceedings of the Royal Society of London, Series A353: 401–419.

Barndorff-Nielsen, O. (1978). Hyperbolic distributions and distributions on hyper-bolae, Scand. J. Statist. 5: 151–157.

Barndorff-Nielsen, O. (1995). Normal-Inverse Gaussian processes and the modellingof stock returns, Technical report, University of Aarhus. 300.

Barndorff-Nielsen, O. (1998). Processes of normal inverse Gaussian type, FinanceStoch. 2(1): 41–68.

Barndorff-Nielsen, O. & Blaesild, P. (1981). Hyperbolic distributions and ramifi-cations: Contributions to theory and application, in C. Taillie, G. P. Patil &B. A. Baldessari (eds), Statistical Distributions in Scientific Work, Vol. 4, Rei-del, Dordrecht, pp. 19–44.

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,Springer Finance,© Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010

668 References

Barndorff-Nielsen, O. & Shephard, N. (2001). Modelling by Levy processes for fi-nancial econometrics, in O. E. Barndorff-Nielsen, T. Mikosch & S. Resnick(eds), Levy Processes - Theory and Applications, Birkhauser, Boston, pp. 283–318.

Barndorff-Nielsen, O. & Shephard, N. (2003). Realised power variation and stochas-tic volatility models, Bernoulli 9: 243–265.

Barraquand, J. (1993). Numerical valuation of high dimensional multivariate Euro-pean securities. (working paper).

Barrett, R., Berry, M., Chan, T. F., Demmel, J., Dongarra, J., Eijkhout, V., Pozo,R., Romine, C. & van der Vorst, H. (1994). Templates for the Solution of LinearSystems: Building Blocks for Iterative Methods, SIAM, Philadelphia.

Basle (1995). Planned Supplement to the Capital Accord to Incorporate Market Risk,Basle Committee on Banking and Supervision, Basle, Switzerland.

Becherer (2001). The numeraire portfolio for unbounded semimartingales, FinanceStoch. 5: 327–341.

Beckers, S. (1980). The constant elasticity of variance model and its implications foroption pricing, J. Finance 35(3): 661–673.

Bjork, T., Kabanov, Y. & Runggaldier, W. (1997). Bond market structure in thepresence of marked point processes, Math. Finance 7: 211–239.

Black, F. (1976). Studies in stock price volatility changes, Proceedings of the 1976Business Meeting of the Business and Economic Statistics Section, AmericanStatistical Association, pp. 177–181.

Black, F. (1995). Interest rates as options, J. Finance 1(7): 1371–1376.Black, F., Derman, E. & Toy, W. (1990). A one-factor model of interest rates and

its application to treasury bond options, Financial Analysts J. 46(1): 33–39.Black, F. & Karasinski, P. (1991). Bond and option pricing when short rates are

lognormal, Financial Analysts J. pp. 52–59.Black, F. & Scholes, M. (1973). The pricing of options and corporate liabilities, J.

Political Economy 81: 637–654.Blattberg, R. C. & Gonedes, N. (1974). A comparison of the stable and Student

distributions as statistical models for stock prices, J. Business 47: 244–280.Bochner, S. (1955). Harmonic Analysis and the Theory of Probability, University of

California Press, Berkeley, CA.Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, J.

Econometrics 31: 307–327.Bollerslev, T., Chou, R. & Kroner, K. (1992). ARCH modelling in finance: A review

of the theory and empirical evidence, J. Econometrics 52: 5–59.Borodin, A. N. & Salminen, P. (2002). Handbook of Brownian Motion - Facts and

Formulae, 2nd edn, Birkhauser.Bouchaud, J. P., Sagna, N., Cont, R., El Karoui, N. & Potters, M. (1999). Phe-

nomenology of the interest rate curve, Appl. Math. Finance 6: 209–241.Boyle, P. P. (1977). A Monte Carlo approach, J. Financial Economics 4: 323–338.Breeden, D. T. & Litzenberger, R. (1978). Prices of state-contingent claims implicit

in option prices, J. Business 51: 621–651.Breiman, L. (1960). Investment policies for expanding business optimal in a long

run sense, Naval Research Logistics Quarterly 7(4): 647–651.Breiman, L. (1961). Optimal gambling systems for favorable games, Proceedings of

the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol.I, pp. 65–78.

References 669

Breymann, W., Dias, A. & Embrechts, P. (2003). Dependence structures for multi-variate high-frequency data in finance, Quant. Finance. 3(1): 1–14.

Breymann, W., Kelly, L. & Platen, E. (2006). Intraday empirical analysis andmodeling of diversified stock indices, Asia-Pacific Financial Markets 12(1): 1–28.

Brigo, D. & Mercurio, F. (2005). Interest Rate Models - Theory and Practice, 2ndedn, Springer Finance.

Brigo, D., Mercurio, F. & Rapisarda, F. (2004). Smile at the uncertainty, Risk 17(5):97–101.

Browne, S. (1999). The risks and rewards of minimizing shortfall probability, J.Portfolio Manag. 25(4): 76–85.

Bru, M.-F. (1991). Wishart processes, J. Theoret. Probab. 4(4): 725–751.Bruti-Liberati, N., Nikitopoulos-Sklibosios, C. & Platen, E. (2006). First order

strong approximations of jump diffusions, Monte Carlo Methods Appl. 12(3-4): 191–209.

Bruti-Liberati, N., Nikitopoulos-Sklibosios, C. & Platen, E. (2009). Real-worldjump-diffusion term structure models, Quant. Finance 1–15, iFirst.

Bruti-Liberati, N. & Platen, E. (2004). On the efficiency of simplified weak Taylorschemes for Monte Carlo simulation in finance, Computational Science - ICCS2004, Vol. 3039 of Lecture Notes in Comput. Sci., Springer, pp. 771–778.

Bruti-Liberati, N. & Platen, E. (2007a). Approximation of jump diffusions in financeand economics, Computational Economics 29(3-4): 283–312.

Bruti-Liberati, N. & Platen, E. (2007b). Strong approximations of stochastic differ-ential equations with jumps, J. Comput. Appl. Math. 205(2): 982–1001.

Buchen, P. W. (2004). The pricing of dual-expiry exotics, Quant. Finance. 4(1):101–108.

Buchen, P. W. & Konstandatos, O. (2005). A new method of pricing lookback op-tions, Math. Finance 15(2): 245–259.

Buhlmann, H. (1970). Mathematical Methods in Risk Theory, Springer.Buhlmann, H. & Platen, E. (2005). A discrete time benchmark approach for insur-

ance and finance, ASTIN Bulletin 33(2): 153–172.Carr, P., Geman, H., Madan, D. & Yor, M. (2003). Stochastic volatility for Levy

processes, Math. Finance 13(3): 345–382.Carr, P. & Wu, L. (2003). Finite moment log stable processes and option pricing, J.

Finance 58: 753–777.Cherny, A. S. (2000). On the strong and weak solutions of stochastic differential

equations governing Bessel processes, Stochastics Stochastics Rep. 70: 213–219.Chesney, M. & Scott, L. O. (1989). Pricing European currency options: A comparison

of the modified Black-Scholes model and a random variance model, J. Financialand Quantitative Analysis 24: 267–284.

Christensen, M. M. & Larsen, K. (2007). No arbitrage and the growth optimalportfolio, Stochastic Anal. Appl. 25(1): 255–280.

Christensen, M. M. & Platen, E. (2005). A general benchmark model for stochasticjump sizes, Stochastic Anal. Appl. 23(5): 1017–1044.

Christensen, M. M. & Platen, E. (2007). Sharpe ratio maximization and expectedutility when asset prices have jumps, Int. J. Theor. Appl. Finance 10(8): 1339–1364.

Clark, P. K. (1973). A subordinated stochastic process model with finite variancefor speculative prices, Econometrica 41: 135–159.

670 References

Clewlow, L. & Xu, X. (1994). The dynamics of stochastic volatility, FORC Preprint94/53, Financial Options Research Centre, University of Warwick.

Cochrane, J. H. (2001). Asset Pricing, Princeton University Press.Constatinides, G. M. (1992). A theory of the nominal structure of interest rates,

Rev. Financial Studies 5: 531–552.Cont, R. & da Fonseca, J. (2002). Dynamics of implied volatility surfaces, Quant.

Finance. 2: 45–60.Cont, R. & Tankov, P. (2004). Financial Modelling with Jump Processes, Financial

Mathematics Series, Chapman & Hall/CRC.Corsi, F., Zumbach, G., Muller, U. & Dacorogna, M. (2001). Consistent high-

precision volatility from high-frequency data, Economic Notes 30(2): 183–204.Courtadon, G. (1982). The pricing of options on default-free bonds, J. Financial

and Quantitative Analysis 17: 75–100.Cover, T. (1991). Universal portfolios, Math. Finance 1: 1–29.Cox, J. C. (1975). Notes on option pricing I: constant elasticity of variance diffusions.

Stanford University, (working paper, unpublished).Cox, J. C. (1996). The constant elasticity of variance option pricing model, J. Port-

folio Manag. (Special Issue): 15–17.Cox, J. C., Ingersoll, J. E. & Ross, S. A. (1985). A theory of the term structure of

interest rates, Econometrica 53: 385–407.Cox, J. C. & Ross, S. A. (1976). The valuation of options for alternative stochastic

processes, J. Financial Economics 3: 145–166.Cox, J. C., Ross, S. A. & Rubinstein, M. (1979). Option pricing: A simplified ap-

proach, J. Financial Economics 7: 229–263.Craddock, M. & Platen, E. (2004). Symmetry group methods for fundamental solu-

tions, J. of Differential Equations 207(2): 285–302.Curran, M. (1994). Rata gems, Risk 7(3).Dacorogna, M., Muller, U., Pictet, O. V. & De Vries, C. G. (2001). Extremal forex

returns in extremely large data sets, Extremes 4(2): 105–127.Davis, M. H. A. (1997). Option pricing in incomplete markets, in M. A. H. Dempster

& S. R. Pliska (eds), Mathematics of Derivative Securities, Cambridge Univer-sity Press, pp. 227–254.

Delbaen, F. & Schachermayer, W. (1994). A general version of the fundamentaltheorem of asset pricing, Math. Ann. 300: 463–520.

Delbaen, F. & Schachermayer, W. (1995). Arbitrage possibilities in Bessel processesand their relation to local martingales, Probab. Theory Related Fields 102: 357–366.

Delbaen, F. & Schachermayer, W. (1998). The fundamental theorem of asset pricingfor unbounded stochastic processes, Math. Ann. 312: 215–250.

Delbaen, F. & Schachermayer, W. (2006). The Mathematics of Arbitrage, SpringerFinance, Springer.

Delbaen, F. & Shirakawa, H. (1997). Squared Bessel processes and their applica-tions to the square root interest rate model. Preprint. Department of IndustrialEngineering and Management, Tokio Institute of Technology.

Delbaen, F. & Shirakawa, H. (2002). A note on option pricing for the constantelasticity of variance model, Asia-Pacific Financial Markets 9(2): 85–99.

Derman, E. & Kani, I. (1994a). Riding on a smile, Risk 7: 32–39.Derman, E. & Kani, I. (1994b). The volatility smile and its implied tree, Goldman

Sachs Quantitative Strategies Research Notes.

References 671

Dickson, D. C. M. (1992). On the distribution of the surplus prior to ruin, Insurance:Mathematics and Economics 11: 191–207.

Dickson, D. C. M. (1993). On the distribution of the claim causing ruin, Insurance:Mathematics and Economics 12: 143–154.

Dimson, E., Marsh, P. & Staunton, M. (2002). Triumph of the Optimists: 101 Yearsof Global Investment Returns, Princeton University Press.

Doob, J. L. (1953). Stochastic Processes, Wiley, New York.Doob, J. L. (1994). Measure Theory, Vol. 143 of Graduate Texts in Mathematics,

Springer.Dothan, L. U. (1978). On the term structure of interest rates, J. Financial Economics

6: 59–69.Duffie, D. (2001). Dynamic Asset Pricing Theory, 3rd edn, Princeton, University

Press.Duffie, D. & Kan, R. (1994). Multi-factor term structure models, Philos. Trans. Roy.

Soc. London Ser. A 347: 577–580.Duffie, D., Pan, J. & Singleton, K. (2000). Transform analysis and option pricing

for affine jump diffusions, Econometrica 68: 1343–1376.Dumas, B., Fleming, J. & Whaley, R. (1998). Implied volatility functions: Empirical

tests, J. Finance 53: 2059–2106.Dupire, B. (1992). Arbitrage pricing with stochastic volatility, Proceedings of AFFI

Conference, Paris.Dupire, B. (1993). Model art, Risk 6: 118–124.Dupire, B. (1994). Pricing with a smile, Risk 7: 18–20.Eberlein, E. (2002). Applications of generalized Levy motions in finance, in O. E.

Barndorff-Nielsen, T. Mikosch & S. Resnick (eds), Levy Processes: Theory andApplication, Birkhauser Boston, pp. 319–336.

Eberlein, E. & Keller, U. (1995). Hyperbolic distributions in finance, Bernoulli 1:281–299.

Einstein, A. (1905). On the movement of small particles suspended in stationaryliquid demanded by molecular-kinetic theory of heat, Ann. Phys. 17.

Elliott, R. J. (1982). Stochastic Calculus and Applications, Springer.Elliott, R. J. & Kopp, P. E. (2005). Mathematics of Financial Markets, Springer

Finance, 2nd edn, Springer, New York.Elliott, R. J. & van der Hoek, J. (2003). A general fractional white noise theory and

applications to finance, Math. Finance 13: 301–330.Embrechts, P., Kluppelberg, C. & Mikosch, T. (1997). Modelling Extremal Events.

For Insurance and Finance, Vol. 33 of Appl. Math., Springer.Embrechts, P., McNeil, A. & Straumann, D. (2002). Correlation and dependencies

in risk management: Properties and pitfalls, Risk Management: Value at Riskand Beyond, Cambridge Univ. Press, pp. 176–223.

Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates ofthe variance of U.K. inflation, Econometrica 50(4): 987–1007.

Engle, R. F. & Bollerslev, T. (1986). Modelling the persistence of conditional vari-ances. With comments and a reply by the authors, Econometric Rev. 5(1):1–87.

Fama, E. F. (1963). Mandelbrot and the stable Paretian hypothesis, J. Business 36:420–429. Reprinted in Cootner (1964), Chapter 14, 297-306.

Fama, E. F. (1965). The behavior of stock-market prices, J. Business 38: 34–105.Fang, K. T., Kotz, S. & Ng, K. W. (1990). Symmetric Multivariate and Related

Distributions, Chapman Hall, London.

672 References

Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Vol.1, 3rd edn, Wiley, New York.

Fergusson, K. & Platen, E. (2006). On the distributional characterization of log-returns of a world stock index, Appl. Math. Finance 13(1): 19–38.

Fernholz, E. R. (2002). Stochastic Portfolio Theory, Vol. 48 of Appl. Math., Springer.Fernholz, E. R., Karatzas, I. & Kardaras, C. (2005). Diversity and relative arbitrage

in equity markets, Finance Stoch. 9(1): 1–27.Fischer, P. & Platen, E. (1999). Applications of the balanced method to stochastic

differential equations in filtering, Monte Carlo Methods Appl. 5(1): 19–38.Fishman, G. S. (1996). Monte Carlo: Concepts, Algorithms and Applications,

Springer Ser. Oper. Res., Springer.Fleming, W. H. & Sheu, S.-J. (1999). Optimal long term growth rate of expected

utility of wealth, Ann. Appl. Probab. 9: 871–903.Follmer, H. (1981). Calcul d’Ito sans probabilites, Seminar on Probability, XV, Vol.

850 of Lecture Notes in Math., Springer, Berlin, pp. 143–150. (Univ. Strasbourg,Strasbourg, 1979/1980), (in French).

Follmer, H. & Schiedt, A. (2002). Stochastic Finance. An Introduction In DiscreteTime, Vol. 27 of de Gruyter Studies in Mathematics, Walter de Gruyter & Co.,Berlin.

Follmer, H. & Schweizer, M. (1991). Hedging of contingent claims under incompleteinformation, in M. H. A. Davis & R. J. Elliott (eds), Applied Stochastic Analysis,Vol. 5 of Stochastics Monogr., Gordon and Breach, London/New York, pp. 389–414.

Follmer, H. & Schweizer, M. (1993). A microeconomic approach to diffusion modelsfor stock prices, Math. Finance 3: 1–23.

Follmer, H. & Sondermann, D. (1986). Hedging of non-redundant contingent claims,in W. Hildebrandt & A. Mas-Colell (eds), Contributions to Mathematical Eco-nomics, North Holland, pp. 205–223.

Frey, R. (1997). Derivative asset analysis in models with level-dependent andstochastic volatility. Mathematics of Finance, Part II, CWI Quarterly 10(1):1–34.

Friedman, A. (1975). Stochastic Differential Equations and Applications, Vol. I, Vol.28 of Probability and Mathematical Statistics, Academic Press, New York.

Gaines, J. G. & Lyons, T. J. (1994). Random generation of stochastic area integrals,SIAM J. Appl. Math. 54(4): 1132–1146.

Geman, H., Madan, D. & Yor, M. (2001). Asset prices are Brownian motion: onlyin business time, Quantitative Analysis in Financial Markets, World Sci. Pub-lishing, pp. 103–146.

Geman, S., El Karoui, N. & Rochet, J. C. (1995). Changes of numeraire, changes ofprobability measures and pricing of options, J. Appl. Probab. 32: 443–458.

Gerber, H. U. (1979). An Introduction to Mathematical Risk Theory, Vol. 8 of S. S.Heubner Foundation Monograph Series, Richard D. Irwin, Homewood.

Gerber, H. U. (1997). Life Insurance Mathematics, Springer, Berlin. 3rd edition.Gerber, H. U. & Shiu, E. S. W. (1997). The joint distribution of the time of ruin, the

surplus immediately before ruin, and the deficit at ruin, Insurance: Mathematicsand Economics 21: 129–137.

Ghysels, E., Harvey, A. & Renault, E. (1996). Stochastic volatility, Statistical Meth-ods in Finance, Vol. 14 of Handbook of Statist., North-Holland, pp. 119–191.

Gibson, M. S. (2001). Incorporating event risk into Value at Risk. Discussion PaperFederal Reserve Board, Washington (http://www.gloriamundi.org).

References 673

Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering, Vol. 53 ofAppl. Math., Springer.

Glasserman, P. & Merener, N. (2003). Numerical solution of jump-diffusion LIBORmarket models, Finance Stoch. 7(1): 1–27.

Going-Jaeschke, A. & Yor, M. (2003). A survey and some generalizations of Besselprocesses, Bernoulli 9(2): 313–349.

Gorovoi, V. & Linetsky, V. (2004). Black’s model of interest rates as options, eigen-function expansions and Japanese interest rates, Math. Finance 14(1): 49–78.

Grandell, J. (1991). Aspects of Risk Theory, Springer, New York.Hakansson, N. H. (1971). Multi-period mean-variance analysis: towards a general

theory of portfolio choice, J. Finance 26: 857–884.Hakansson, N. H. & Ziemba, W. T. (1995). Capital growth theory, in R. Jarrow,

V. Maksimovic & W. T. Ziemba (eds), Handbooks in Operations Research andManagement Science: Finance, Vol. 9, Elsevier Science, pp. 65–86.

Hansen, L. P. (1982). Large sample properties of the generalized method of moments,Econometrica 50: 1029–1054.

Hansen, L. P. & Jagannathan, R. (1991). Implications of security market data formodels of dynamic economies, J. Political Economy 99: 225–262.

Harrison, J. M. & Kreps, D. M. (1979). Martingale and arbitrage in multiperiodsecurities markets, J. Economic Theory 20: 381–408.

Harrison, J. M. & Pliska, S. R. (1981). Martingales and stochastic integrals in thetheory of continuous trading, Stochastic Process. Appl. 11(3): 215–260.

Harrison, J. M. & Pliska, S. R. (1983). A stochastic calculus model of continuoustrading: Complete markets, Stochastic Process. Appl. 15(3): 313–316.

Heath, D., Jarrow, R. & Morton, A. (1992). Bond pricing and the term structure ofinterest rates: A new methodology for contingent claim valuation, Econometrica60(1): 77–105.

Heath, D., Hurst, S. R. & Platen, E. (2001). Modelling the stochastic dynamics ofvolatility for equity indices, Asia-Pacific Financial Markets 8: 179–195.

Heath, D. & Platen, E. (2002a). Consistent pricing and hedging for a modifiedconstant elasticity of variance model, Quant. Finance. 2(6): 459–467.

Heath, D. & Platen, E. (2002b). Perfect hedging of index derivatives under a minimalmarket model, Int. J. Theor. Appl. Finance 5(7): 757–774.

Heath, D. & Platen, E. (2002c). A variance reduction technique based on integralrepresentations, Quant. Finance. 2(5): 362–369.

Heath, D. & Platen, E. (2003). Pricing of index options under a minimal marketmodel with lognormal scaling, Quant. Finance. 3(6): 442–450.

Heath, D. & Platen, E. (2005a). Currency derivatives under a minimal market modelwith random scaling, Int. J. Theor. Appl. Finance 8(8): 1157–1177.

Heath, D. & Platen, E. (2005b). Understanding the implied volatility surface foroptions on a diversified index, Asia-Pacific Financial Markets 11(1): 55–77.

Heath, D. & Platen, E. (2006). Local volatility function models under a benchmarkapproach, Quant. Finance. 6(3): 197–2006.

Heath, D., Platen, E. & Schweizer, M. (2001). A comparison of two quadratic ap-proaches to hedging in incomplete markets, Math. Finance 11(4): 385–413.

Heath, D. & Schweizer, M. (2000). Martingales versus PDEs in finance: An equiva-lence result with examples, J. Appl. Probab. 37(4): 947–957.

Heston, S. L. (1993). A closed-form solution for options with stochastic volatilitywith applications to bond and currency options, Rev. Financial Studies 6(2):327–343.

674 References

Heyde, C. C. (1997). Quasi-Likelihood and Its Application. A General Approach toOptimal Parameter Estimation, Springer Ser. Statist., Springer.

Heyde, C. C. (1999). A risky asset model with strong dependence through fractalactivity time, J. Appl. Probab. 36: 1234–1239.

Heyde, C. C. & Liu, S. (2001). Empirical realities for a minimal description riskyasset model. The need for fractal features, J. Korean Math. Soc. 38: 1047–1059.

Ho, T. S. Y. & Lee, S. B. (1986). Term structure movements and pricing of interestrate claims, J. Finance 41: 1011–1029.

Hofmann, N., Platen, E. & Schweizer, M. (1992). Option pricing under incomplete-ness and stochastic volatility, Math. Finance 2(3): 153–187.

Hull, J. (2000). Options, Futures and Other Derivatives, Prentice-Hall, New Jersey.Hull, J. & White, A. (1987). The pricing of options on assets with stochastic volatil-

ities, J. Finance 42: 281–300.Hull, J. & White, A. (1988). The use of control variate techniques in option pricing,

J. Financial and Quantitative Analysis 23(3): 237–251.Hull, J. & White, A. (1990). Pricing interest rate derivative securities, Rev. Financial

Studies 3: 573–592.Hulley, H., Miller, S. & Platen, E. (2005). Benchmarking and fair pricing applied to

two market models, Kyoto Economic Review 74(1): 85–118.Hurst, S. R. (1997). On the Stochastic Dynamics of Stock Market Volatility, PhD

thesis, ANU, Canberra.Hurst, S. R. & Platen, E. (1997). The marginal distributions of returns and volatil-

ity, in Y. Dodge (ed.), L1-Statistical Procedures and Related Topics, Vol. 31of IMS Lecture Notes - Monograph Series, Institute of Mathematical StatisticsHayward, California, pp. 301–314.

Hurst, S. R., Platen, E. & Rachev, S. T. (1999). Option pricing for a logstable assetprice model, Math. Comput. Modelling 29(10-12): 105–119.

Ikeda, N. & Watanabe, S. (1989). Stochastic Differential Equations and DiffusionProcesses, 2nd edn, North-Holland. (first edition (1981)).

Ingersoll, J. E. (2000). Digital contracts: Simple tools for pricing complex derivatives,The Journal of Business 73(1): 67–88.

Jackel, P. (2002). Monte Carlo Methods in Finance, Wiley.Jacod, J. & Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd

edn, Springer.Jamshidian, F. (1989). An exact bond option pricing formula, J. Finance 44: 205–

209.Jeanblanc, M., Yor, M. & Chesney, M. (2009). Mathematical Methods for Financial

Markets, Springer Finance, Springer.Johnson, H. & Shanno, D. (1987). Option pricing when the variance is changing, J.

Financial and Quantitative Analysis 22: 143–151.Johnson, N. L., Kotz, S. & Balakrishnan, N. (1995). Continuous Univariate Distri-

butions, Vol. 2 of Wiley Series in Probability and Mathematical Statistics, 2ndedn, John Wiley & Sons.

Joy, C., Boyle, P. P. & Tan, K. S. (1996). Quasi Monte Carlo methods in numericalfinance, Management Science 42(6): 926–938.

Kahaner, D., Moler, C. & Nash, S. (1989). Numerical Methods and Software., Pren-tice Hall Series in Computational Mathematics, Englewood Cliffs.

Karatzas, I. & Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus, 2ndedn, Springer.

References 675

Karatzas, I. & Shreve, S. E. (1998). Methods of Mathematical Finance, Vol. 39 ofAppl. Math., Springer.

Kelly, J. R. (1956). A new interpretation of information rate, Bell Syst. Techn. J.35: 917–926.

Kelly, L. (1999). An assessment of Black-Scholes hedging of index options. Universityof Technology, Sydney; Honours Thesis Bachelor of Mathematics & Finance.

Kelly, L., Platen, E. & Sørensen, M. (2004). Estimation for discretely observeddiffusions using transform functions, Stochastic Methods and Their Applications,Vol. 41A of J. Appl. Probab., Applied Prob. Trust, pp. 99–118.

Kessler, M. (1997). Estimation of an ergodic diffusion from discrete observations,Scand. J. Statist. 24: 211–229.

Khanna, A. & Kulldorff, M. (1999). A generalization of the mutual fund theorem,Finance Stoch. 3(2): 167–185.

Kloeden, P. E. & Platen, E. (1999). Numerical Solution of Stochastic DifferentialEquations, Vol. 23 of Appl. Math., Springer. Third corrected printing.

Kloeden, P. E., Platen, E. & Schurz, H. (2003). Numerical Solution of SDE’s ThroughComputer Experiments, Universitext, Springer. Third corrected printing.

Korn, R. (1997). Optimal Portfolios, World Scientific.Kou, S. G. (2002). A jump diffusion model for option pricing, Management Science

48: 1086–1101.Krylov, N. V. (1980). Controlled Diffusion Processes, Vol. 14 of Appl. Math.,

Springer.Kubilius, K. & Platen, E. (2002). Rate of weak convergence of the Euler approx-

imation for diffusion processes with jumps, Monte Carlo Methods Appl. 8(1):83–96.

Kuchler, U., Neumann, K., Sørensen, M. & Streller, A. (1999). Stock returns andhyperbolic distributions, Math. Comput. Modelling 29: 1–15.

Kunita, H. (1984). Stochastic differential equations and stochastic flows of diffeo-morphisms, Ecole d’ete de probabilites de Saint-Flour, XII, Vol. 1097 of LectureNotes in Math., Springer, pp. 143–303.

Lamberton, D. & Lapeyre, B. (1996). Introduction to Stochastic Calculus Applied toFinance, Chapman & Hall, London. Translation from French.

Latane, H. (1959). Criteria for choice among risky ventures, J. Political Economy38: 145–155.

Le, T. (2005). Stochastic market volatility models, Applied. Financial EconomicsLetters 1: 177–188.

Le, T. & Platen, E. (2006). Approximating the growth optimal portfolio with adiversified world stock index, J. Risk Finance 7(5): 559–574.

Ledoit, O., Santa-Clara, P. & Wolf, M. (2003). Flexible multivariate GARCH model-ing with an application to international stock markets, Rev. of Economic Studies85(3): 735–747.

Lewis, A. L. (2000). Option Valuation Under Stochastic Volatility, Finance Press,Newport Beach.

Lintner, J. (1965). The valuation of risk assets and the selection of risky investmentsin stock portfolios and capital budgets, Rev. Econom. Statist. 47: 13–37.

Lo, C. F., Yuen, P. H. & Hui, C. H. (2000). Constant elasticity of variance optionpricing model with time dependent parameters, Int. J. Theor. Appl. Finance3(4): 661–674.

Loewenstein, M. & Willard, G. A. (2000). Local martingales, arbitrage, and viability:Free snacks and cheap thrills, Econometric Theory 16(1): 135–161.

676 References

Long, J. B. (1990). The numeraire portfolio, J. Financial Economics 26: 29–69.Longstaff, F. A. (1989). A nonlinear general equilibrium model of the term structure

of interest rates, J. Financial Economics 23: 195–224.Luenberger, D. G. (1969). Optimization by Vector Space Methods, Wiley, New York.Lukacs, E. (1960). Characteristic Functions, number 5 in Griffin’s Statistical Mono-

graphs & Courses, Hafner Publishing Co., New York.Madan, D. & Milne, F. (1991). Option pricing with (V.G.) martingale components,

Math. Finance 1: 39–56.Madan, D. & Seneta, E. (1990). The variance gamma (V.G.) model for share market

returns, J. Business 63: 511–524.Maghsoodi, Y. (1996). Mean-square efficient numerical solution of jump-diffusion

stochastic differential equations, SANKHYA A 58(1): 25–47.Maghsoodi, Y. (1998). Exact solutions and doubly efficient approximations of jump-

diffusion Ito equations, Stochastic Anal. Appl. 16(6): 1049–1072.Maghsoodi, Y. & Harris, C. J. (1987). In-probability approximation and simula-

tion of nonlinear jump-diffusion stochastic differential equations, IMA J. Math.Control Inform. 4(1): 65–92.

Mandelbrot, B. (1963). The variation of certain speculative prices, J. Business 36:394–419. Reprinted in Cootner (1964), Chapter 15, 307-337.

Mandelbrot, B. (1967). The variation of some other speculative prices, J. Business40: 393–413.

Mandelbrot, B. & Taylor, H. M. (1967). On the distribution of stock price differences,Math. Oper. Res. 15: 1057–1062.

Margrabe, W. (1978). The value of an option to exchange one asset for another, TheJournal of Finance 33(1): 177–186.

Markowitz, H. (1952). Portfolio selection, J. Finance VII(1): 77–91.Markowitz, H. (1959). Portfolio Selection: Efficient Diversification of Investment,

Wiley, New York.Markowitz, H. (1976). Investment for the long run: New evidence for an old rule, J.

Finance XXXI(5): 1273–1286.Markowitz, H. & Usmen, N. (1996a). The likelihood of various stock market return

distributions, Part 1: Principles of inference, J. Risk & Uncertainty 13(3): 207–219.

Markowitz, H. & Usmen, N. (1996b). The likelihood of various stock market returndistributions, Part 2: Empirical results, J. Risk & Uncertainty 13(3): 221–247.

Marsh, T. A. & Rosenfeld, E. R. (1983). Stochastic processes for interest rates andequilibrium bond prices, J. Financial Economics 38: 635–650.

Maruyama, G. (1955). Continuous Markov processes and stochastic equations, Rend.Circ. Mat. Palermo 4: 48–90.

Matacz, A. & Bouchaud, J. P. (2000). An empirical investigation of the forwardinterest rate term structure, Int. J. Theor. Appl. Finance 3(4): 703–729.

McNeil, A., Frey, R. & Embrechts, P. (2005). Quantitative Risk Management, Prince-ton University Press.

Melino, A. & Turnbull, S. (1990). Pricing foreign currency options with stochasticvolatility, J. Econometrics 45: 239–265.

Mendel, J. (1995). Lessons in Estimation Theory for Signal Processing, Communi-cations and Control, Prentice Hall.

Merton, R. C. (1973a). An intertemporal capital asset pricing model, Econometrica41: 867–888.

References 677

Merton, R. C. (1973b). Theory of rational option pricing, Bell J. Econ. ManagementSci. 4: 141–183.

Merton, R. C. (1976). Option pricing when underlying stock returns are discontin-uous, J. Financial Economics 2: 125–144.

Merton, R. C. (1992). Continuous-Time Finance, Blackwell, Oxford.Mikulevicius, R. & Platen, E. (1988). Time discrete Taylor approximations for Ito

processes with jump component, Math. Nachr. 138: 93–104.Miller, S. & Platen, E. (2005). A two-factor model for low interest rate regimes,

Asia-Pacific Financial Markets 11(1): 107–133.Miller, S. & Platen, E. (2008). Analytic pricing of contingent claims under the real

world measure, Int. J. Theor. Appl. Finance 11(8): 841–867.Milstein, G. N. (1974). Approximate integration of stochastic differential equations,

Theory Probab. Appl. 19: 557–562.Milstein, G. N. (1995). Numerical Integration of Stochastic Differential Equations,

Mathematics and Its Applications, Kluwer.Milstein, G. N., Platen, E. & Schurz, H. (1998). Balanced implicit methods for stiff

stochastic systems, SIAM J. Numer. Anal. 35(3): 1010–1019.Miltersen, K. R. & Schwartz, E. (1998). Pricing of options on commodity futures with

stochastic term structure of convenience yields and interest rates, J. Financialand Quantitative Analysis 33: 33–59.

Miyahara, Y. & Novikov, A. A. (2002). Geometric Levy process pricing model, Proc.Steklov Inst. Math. 2(237): 176–191.

Mossin, J. (1966). Equilibrium in a capital asset market, Econometrica 3: 768–783.Musiela, M. & Rutkowski, M. (2005). Martingale Methods in Financial Modelling,

Vol. 36 of Appl. Math., 2nd edn, Springer.Nelsen, R. (1999). An Introduction to Copulas, Springer, New York.Nelson, D. B. (1990). ARCH models as diffusion approximations, J. Econometrics

45: 7–38.Neyman, J. & Pearson, E. S. (1928). On the use and interpolation of certain test

criteria for purposes of statistical inference, Biometrika 20A: 175–240 and 263–294.

Niederreiter, H. (1992). Random Number Generation and Quasi-Monte-Carlo Meth-ods, SIAM, Philadelphia, PA.

Nielsen, L. T. & Vassalou, M. (2004). Sharpe ratios and alphas in continuous time,J. Financial and Quantitative Analysis 39(1): 141–152.

Novikov, A. A. (1972). On an identity for stochastic integrals, Theory Probab. Appl.17: 717–720.

Osborne, M. F. M. (1959). Brownian motion in the stock market, Math. Oper. Res.7: 145–173.

Paskov, S. & Traub, J. (1995). Faster valuation of financial derivatives, J. PortfolioManag. pp. 113–120.

Pearson, N. & Sun, T. S. (1989). A test of the Cox, Ingersoll, Ross model of theterm structure of interest rates using the method of moments. Sloan School ofManagement, Massachusetts Institute of Technology (working paper).

Picard, P. (1994). On some measures of the severity of ruin in the classical Poissonmodel, Insurance: Mathematics and Economics 14: 107–115.

Pivitt, B. (1999). Accessing the Intel® Random Number Generator with CDSA,Technical report, Intel® Platform Security Division.

Platen, E. (1982a). An approximation method for a class of Ito processes with jumpcomponent, Liet. Mat. Rink. 22(2): 124–136.

678 References

Platen, E. (1982b). A generalized Taylor formula for solutions of stochastic differ-ential equations, SANKHYA A 44(2): 163–172.

Platen, E. (1984). Beitrage zur zeitdiskreten Approximation von Itoprozessen. Ha-bilitation, Academy of Sciences, Berlin.

Platen, E. (1992). Higher-order weak approximation of Ito diffusions by Markovchains, Probab. Engrg. Inform. Sci. 6: 391–408.

Platen, E. (1995). On weak implicit and predictor-corrector methods, Math. Comput.Simulation 38: 69–76.

Platen, E. (1997). A non-linear stochastic volatility model, Technical report, Aus-tralian National University, Canberra, Financial Mathematics Research Re-ports. FMRR 005-97.

Platen, E. (1999). A short term interest rate model, Finance Stoch. 3(2): 215–225.Platen, E. (2001). A minimal financial market model, Trends in Mathematics,

Birkhauser, pp. 293–301.Platen, E. (2002). Arbitrage in continuous complete markets, Adv. in Appl. Probab.

34(3): 540–558.Platen, E. (2004a). A benchmark framework for risk management, Stochastic Pro-

cesses and Applications to Mathematical Finance, Proceedings of the Rit-sumeikan Intern. Symposium, World Scientific, pp. 305–335.

Platen, E. (2004b). A class of complete benchmark models with intensity basedjumps, J. Appl. Probab. 41: 19–34.

Platen, E. (2004c). Modeling the volatility and expected value of a diversified worldindex, Int. J. Theor. Appl. Finance 7(4): 511–529.

Platen, E. (2005a). An alternative interest rate term structure model, Int. J. Theor.Appl. Finance 8(6): 717–735.

Platen, E. (2005b). Diversified portfolios with jumps in a benchmark framework,Asia-Pacific Financial Markets 11(1): 1–22.

Platen, E. (2005c). On the role of the growth optimal portfolio in finance, AustralianEconomic Papers 44(4): 365–388.

Platen, E. (2006a). A benchmark approach to asset management, J. Asset Manage-ment 6(6): 390–405.

Platen, E. (2006b). Capital asset pricing for markets with intensity based jumps,International Conference Stochastic Finance 2004, Springer, pp. 157–182.

Platen, E. (2006c). A parsimonious financial market model. (working paper, Uni-versity of Technology, Sydney).

Platen, E. & Rebolledo, R. (1985). Weak convergence of semimartingales and dis-cretization methods, Stochastic Process. Appl. 20: 41–58.

Platen, E. & Rebolledo, R. (1996). Principles for modelling financial markets, J.Appl. Probab. 33: 163–172.

Platen, E. & Schweizer, M. (1998). On feedback effects from hedging derivatives,Math. Finance 8(1): 67–84.

Platen, E. & Stahl, G. (2003). A structure for general and specific market risk,Computational Statistics 18(3): 355–373.

Platen, E. & Wagner, W. (1982). On a Taylor formula for a class of Ito processes,Probab. Math. Statist. 3(1): 37–51.

Pliska, S. R. (1997). Introduction to Mathematical Finance - Discrete Time Models,Blackwell Publishers.

Praetz, P. D. (1972). The distribution of share price changes, J. Business 45: 49–55.Prakasa Rao, B. L. S. (1999). Statistical Inference for Diffusion Type Processes,

Arnold Publishers, Oxford University Press.

References 679

Pratt, J. W. (1964). Risk aversion in the small and in the large, Econometrica 32:122–136.

Protter, P. (2004). Stochastic Integration and Differential Equations, 2nd edn,Springer.

Rao, C. R. (1973). Linear Statistical Inference and Its Applications, 2nd edn, Wiley,New York.

Raviart, P. A. & Thomas, J. M. (1983). Introduction to the Numerical Analysisof Partial Differential Equations, Collection of Applied Mathematics for theMaster’s Degree, Masson, Paris. (in French).

Revuz, D. & Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rdedn, Springer.

Richtmeyer, R. & Morton, K. (1967). Difference Methods for Initial-Value Problems,Interscience, New York.

Ripley, B. D. (1983). Stochastic Simulation, Wiley, New York.Rogers, L. C. G. (1997). The potential approach to the term structure of interest

rates and their exchange rates, Math. Finance 7: 157–176.Rogers, L. C. G. & Williams, D. (2000). Diffusions, Markov Processes and Martin-

gales: Ito Calculus, Vol. 2 of Cambridge Mathematical Library, 2nd edn, Cam-bridge University Press.

Ross, S. A. (1976). The arbitrage theory of capital asset pricing, J. Economic Theory13: 341–360.

Ross, S. M. (1990). A Course in Simulation, Macmillan.Rubinstein, M. (1976). The strong case for the generalized logarithmic utility model

as the premier model of financial markets, J. Finance 31: 551–571.Rubinstein, M. (1985). Nonparametric tests of alternative option pricing models

using all reported trades and quotes on the 30 most active CBOE option classesfrom August 23, 1976 through August 31, 1978, J. Finance 11: 455–480.

Samuelson, P. A. (1955). Brownian motion in the stock market. (Unpublishedmanuscript).

Samuelson, P. A. (1957). Intertemporal price equilibrium: A prologue to the theoryof speculation, Weltwirtschaftliches Archiv 79: 181–221.

Samuelson, P. A. (1963). Risk and uncertainty: A fallacy of large numbers, Scienta6: 1–6.

Samuelson, P. A. (1965a). Proof that properly anticipated prices fluctuate randomly,Industr. Manag. Rev. 6: 41–50.

Samuelson, P. A. (1965b). Rational theory of warrant pricing, Industrial Manage-ment Review 6(2): 13–32.

Samuelson, P. A. (1969). Life time portfolio selection, Rev. Econom. Statist. 51:239–246.

Samuelson, P. A. (1971). The fallacy of maximising the geometric mean in longsequences of investing or gambling, Proceedings of the National Academy ofScience pp. 2493–2496.

Samuelson, P. A. (1979). Why we should not make mean log of wealth big thoughyears to act are long, J. Banking and Finance 3: 305–307.

Sandmann, K. & Sondermann, D. (1994). On the stability of lognormal interest ratemodels. Discussion paper No. B-263, University Bonn.

Schonbucher, P. J. (1999). A market model for stochastic implied volatility, Philos.Trans. Roy. Soc. London Ser. A 357: 2071–2092.

Schonbucher, P. J. (2003). Credit Derivatives Pricing Models, Wiley, Chichester.

680 References

Schroder, M. (1989). Computing the constant elasticity of variance option pricingformula, J. Finance 44(1): 211–219.

Schweizer, M. (1995). On the minimal martingale measure and the Follmer-Schweizer decomposition, Stochastic Anal. Appl. 13: 573–599.

Scott, L. O. (1987). Option pricing when the variance changes randomly: Theory,estimation and an application, J. Financial and Quantitative Analysis 22: 419–438.

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium underconditions of risk, J. Finance 19: 425–442.

Sharpe, W. F. (1966). Mutual fund performance, J. Business 39: 119–138.Shaw, W. (1998). Pricing Derivatives with Mathematica, Cambridge University

Press.Shaw, W. (2005). New methods for simulating the Student t distribution - Direct use

of the inverse cumulative distribution. Nomura Centre for Quantitative Finance,Oxford (working paper).

Shiga, T. & Watanabe, S. (1973). Bessel diffusion as a one parameter family ofdiffsuion processes, Z. Wahrsch. Verw. Gebiete 27: 37–46.

Shiryaev, A. N. (1984). Probability, Springer.Sklar, A. (1959). Fonction de repartition a n-dimensions et leur marges, Publications

de l’Institute Statistique de l’Universite de Paris 8: 229–231.Smith, G. D. (1985). Numerical Solution of Partial Differential Equations: Finite

Difference Methods, 3rd edn, Clarendon Press, Oxford.Stein, E. M. & Stein, J. C. (1991). Stock price distributions with stochastic volatility:

An analytic approach, Rev. Financial Studies 4: 727–752.Stroock, D. W. & Varadhan, S. R. S. (1982). Multidimensional Diffusion Processes,

Vol. 233 of Grundlehren Math. Wiss., Springer.Stuart, A. & Ord, J. K. (1994). Kendall’s Advanced Theory of Statistics. Vol. 1.

Distribution Theory, 6th edn, Edward Arnold, London.Stutzer, M. J. (2000). A portfolio performance index, Financial Analysts J.

May/June: 52–61.Talay, D. & Tubaro, L. (1990). Expansion of the global error for numerical schemes

solving stochastic differential equations, Stochastic Anal. Appl. 8(4): 483–509.Tanaka, H. (1963). Note on continuous additive functionals of the 1-dimensional

Brownian path, Z. Wahrscheinlichkeitstheorie 1: 251–257.Tavella, D. & Randall, C. (2000). Pricing Financial Instruments. The Finite Differ-

ence Method, Wiley, New York.Taylor, S. J. & Xu, X. (1994). The magnitude of implied volatility smiles: Theory

and empirical evidence for exchange rates, Rev. Futures Markets 13: 355–380.Thorp, E. O. (1961). A favourable strategy for twenty-one, Proceedings of the Na-

tional Academy of Sciences, Vol. 47, pp. 110–112.Thorp, E. O. (1972). Portfolio choice and the Kelly criterion, Proceedings of the 1971

Business and Economics Section of the American Statistical Association, Vol.21, pp. 5–224.

Tobin, J. (1958a). Estimation of relationships for limited dependent variables,Econometrica 26: 24–36.

Tobin, J. (1958b). Liquidity preference as behaviour towards risk, Rev. of EconomicStudies 25(2): 65–86.

van der Hoek, J. & Elliott, R. J. (2006). Binomial Methods in Finance, SpringerFinance, Springer.

References 681

Vasicek, O. A. (1977). An equilibrium characterization of the term structure, J.Financial Economics 5: 177–188.

von Neumann, J. & Morgenstern, O. (1953). The Theory of Games and EconomicBehavior, 3rd edn, Princeton University Press, NJ.

Wagner, W. & Platen, E. (1978). Approximation of Ito integral equations. PreprintZIMM, Akad. Wissenschaften, DDR, Berlin.

Wei, L. & Wu, R. (2002). The joint distributions of several important actuarialdiagnostics in the classical risk model, Insurance: Mathematics and Economics30: 451–462.

Wiggins, J. B. (1987). Option values under stochastic volatility. Theory and empir-ical estimates, J. Financial Economics 19: 351–372.

Williams, J. B. (1936). Speculation and the carryover, The Quarterly Journal ofEconomics 50(3): 436–455.

Wilmott, P., Dewynne, J. & Howison, S. (1993). Option Pricing: Mathematical Mod-els and Computation, Oxford Financial Press.

Yamada, T. & Watanabe, S. (1971). On the uniqueness of solutions of stochasticdifferential equations, J. Math. Kyoto Univ. 11: 155–167.

Zhao, Y. & Ziemba, W. T. (2003). Intertemporal mean-variance efficiency with aMarkovian state price density. (working paper, University of British Columbia).

Ziemba, W. T. & Mulvey, J. M. (1998). Worldwide Asset and Liability Modeling,Cambridge University Press.

Author Index

Abramowitz, M., 14, 16, 18, 639, 657,659, 667

Ait-Sahalia, Y., 145, 183, 444, 667Albanese, C., 549, 667Andersen, L., 444, 667Andreasen, J., 444, 667Ansel, J. P., 520, 667Arrow, K. J., 408, 667Artzner, P., 69, 667

Bachelier, L., 109, 142, 667Bajeux-Besnainou, I., 321, 667Bakshi, G., 304, 667Balakrishnan, N., 16, 545, 660, 674Barndorff-Nielsen, O., 18, 19, 83, 84,

90, 126, 178, 259, 485, 569, 667,668

Barraquand, J., 577, 668Barrett, R., 607, 668Basle, 394, 668Becherer, 321, 668Beckers, S., 444, 456, 457, 668Berry, M., 607, 668Bjork, T., 260, 569, 668Black, F., 134, 142, 144, 281, 288, 337,

440, 441, 485, 668Blaesild, P., 83, 667Blattberg, R. C., 19, 84, 668Bochner, S., 81, 668Bollerslev, T., 238, 239, 441, 668, 671Borodin, A. N., 146, 147, 157, 158, 308,

668Bouchaud, J. P., 508, 668, 676Boyle, P. P., 551, 577, 668, 674

Breeden, D. T., 466, 468, 668Breiman, L., 372, 386, 403, 408, 668Breymann, W., 52, 494, 504, 505, 669Brigo, D., 381, 444, 509, 669Browne, S., 386, 669Bru, M.-F., 544, 669Bruti-Liberati, N., 522, 554, 569, 586,

669Buchen, P. W., 38, 49, 543, 669Buhlmann, H., 319, 321, 669

Cao, C., 304, 667Carr, P., 84, 509, 669Chan, T. F., 607, 668Chen, O. X., 549, 667Chen, Z., 304, 667Cherny, A. S., 271, 669Chesney, M., 304, 473, 475, 669, 674Chou, R., 441, 668Christensen, M. M., 260, 405, 520, 521,

535, 669Clark, P. K., 81, 669Clewlow, L., 442, 670Cochrane, J. H., 74, 339, 670Constatinides, G. M., 339, 670Cont, R., 183, 441, 443, 444, 481, 508,

668, 670Corsi, F., 178, 485, 670Courtadon, G., 145, 670Cover, T., 386, 670Cox, J. C., 103, 112, 143, 144, 444, 446,

456, 457, 591, 592, 596, 670Craddock, M., 148, 149, 670Curran, M., 576, 670

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,Springer Finance,© Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010

684 Author Index

Dacorogna, M., 74, 178, 485, 670Davis, M. H. A., 428, 670da Fonseca, J., 443, 444, 670Delbaen, F., 69, 143, 312, 337, 377, 389,

445, 455, 456, 667, 670Demmel, J., 607, 668Derman, E., 144, 442, 461, 466, 468,

668, 670Dewynne, J., 600, 681De Vries, C. G., 74, 670Dias, A., 52, 494, 669Dickson, D. C. M., 131, 671Dimson, E., 344, 490, 671Dongarra, J., 607, 668Doob, J. L., 106, 172, 173, 671Dothan, L. U., 144, 671Duffie, D., 144, 316, 339, 569, 671Dumas, B., 444, 671Dupire, B., 461, 466, 468, 671

Eber, J. M., 69, 667Eberlein, E., 20, 84, 90, 126, 259, 671Eijkhout, V., 607, 668Einstein, A., 109, 671Elliott, R. J., 172, 173, 175, 199, 591,

596, 671, 681El Karoui, N., 350, 352, 508, 668, 672Embrechts, P., 52, 68, 69, 95, 97, 494,

669, 671, 676Engle, R. F., 238, 239, 478, 671

Fama, E. F., 82, 85, 671Fang, K. T., 68, 671Feller, W., 81, 672Fergusson, K., XI, 85, 89, 473, 494, 672Fernholz, E. R., 389, 401, 672Fischer, P., 567, 672Fishman, G. S., 570, 573, 672Fleming, J., 444, 671Fleming, W. H., 143, 672Follmer, H., 69, 141, 143, 208, 337, 435,

672Frey, R., 68, 441, 477, 672, 676Friedman, A., 362, 672

Gaines, J. G., 564, 672Geman, H., 84, 90, 126, 669, 672Geman, S., 350, 352, 672Gerber, H. U., 129–131, 319, 672

Ghysels, E., 441, 672Gibson, M. S., 70, 673Glasserman, P., 551, 569, 578, 673Going-Jaeschke, A., 310, 673Gonedes, N., 19, 84, 668Gorovoi, V., 144, 673Grandell, J., 129, 130, 673

Hakansson, N. H., 372, 386, 403, 408,420, 423, 673

Hansen, L. P., 74, 339, 673Harris, C. J., 569, 676Harrison, J. M., 319, 337, 377, 436, 673Harvey, A., 441, 672Heath, D., XI, 69, 362, 383, 384, 435,

444, 446, 448, 468, 470, 473, 474,478, 489, 494, 503, 505, 509, 591,667, 673

Heston, S. L., 473, 475, 674Heyde, C. C., 78, 199, 674Ho, T. S. Y., 144, 241, 674Hofmann, N., 435, 473, 674Howison, S., 600, 681Hui, C. H., 444, 676Hull, J., 145, 178, 473, 475, 674Hulley, H., 501, 502, 536, 540, 545–547,

674Hurst, S. R., 18, 37, 82, 85, 88, 473,

474, 478, 494, 673, 674

Ikeda, N., 259, 271, 364, 674Ingersoll, J. E., 112, 144, 543, 670, 674

Jackel, P., 578, 674Jacod, J., 174, 674Jagannathan, R., 339, 673Jamshidian, F., 384, 674Jarrow, R., 383, 384, 673Jeanblanc, M., 304, 674Johnson, H., 473, 674Johnson, N. L., 16, 545, 660, 674Joy, C., 577, 674

Kabanov, Y., 260, 569, 668Kahaner, D., 552, 674Kan, R., 144, 316, 671Kani, I., 442, 461, 466, 468, 670Karasinski, P., 144, 668Karatzas, I., 106, 172, 175, 189, 195,

229, 271, 304, 306, 322, 338, 344,

Author Index 685

348, 387, 389, 422, 425, 433, 445,452, 672, 675

Kardaras, C., 389, 672

Keller, U., 20, 84, 90, 126, 259, 671Kelly, J. R., 169, 320, 372, 408, 423,

675

Kelly, L., 440, 493, 504, 505, 669, 675Kessler, M., 473, 493, 675

Khanna, A., 407, 408, 675Kloeden, P. E., 189, 195, 238, 239, 248,

273, 551, 552, 558, 563–565, 567,573, 578, 583, 584, 586, 675

Kluppelberg, C., 95, 97, 671

Konstandatos, O., 38, 49, 543, 669Kopp, P. E., 596, 671

Korn, R., 422, 675Kotz, S., 16, 68, 545, 660, 671, 674

Kou, S. G., 128, 257, 675Kreps, D. M., 319, 337, 377, 436, 673

Kroner, K., 441, 668Krylov, N. V., 247, 675

Kubilius, K., 569, 586, 675Kuchler, U., 20, 84, 675

Kulldorff, M., 407, 408, 675Kunita, H., 363, 675

Lamberton, D., 610, 675

Lapeyre, B., 610, 675Larsen, K., 520, 669

Latane, H., 372, 386, 403, 408, 675Le, T., 402, 444, 675

Ledoit, O., 444, 675Lee, S. B., 144, 241, 674

Lewis, A. L., 444, 445, 448, 458, 478,675

Linetsky, V., 144, 673

Lintner, J., 332, 415, 675Litzenberger, R., 466, 468, 668

Liu, S., 199, 674Lo, A., 444, 667

Lo, C. F., 444, 676Loewenstein, M., 376, 377, 455, 676

Long, J. B., 169, 320–322, 325, 372,676

Longstaff, F. A., 145, 676Luenberger, D. G., 412, 676

Lukacs, E., 37, 676Lyons, T. J., 564, 672

Madan, D., 21, 84, 90, 126, 259, 568,669, 672, 676

Maghsoodi, Y., 569, 676Mandelbrot, B., 82, 85, 676Margrabe, W., 547, 676Markowitz, H., 85, 88, 372, 386, 403,

406, 407, 410, 412, 494, 533, 676Marsh, P., 344, 490, 671Marsh, T. A., 144, 676Maruyama, G., 560, 676Matacz, A., 508, 676McNeil, A., 68, 69, 671, 676Melino, A., 473, 475, 676Mendel, J., 73, 677Mercurio, F., 381, 444, 509, 669Merener, N., 569, 673Merton, R. C., 134, 144, 226, 238, 241,

254, 257, 288, 319, 332, 403, 407,408, 415, 419, 424, 535, 536, 539,547, 677

Mikosch, T., 95, 97, 671Mikulevicius, R., 569, 586, 677Miller, S., 144, 452, 456, 457, 499, 501,

502, 536, 540, 542, 545–547, 674,677

Milne, F., 259, 676Milstein, G. N., 563, 567, 578, 589, 677Miltersen, K. R., 496, 677Miyahara, Y., 259, 677Moler, C., 552, 674Morgenstern, O., 419, 681Morton, A., 383, 384, 673Morton, K., 600, 605, 679Mossin, J., 332, 415, 677Muller, U., 74, 178, 485, 670Mulvey, J. M., 386, 681Musiela, M., 381, 384, 542, 677

Nash, S., 552, 674Nelsen, R., 51, 677Nelson, D. B., 239, 477, 478, 677Neumann, K., 20, 84, 675Neyman, J., 80, 677Ng, K. W., 68, 671Niederreiter, H., 577, 578, 677Nielsen, L. T., 408, 677Nikitopoulos-Sklibosios, C., 522, 569,

669Novikov, A. A., 259, 348, 677

686 Author Index

Ord, J. K., 85, 680Osborne, M. F. M., 82, 485, 677

Pan, J., 569, 671Paskov, S., 577, 677Pearson, E. S., 80, 677Pearson, N., 144, 677Picard, P., 131, 677Pictet, O. V., 74, 670Pivitt, B., 553, 678Platen, E., XI, 18, 19, 68, 70, 82, 85,

86, 88, 89, 92, 143–145, 148, 149,169, 189, 195, 238, 239, 248, 253,260, 273, 321, 322, 334, 335, 373,376, 382, 388–391, 394, 396, 402,405, 407, 413, 415, 420, 422, 423,435, 442, 444, 446, 448, 452, 456,457, 461, 468, 470, 473, 474, 478,488, 489, 492–494, 496, 497, 499,501–505, 509, 518, 520–523, 526,528, 535, 536, 540, 542, 545–547,551, 552, 554, 558, 563–565, 567,569, 573, 578, 580, 581, 583–586,591, 597, 599, 604, 669, 670,672–675, 677, 678, 681

Pliska, S. R., 319, 337, 377, 436, 596,673, 679

Portait, R., 321, 667Potters, M., 508, 668Pozo, R., 607, 668Praetz, P. D., 19, 84, 679Prakasa Rao, B. L. S., 473, 493, 679Pratt, J. W., 408, 679Protter, P., 125, 127, 174, 176, 184,

189, 191, 192, 195, 197, 199, 201,202, 211, 225, 229, 262, 309, 679

Rachev, S. T., 82, 674Randall, C., 600, 680Rao, C. R., 80, 679Rapisarda, F., 509, 669Raviart, P. A., 611, 679Rebolledo, R., 143, 569, 678Renault, E., 441, 672Revuz, D., 147, 184, 263, 304, 306, 308,

328, 348, 486, 679Richtmeyer, R., 600, 605, 679Ripley, B. D., 577, 679Rochet, J. C., 350, 352, 672

Rogers, L. C. G., 186, 273, 679Rogers, L. C. G., 339, 679Romine, C., 607, 668Rosenfeld, E. R., 144, 676Ross, S. A., 103, 112, 144, 319, 337,

444, 446, 456, 457, 591, 592, 596,670, 679

Ross, S. M., 576, 679Rubinstein, M., 103, 386, 442, 591, 592,

596, 670, 679Runggaldier, W., 260, 569, 668Rutkowski, M., 381, 384, 542, 677

Sagna, N., 508, 668Salminen, P., 146, 147, 157, 158, 308,

668Samuelson, P. A., 82, 134, 142, 403,

485, 539, 679Sandmann, K., 145, 680Santa-Clara, P., 444, 675Schachermayer, W., 337, 377, 389, 455,

670Schiedt, A., 69, 672Scholes, M., 134, 142, 281, 288, 337,

441, 485, 668Schonbucher, P. J., 444, 549, 680Schroder, M., 143, 444, 446, 456, 457,

680Schurz, H., 552, 567, 578, 675, 677Schwartz, E., 496, 677Schweizer, M., 141, 143, 337, 362, 435,

436, 442, 473, 672–674, 678, 680Scott, L. O., 473, 475, 669, 680Seneta, E., 21, 84, 90, 126, 259, 568,

676Shanno, D., 473, 674Sharpe, W. F., 332, 403, 406–409, 412,

415, 680Shaw, W., 17, 456, 457, 557, 600, 605,

606, 680Shephard, N., 126, 178, 259, 485, 668Sheu, S.-J., 143, 672Shiga, T., 305, 680Shirakawa, H., 143, 312, 445, 456, 670Shiryaev, A. N., 8, 29, 33, 50, 93, 94,

174, 674, 680Shiu, E. S. W., 131, 672Shreve, S. E., 106, 172, 175, 189, 195,

229, 271, 304, 306, 322, 338, 344,

Author Index 687

348, 387, 422, 425, 433, 445, 452,675

Singleton, K., 569, 671Sklar, A., 51, 680Smith, G. D., 600, 680Sondermann, D., 145, 337, 672, 680Sørensen, M., 20, 84, 493, 675Stahl, G., 68, 335, 391, 394, 496, 526,

678Staunton, M., 344, 490, 671Stegun, I. A., 14, 16, 18, 639, 657, 659,

667Stein, E. M., 473, 475, 680Stein, J. C., 473, 475, 680Straumann, D., 68, 69, 671Streller, A., 20, 84, 675Stricker, C., 520, 667Stroock, D. W., 160, 364, 680Stuart, A., 85, 680Stutzer, M. J., 386, 680Sun, T. S., 144, 677

Talay, D., 583, 680Tan, K. S., 577, 674Tanaka, H., 263, 680Tankov, P., 183, 441, 481, 670Tavella, D., 600, 680Taylor, H. M., 82, 676Taylor, S. J., 442, 680Thomas, J. M., 611, 679Thorp, E. O., 372, 386, 403, 408, 680Tobin, J., 403, 408, 412, 680, 681Toy, W., 144, 668Traub, J., 577, 677Tubaro, L., 583, 680Turnbull, S., 473, 475, 676

Usmen, N., 85, 88, 494, 676

van der Hoek, J., 199, 591, 596, 671,681

van der Vorst, H., 607, 668Varadhan, S. R. S., 160, 364, 680Vasicek, O. A., 107, 144, 241, 243, 681Vassalou, M., 408, 677von Neumann, J., 419, 681

Wagner, W., 558, 565, 678, 681Watanabe, S., 259, 263, 271, 305, 364,

674, 680, 681Wei, L., 131, 681Whaley, R., 444, 671White, A., 145, 473, 475, 674Wiggins, J. B., 473, 475, 681Willard, G. A., 376, 377, 455, 676Williams, D., 186, 273, 679Williams, J. B., 372, 681Wilmott, P., 600, 681Wolf, M., 444, 675Wu, L., 509, 669Wu, R., 131, 681

Xu, X., 442, 670, 680

Yamada, T., 263, 681Yor, M., 84, 90, 126, 147, 184, 263, 304,

306, 308, 310, 328, 348, 486, 669,672–674, 679

Yuen, P. H., 444, 676

Zhao, Y., 422, 681Ziemba, W. T., 372, 386, 408, 420, 422,

423, 673, 681Zumbach, G., 178, 485, 670

Index

3/2 model, 4783/2 volatility model, 493N -point random variable, 553d-dimensional linear SDE, 247k-sigma rule, 15pth moment, 36pth variation, 183

accumulation index, 400actuarial

diagnostics, 130pricing, 329

approach, 319formula, 331, 380

adapted, 164additivity property, 31, 44, 305affine model, 144, 158affine process, 316aggregate diffusion coefficient, 405almost surely, 6, 56, 92American option, 277, 280, 599annuity, 384antithetic variate Monte Carlo

estimator, 573appreciation rate, 216, 238, 369, 409arbitrage, 284, 376, 520

pricing theory, 320, 337, 377ARCH diffusion model, 477, 480asset-or-nothing binary, 543asymptotically normal, 571asymptotically unbiased, 71at-the-money, 278autocovariance matrix, 44

autoregressive conditional heteroscedas-tic, 441

Bachelier model, 142balanced implicit methods, 567Bayes formula, 7Bayes rule, 346Bayes’ Theorem, 7benchmark approach, 320, 375benchmarked P&L, 451benchmarked security, 324Bernoulli trials, 62Berry-Esseen inequality, 61Bessel function

modified of the first kind, 16, 147modified of the third kind, 18

Bessel process, 271, 487best fit, 89beta, 335binomial

model, 591option pricing formula, 596tree, 104, 112volatility, 594

Black model, 144Black-Derman-Toy model, 144Black-Karasinski model, 144Black-Scholes

formula, 288model, 36, 134, 142, 216, 219, 246,

281multi-asset, 249

PDE, 286

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,Springer Finance,© Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010

690 Index

bond-or-nothing binary, 545Borel-Cantelli Lemma, 93boundary condition, 608Box-Muller method, 554Brownian motion, 100, 108butterfly spread, 279

Cameron-Martin Girsanov Theorem,340

candidate Radon-Nikodym derivative,499

capital asset pricing model, 332intertemporal, 319, 332

capital market line, 409Cauchy distribution, 17Cauchy-Schwartz inequality, 32Central Limit Theorem, 61central Student t distributed, 17CEV model, 143chain rule, 205change of numeraire, 350, 352

pricing formula, 356Chapman-Kolmogorov equation, 136characteristic function, 36, 37, 49Chebyshev inequality, 32chi-square

distribution, 15random variable, 556

Cholesky decomposition, 41, 45CIR model, 144claim amount distribution, 128coherent risk measure, 69collection of events, 4commutativity, 249

condition, 564compensated jump measure, 568complement of a set, 3complementary binomial distribution,

597complete market, 436conditional

density, 33expectation, 32, 33probability, 6

confidence interval, 63, 64Gaussian, 64Student t, 65

confidence level, 64consistency property, 101

continuation region, 360continuous financial market, 369continuous hedging, 282continuous random variable, 11control variate

estimator, 574method, 587

convergesin distribution, 61, 92in mean order p, 92in probability, 57, 92with probability one, 92

copula, 50bivariate t, 52function, 51Gaussian, 51Student t, 52

correlation, 40countably additive probabilities, 5counting process, 514Courtadon model, 145covariance, 40

matrix, 41, 44covariation, 180, 195, 221

approximate, 180Cramer-Lundberg model, 123, 129, 257Cramer-Rao lower bound, 73Crank-Nicolson method, 606credit rating, 118criterion

generalized least-squares, 77cumulants, 35curve fitting, 76

default intensity, 117defaultable zero coupon bond, 548deflator, 339degree of implicitness, 566, 605delta, 291density

function, 11generalized inverse Gaussian, 83hyperbolic, 21Student t, 84, 90symmetric generalized hyperbolic, 83variance gamma, 21

derivative securities, 277determinant, 41diffusion

Index 691

coefficient, 141, 192process, 141, 156, 160

vector, 160Dirac delta function, 161direct solvers, 606Dirichlet condition, 610discounted

BS-PDE, 285drift, 404GOP drift, 485underlying market, 283

discrete real valued random variable, 10distribution

binomial, 62elliptic, 68function, 8hyperbolic, 84marginal, 39, 46non-central chi-square, 307nondegenerate, 95normal-inverse Gaussian mixture, 84normal-variance gamma mixture, 84symmetric generalized hyperbolic, 18

Diversification Theorem, 396diversified portfolio, 393drift

coefficient, 141, 192implicit Euler scheme, 566implicit Milstein scheme, 566implicit simplified Euler scheme, 583implicit strong order 1.0 Runge-Kutta

schemes, 566Dupire formula, 468

efficient growth rate, 411efficient portfolio, 406, 410elementary outcomes, 2empty set, 4equal value index, 399equi-value weighted index, 399equidistant time discretization, 560equivalent measure, 338ergodicity, 119, 156estimate, 70

least-squares, 35estimation

error, 71least-squares, 75

estimator, 70

best linear unbiased, 78biased, 71consistent, 71efficient, 72maximum likelihood, 79nonlinear least-squares, 78

Euclidean norm, 50Euler scheme, 560, 563Euler-Maruyama scheme, 238European call option, 277, 455European option, 280European put option, 278event, 3

driven trading uncertainty, 514factor, 69

EWI, 399existence, 261expectation, conditional, 32, 33expected

excess return, 221, 332rate of return, 216, 409utility maximization, 421

expiration date, 277explicit strong order 1.0 scheme, 565explicit weak order 2.0 scheme, 581exponential

density, 554distribution, 13Levy model, 126, 259

exponentials of semimartingale, 260extended Vasicek model, 144extrapolation, 582Extreme Value Theorem, 95

fair, 326, 378price, 326put-call parity, 458zero coupon bond, 452

family ofdrift implicit

Euler schemes, 566Milstein schemes, 566simplified Euler schemes, 583

implicit weak Euler schemes, 584weak order 1.0 predictor-corrector

methods, 584Fatou’s Lemma, 94Feynman-Kac formula, 356

general, 361

692 Index

Fibonacci generatorlagged, 552

filtered probability space, 164filtration, 164finite difference method, 600, 604first exit time, 360first hitting time, 172first moment, 22Fisher information, 73Fisher-Tippett Theorem, 95Fokker-Planck equation, 145, 154, 476Follmer-Schweizer decomposition, 435forward contract, 385, 542forward price, 385, 542forward rate, 381, 497

equation, 382, 522fractional Kelly strategy, 408free snack, 455frictionless market, 282fully implicit finite difference method,

605fundamental matrix, 248fundamental solution, 241

gains from trade, 187gamma, 291

distributed, 15function, 15

Gauss-Seidel method, 607Gaussian

confidence interval, 64density

bivariate, 41, 42function, 13multivariate, 46

distribution, 13multivariate, 48

jointly, 41random variable, 13

shifted, 38shift, 38

multivariate, 47, 49general market risk, 335, 390generalized least-squares criterion, 77generalized volatility process, 515geometric Brownian motion, 134, 137,

142, 215, 561Girsanov Theorem, 347GOP, 372, 387, 518

greeks, 290Gronwall inequality, 264growth optimal portfolio, 320, 322, 372growth rate, 134, 221, 372

Heath-Jarrow-Morton equation, 383hedgable part, 434hedge portfolio, 281hedge ratio, 285hedge simulation, 298hedging strategy, 298, 432Heston model, 475Ho-Lee model, 144Hull-White model, 145hypothetical risk neutral measure, 447

i.i.d., 55ICAPM, 334

formula, 335pricing rule, 336relationship, 416

imaginary unit, 36implied transition density, 466implied volatility, 441, 442

surface, 442in-the-money, 278incomplete gamma function, 16incomplete market, 436independent, 7, 8indicator function, 9indistinguishability, 263inequality, 50

Berry-Esseen, 61Cauchy-Schwartz, 32Chebyshev, 32Doob, 173Gronwall, 264Jensen’s, 31Lyapunov, 31Markov, 32maximal martingale, 173

information set, 163inner product, 50insurance premium, 123insurance risk, 128integrable, 23

p-integrable, 23integral

Ito, 187, 191, 199

Index 693

Riemann-Stieltjes, 192stochastic, 187

integrand, 187integration-by-parts, 213intensity

matrix, 115measure, 125parameter, 10

interest rate term structure, 381intertemporal capital asset pricing

model, 319, 332, 415intrinsic value, 278inverse Fourier transform, 37inverse gamma density, 476, 493inverse matrix, 41inverse transform method, 554invertible matrix, 41iterative solvers, 606Ito differential, 192, 212Ito formula, 206, 208, 212, 224, 230

for semimartingales, 224Ito integral, 187, 191, 199, 247

properties, 194Ito process with jumps, 258

Jensen’s inequality, 31joint distribution, 39, 45jump adapted

scheme, 569simplified Euler scheme, 586time discretization, 569, 586

jump diffusion, 258market, 513, 519

jump martingale, 514jump size, 181

Kelly strategy, 408knock-out-barrier option, 360Kolmogorov

backward equation, 115, 146, 161forward equation, 115, 145, 160

kurtosis, 27excess, 29sample, 58

Lagrange multiplier, 412Laplace transform, 35Law of

iterated conditional expectations, 33

Large Numbers, 56least-squares estimate, 35Lebesgue almost everywhere, 11Lebesgue’s Dominated Convergence

Theorem, 94leptokurtic, 28, 82level of confidence, 64leverage effect, 440Levy measure, 127Levy process, 126, 202, 568Levy’s Theorem, 227likelihood

function, 79, 89ratio, 88

test, 80limited liability, 284, 376linear congruential pseudo-random

number generators, 552linear growth bound, 264linear SDE

with multiplicative noise, 243with additive noise, 241

Lipschitz condition, 264LLN

strong, 56weak, 57

local martingale, 183strict, 309

local volatility, 462model, 461

locally optimal, 405, 533locally riskless, 368log-likelihood function, 79log-return, 1

Student t, 67log-utility, 420, 423lognormal, 36

asset price model, 14model, 82, 134, 144

logstable model, 82long in a security, 279long term growth rate, 386, 522Longstaff model, 145Lyapunov inequality, 31

marginal distribution, 39, 46mark set, 125, 568marked point process, 124market

694 Index

activity, 505complete, 436incomplete, 436jump diffusion, 513, 519portfolio, 334, 416price

of event risk, 515of risk, 370, 515of risk contribution, 497

Markov chaincontinuous time, 113discrete time, 110, 111

Markov inequality, 32Markov process, 110, 272

continuous, 133, 135, 141Markov property, 110, 111, 135

continuous time, 114Markowitz efficient frontier, 409Marsaglia method, 556martingale, 166

local, 183Representation Theorem, 433square integrable, 166strict local, 184

matrix, 41autocovariance, 44covariance, 41, 44fundamental, 248intensity, 115invertible, 41positive definite, 73random, 44regular, 41sparse, 606transition probability, 114

maturity date, 278maximal element, 389maximum step size, 560mean, 10, 22

reversion level, 243vector, 41

mean-square error, 72mean-variance optimality, 406measurable function, 8measure transformation method, 588Merton model, 255, 536, 539Merton’s jump diffusion model, 254method of moments, 74Milstein scheme, 563

minimalequivalent martingale measure, 435market model, 143, 253, 483, 488, 539

MMM, 143multi-asset stylized, 529multi-currency, 494with random scaling, 502

model3/2, 478affine, 144, 158ARCH diffusion, 477, 480Bachelier, 142Black, 144Black-Derman-Toy, 144Black-Karasinski, 144Black-Scholes, 134, 142, 281CIR, 144constant elasticity of variance, 143,

444Courtadon, 145Cramer-Lundberg, 123, 129, 257exponential Levy, 126extended Vasicek, 144Heston, 475Ho-Lee, 144Hull-White, 145lognormal, 82, 134, 144logstable, 82Longstaff, 145Merton, 255minimal market, 143, 253, 483, 488,

539modified CEV, 445Ornstein-Uhlenbeck, geometric, 143Pearson-Sun, 144Platen, 145Sandmann-Sondermann, 145Scott, 475variance gamma, 84, 90Vasicek, 243Wiggins, 475

modified Bessel functionof the first kind, 16, 147of the third kind, 18

modified CEV model, 445modified trapezoidal method, 608modulus, 552moment, 22, 30

pth, 36

Index 695

central, 30equations, 244first empirical, 58generating function, 35normalized, 31normalized central, 30second central, 24, 30

Monotone Convergence Theorem, 94Monte Carlo

estimator, raw, 570method, classical, 570simulation, 551

Morgan Stanley capital weighted worldstock accumulation index, 334

MSCI, 344, 417multi-asset stylized MMM, 529multi-currency MMM, 494mutual fund, 535mutually exclusive, 5

natural filtration, 164negative skew, 442net growth rate, 253, 489net present value, 331NFLVR, 377no arbitrage, 319no free lunch with vanishing risk, 377non-central chi-square distribution, 16,

307, 500, 545nonnegative portfolio, 375nonreplicable payoff, 427normal variance mixture model, 68, 81normal-inverse Gaussian mixture

distribution, 19normalized GOP, 490normalized index, 254normally distributed, 14Novikov condition, 348null event, 6null hypothesis, 66numeraire

change, 320invariance, 286pairs, 353portfolio, 325

numerical stability, 566

observation vector, 70operational risk, 124

optimization, 412option price, 286Optional Sampling Theorem, 172order of strong convergence, 563Ornstein-Uhlenbeck process, 139, 242,

244geometric, 139standard, 138

out-of-the-money, 278outcome, 2overbetting, 412

parameter vector, 70partial integro differential equation,

360, 544partition, 7payoff, 378

function, 277rate, 358

Pearson-Sun model, 144perfect hedge, 284Platen model, 145Poisson

jump measure, 226, 568measure, 125, 127, 200probability, 10random variable, 10

Poisson process, 120compensated, 170compound, 123standard, 121transformed, 122

Portfolio Selection Theorem, 407positive definite, 73power utility, 420, 423predictor-corrector method, 608pricing function, 280pricing kernel, 339primary security account, 368, 514probability, 2, 4

binomial, 62of ruin, 130space, 6

filtered, 164process

affine, 316Bessel, 271counting, 514diffusion, 141, 156, 160

696 Index

Levy, 126, 202, 568Markov, 110, 272Ornstein-Uhlenbeck, 139Poisson, 120predictable, 172square root, 146, 250, 311, 312squared Bessel, 271, 304, 311Wiener, 109, 137

profit and loss, 283pseudo-random numbers, 552pure jump process, 222put-call parity, 295

quadratic variation, 174approximate, 174

quantile, 66quasi Monte Carlo, 577

Radon-Nikodym derivative, 338, 345random

bit generator, 554matrix, 44measure, 125number generator, natural, 553variable, 8

independent, 43vector, 44

random walkGaussian, 104symmetric, 103

real worldmartingale decomposition, 434martingale representation, 327pricing, 320

formula, 326, 430realization, 105reference level, 243, 253regular matrix, 41relative arbitrage, 389relative frequency, 2replicated payoff, 281replicating portfolio, 431return, 2rho, 293Richardson extrapolation, 583Riemann-Stieltjes integral, 192, 247right-continuous, 10risk aversion coefficient, 408, 422risk neutral, 320

pricing, 337, 380formula, 341

probability measure, 337risk premium, 221, 332, 406

samplekurtosis, 58mean, 55path, 105skewness, 58space, 2variance, 58

Sandmann-Sondermann model, 145savings account, 219, 384savings bond, 453scale measure, 157scaling process, 503scaling property, 305scenario simulation, 551, 560Scott model, 475SDE, 209

with jumps, 257self-financing, 353

portfolio, 282, 370strategy, 282

semimartingale, 197special, 198

sensitivity, 290sequence of

approximate GOPs, 395, 528CFMs, 391

regular, 394diversified portfolios, 393, 526DPs, 526JDMs, 523

regular, 527set of real numbers, 8Sharpe ratio, 406short in a security, 279short rate model, 143short-selling, 279sigma-algebra, 5, 163, 164

predictable, 171simplified weak

Euler scheme, 579order 2.0 Taylor scheme, 580

simulationMonte Carlo, 551scenario, 551, 560

Index 697

skewed, 26skewness, 25

sample, 58smile, 442sparse matrix, 606spatial discretization, 601specific generalized volatility, 525specific market risk, 335, 391specific volatility, 390speed of adjustment, 243, 253square integrable, 23square root process, 146, 250, 311, 312

generalized, 148squared Bessel process, 271, 304, 311,

446, 486time transformed, 311

SR process, 146standard deviation, 24standard Gaussian random variable, 13state price density, 339state space, 100stationary density, 138, 154stationary probability, 116statistical error, 579stochastic

differential equation, 209, 237, 239discount factor, 339integral, 187

multiple, 559integrals

multiple, 564process, 100, 105

continuous time, 100indistinguishable, 106measurable, 106moments, 107stationary, 107stationary independent increments,

108, 126volatility, 254, 439

model, 472stopping time, 170

inaccessible, 172strategy, 370stratified sampling, 576strict local martingale, 309strict supermartingale, 329strictly positive portfolio, 371strike price, 277

strongapproximation, 563consistency, 570order 1.5 Taylor scheme, 564solution, 263uniqueness, 264

Student t, 17density, 19distribution, p-dimensional, 49log-return, 494random variable, 557

stylized MMM, 478sub-sigma-algebra, 33, 164submartingale, 168subordination, 81successive overrelaxation method, 607supermartingale, 168, 184, 186, 375, 520

strict, 168sure event, 3survival probability, 130systematic

error, 579outperformance, 523risk, 335risk parameter, 335, 415

systematically outperformance, 388

Tanaka’s SDE, 263terminal condition, 285theta, 292

method, 605time of ruin, 129time set, 100time transformed squared Bessel

process, 311total market price of risk, 406, 534total probability, 8total specific volatility, 394tracking rate, 395, 527

expected, 528tradable martingale representation, 432trading uncertainty, 368trajectory, 105transition density, 137

lognormal, 140transition probability, 111

matrix, 114transpose, 41tree method, 591

698 Index

Two Fund Separation Theorem, 408two-point random variable, 10

unbiased, 570underlying value, 404, 486unfair portfolio, 328unhedgable part, 434uniformly distributed, 12unique weak solution, 263uniqueness, 261, 263

in law, 263of strong solution, 263

utilityfunction, 420indifference price, 428indifference pricing, 428

formula, 429

Value at Risk, 65value line index, 399VaR analysis, 67variance, 24, 30

reduction, 573sample, 58

Vasicek model, 107, 144, 243vector, 41

stochastic differential equation, 247vega, 293

volatility, 178, 216, 238, 368implied, 441, 442local, 462parametrization, 483stochastic, 439

von Neumann condition, 610

Wagner-Platen expansion, 558, 580weak

approximation, 579convergence, 578error, 579order, 578

2.0 extrapolation, 5832.0 predictor-corrector method, 5852.0 Taylor scheme, 5804.0 extrapolation, 583

Wiener process, 109, 137multi-dimensional, 210transformed, 109, 142

Wiggins model, 475with probability one, 6world stock index, 85, 401WSI, 401

Yamada condition, 270

zero coupon bond, 330, 381