42
References 1. R. Alexander. Diagonally Implicit Runge-Kutta Methods for Stiff ODE's. SIAM 1. Numer. Anal., 14:1006-1022, 1977. 2. J.H. Argyris. Energy Theorems and Structural Analysis. Butterworths Sci- entific Publications, London, 1960. first published in Aircraft Engineering, 26:347-356,383-387,394, 1956 and 27:42-58,80-94,125-134, 1955. 3. W.E. Arnoldi. The Principle of Minimized Iteration in the Solution of the Matrix Eigenvalue Problem. Quart.Appl.Math., 9:17-29, 1951. 4. O. Axelsson. On the Computational Complexity of Some Matrix Iterative Algorithms. Technical report, Department of Computer Science, Chalmers University of Technology, Goteborg, Sweden, 1974. 5. O. Axelsson. Conjugate Gradient Type Methods for Unsymmetric and Incon- sistent Systems of Linear Equations. Technical Report RR.78.03R, Depart- ment of Computer Science, Chalmers University of Technology, Goteborg, Sweden, 1978. 6. O. Axelsson. Conjugate Gradient Type Methods for Unsymmetric and Incon- sistent Systems of Linear Equations. Linear Algebra Appl., 29:1-16, 1980. 7. O. Axelsson. A Survey of Preconditioned Iterative Methods for Linear Systems of Algebraic Equations. BIT, 25:166-187, 1985. 8. O. Axelsson. A Generalized Conjugate Gradient, Least Square Method. Nu- mer. Math. , 51:209-227, 1987. 9. O. Axelsson. Iterative Solution Methods. Cambridge University Press, 1994. 10. O. Axelsson and A. Kucherov. Real Valued Iterative Methods for Solving Complex Linear Systems. Report 9904, Department of Mathematics, Univer- sity of Nijmegen, Nijmegen, Netherlands, January 1999. 11. O. Axelsson and A.A. Kutcherov. Real Valued Iterative Methods for Solving Complex Linear Systems. unpublished, Universitat Nijmegen, January 1994. 12. O. Axelsson, M. Neytcheva, and B. Polman. The Boardering Method as a Preconditioning Method. Report 9348, Department of Mathematics, Catholic University, Nijmegen, Netherlands, December 1993. 13. O. Axelsson and P.S. Vassilevski. Algebraic Multilevel Preconditioning Meth- ods, II. SIAM 1.Numer.Anal., 27(6):1569-1590, 1990. 14. N.S. Bakhalov. On the Convergence of a Relaxation Method with Natural Constraints on the Elliptic Operator. USSR Comput Math and Math Phys, 6(5):101-135, 1966. Original: 0 schodimosti odnogo relaksacionnogo metoda pri estestvennych ogranicenijach na ellipticeskij operator. Z vyCisl matem i matem fiz 6,5 (1966) 861-883. 15. V. Balakin, A. Novokhatsky, and V. Smirnov. VLEPP: Transverse Beam Dynamics. In 12th Int. Conf. on High Energy Accelerators, Fermilab, 1983. 16. V.E. Balakin, G.!. Budker, and A.N. Skrinski. In Int. Sem. on Prob. on High Energy and Controled Nucl. Fusion, pages 78-101, Novosibirsk, UdSSR, 1978.

References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

References

1. R. Alexander. Diagonally Implicit Runge-Kutta Methods for Stiff ODE's. SIAM 1. Numer. Anal., 14:1006-1022, 1977.

2. J.H. Argyris. Energy Theorems and Structural Analysis. Butterworths Sci­entific Publications, London, 1960. first published in Aircraft Engineering, 26:347-356,383-387,394, 1956 and 27:42-58,80-94,125-134, 1955.

3. W.E. Arnoldi. The Principle of Minimized Iteration in the Solution of the Matrix Eigenvalue Problem. Quart.Appl.Math., 9:17-29, 1951.

4. O. Axelsson. On the Computational Complexity of Some Matrix Iterative Algorithms. Technical report, Department of Computer Science, Chalmers University of Technology, Goteborg, Sweden, 1974.

5. O. Axelsson. Conjugate Gradient Type Methods for Unsymmetric and Incon­sistent Systems of Linear Equations. Technical Report RR.78.03R, Depart­ment of Computer Science, Chalmers University of Technology, Goteborg, Sweden, 1978.

6. O. Axelsson. Conjugate Gradient Type Methods for Unsymmetric and Incon­sistent Systems of Linear Equations. Linear Algebra Appl., 29:1-16, 1980.

7. O. Axelsson. A Survey of Preconditioned Iterative Methods for Linear Systems of Algebraic Equations. BIT, 25:166-187, 1985.

8. O. Axelsson. A Generalized Conjugate Gradient, Least Square Method. Nu­mer. Math. , 51:209-227, 1987.

9. O. Axelsson. Iterative Solution Methods. Cambridge University Press, 1994. 10. O. Axelsson and A. Kucherov. Real Valued Iterative Methods for Solving

Complex Linear Systems. Report 9904, Department of Mathematics, Univer­sity of Nijmegen, Nijmegen, Netherlands, January 1999.

11. O. Axelsson and A.A. Kutcherov. Real Valued Iterative Methods for Solving Complex Linear Systems. unpublished, Universitat Nijmegen, January 1994.

12. O. Axelsson, M. Neytcheva, and B. Polman. The Boardering Method as a Preconditioning Method. Report 9348, Department of Mathematics, Catholic University, Nijmegen, Netherlands, December 1993.

13. O. Axelsson and P.S. Vassilevski. Algebraic Multilevel Preconditioning Meth­ods, II. SIAM 1.Numer.Anal., 27(6):1569-1590, 1990.

14. N.S. Bakhalov. On the Convergence of a Relaxation Method with Natural Constraints on the Elliptic Operator. USSR Comput Math and Math Phys, 6(5):101-135, 1966. Original: 0 schodimosti odnogo relaksacionnogo metoda pri estestvennych ogranicenijach na ellipticeskij operator. Z vyCisl matem i matem fiz 6,5 (1966) 861-883.

15. V. Balakin, A. Novokhatsky, and V. Smirnov. VLEPP: Transverse Beam Dynamics. In 12th Int. Conf. on High Energy Accelerators, Fermilab, 1983.

16. V.E. Balakin, G.!. Budker, and A.N. Skrinski. In Int. Sem. on Prob. on High Energy and Controled Nucl. Fusion, pages 78-101, Novosibirsk, UdSSR, 1978.

Page 2: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

338 References

17. K Bane and B. Zotter. Transverse Modes in Periodic Cylindrical Waveg­uides. In Xlth Int. Conf. on High Energy Accelerators, pages 581-585, Geneva, Switzerland, July 1980.

18. KL.F. Bane. private communication. SLAC. 19. KL.F. Bane and R.L. Gluckstern. The Transverse Wakefield of a Detuned

X-Band Accelerator Structure. Part.Acc., 42(3-4):123-169, 1993. 20. KL.F. Bane, P.B. Wilson, and T. Weiland. Wake Fields and Wake Field

Acceleration. American Institute of Physics, AlP, 127:875-928, 1983. 21. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei­

jkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994. also available under http://mip.ups-tlse.fr/ grund­man / tern plates / report .html.

22. M. Bartsch, U. Becker, M. Dehler, M. Dohlus, X. Du, S. Gutschling, P. Hahne, R. Klatt, M. Marx, Z. Min, U. van Rienen, D. Schmitt, A. Schulz, B. Steffen, P. Thoma, B. Wagner, T. Weiland, S. Wipf, and H. Wolter. Time Domain Elec­tromagnetic Field Computation with Finite Difference Methods. presented at IEEE 93 Berlin, 1993.

23. M. Bartsch, U. van Rienen, and T. Weiland. Consistent Finite Integration Approach for Coupled Computation of Static Current Distributions and Elec­tromagnetic Fields. In ICEF'96, Wuhan, China, October 1996.

24. M. Bartsch, U. van Rienen, and T. Weiland. Consistent Finite Integration Approach for Coupled Computation of Static Current Distributions and Elec­tromagnetic Fields. IEEE Transactions on Magnetics, 34(5):3098-3101, Sept. 1998.

25. M. Bartsch and T. Weiland. 2D and 3D Calculation of Forces. IEEE Trans­actions on Magnetics, 30(5), 1994.

26. F.L. Bauer. Das verfahren der Treppeniteration und verwandte Verfahren zur Lasung algebraischer Eigenwertprobleme. ZAMP, 8:214-235, 1967.

27. A. Bayliss and E. Turkel. Radiation Boundary Conditions for Wave-Like Equations. Communications on Pure and Applied Mathematics, XXXIII:707-725, 1980.

28. R. Beck, P. Deuflhard, R. Hiptmair, R.H.W. Hoppe, and B. Wohlmuth. Adaptive Multilevel Methods for Edge Element Discretizations of Maxwell's Equations. Report SC-96-51, Konrad-Zuse-Zentrum fiir Informationstechnik, Berlin, 1996.

29. J.P. Berenger. A Perfectly Matched Layer for the Absorption of Electromag­netic Waves. Journal of Computational Physics, 114:185-200, 1994.

30. R.M. Bevensee. Electromagnetic Slow Wave Systems. John Wiley, New York, London, Sydney, 1964.

31. W. Bialowons et al. Conceptual Design Report of a 500 GeV e+e- Linear Col­lider with Integrated X-ray Laser Facility. Number DESY 1997-048, Hamburg, 1997. DESY. ECFA 1997-182.

32. U. Bleil. Zur numerischen Berechnung elektrostatischer und zeitharmonis­cher elektromagnetischer Felder im nichtorthogonalen dreidimensionalen Git­ter. PhD thesis, Darmstadt University of Technology, 1994.

33. A. Bossavit. private communication. 34. A. Bossavit. Whitney forms: A Class of Finite Elements for three-dimensional

Computations in Electromagnetism. In lEE Proc. A 135, pages 493-500, 1988. 35. A. Bossavit. A New Viewpoint on Mixed Elements. Meccanica, 27:3-11, 1992. 36. A. Bossavit. Computational Electromagnetism, Variational Formulations,

Edge Elements, Complementarity. Academic Press, Boston, 1998.

Page 3: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

References 339

37. A. Bossavit and L. Kettunen. Yee-like Schemes on a Tetrahedral Mesh with Diagonal Lumping. Int. J. Numer. Modelling, 1998. Special Issue "Finite Difference Time and Frequency Domain Methods" .

38. F. Bouillault, Z. Ren, and A. Razek. Calculation of Eddy Currents in an Asymmetrical Conductor with a Hole. COMPEL, 9(A):227-229, 1990.

39. D. Boussard. Beam Loading. In CERN Accelerator School 1985, Oxford, Great Britain, September 1985. also as CERN SPS/86-1O.

40. A. Brandt. Multi-Level Adaptive Technique (MLAT) for Fast Numerical So­lution to Boundary Value Problems. In H. Cabannes and R. Temam, editors, Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. Springer, Berlin. Lecture Notes in Phys. 18, 1973.

41. A. Brandt. Multi-Level Adaptive Solutions to Boundary-Value Problems. Math. Comp., 31:333-390, 1977.

42. A. Brandt. Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics. Studien 85, GMD, St. Augustin bei Bonn, Mai 1984.

43. A. Brandt and S. Taa'san. Multigrid Method for Nearly Singular and Sligthly Indefinite Problems. In 2nd European Conf. on Multigrid Methods, pages 100-122, Kiiln, October 1-4 1985. GMD-Studien 110, Mai 1986.

44. Ch. Breit. Vektorimplementierung iterativer Verfahren und Vorkondi-tionierungsmethoden zur Liisung groBer linearer Gleichungssysteme in der Schaltkreissimulation. Diplomarbeit, Technische Universitat Miinchen, 1992.

45. S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Element Methods, volume 15 of Texts in Applied Mathematics. Springer, New York, 1996.

46. F. Brezzi, J. Douglas, and L.D. Marini. Two Families of Mixed Finite Elements for Second Order Elliptic Problems. Numer. Math., 47:217-235, 1985.

47. F. Brezzi and M. Fortin. Mixed and Hybrid Finite Elements, volume 15 of Springer Series in Computational Mathematics. Springer, New York, 1991.

48. E. Brieskorn. Lineare Algebra und analytische Geometrie, Band I und II. Vieweg, Braunschweig, Wiesbaden, 1983.

49. W.L. Briggs. A Multigrid Tutorial. SIAM, Philadelphia, Pennylvania, 1987. 50. R. Brinkmann. On the Scaling of SBLC Parameters Towards Smaller Bunch

Charge. internal note, May 1995. DESY. 51. R. Brinkmann, M. Dohlus, M. Drevlak, N. Holtkamp, A. Mosnier, U. van

Rienen, R. Wanzenberg, G.-A. Voss, and T. Weiland. notes of the "Beam Dynamics Study Group for TESLA and SBLC" .

52. A. Chao. Physics of Collective Beam Instabilities in High Energy Accelerators. Series in Beam Physics and Accelerator Technology. Wiley, New York, 1993.

53. A.W. Chao. Coherent Instabilities of a Relativistic Bunched Beam. In Second Summer School on High Energy Particle Accelerators, Stanford Linear Accel­erator Center, Stanford, California, August 1982. also SLAC-PUB-2946, June 1982.

54. P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North­Holland, Amsterdam, 1987.

55. O. Claus. Charakterisierung des Oberfliichenzustandes zylindrischer Priijkorper aus Epoxidharz-FormstofJ vor und nach der Beanspruchung mit wiissrigen salzhaltigen Fremdschichten und 50 Hz- Wechselspannung. PhD the­sis, Darmstadt University of Technology, 1996.

56. M. Clemens. private communication. Darmstadt University of Technology. 57. M. Clemens. Zur numerischen Berechnung zeitlich langsam-ver"anderlicher

elektromagnetischer Felder mit der FI-Methode. PhD thesis, Darmstadt Uni­versity of Technology, 1998.

Page 4: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

340 References

58. M. Clemens, R Schuhmann, U. van Rienen, and T. Weiland. Modern Krylov Subspace Methods in Electromagnetic Field Computation Using the Finite In­tegration Theory. ACES Journal, Special Issue on Applied Mathematics: Meet­ing the challenges presented by Computational Electromagnetics, 11(1):70-84, March 1996.

59. M. Clemens, P. Thoma, T. Weiland, and U. van Rienen. A Survey on the Com­putational Electromagnetic Field Calculation with the FI Method. Surveys on Mathematics for Industry, 8(3-4):213-232, 1999. vermeintliches Special Issue on Scientific Computing in Electrical Engineering.

60. M. Clemens and T. Weiland. Iterative Methods for the Solution of Very Large Complex Symmetric Linear Systems of Equations in Electrodynamics. In T. A. Manteuffel and S. F. McCormick, editors, Eleventh Copper Mountain Conf. 1996, Copper Mountain, Colorado, USA, April 1996. The paper is available via MGNET.

61. F. Close, M. Marten, and C. Sutton. The Particle Explosion. Oxford Univer­sity Press, Oxford, 1987.

62. F. Close, M. Marten, and C. Sutton. Spurensuche im Teilchenzoo. Spektrum der Wissenschaft, Heidelberg, 1989.

63. R.W. Clough. The Finite Element Method in Plane Stress Analysis. In 2nd Conf. on Electronic Computation, ASCE, Pittsburg, Pa, USA, 1960.

64. G. Cohen and P. Monk. Gaufipoint Mass Lumping Schemes in Electromag­netism. COMPEL Suppl. A, 13:293-298, 1994.

65. The MAFIA collaboration. User's guide mafia version 4.x. Technical report, CST GmbH, Lauteschlagerstr. 38, D-64289 Darmstadt, Germany.

66. RE. Collin. Field Theory of Guided Waves. IEEE Press, New York, 2nd edition, 1991.

67. R.E. Collin. Foundations for Microwave Engineering. McGraw-Hill, New York, 2nd edition, 1992.

68. R Courant. Variational Methods for the Solution of Problems of Equilibrium and Vibrations. Bull. Amer. Math. Soc., 49:1-23, 1943.

69. E.J. Craig. The n-step Iteration Procedures. Math. Phys., (34):64-73, 1955. 70. A. Das and T. Ferbel. Introduction to Nuclear and Particle Physics. Wiley,

1994. 71. A. Das and T. Ferbel. Kern- und Teilchenphysik. Spektrum Akademischer

Verlag, Heidelberg, 1995. 72. M. Dehler. Numerische Losung der Maxwellschen Gleichungen auf kreiszylin­

drischen Gittern. PhD thesis, Darmstadt University of Technology, 1993. 73. P. Deuflhard. Cascadic Conjugate Gradient Methods for Elliptic Partial Differ­

ential Equations: Algorithm and Numerical Results. Cont. Math., 180:29-42, 1994.

74. P. Deuflhard and A. Hohmann. Numerische Mathematik 1. de Gruyter Lehrbuch. Walter de Gruyter, Berlin, 1993.

75. M. Dohlus. private communication. DESY. 76. M. Dohlus. Ein Beitrag zur numerischen Berechnung elektromagnetischer

Felder im Zeit bereich. PhD thesis, Darmstadt University of Technology, 1992. 77. M. Dohlus, H. Hartwig, N. Holtkamp, S. Ivanov, V. Kaljazkny, and A. Nabaka.

Higher Order Mode Damping by Artificially Increased Surface Losses. Tech­nical report, DESY, 1996. in preparation.

78. M. Dohlus, M. Marx, N. Holtkamp, P. Hulsmann, W.F.O. Muller, M. Kurz, H.-W. Glock, and H. Klein. S-Band HOM-Damper Calculations and Exper­iments. In Particle Accelerator Conf. PAC'95, pages 692-694, Dallas, USA, May, 1-5 1995. DESY M-95-08, pp. 85-87.

Page 5: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

References 341

79. M. Dohlus, P. Thoma, and T. Weiland. Stability of Finite Difference Time Domain Methods related to Space and Time Discretization. IEEE-MTT. sub­mitted.

80. M. Dohlus and U. van Rienen. Analysis of Higher Order Modes in Constant­Gradient Structures. internal note.

81. C. Douglas. MGNet-Digest. http://www.cerfacs.frr douglas/mgnet.html. 82. M. Drevlak. Berechnung des Wechselwirkungsparameters von Wander-

wellenriihren. Studienarbeit, Darmstadt University of Technology, 1991. 83. M. Drevlak. On the Preservation of Single- and Multi-Bunch Emittance in

Linear Accelerators. PhD thesis, Darmstadt University of Technology, 1995. DESY-report DESY 95-225.

84. M. Drevlak, H.G. Beyer, N. Holtkamp, U. van Rienen, V. Tsakanov, R. Wanzenberg, T. Weiland, and M. Zhang. Attenuation of Transverse Modes by Variable Cell Geometries in Travelling Wave Tubes. In XV Int. Conf. on High Energy Accelerators, pages 876-878, Hamburg, July 1992.

85. J.A. Edminister. Electromagnetism. Schaum's Outline. McGraw-Hill, New York,1984.

86. D.A. Edwards and M.J. Syphers. An Introduction to the Physics of High Energy Accelerators. Series in Beam Physics and Accelerator Technology. Wiley, New York, 1992.

87. R. Ehmann. Ein schnelles Verfahren zur Feldberechnung in aperiodischen Wanderwellenriihren. Diplomarbeit, Darmstadt University of Technology, 1994.

88. S.C. Eisenstat, H.C. Elman, and Schultz M.H. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations. SIAM Sci. Stat. Comput., 20(2):345-357, April 1983.

89. H. Elman. Iterative Methods for Large, Sparse, Nonsymmetric Systems of Linear Equations. PhD thesis, Computer Science Dept., Yale University, New Haven, CT, 1982. Research Report 229.

90. B. Engquist and A. Majda. Absorbing Boundary Conditions for the Numerical Simulation of Waves. Math. Comp., 31(139):629-651, July 1977.

91. D.K. Faddeev and V.N. Faddeeva. Computational Methods of Linear Algebra. Freeman, San Francisco, California, 1963.

92. R.P. Fedorenko. A Relaxation Method for Solving Elliptic Difference Equa­tions. USSR Comput Math and Math Phys, 1(5):1092-1096, 1961. Original: Relaksacionnyj metod resenija raznostnych ellipticeskich uravenija. Z vyCisl matem i matem fiz 1,5 (1961) 922-927.

93. R.P. Fedorenko. The Speed of Convergence of one Iteration Process. USSR Comput Math and Math Phys, 4(3):227-235, 1964. Original: 0 skorosti schodi­mosti odnogo iteracionnogo processa. Z vyCisl matem i matem fiz 4,3 (1964) 559-564.

94. P. Fellinger. Ein Verfahren zur numerischen Losung elastischer Wellenaus­breitungsprobleme im Zeitbereich durch direkte Diskretisierung der elastody­namischen Grundgleichungen. PhD thesis, Gesamthochschule Kassel, 1991.

95. R.P. Feynman, R.B. Leighton, and M. Sands. The Feynman Lectures on Physics - Volume II; mainly electromagnetism and matter. Addison-Wesley, Menlo Park, 1977.

96. R. Fletcher. Conjugate Gradient Like Methods for Indefinite Systems. In Dundee Biennal Conf. on Numerical Analysis, pages 73-89, University of Dundee, Scotland, 1974. Springer Verlag, New York, 1975.

97. R.W. Freund. A Transpose-Free Quasi-Minimal Residual Algorithm for Non­Hermitian Linear Systems. SIAM J. Sci. Comput., 14(2):470-482, March 1993.

Page 6: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

342 References

98. R.W. Freund and M. Hochbruck. On the Use of two QMR Algorithms for Solv­ing Singular Systems and Applications in Markov Chain Modelling. RIACS Technical Report 91.25, Moffet Field, California, 1991.

99. RW. Freund and N.M. Nachtigal. An Implementation of the QMR Method based on Coupled Two-Term Recurrences.

100. RW. Freund and N.M. Nachtigal. QMR: A Quasi-Minimal Residual Method for Non-Hermitian Linear Systems. Numer. Math. , 60:315-339, 1991.

101. H. Fritsch. Vom Urknall zum ZerJall. dtv, Miinchen, 2nd edition, 1996. 102. B. Geib. Rechnergestutzter BreitbandentwurJ in Rechteckhohlleitertechnik.

PhD thesis, Darmstadt University of Technology, 1992. 103. G.H. Golub and C.F. Van Loan. Matrix Computations. The Johns Hopkins

University Press, Baltimore, 1983. 104. U. Gotte. Numerische Losung linearer Gleichungssysteme unter a priori

Genauigkeitsvorgaben mit Anwendungen in der Netztheorie. Diplomarbeit, Universitat Bonn, 1982.

105. A. Greenbaum. Iterative Methods Jor Solving Linear Systems, volume 17 of Frontiers in applied mathematics. Society for Industrial and Applied Mathe­matics, Philadelphia, 1997.

106. M. Griebel. Multilevelmethoden als IterationsverJahren uber Erzeugendensys­temen. Teubner Skripten zur Numerik. Teubner, Stuttgart, 1994.

107. Ch. GroBmann and H.-G. Roos. Numerik partieller Differentialgleichungen. Teubner Studienbiicher, Mathematik. Teubner, Stuttgart, 1994.

108. NAG Numerical Algorithm Group. NAG LIB-Manual. Technical Report Mark 11, 1983.

109. I. Gustafsson. A Class of First Order Factorization Methods. BIT,18:142-156, 1978.

110. M.H. Gutknecht. Variants of BICGSTAB for Matrices with Complex Spec­trum. SIAM J. Sci. Stat., 14(5):1020-1033, September 1993.

111. W. Hackbusch. A Fast Iterative Method Solving Poisson's Equation in a General Region. In R Bulirsch, R.D. Griegorieff, and J. Schroder, editors, Numerical treatment of differential equations, pages 51-62, Oberwolfach, July 1976. Springer Verlag, Berlin. Lecture Notes in Math. 631, 1978.

112. W. Hackbusch. Multi-Grid Methods and Applications, volume 4 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1985.

113. W. Hackbusch. Elliptic Differential Equations - Theory and Numerical Treat­ment, volume 18 of Springer Series in Computational Mathematics. Springer­Verlag, Berlin, 1992.

114. W. Hackbusch. Iterative Losung grafter schwachbesetzter Gleichungssysteme, volume 69 of LeitJiiden der Angewandten Mathematik und Mechanik. Teubner Studienbiicher: Mathematik, Stuttgart, 1993.

115. H. Hahn. Deflecting Mode in Circular Iris-Loaded Waveguides. Rev. Sci. Instrum., 34(10):1094-1100, October 1963.

116. P. Hahne. Zur numerischen Feldberechnung zeitharmonischer elektramagnetis­cher Felder. PhD thesis, Darmstadt University of Technology, 1992.

117. E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, volume 14 of Series in Compo Math. Springer Verlag, 1996.

118. P. Hammes. Verbesserung des Konvergenzverhaltens der FI Methode durch Ber"ucksichtigung von Feldsingularit"aten. Diplomarbeit, Darmstadt Univer­sity of Technology, 1996.

119. M. Hano. Solution of the Problem of Asymmetric Conductor with a Hole by Fi­nite Element Method Using Magnetic Vector Potential. COMPEL, 9(A):233-235, 1990.

Page 7: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

References 343

120. H.A. Haus and J.R. Melcher. Electromagnetic Fields and Energy. Prentice Hall, Englewood Cliffs, 1989.

121. S.A. Heifets and S.A Kheifets. Longitudinal Electromagnetic Fields in an Aperiodic Structure. IEEE-MTT, 42(1}:108-117, January 1994. SLAC-PUB-5907, September 1992.

122. S.A. Heifets, S.A. Kheifets, and B. WOo Transverse Electromagnetic Fields in a Detuned X-Band Accelerating Structure. PUB 6336, SLAC, Stanford, California, USA, September 1993.

123. B. Heinrich. Finite Difference Methods on Irregular Networks. Akademie Verlag, Berlin, 1987.

124. R.H. Helm et al. IEEE Trans. Nucl. Sci., 16, 1969. 125. H. Henke. Impedances of a Set of Cylindrical Resonators with Beam Pipes.

LEP-RF 87-62, CERN, Geneva, Switzerland, November 1987. 126. G.T. Herman, A. Lent, and P.H. Lutz. Relaxation Methods for Image Recon­

struction. Commun.Assoc.Comput.Mach., 21:152-158, 1978. 127. M.R. Hestenes and E. Stiefel. Methods of Conjugate Gradients for Solving

Linear Systems. J. Res. Nat. Bur. Standards, 49:409-436, 1952. 128. T. Higo. private communication. KEK, Japan. 129. M. Hilgner. Eine spezielle reellwertige Methode zur Losung komplexer linearer

Gleichungssysteme. Studienarbeit, Darmstadt University of Technology, 1997. (Beginn Mai 1996).

130. N. Holtkamp. private communication. DESY. 131. N. Holtkamp. The S-Band Linear Collider Test Facility. In Particle Accelera­

tor Con/. PAC'95, pages 686-688, Dallas, USA, May 1-51995. DESY M-95-08, pp.113-115.

132. N. Holtkamp, D. Kahlke, and D. Jagnow. private communication, 1995. DESY.

133. N. Holtkamp and M. Marx. private communication, 1994. DESY. 134. K.H. Huebner. The Finite Element Method for Engineers. Wiley, 1975. 135. P. Hiilsmann. private communication. Univ. Frankfurt. 136. P. Hiilsmann. Theoretische und experimentelle Untersuchungen zur Bestim­

mung der transversalen Shuntimpedanz und Gute an stormodenbedampften Beschleunigerresonatoren fur lineare Kollider und Hochstrombeschleuniger in mittleren und hohen Energiebereichen. PhD thesis, Universitat Frankfurt, 1992.

137. P. Hiilsmann, W.F.O. Miiller, H. Klein, U. van Rienen, and T. Weiland. The 36-Cell Structure - Calculations and Experiments. In Particle Accelerator Con/. PAC'97, page to appear, Vancouver, Canada, May 12-16 1997.

138. S. Humphries, Jr. Principles of Charged Particle Acceleration. Wiley, New York, 1986.

139. S. Humphries, Jr. Charged Particle Beams. Wiley, New York, 1990. 140. INP. Seventh International Workshop on Linear Colliders, Zvenigorod, Rus­

sia, 1997. Branch INP Scientific Library. 141. T. Itoh, editor. Numerical Techniques for Microwave and Millimeter- Wave

Passive Structures, pages 592-621. John Wiley & Sons, 1989. 142. J.D. Jackson. Klassische Elektrodynamik. W. de Gruyter, Berlin, New York,

1983. 143. J.D. Jackson. Classical Electrodynamics. Wiley-VCH, Weinheim, 1998. Third

Edition. 144. D. A. H. Jacobs. The Exploitation of Sparsity by Iterative Methods. Sparse

matrices and their Uses. I. S. Duff, Springer, 1981. pp. 191-222. 145. K.C. Jea and D.M. Young. Generalized Conjugate Gradient Acceledeaion of

Nonsymmetrizable Iterative Methods. Lin.Alg.Appl., 34:159-194, 1980.

Page 8: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

344 References

146. A. Jostingmeyer, C. Rieckmann, and A.S. Omar. Rigorous and Numerically Efficient Computation of the Irrotational Electric and Magnetic Eigenfunc­tions of Complex Gyrotron Cavities. IEEE-MTT, 43(5):1187-1195, May 1995.

147. Jostingmeyer, A. private communication, 1996. DESY. 148. S. Kaczmarz. Angeniiherte Aufiosung von Systemen linearer Gleichungen.

Bull.Int.Acad.Polon.Sci. A, pages 355-357, 1937. 149. V.E. Kaljuzhny, D.V. Kostin, S.V. Ivanov, O.S. Milovanov, N.N. Nechaev,

A.N. Parfenov, N.P. Sobenin, A.A. Zavadzev, S.N. Yarigin, M. Dohlus, and N. Holtkamp. Investigation of a Hybrid Coupler for a 6 Meter S-Band Linear Collider Accelerating Structure. M 96-05, DESY, Hamburg, April 1996.

150. U. Kaltenborn. private communication. TU Dresden. 151. E.M. Kasenally. GMBACK: A Generalised Minimum Backward Error Algo­

rithm for Nonsymmetric Linear Systems. SIAM J. Sci. Comput., 16(3):698-719, May 1995.

152. E. Keil. Beam-Cavity Interaction in Electron Storage Rings. NIM, 127:475-485, 1975.

153. KEK. Sixth International Workshop on Next-Generation Linear Colliders, Tsukuba, Japan, 1995.

154. T. Khabiboulline, V. Puntus, S. Ivanov, K. Jin, M. Dohlus, N. Holtkamp, and G. Kreps. Measurement of the Higher Order Mode (HOM) Field Distribution in a Linac II Accelerating Section. M 94-02, DESY, Hamburg, June 1994.

155. R. Klatt and T. Weiland. Wake Field Calculations with Three-Dimensional BCI Code. In Int. Linear Accelerator Conf. LINAC'86, pages 282-285, Stan­ford University, June 1986. SLAC-303; DESY M-86-07, June 1986, S.20-23.

156. D. Konig. Surface and Ageing Phenomena on Organic Insulation under the Condition of Light Contamination and High Electric Stress. In Conf: Proceed­ings Nord-IS-94, 1994. (Invited Lecture).

157. S. Korotov. Iterative Solutions of certain Complex Valued Systems. Ab­schluBarbeit "master class", Katholieke Universiteit Nijmegen, Niederlande, 1994.

158. A. Kost. Numerische Methoden in der Berechnung elektromagnetischer Felder. Springer-Lehrbuch. Springer-Verlag, Berlin Heidelberg, 1994.

159. F. Krawzcyk. A Contribution to the Numerical Calculation of Static Electro­magnetic Fields in Unbounded Domains. PhD thesis, Universitat Hamburg, 1990. DESY M-90-13.

160. B. Krietenstein. Geometrieveranderungen an Wanderwellenrohren und Bes­timmung einer Teststruktur zu MeBzwecken. Studienarbeit, Darmstadt Uni­versity of Technology, 1994.

161. B. Krietenstein, O. Podebrad, U. van Rienen, T. Weiland, H.-W. Glock, P. Hiilsmann, H. Klein, M. Kurz, M. Dohlus, and N. Holtkamp. The S-Band 36-cell Experiment. In Particle Accelerator Conf. PAC'95, pages 695-697, Dallas, USA, May 1-5 1995. DESY M-95-08, pp. 81-83.

162. M. Kurz. Untersuchungen zu mikrowellenfokussierenden Beschleunigerstruk­turen fUr zukunJtige lineare Collider. PhD thesis, Universitat Frankfurt, 1993.

163. M. Kurz, W.F.O. Miiller, U. Niermann, P. Hiilsmann, H. Klein, U. van Rienen, O. Podebrad, T. Weiland, and M. Dohlus. Higher-Order Modes in a 36-Cell Test Structure. In 5th European Particle Accelerator Conf. (EPAC'96), Sitges, Spain, June 1996.

164. C. Lanczos. An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators. J. Res. Nat. Bur. Standards, 45:255-282, 1950.

165. C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations. J. Res. Nat. Bur. Standards, 49:33-53, 1952.

Page 9: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

References 345

166. U. Laustroer, U. van Rienen, and T. Weiland. URMEL and URMEL-T User Guide. M 87-03, DESY, February 1987.

167. J. Le Duff. Dynamics and Acceleration in Linear Structures. In CERN Ac­celerator School, Fifth General Accelerator Physics Course, pages 253-288, Jyviiskylii, Finland, September 1992.

168. G. Lehner. Elektromagnetische Feldtheorie. Lehrbuch. Springer, Berlin, 1996. 169. R. Losito. private communication. INFN, Frascati, Guest visitor at LAL,

Orsay. 170. L.C. Maier and J.C. Slater. Field Strength Measurements in Resonant Cavi­

ties. Journal of Applied Physics, 23(1), 1952. 171. T.A. Manteuffel. The Tchebychev Iteration for Nonsymmetric Linear Systems.

Numer. Math., 28:307-327, 1977. 172. J.C. Maxwell. A Treatise on Electricity and Magnetism, 3rd edition 1891.

Dover Publications, New York, 1954. 173. U. Meier Yang. Preconditioned Conjugate Gradient-Like Methods for Non­

symmetric Linear Systems. Diplomarbeit, Center for Supercomputing Re­search and Development, University of Illinois at Urbana-Champaign, 1994. Research Report 1210,.

174. Th. Meis and U. Marcowitz. Numerische Behandlung partieller Differential­gleichungen. Springer-Verlag, Berlin, 1978.

175. J. Meixner. Die Kantenbedingung in der Theorie der Beugung elektromag­netischer Wellen an vollkommen leitendem ebenen Schirm. Ann. der Physik, 6(6):2-9, 1949.

176. R.H. Miller. Comparison of Standing-Wave and Travelling-Wave Structures. In Int. Linear Accelerator Conference LINAC'86, pages 200-205, 1986.

177. T.G. Moore, J.G. Blaschak, A. Taflove, and G.A. Kriegsmann. Theory and Application of Radiation Boundary Operators. IEEE Trans. on Antennas and Propagation, 36(12):1797-1812, 1988.

178. P.M. Morse and H. Feshbach. Methods of Theoretical Physics. Int. Series in Pure and Applied Physics. McGraw-Hill, New York, 1953.

179. W.F.O. Miiller, P. Hiilsmann, M. Kurz, C. Peschke, H. Klein, U. van Rienen, T. Weiland, and M. Dohlus. Measurements and Numerical Calculations on Higher-Order-Mode-Dampers within a Stack of 36 Detuned S-Band-Cells. In Int. Linear Accelerator Conference LINAC'96, Geneva, Switzerland, August 1996.

180. G. Mur. Absorbing Boundary Conditions for the Finite-Difference Approxi­mation of the Time-Domain Electromagnetic-Field Equations. IEEE Trans. on Electromagnetic Compatibility, 23(4):377-382, 1981.

181. G. Mur. Edge, Elements, their Advantages and Disadvantages. Et/EM 1993-35, TU Delft, 1993.

182. G. Mur. Panel Session on Edge Elements. In XI Conf. on the Computation of Electromagn. Fields COMPUMAG, Rio de Janeiro, Brazil, November 1997.

183. J. Nahr. Konvergenzuntersuchungen zur Orthogonalentwicklung in nichtperi­odischen Wanderwellenrohren. Diplomarbeit, Darmstadt University of Tech­nology, 1992.

184. R.B. Neal, editor. The Stanford Two-Mile Accelerator. Stanford University, W.A. Benjamin, Inc., New York, 1968.

185. J. Nedelec. Mixed Finite Elements in R3. Numer. Math., 35:315-341, 1980. 186. J. Nedelec. A New Family of Mixed Finite Elements in R3. Numer. Math.,

50:57-81, 1986. 187. Y. Ne'eman and Y. Kirsh. The particle hunters. Cambridge University Press,

Cambridge, 1986. 188. Y. Ne'eman and Y. Kirsh. Die Teilchenjiiger. Springer, Berlin, 1995.

Page 10: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

346 References

189. M. Neytcheva. Arithmetic and Communication Complexity of Preconditioning Methods. PhD thesis, Katholieke Universiteit Nijmegen, Netherlands, 1995.

190. K. Oosterlee and T. Washio. An Evaluation of Parallel Multigrid as a Solver and a Preconditioner for Singular Perturbed Problems: Part I: The Standart Grid Sequence. Arbeitspapiere 980, GMD, Sankt Augustin, March 1996.

191. J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York, 1970.

192. A.M. Ostrowski. On the Linear Iteration Procedures for Symmetric Matrices. Rend.Math.e.Appl., 14:140-163, 1954.

193. C.C. Paige and M.A. Saunders. Solution of Sparse Indefinite Systems of Linear Equations. SIAM 1. Numer. Anal., 12(4):617-629, September 1975.

194. R.B. Palmer. Prospects for High Energy e+e- Linear Colliders. PUB 5195, SLAC, Stanford, California, USA, 1990.

195. W.K.H. Panofsky and W.A. Wenzel. Some Considerations Concerning the Transverse Deflection of Charged Particles in Radio-Frequency Fields. Rev. Sci. Instrum., 27:967, 1956.

196. B.N. Parlett, D.R. Taylor, and Z.A. Liu. A Look-ahead Lanczos Algorithm for Unsymmetric Matrices. MathComp., 44:105-124, 1985.

197. K. Paulsen and D.R. Lynch. Elimination of Vector Parasites in Finite Element Maxwell Solutions. IEEE-MTT, 39(3):395-404, March 1991.

198. C. Peschke, P. Hiilsmann, W.F.O. Miiller, and H. Klein. Beam Position Mon­itoring for SBLC Using HOM-Coupler Signals. In 5th European Particle Ac­celerator Conf. (EPAC'96), Sitges, Spain, June 1996.

199. G. Piefke. Das dreidimensionale Zwischen medium in der Feldtheorie. AEU, 24:523, 1970.

200. G. Piefke. Feldtheorie III, volume 782 of BI-Hochschultaschenbiicher. Bibli­ographisches Institut AG, Mannheim, 1977.

201. P. Pinder. Berechnung stationarer Temperaturfelder unter Vorgabe von Wiirmequellen. Diplomarbeit, Darmstadt University of Technology, 1994.

202. P. Pinder. Verwendung vorkonditionierter cg-Verfahren bei der Berechnung statischer elektromagnetischer Felder. Studienarbeit, Darmstadt University of Technology, 1994.

203. P. Pinder and T. Weiland. Numerical Calculation of Coupled Electromagnetic and Thermal Fields Using the Finite Integration Method. In PIERS'96, 1996.

204. O. Podebrad. Untersuchungen zu den Streu- und Wechselwirkungsparame­tern einer Beschleunigungsstruktur. Diplomarbeit, Darmstadt University of Technology, 1994.

205. O. Podebrad and T. Weiland. private communication. Darmstadt University of Technology.

206. W. PreuE, A. Bleyer, and H. PreuE. Distributionen und Operatoren. Springer Verlag, Wien, 1985.

207. T. Propper. Numerische Integration der Gitter-Maxwell-Gleichungen zur Losung langsam-veriinderlicher Feldprobleme. PhD thesis, Darmstadt Uni­versity of Technology, 1995.

208. I. Quint. Untersuchungen zum Einftufl von schwach leitenden Fremd-schichten auf das Oberftiichen-Alterungsverhalten wechselspannungsbehafteter zylindrischer Priiftinge aus Epoxidharz-FormstofJ. PhD thesis, Darmstadt University of Technology, 1993.

209. S.S. Rao. The Finite Element Method in Engineering. Pergammon, 1982. 210. T. Raubenheimer. The Generation and Acceleration of Low Emittance Flat

Beams for Future Linear Colliders. PhD thesis, Stanford University, USA, 1991. SLAC-report 387.

Page 11: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

References 347

211. P.-A. Raviart and J.-M. Thomas. A Mixed Finite Element Method for Second Order Elliptic Problems. In I. Galligani and E. Magenes, editors, Mathematical Aspects of the Finite Element Method, pages 292-315. Springer-Verlag, 1977.

212. P.A. Raviart and J.M. Thomas. Dual Finite Element Models for Second Order Elliptic Problems. Energy Methods in Finite Element Analysis. John Wiley and Sons, Chicester, 1979.

213. F Reisdorf. Die Zwischenmediumsmethode. PhD thesis, Darmstadt University of Technology, 1977.

214. M. Reiser. Theory and Design of Charged Particle Beams. Series in Beam Physics and Accelerator Technology. Wiley, New York, 1994.

215. A.J. Roberts. A one-dimensional Introduction to Continuum Mechanics. World Sci., 1994.

216. A.J. Roberts. Advanced Engineering Mathematics A. http://www.sci.usq.edu.au/units/64636/aem/aem.html. 1995.

217. G. Romanov, S. Ivanov, M. Dohlus, and N. Holtkamp. Some Remarks on the Location of Higher Order Modes in Tapered Accelerating Structures with the Use of a Coupled Oscillator Model. In Particle Accelerator Conf. PAC'95, pages 2345-2347, Dallas, USA, May 1-5 1995. DESY M-95-08, pp.89-91.

218. J. Rossbach and P. Schmuser. Basic Course on Accelerator Optics. In CERN Accelerator School, Fifth General Accelerator Physics Course, pages 17-88, Jyviiskyla, Finland, September 1992.

219. J. Ruge and K. Stuben. Algebraic Multigrid AMG. Arbeitspapiere der GMD 210, GMD, Schloss Birlinghoven, June 1986.

220. H. Rutishauser. Theory of Gradient Methods, pages 24-49. Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems. Institute of Applied Mathematics, Zurich, Basel­Stuttgart, 1959.

221. H. Rutishauser. Simultaneous Iteration Method for Symmetric Matrices. Nu­mer. Math., 16:205-223, 1970.

222. Y. Saad. Practical Use of Polynomial Preconditionings for the Conjugate Gradient Method. SIAM J. Sci. Stat. Comput., 6(4):865-881, October 1985.

223. Y. Saad. Preconditioning Techniques for Nonsymmetric and Indefinite Linear Systems. Journal of Computational and Applied Mathematics, (24):89-105, 1988.

224. Y. Saad. Krylov Subspace Methods on Supercomputers. SIAM J. Sci. Stat. Comput., 10(6):1200-1232, 1989.

225. Y. Saad. ILUT: A Dual Threshold Incomplete LU Factorization. Numerical Linear Algebra with Applications, 1(4):387-402, 1994.

226. Y. Saad. Krylov Subspace Techniques, Conjugate Gradients, Preconditioning and Sparse Matrix Solvers. Lecture Series 1994-05, von Karman Institute for Fluid Dynamics, California, 1994.

227. Y. Saad. Iterative Methods for Sparse Linear Systems. The PWS Series in Computer Science. PWS Pub!. Company, Boston, 1996.

228. Y. Saad and M.H. Schultz. Conjugate Gradient-like Algorithms for Solving Nonsymmetric Linear Systems. Math. Comput., 44:417-424, 1985.

229. Y. Saad and M.H. Schultz. GMRES: A Generalised Minimal Residual Method for Solving Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput., 7:856-869, 1986.

230. W. Schmid, M. Paffrath, and R.H.W. Hoppe. Application of Iterative Methods for Solving Nonsymmetric Linear Systems in the Simulation of Semiconductor Processing. Surv. Math. Ind., 5:1-26, 1995.

231. D. Schmitt. Zur numerischen Berechnung von Resonatoren und Wellenleitern. PhD thesis, Darmstadt University of Technology, 1994.

Page 12: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

348 References

232. W. Schnell. Research and Development for a CERN LINEAR COLLIDER. CERN-LEP-RF 87-58, Cern, Geneva, Switzerland, 1987. siehe auch CERN­LEP-RF /86-06 und CERN-LEP-RF /86-27, 1986.

233. W. Schanauer. Scientific Computing on Vector Computers. North-Holland, Amsterdam, New-York, Oxford, Tokio, 1987.

234. J.T. Seeman and N. Merminga. Mutual Compensation of Wakefield and Chro­matic Effects of Intense Linac Bunches. PUB 5220, SLAC, Stanford, USA, May 1990.

235. T. Shintake et al. High Power Test of HOM-Free Choke-Mode Damped Ac­celerating Structures. In 17th Int. Linac Conf., Tsukuba, Japan, 1994. KEK Preprint 94-82 (1994).

236. P.P. Silvester and M.V.K. Chari. Finite Element Solution of Saturable Mag­netic Field Problems. IEEE Trans. on PAS, 89:1642-1651, 1970.

237. G.L.G. Sleijpen and D.R. Fokkema. BICGstab(l) for Linear Equations Involv­ing Unsymmetric Matrices with Complex Spectrum. Electronic Transactions on Numerical Analysis, 1:11-32, September 1993.

238. G.L.G. Sleijpen, D.R. Fokkema, and H.A. van der Vorst. Generalized Conju­gate Gradient Squared. Preprint No. 851, University Utrecht, Department of Mathematics, May 1994.

239. M. Sommer. Untersuchungen zum Gibbs'schen Phanomen bei der Methode der Orthogonalentwicklung zur Berechnung von Wanderwellenrahren. Diplo­marbeit, Darmstadt University of Technology, 1995.

240. P. Sonneveld. CGS, a Fast Lanczos-Type Solver for Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput., 10(1):36-52, November 1989.

241. M. Spasojevic, P. Levin, J.T. Schmidt, S. Schrater, and C. Schlyter. Rapid Evaluation of HVDC Grading Rings by BIE-based Field Calculation. In Ninth Int. Symp. on High Voltage Engineering, pages 8339(1-4), Graz, 1995.

242. Stanford Linear Accelerator Center, Stanford University. Fifth International Workshop on Next-Generation Linear Colliders, Stanford, California 94309, October 1993. SLAC-436.

243. C.W. Steele. A Nonresonant Perturbation Theory. IEEE-MTT, 14(2):70-74, 1966.

244. B. Steffen. private communication. KFA Jiilich. 245. B. Steffen. Incorporation of Multigrid Methods in Accelerator Software. In

2nd European Conf. on Multigrid Methods, pages 163-178, Kaln, October 1-4 1985. GMD-Studien 110, Mai 1986.

246. K. Steinigke. Wellenausbreitung in koaxial und exzentrisch geschichteten Rundhohlleiterstrukturen . PhD thesis, Darmstadt University of Technology, 1992. Fortschritt-Berichte R. 21, 108, VDI Verlag, Diisseldorf.

247. E. Stiefel. Relaxationsmethoden bester Strategie zur Lasung linearer Gle­ichungssysteme. Comment. Math. He/v., 29:157-179, 1955.

248. J. Stoer and R. Bulirsch. Numerische Mathematik II, volume 114 of Heidel­berger Taschenbiicher. Springer, Berlin, Heidelberg, 1990.

249. G. Strang. A Homework Exercise in Finite Elements. Int. J. Num. Meths. Engrg., 11:411-417, 1977.

250. G. Strang and G.J. Fix. An Analysis of the Finite Element Method. Prentice­Hall, New York, 1973. (Now published by Wellesley-Cambridge Press).

251. J.A. Stratton. Electromagnetic Theory. Int. Series in Pure and Applied Physics. McGraw-Hill, New York, London, 1941.

252. K. Stiiben. Algebraic Multigrid (AMG): An Introduction with Applications. GMD-Reports 53, GMD, Schloss Birlinghoven, March 1999.

Page 13: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

References 349

253. K Stiiben and U. Trottenberg. Multigrid Methods: Fundamental Algorithms, Model Problem Analysis and Applications. In W. Hackbusch and U. Trotten­berg, editors, Multigrid Methods, Lecture Notes in Mathematics, 960, pages 1-176. Springer, Berlin, 1982.

254. I. S. Duff T. A. Davis. A Combined Unifrontal/Multifrontal Method for Un­symmetric Sparse Matrices. Technical Report TR-97-016, Computer and In­formation Science and Engineering Department, University of Florida, 1997.

255. A. Taflove. Computational Electrodynamics - The Finite-Difference Time­Domain Method. Artech House, Boston, London, 1995.

256. A. Taflove, KD. Umashankar, and T.G. Jurgens. Validation of FD-TD Model­ing of the Radar Cross Sextion of Three-Dimensional Structures Spanning Up to Nine Wavelengths. IEEE Trans. on Antennas and Propagation, 33(6}:662-666, June 1985.

257. K Takata. In First Workshop on JAPAN LINEAR COLLIDER (JLC), KEK, Tsukuba, Japan, October 24-25 1989.

258. S. Takeda. Part. Acc., 30:1101, 1990. 259. T. Tarhasaari, L. Kettunen, and A. Bossavit. An Interpretation of the Galerkin

Method as the Realization of a Discrete Hodge Operator. In 8th Biennal IEEE Conf. on Electrom. Field Computation CEFC 1998, Tucson, Arizona, USA, June 1998.

260. H.-J. Thiebes. Mehrgittermethoden und Reduktionsverfahren fiir indefinite el­liptische Randwertaufgaben. PhD thesis, Institut fiir Angewandte Mathematik, Universitiit Bonn, 1983.

261. P. Thoma. Zur numerischen Losung der Maxwellschen Gleichungen im Zeit­bereich. PhD thesis, Darmstadt University of Technology, 1997.

262. P. Thoma and T. Weiland. A Consistent Subgridding Scheme for the Finite Difference Time Domain Method. International Journal of Numerical Mod­elling, 9:359-374, 1996.

263. J.M. Thomas. Sur l'analyse numerique des methodes d'elements finis hybrides et mixtes. These d'etat, Universite Pierre et Marie Curie, Paris, 1977.

264. KA. Thompson, C. Adolphsen, KL.F. Bane, H. Deruyter, Z.D. Farkas, H.A. Hoag, K Ko, G.A. Loew, R.H. Miller, E.M. Nelson, RB. Palmer, J.M. Pater­son, RD. Ruth, J.W. Wang, P.B. Wilson, N.M. Kroll, X.T. Lin, RL. Gluck­stern, N. Holtkamp, B.W. Littmann, and D.U.L. Yu. Design and Simulation of Accelerating Structures for Future Linear Colliders. Part. Ace., 47:65-109, 1994.

265. P. Tong and J.N. Rossettos. Finite-Element Method. The MIT Press, Cam­bridge, 1977.

266. B. Trapp. Beriicksichtigung teilweise elektrisch gefiillter Zellen mit der FI­Methode. Studienarbeit, Darmstadt University of Technology, 1996.

267. TRC: International Linear Collider Technical Review Committee Report, 1995.

268. L.N. Trefethen and L. Halpern. Well-Posedness of One-Way Wave Equa­tions and Absorbing Boundary Conditions. Math. Comp., 47:421-435, Octo­ber 1986.

269. U. Trottenberg. Schnelle Lasung elliptischer Differentialgleichungen nach dem Mehrgitterprinzip. Mitteilungen der GAMM Heft 1, Februar 1984.

270. J. Tiickmantel. URMEL 1.8, URMEL with a High Speed and High Precision Eigenvector Finder. EF IRF 83-5, CERN, Geneva, Switzerland, July 1983.

271. J. Tiickmantel. Application of SAP in URMEL. EF IRF 85-4, CERN, Geneva, Switzerland, July 1985.

272. M.J. Turner, RW. Clough, H.C. Martin, and L.J. Topp. Stiffness and Deflec­tion Analysis of Complex Structures. J. Aero. Sci., 23:805-823, 1956.

Page 14: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

350 References

273. H.-G. Unger. Elektromagnetische Theorie fur die Hochfrequenztechnik II. Dr. A. Hiithig Verlag, Heidelberg, 1981.

274. M. van den Meijdenberg. On the Iterative Solution of Electrostatic Har­monic Problems with Thin Dielectric or Conducting Layers. Diplomarbeit, Katholieke Universiteit Nijmegen, Niederlande, 1989.

275. H.A. van der Vorst. Bi-CGStab: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput., 2(13):631-644, 1992.

276. H.A. van der Vorst and J.B.M. Melissen. A Petrow-Galerkin Type Method for Solving Ax=b, where A is Symmetric Complex. IEEE Trans.Mag., 26(2):706-708, 1990.

277. U. van Rienen. Zur numerischen Berechnung zeitharmonischer elektromag­netischer Felder in offenen, zylindersymmetrischen Strukturen unter Verwen­dung von Mehrgitterverfahren. PhD thesis, Darmstadt University of Technol­ogy, 1989.

278. U. van Rienen. Mode Matching Technique for Calculating Multi-Cell Cavities. In Third Int. Workshop on Linear Colliders, pages 352-365, Protvino, USSR, Sept. 1991. Vol.3, Issue 2.

279. U. van Rienen. Higher Order Mode Analysis of Tapered Disc-Loaded Waveg­uides Using the Mode Matching Technique. Part.Acc., 41:173-201, 1993.

280. U. van Rienen. Numerik groBer Gleichungssysteme - Theorie und Praxis. Skriptum zur Vorlesung, Darmstadt University of Technology, FB 18, FG TEMF, Juli 1996.

281. U. van Rienen, M. Clemens, and T. Weiland. Computation of Low-frequency Electromagnetic Fields. ZAMM, 76(Suppl. 1):567-568, 1996.

282. U. van Rienen, M. Clemens, and T. Weiland. Simulation of Low-Frequency Fields on High-Voltage Insulators with Light Contaminations. IEEE Trans. Mag., 32(3):816-819, May 1996.

283. U. van Rienen, P. Pinder, and T. Weiland. Consistent Finite Integration Ap­proach for the Coupled Calculation of Electromagnetic Fields and Stationary Temperature Distributions. In 7th Biennal IEEE Conference on Electromag­netic Field Computation (CEFC), page 294, Okayama, Japan, March 1996.

284. U. van Rienen, G.-A. Voss, and T. Weiland. private communication, 1993. Darmstadt University of Technology, DESY.

285. U. van Rienen and T. Weiland. Higher Order Mode Loss Heating of Vacuum Chamber Joints in HERA p-Ring. HERA 84-13, DESY, Hamburg, Juni 1984.

286. U. van Rienen and T. Weiland. Triangular Discretization Method for the Evaluation of RF-Fields in Waveguides and Cylindrically Symmetric Cavi­ties. Part.Acc., 20:239-267, 1986/87.

287. U. van Rienen and T. Weiland. Impedance Calculation with URMEL-I Using Multigrid Methods. IEEE, Trans. Mag, 26(2):743, 1990.

288. U. van Rienen and T. Weiland. Coupled Calculation of Electromagnetic Fields and Stationary Temperature Distributions. In 5th European Particle Acceler­ator Con/. (EPAC'96), Sitges, Spain, June 1996.

289. R.S. Varga. Factorization and Normalized Iterative Methods, pages 121-142. Boundary Problems in Differential Equations. University of Wisconsin Press, Madison, 1960.

290. C. Vassallo. On a Direct Use of Edge Condition in Modal Analysis. IEEE Trans. MTT, 24(April):208-212, 1976.

291. P.K.W. Vinsome. ORTHOMIN, an Iterative Method for Solving Sparse Sets of Simultaneous Linear Equations. In Fourth Symposium on Reservoir Simu­lation, pages 149-159, Society of Petroleum Engineers of AIME, 1976.

Page 15: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

References 351

292. B. Wagner. Numerische Simulation elektromagnetischer Felder in nichtlin­earen Medien. PhD thesis, Darmstadt University of Technology, 1996.

293. J.W. Wang. RF Properties of Periodic Accelerating Structures for Linear Colliders. PhD thesis, Stanford University, Stanford, California, 1989.

294. J.P. Webb. Edge Elements and What They can do for You. IEEE Trans. on Magnetics, 29(2}:1460-1465, 1993.

295. T. Weiland. private communication. Darmstadt University of Technology. 296. T. Weiland. Eine Methode zur Lasung der Maxwellschen Gleichungen fur

sechskomponentige Felder auf diskreter Basis. AEU, 31:116-120, 1977. 297. T. Weiland. Zur Berechnung der Wirbelstrame in beliebig geformten, lamel­

lierten, dreidimensionalen Eisenkarpern. Archiv fur Elektrotechnik, 60:345-351, 1978.

298. T. Weiland. In 11th Int. Conf. on High Energy Accelerators, page 570, Geneva, 1980.

299.

300.

301.

302.

303.

304.

305.

T. Weiland. Comment on Wake Field Computation in Time Domain. NIM, 216:31-34, 1983. T. Weiland. On the Computation of Resonant Modes in Cylindrically Sym­metric Cavities. NIM, 216:329-348, 1983. T. Weiland. Transverse Beam Cavity Interaction, Part I: Short Range Forces. NIM, 212:13-21, 1983. T. Weiland. On the Numerical Solution of Maxwell's Equations and Applica­tions in Accelerator Physics. Part. Ace., 15:245-291, 1984. T. Weiland. On the Unique Numerical Solution of Maxwellian Eigenvalue Problems in Three Dimensions. Part.Acc., 17:227-242, 1985. T. Weiland. Ein allgemeines Verfahren zur Lasung der Maxwell'schen Gle­ichungen und seine Anwendung in Physik und Technik. Physikalische Blatter, 41:380, 1986. T. Weiland. Elektromagnetisches CAD - Rechnergestutzte Methoden zur Berechnung von Feldern. Script, Darmstadt University of Technology, Mai 1995. .

306. T. Weiland. High Precision Eigenmode Computation. Part.Acc., 56:61-82, 1996.

307. T. Weiland. Time Domain Electromagnetic Field Computation with Finite Difference Methods. Int. Journal of Numerical Modelling: Electronic Net­works, Devices and Fields, 9(4):295-319, July-August 1996.

308. T. Weiland, U. van Rienen, P. Hulsmann, W.F.O. Muller, and H. Klein. Investigations of Trapped Higher Order Modes using a 36-Cell Test Struc­ture. Physical Review Special Topics - Accelerators and Beam (PRST·AB), 2:042001-1 - 042001-8, 1999. Art. 04200l.

309. T. Weiland and R. Wanzenberg. Wake fields and impedances. In 1990 Joint US-CERN Accelerator Course, pages 39-79, Hilton Head, South Carolina, November 1990. also DESY M-91-06.

310. T. Weiland et al. Design Study for a 500 GeV Linear Collider. In Int. Linear Accelerator Con/. LINAC'90, Albuquerque, New Mexico, USA, 1990.

311. T. Weiland et al. Status Report of a 500 GeV S-Band Linear Collider Study. In Workshop on Physics and Experiments with Linear Colliders, Saariselkii., Finnland, September 1991.

312. R. Weiss. Error-Minimizing Krylov Subspace Methods. SIAM J. Sci. Comput., 15(3):511-527, May 1994.

313. 0 Widlund. A Lanczos Method for a Class of Non-symmetric Systems of Linear Equations. SIAM J. Numer. Anal., 15:801-812, 1978.

Page 16: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

352 References

314. B. Wiik and M. Tigner. Electron-Proton-Colliders beyond HERA. In H. Padamsee, editor, Proceedings of the First TESLA- Workshop, July 1990. CLNS90-1029.

315. J.H. Wilkinson and C. Reinsch. Linear Algebra, volume II of Handbook for Automatic Computation. Springer-Verlag, Berlin, 1971.

316. K. Wille. Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen. Studienbiicher Physik. Teubner, Stuttgart, 1992.

317. P. Wilson. ISR-TH 78-23, CERN, 1978. 318. M. Witting. Untersuchung elektromagnetischer Eigenschaften von Wander­

wellenrohren mit der Methode der Orthogonalentwicklung. Diplomarbeit, Darmstadt University of Technology, 1992.

319. G. Wittum. On the Robustness of ILU Smoothing. SIAM J. Sci. Stat. Com­put., 10:699-717, 1989.

320. G. Wittum. Mehrgitterverfahren. Spektrum der Wissenschajt, pages 78-90, April 1990.

321. H. Wolter. Berechnung akustischer Wellen und Resonatoren mit der FIT­Methode. PhD thesis, Darmstadt University of Technology, 1995.

322. M. Yamamoto, T. Higo, and K. Takata. Analysis of Detuned Structure by Open Mode Expansion. In 17th International Linac Conference (LINAC'94), Tsukuba, Japan, August 1994.

323. K.S. Yee. Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media. IEEE-AP, 14:302-307, 1966.

324. D.M. Young. Iterative Solution of Large Linear Systems. Computer Science and Applied Mathematics. Academic Press, New York, 1971.

325. H. Yserentant. On the Multilevel Splitting of Finite Element Spaces. Numer. Math., 49:379-412, 1986.

326. H. Yserentant. Preconditioning Indefinite Discretization Matrices. Numer. Math., 54:719-735, 1988.

327. P.M. Zerwas. e+e- Linear Colliders: Physics Prospects. In ECFA Workshop on e+e- Linear Colliders (Fourth Int. Workshop on Next-Generation Linear Colliders), Garmisch-Partenkirchen, 25 July - 2 August 1992. ECFA 93-154, June 1993.

328. X. Zhan. Parallel Electromagnetic Field Solvers using Finite Element Methods with Adaptive Refinement and their Application to Wakefield Computation of Axisymmetric Accelerator Structure. PhD thesis, Stanford University, 1997.

329. M. Zhang. Numerical Optimization of Electromagnetic Components. PhD thesis, Darmstadt University of Technology, 1994.

330. L. Zhuo and F. Walker. Residual Smoothing Techniques for Iterative Methods. SIAM J. Sci. Comput., 15(2):297-312, March 1994.

331. O.C. Zienkiewicz, W.L. Wood, and N.H. Hine. A Unified Set of Single Step Algorithms. Part 1: General Formulation and Applications. Int. J. Num. Meth., 20:1529-1552, 1984.

Page 17: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

Symbols

Classical Electrodynamics

{Lo

p

Xe

Xm

dielectric constant; permittivity

dielectric constant of vacuum; ::: 8.854· 10-12 As/Vm

relative permittivity

(electric) conductivity; [1 I .om]

electric conductivity; [I/.om]

thermal conductivity; [W Im·K]

permeability

permeability of vacuum; 411' . 10-7 VsI Am ::: 8.854· 10-12

Vs/Am relative permeability

wave length

circular cutoff frequency

scalar potential

complex scalar potential

charge density; [As/m3 ]

dielectric susceptibility

magnetic susceptibility

Page 18: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

354 Symbols

C

Co

A

B

B

D

D

e

E

E'

E

Ie

H

H'

H

J

l

JE

JK

JL

J w

k

speed of light

vacuum speed of light; c = 2.99792458· 108m/s

vector potential

magnetic flux; [TJ=[Vsjm2]

phasor; complex amplitude of B(r, t) = Re(B(r)eiwt ) in complex notation for time-harmonic magnetic flux

electric flux; [C/m2] = [As/m2]

phasor; complex amplitude of D(r, t) = Re(D(r)eiwt ) in complex notation for time-harmonic electric flux

electron charge; e = 1,60· 10-19 As

electric field strength; [V jm]

normalized electric field strength

phasor; complex amplitude of E(r,t) = Re(E(r)eiwt ) in complex notation for time-harmonic electric field

cutoff frequency

magnetic field strength; [Aim]

normalized magnetic field strength

phasor; complex amplitude of H(r, t) = Re(H(r)eiwt ) in complex notation for time-harmonic magnetic field

current density; [A/m2]

phasor; complex amplitude of J(r,t) = Re(~(r)eiwt) in complex notation for time-harmonic current density

impressed current density

convection current density

conduction current density

thermal flux; [W 1m2]

Boltzmann constant; k = 1,38.10-23 J /K

Page 19: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

L typical length of a setup

M magnetization

p polarization density

S Poynting vector; [W 1m2 ]

t time

T temperature

v velocity vector

u energy as function of temperature

W heat source density

We electric energy density

Wm magnetic energy density

Yo admittance

Zo wave impedance

Mode Matching Technique

Cmn

resonant frequency

coupling matrix element

weighted coupling matrix element

coupling matrix

coupling matrix

identity matrix

field eigenfunction of the electric field

Symbols 355

Page 20: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

356

hn

In

I

M

N

T(E)

T(H)

Un

U

Ws

Symbols

field eigenfunction of the magnetic field

current amplitude (Fourier coefficient)

vector holding the current amplitudes

number of eigenmodes

number of eigenmodes

cross-sectional eigenfunction of Ez-waves

cross-sectional eigenfunction of Hz-waves

voltage amplitude (Fourier coefficient)

vector holding the voltage amplitudes

stored energy

Finite Element Method

<Pi

f

H(curl; il)

H(div; il)

r

u

basis function

right-hand side of differential equation

function space in edge element formulation

function space in edge element formulation

interaction coefficients

linear differential operator

residual

unknown field; solution function

coefficients in approximation to u; nodal values

Page 21: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

Symbols 357

Finite Integration Technique

P E,i

Pm

p. -~

b

c

d

e

(G,G)

G

G

i, j, k

discrete electric scalar potential

discrete magnetic scalar potential

magnetic charges (!non-physical auxiliary quantity!)

discrete complex scalar potential (EQS)

elementary area

vector holding the magnetic (grid-)fl.ux

magnetic (grid-)fl.ux

discrete curl operator

discrete curl operator on dual grid

vector holding the electric (grid-)fl.ux

electric (grid-)fl.ux

discrete material matrices

vector holding the electric (grid-) voltage

electric (grid-)voltage

grid duplet

FIT-grid

dual FIT-grid

magnetic (grid-) voltage

homogeneous part of magnetic field

inhomogeneous part of magnetic field

index of lexicographic numbering (in U-, V-, w-direction)

Page 22: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

358 Symbols

J,J,K,N

qi

s

maximal index of the grid (in u-, v-, w-direction resp. total number of grid points)

total electric (grid-) current

elementary line

grid point

discrete operators corresponding to partial derivatives in x, y and z on dual-orthogonal grids

discrete charges

discrete divergence operator

discrete divergence operator on dual grid

discrete gradient operator

discrete gradient operator on dual grid

elementary volume; FIT-cell

Numerical Treatment of Linear Systems

parameter on S in Axelsson's method

... in cg-algorithm

... in cg-algorithm

cycling parameter in multigrid methods

~2(A) condition number of matrix A

relaxation parameter of the Kaczmarz algorithm

eigenvalue of system matrix

number of relaxations on grid G k

convergence factor of Theta-component

Page 23: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

p(M)

fJ(PdM))

Pk

e

w

A

b

c

Symbols 359

smoothing factor

iteration function

BiCG-polynomial relating residual in step k to initial residual nearby BiCG-polynomial

BiCG-polynomial relating search direction in step k to initial residual spectral radius of matrix M

virtual spectral radius of matrix M

parameter in Chebyshev iteration

acceleration parameter

Fourier component of error function

relaxation parameter

system matrix

system matrix on grid with step size h

system matrix on grid Gt

element in row i and column j of the system matrix A

right hand side

right hand side on grid with step size h

right hand side on grid Gt

preconditioning matrix

Chebyshev polynomial of degree k

defect on grid with step size h

defect on grid Gt

Page 24: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

360 Symbols

D

ei

Gn

Gh

GH

IH h

11- 1 1

Ih H

ILl

-I 11- 1

k

k' Km

L

M

n

P

Pk

Pk

P

Pk

Pk

diagonal matrix

i-th unit vector

system matrix of transformed system in Axelsson's method grid with step size h (fine grid)

grid with step size H (coarse grid)

restriction from fine to coarse grid

restriction from fine to coarse grid

interpolation from coarse to fine grid

interpolation from coarse to fine grid

interpolation from coarse to fine grid in FMG

wave number

m-th Krylov subspace

lower triangular matrix in Gaussian elimination

iteration matrix

matrix dimension

permutation matrix in Gaussian elimination

search direction in step k of cg-algorithm

pseudo-search direction

orthogonal projection

polynomial of degree k

projection on Vk

Page 25: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

R

s

s

u

u

v

Vn,m

x

Xt

Symbols 361

residual vector after k iterations

pseudo-residual

real part of complex system matrix

shift-factor for eigenvalue k2 in multigrid algorithm

imaginary part of complex system matrix

tridiagonal matrix in Lanczos algorithm

real part of right hand side (Axelsson's method)

upper triangular matrix in Gaussian elimination

linear subspace

imaginary part of right hand side (Axelsson's method)

error on grid with step size h

error on grid Gl

coefficient in linear combination of approximate solutions after k Chebyshev iterations

error of approximation to solution on two-dimensional grid

affine subspace

weighting factor for under-interpolation in multigrid algorithm

affine subspace

solution vector resp. its real part (Axelsson's method)

solution vector on grid with step size h

solution vector on grid Gt

approximation to solution vector on grid with step size h

approximation to solution vector on grid Gt

Page 26: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

362

Xl

Xk

X(k)

(k) Xi

Y

Yk

Symbols

initial approximation to solution vector on grid Gl (FMG)

fixpoint

exact solution

approximation to solution vector after k iterations

approximation to solution vector after k iterations

i-th component of k-th iterative approximation

complex part of solution vector (Axelsson's method)

approximation to solution vector after k iterations of Chebyshev algorithm

Page 27: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

Index

O-mode, 289, 300, 311 27r /3-mode, 253, 255, 258, 282, 323 36-cell experiment, 295-302, 304-315,

319 7r-mode, 253, 255, 289, 300, 311 7r /2-mode, 253, 255 e+ e- -physics, see electron-positron

physics * operator, see Hodge operator 3 dB waveguide coupler, 187, 237

A-conjugate, see A-orthogonal A-norm, 100 A-orthogonal - basis, 101, 102 - projection, 101, 102 - vectors, 103 ABC , see absorbing boundary

condition absorbing boundary condition, 30 accelerating - gradient, 246, 258 - - loaded, 260 -- SBLC, 265 - mode, 253, 255, 282 - section, 243 - structure, 248, 253, 322

aperiodic, 258-264 constant gradient, 246, 255, 258-262, 265, 270, 278, 280 constant impedance, 258, 278 detuned, 258, 262-264 loaded,259 periodic, 257-258 quasi-constant gradient, 261, 282 rotationally invariant, 276 SBLC, 265, 271 SLAC, 270 tapered, 258

- voltage, 255 acceleration of charged particles, 244,

250

accelerator, 243 acoustics, 57 adaptive strategy, 127 admittance, 21 algebraic multigrid, see AMG AMG, 129, 214 AMLl,155 amplitudes - current, 39 - inner, 41 - outer, 42 - voltage, 39 - wave, 41 analytical solution methods, 23 aperiodic acceleration structure,

258-264, 280, 311 - loss parameter curve, 287 approximation quality of matrix

inverse, 151 Arnoldi method, 115 asymptotic convergence factor, 94 attenuation, 258, 282 - parameter, 257 auxiliary transitions, 46 Axelsson's method, 158 Axelsson's reduction of a complex

linear system to real form, 156-161

B-Factory, 324 backward SOR, 95, 154 balancing transformation of magnetic

field, 143 basis function, 51 BCl,274 bead, 303, 310 beam - break-up, 270, 279 - - multibunch, 280 - - single bunch, 279 - dynamics, 246, 268-280 - instabilities, 268, 275, 279-280 - loading, 246, 259, 260

Page 28: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

364 Index

- - fundamental theorem, 259 - - transient, 280 - matched, 270 - mismatched, 270 - optics, 268 - position monitor, 318 beam pipe mode, 309 BEM, 226, 280 Bernoulli's product ansatz, 28 Bessel's differential equation, 28 - general solution, 28 beta function, 269 betatron - motion, 269 - oscillation, 269 bi-orthogonalization, 106 BiCG, 109, 110, 190 BiCG polynomials, 111 BiCGCR,113 BiCGSTAB, 115-117, 178, 185, 187,

190 BiCGstab(l), 118 BiCGstab2, 118, 178, 185, 187 BINP, 248 black box solver, 100, 130, 190 BNS damping, 279 board, 223 Boltzmann constant, 15 bond wires, 189 bordering methods, 150 boundary condition - perfect electric, 42 - perfect magnetic, 42 boundary element method, see BEM boundary operator, 31 boundary value problems, 29-33 - absorbing boundary condition, 30 - open boundary condition, 30 - periodic boundary condition, 30 - potential theory, 29

Dirichlet problem, 29 first boundary value problem, 29 mixed boundary value problem, 29

-- Neumann problem, 29 - - Newton problem, 29 - - second boundary value problem, 29 - - third boundary value problem, 29 - waveguide boundary condition, 31 box schemes and FIT grids, 68 breakdown, 118 - in BiCe, 110 Brillouin diagram, 257 bunch, see particle bunch

- charge, 319 - compression, 248 - distance, 246 - Gaussian, 273 - length, 273 - train, 246, 270 -- SBLC, 265 bunch-to-bunch energy spread, 280

C-magnet, 168, 212 - nonlinear, 216 C-to-R method, 158 - with Chebyshev iteration, 160, 161 - with preconditioning, 158 calculation domain, 57 Cartesian coordinate grid, 57 cavity, 244 cell-to-cell phase advance, 257, 271,

282,311 centroid, 270 CERN, 247, 248 cg, 99-105, 161, 162, 169, 170, 207, 209,

214, 216, 219 - error estimate, 104 - rate of convergence, 105 - stopping criterion, 104 - with ILU(3) preconditioning, 224 CGNE,109 CGNR,109 CGS, 112, 115, 161, 178, 185, 187 CGS2, 113, 178, 185, 187 CGW-method, 154 chain matrix, 41 charge density, 12 charged particle, 243, 260 Chebyshev acceleration, 98 Chebyshev iteration, 96-99, 150, 160 - and SSOR, 95 - error estimate, 99 Chebyshev polynomials, 97 chip, 237 choke-mode cavity, 317 Cholesky-factor, 152 circuit breaker, 221 classification of electromagnetic fields,

22 CLIC, 248, 249 coarse grid, 126 - correction, 126 coarsening for high frequency problems,

147 coce, 111, 177, 181 - with Minimal Residual Smoothing

(COCG-MRS), 182

Page 29: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

collective effects, 268 COM, 281, 290-295 complex matrices - indefinite, 184 - special properties, 76-77 - symmetric, 184 - symmetric positive stable, 177 complex scalar potential, 24, 72, 224 computational domain, 31 computational effort, 31, 164, 172, 178,

182, 187 - BiCG, 111 - BiCGSTAB, 118 - BiCGstab(l), 118 - CGS, 112 - CGS2, 113 - COCG, 111 - GCG-LS, 121 - GMRES, 116 - model problem, 164-168 - SCBiCG, 113 condition number, 104, 150, 164 conductive contamination, 226 conductivity, 12 conjugate, 99 Conjugate Gradient algorithm, see cg connection coefficients, 51 conservation of charges, 13 conservation of energy, 14 consistent discretization method, 56, 64 constant gradient structure, 246, 255,

258-262, 280, 309, 315, 319 constant impedance landings, 261, 282 constant impedance structure, 246, 258,

310 contaminated insulator, 180 continuity condition, 40, 54 continuity equation, 13 convergence - behaviour, 178, 180-182, 187, 189 - - dependence on material parameters,

182 - factor, 124 - speed, 92 cooling of cavities, 323 Coulomb gauge, 23 coupled - calculation, 220 - problem, 205 - temperature problems, 320-324 coupled circuit model, 280 - verification, 287 coupling

- factor, 303 - impedance, 276 - matrix, 40 critical voltage, 225 cross-talk, 189, 237 cryostat, 323

Index 365

cumulative beam instability, 270, 280 cup, 250, 262 Curl-Curl Equation, 75, 234 current - amplitude, 39 - density, 12 - - conduction rv, 12 -- convection rv, 12 -- impressed rv, 12 - sensor, 174, 213 cut-off - diagram, 289 - number, 250 - tubes, 304 cylindrically symmetric structures, 36

DAE,233 damper, 271 damping, 244, 257, 319 - constant, 258 - factor, 258, 311 - global, 317-318 - local, 315 - strong, 311 - weak, 311 dark currents, 249 decay time, 273, 275 decoupling by differentiation, 25 defect, 125 - equation, 125 delta function, 271 design trajectory, 269 DESY, 248 determinant - after LV decomposition, 89 detuned structure, 258, 262-264 detuning, 280, 318 dielectric - constant, 12 - susceptibility, 12 differential-algebraic equations, 233 diffusion constant, 12 dipole component, 276 dipole modes, 38, 258, 260, 278, 283,

305,309 - strongly interacting, 287 direct Lanczos algorithm, 107 directional coupler, 237

Page 30: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

366 Index

Dirichlet - (boundary value) problem, 29 - boundary condition, 212, 272 discharge, 225 - voltage, 225 discrete - charges, 61 - curl operator, 60, 63 - divergence operator, 63 - gradient operator, 63 discretization methods, 35 - finite difference method, see FD - finite element method, see FEM - finite integration technique, see FIT - finite volume method, 56 dispersion - curve, 251, 253 - - for periodic structures, 257 - function, 269 - relation, 250 displacement current, 225 dissipative heating, 320 divergence, 268 dual - FIT grid, 60 - - dual-orthogonal, 60, 61 - - for uniform coarsening, 134 - - special properties for dual-

orthogonal grids, 66 - formulation, 54 - grid, 60 - problem, 53 duality methods, 52 duality theory, 52

Ez-waves, 27 eddy currents, 320 edge, 54 - condition, 44, 46 - element formulation, 54, 55 effective emittance, 270 eigenfrequency, 244 eigenfunctions, 32 - cross-sectional eigenfunctions of E z -

and Hz-waves, 29 - expansion, 32 - field eigenfunctions, 38 - modes, 38 eigenvalue, 32 - distribution, 184 - of E z- and Hz-waves (Helmholtz

equation for circular cylindrical waveguides), 29

elastodynamics, 57 electric - (grid) current, 61 - (grid-)voltage, 58 - charge density, 12 - conductivity, 12 - displacement, 11 - field, 220, 227, 237, 239, 244, 276,

300 - - static, 207 - field strength, 11 - flux, 11, 61 - scalar potential, 23, 24 electro-quasistatic potential, 178, 227 electro-quasistatics (EQS), 17, 160,

177, 205, 224-233 - complex scalar potential, 24 - fundamental equations, 18 - with FIT, 72-73 electro-thermal behaviour, 320 electrode shape, 227 electrolytic partial discharge erosion,

226 electromagnetic fields, 11 - scattered, 272 electromagnetic waves, 21-22, 243 electron charge, 15 electron-positron collider, 247 electron-positron physics, 245 electrostatic model - vs. electro-quasistatic model, 227 electrostatic potential, 178, 207, 209 electrostatics, 16, 162, 205-211 - with FIT, 70 elementary - area, 57 - line, 57 - volumes, 57 elementary particle, 243 emittance, 268-270, 319 - effective, 270 - ellipse, 269 - growth, 270, 319 - multibunch, 270 - single bunch, 270 energy, 260, 318 - center of mass, 247 - conversion, 260 - density, 13, 324 -- electric, 13 - - magnetic, 13 - flux, 14 - gain, 258

Page 31: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

- - in constant gradient structures, 260 - inner as function of temperature, 15 - kinetic, 244 - loss, 273, 274, 278, 322 - norm, 99, 100 - per cell - - in constant gradient structures, 315 - spread, 279 -- bunch-to-bunch, 280 - stored, 254, 278, 300 - supply, 244 - total, 302 - velocity, 251 epoxy-resin, 227 EQS, see electro-quasistatics equivalent circuit, 226, 290, 295 error estimate - cg, 104 - Chebyshev iteration, 99 error smoothing, 122, 123 exact breakdown, 108 excited fields, 273 expansion - into a series of eigenfunctions, 32 - multipole - - of wake potentials, 276 - orthonormal series, 33

FD, 35, 48, 280 FDTD,57 FEM, 48-56, 226, 280 - conforming approximation, 53 - degrees of freedom, 53 - edge element formulation, 54 - element properties, 50 . - external approximation, 53 - for Maxwell's equations, 54 - Hermite type elements, 53 - internal approximation, 53 - interpolation, 50 - Lagrange type elements, 53 - mixed, 54 - non-conforming approximation, 53 - system assembly, 50 - system solution, 50 - with Whitney forms, 54 field distribution - in 36-cell structure, 309 - in constant gradient structures, 260 field eigenfunctions, 38 fill-in, 90 filling time, 255, 315 filter

Index 367

- weighting eigenfunctions, 44 - weighting the coupling matrix, 44 fine grid, 126 finite difference method, see FD Finite Difference Time Domain, see

FDTD finite element method, see FEM finite elements, 48 - one-dimensional, 49 - three-dimensional, 49 - two-dimensional, 49 finite integration technique, see FIT first boundary value problem, 29 first law of thermodynamics, 15 FIT, 36, 56-76, 162, 178,205,226,244,

274, 281, 295, 323 - analogy with FD, 66 - cell, 57 - convergence of loss parameter, 289 - correspondence between discrete field

quantities and state variables, 66 - coupled thermal problems, 320 - discretization of integrals, 66 - grid, 57 - - correspondence to box schemes, 68 - - discrete charges, 61 -- dual, 60 -- dual-orthogonal, 60, 61 -- grid cells, 57 - - scalar potential, 62 - - state variables, 58 - - three-dimensional dual non-

orthogonal grids, 68 -- total electric current, 61 - - triangular grids, 68 - material matrices, 66 - properties, 64-65 - system matrices, 78-79 FIT grid - electric - - (grid-) voltage, 58 - magnetic - - gradient, 62 -- voltage, 61 Five-Point-Star, 94 fixed point, 92 - methods, 92 - - acceleration, 96 Floquet's theorem, 30, 257 FMC, 148 FMG approach, 129 force - exerted by wake fields, 274

Page 32: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

368 Index

form factor, 304, 310 forward SOR, 154 Fourier coefficients, 39 Fourier series, 276 Fourier's law, 14 Fourier-Bessel series, 36, 37 - truncation, 44 frequency, 250 - accelerating - - tuning, 259 - excitation, 76, 79 - resonant, 42 Full MultiGrid, see FMG fundamental theorem of beam loading,

259

Galerkin approach, 50, 130 Galerkin's criterion, 51 Gauss algorithm, 161 Gauss-Seidel, 162 - algorithm, 126, 146 - method, 164 - - for restart, 172 - preconditioning, 154 Gaussian bunch, 273 Gaussian elimination, 89 - matrix inversion, 89 GCG-LS, 114, 120, 161 GCR,114 Generalized Conjugate Gradient, Least

Squares method, see GCG-LS Generalized Conjugate Residual

method, see GCR Generalized Minimal Residual, see

GMRES geometrical mode ratio, 44, 47 ghost modes, 55 Gibbs' phenomenon, 44 GMBACK,114 GMERR,114 GMRES, 114, 115 - restarted version, 116 GMRES(l), 116 grid - Cartesian coordinate, 57 - in multigrid scheme, 127 - non-coordinate, 57 - non-orthogonal, 57 - operator, 131 - pair, 57 grid-dependent eigenvalue shift,

140-141 group velocity, 251, 255, 257, 258, 282

- linear variation, 259

Hi-field, 71 Hz-waves, 27 Hall element, 219 hard materials, 16 harmonic - oscillation, 27, 244 -- with FIT, 74-76 - time dependence - - electro-quasistatic, 17 - - magneto-quasistatic, 18 heat - flow, 322 - load, 323 - source, 223, 324 - source density, 15 Helmholtz equation, 27, 75, 234 - homogeneous, 27 - inhomogeneous, 27 - scalar, 28 - - solution, 28 - vectorial, 28 Hermitian part, 77 high energy physics, 243, 247 high frequency - error component, 124 - fields, 74 - waves, 243 high voltage, 225 - insulators, 224-233 Higher Order Modes, see HOM Hodge operator, 55 HOM, 246, 250, 265, 279, 280, 319, 324 - 36-cell experiment, 295-302, 304-315 - computation, 281 - coupler, 315 - dampers, 288, 299 - damping, 247, 280, 315-319 - - by iris coating, 288 - in constant gradient structures,

288-295 - in quasi-constant gradient SBLC-like

structure, 281-288 - numerical analysis, 280-295 - trapped - - in aperiodic iris-loaded waveguides,

295-302, 304-315 HOM dampers, 310 hybrid methods, 116 - comparison, 121 hysteresis, 16

IC, 152,223

Page 33: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

IC preconditioning, 162, 170 ICCG method, 174 ILU, 152, 161 - in accordance with matrix structure,

152 - with thresholds, 154 ILU )3(0), 153 ILU)3(3), 153 ILUw , 164 ILUw preconditioning, 167, 171, 174 ILU(O), 152 ILU(k), 153 ILUT(k), 154 image charge, 272 impedance, 149, 276, 295 - matrix, 43 implicit complex-valued split Jacobi

preconditioning, 182 incomplete Cholesky, see IC incomplete LU decomposition, see ILU induction law - discrete form, 60 inductive - coil, 320 - oven, 320 - soldering, 320 inductor, 320 injection error, 270 inner amplitudes, 41 input coupler, 247, 253, 257 insulator, 180, 225 interaction coefficients, 51 interaction region, 248 intermediate steps, 46 interpolation, 126 involutory matrix, 78 iris-loaded waveguide, 36 isotropic media, 16 iteration - error, 92 - function, 92 iterative methods - classical iteration methods, 91 - Krylov subspace methods, 91

Jacobi - matrix - - eigenvalues and eigenvectors, 163 - method, 92, 164 - preconditioned BiCGCR, 180, 184 - preconditioning, 170, 176 jitter, 270 JLC, 248, 249

Joule's energy, 320, 322 Joule's heat, 14

Kaczmarz algorithm, 146 Kaczmarz method, 95 KEK,248 kick factor, 278

Index 369

Krylov subspace, 87, 99, 102 - methods, 99-121,150,177, 181, 184,

205 -- comparison, 121

L-band,248 Lanczos algorithm, 99 - for linear systems, 107 - for non-hermitian matrices, 106 Lanczos-type algorithms, 105 landings, 261, 282 Laplace equation, 23 - on a rectangular domain, 32 Large Hadron Collider, 247 leap frog scheme, 57 least squares fit, 33 left-handed preconditioning, 164 LEP, 272 lexicographic ordering, 94 LHC, see Large Hadron Collider linear accelerator, 248 linear collider, 245 - beam dynamics, 268-280 - studies -- concluding remarks, 319 linear media, 16 linear system, 55 linewise relaxation, 94, 146 Liouville's Theorem, 270 loaded gradient, 260 local mode analysis, 131 longitudinal position, 268 Look-Ahead Lanczos, 108 Look-Ahead strategy, 118 Lorentz - contraction, 271 - factor, 250, 271 - force - - generated by wake fields, 274 - gauge, 25 loss factor, 278 loss parameter, 246, 260, 270, 278-279,

281, 285, 300, 309 - curve, 289 - - dependence on geometry, 294 - - dependence on tapering, 294 - - for constant gradient structure, 294

Page 34: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

370 Index

- - for constant impedance structure, 294

- normalized, 278 loss parameter curve, 293 lossy cell, 318, 319 lossy sheets, 299 LU decomposition, 152 - with partial pivoting, 88 luminosity, 279, 319 lumped circuit - for resonance, 303 - model for constant gradient

structure, 290

MAFIA, 162, 274, 281, 289, 292, 295, 306, 311, 320

magnet - dipole, 268 - quadrupole, 268 - sextupole, 268 magnetic - (grid) flux, 59 - charges (auxiliary quantity), 71 - field strength, 11 - flux, 11 - - density, 212, 214, 215 - induction, 11 - scalar potential (auxiliary quantity),

71, 211 - susceptibility, 12 - vector potential, 23, 216 - voltage, 61 magnetization, 12, 302 magneto-quasistatics (MQS), 17, 18,

233-234 - with FIT, 73, 234 magneto-thermal behaviour, 320 magnetostatics, 16, 162, 211-216 - with FIT, 70-71 mass matrix, 55 matching, 36, 38 material - discrete approximation, 66 - dissipative, 253 - matrices, 66 material aging, 225 matrix condition, 212 Maxwell,l1 Maxwell Grid Equations, 63 - setup, 57 Maxwell's equations, 11-13,54 - Ampere's law - - discrete form, 62

- as an initial-boundary value problem, 21

- divergence equation - - discrete form, 62 - for quasistatic fields, 17 - - electro-quasistatics, 17 - - magneto-quasistatics, 18 - for stationary fields, 16-18 - for time-harmonic fields, 22, 27 - in differential form, 12 - in integral form, 12, 56 - induction law, 58 - - discrete form, 60 - non-existence of magnetic sources, 60 - - discrete form, 60 MBBU, see multibunch beam break-up measurement, 228 - experiments, 288, 294 - - 36-cell experiment, 295-302,

304-315 - non-resonant bead pull, 303 - resonant bead pull, 294, 302-304 - sampling frequency, 314 measuring velocity, 314 mesh generation, 48 method of integral equations, 35 method of moments, 35 method of separation, 26-29 MIC, 176 - preconditioning, 178 MICry, 162, 164 - preconditioning, 167, 171, 174 MICw (k),154 microchip, 189, 237 microwave systems, 243 MILU(k), 153 Minimal Residual smoothing, 113 MINRES, 114 mirror fields, 142 misalignment, 270 mixed boundary value problem, 29 mixed Finite Element Method (FEM),

54 mixed mode, 286 mode - 2~/3-, 253, 255, 258, 282 - ~-, 253, 255 - ~ /2-, 253, 255 - acceleration, 255, 282 - separation, 297, 309 mode matching technique, 35-47, 244,

265, 280, 295 - auxiliary transitions, 290

Page 35: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

- convergence, 44-47, 289 - convergence criteria, 44 - - edge condition , 44 - - geometrical mode ratio, 44 - filter in, 290 - speed up by interpolation, 43 - system matrices, 77 model problem, 162 modes, 38, 244, 253, 257 - acceleration, see accelerating mode - dipole, see dipole modes - Higher Order, see HOM - monopole, 38, 278 - parasitic, see parasitic modes - quadrupole, 38 - trapped, see trapped modes modified IC, see MIC modified ILU, see MILU(k) modified ILUw preconditioning, 176 momentum, 273 momentum coordinates, 268 monopole component, 276 MQS, see magneto-quasistatics MR polynomials, 117 multibunch - beam break-up, 280 - dynamics - - longitudinal, 280 - - transverse, 280 - emittance, 270 - instabilities, 279-280, 319 - operation, 268, 270 multigrid, 214 - algorithm, 184 - for indefinite, nearly singular system,

138 - operator, 131 - scheme, 127 - techniques (MG), 121 multilevel preconditioner, 122, 155 multiply coupled oscillator model, see

COM

natural frequency, 42 near-breakdown, 108 nearly singular, 149 nested multi grid iteration, 129 Neumann - (boundary value) problem, 29 Neumann boundary condition, 212 Newton - (boundary value) problem, 29 NLC, 248, 249, 297, 318

Index 371

non-Hermitian, 100 non-resonant bead pull measurement,

303-305 non-stationary methods, 83, 85 non-symmetric and indefinite matrices,

184 nonlinear C-magnet, 216 normalization, 21

Ohmic losses, 253 open boundary condition, 30, 212 optimal relaxation parameter, 93, 164 - for SOR, 171 optimization of technical components,

243 ORTHO, 281, 289, 293, 295, 306 ORTHODIR, 114 orthogonal - Fourier series, 36 - functions, 31 - matrix, 78 - projection, 96, 101 ORTHOMIN, 120 orthonormal series expansion, 33 outer amplitudes, 42 over-relaxation, 92

Panofsky-Wenzel Theorem, 275, 276 parallel plate capacitor, 177 parasitic - fields, 244, 274 - modes, 245, 246, 250, 258, 260, 268,

284 partial - pivoting, 88 - SSOR preconditioning, 176, 184, 187 partially filled FIT cell, 136 particle bunch, 244, 246 pass band, 251, 258, 286 - overlap, 286 PBiCGCR, 182 PBiCGCR-MRS, 182 PCG,214 PCOCG,182 perfect - electric boundary condition, 42 - magnetic boundary condition, 42 perfectly conducting wall, 272, 273 periodic acceleration structure, 257-258 - loss parameter curve, 287 periodic boundary condition, 30, 323 permeability, 12 - nonlinear, 216 permittivity, 12

Page 36: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

372 Index

permutation matrix, 88 perturbation theory, 279, 315 Petrov-Galerkin condition, 102, 110,

118 phase - advance, 253, 269 -- cell-to-cell, 257, 271, 282, 286, 294,

311 - angle, 260 - constant, 250 - ellipse, 269 - - invariance, 270 - space, 268 - - projection, 268 - velocity, 251, 257, 260 phasers, 18, 276 pick-up monitors, 288, 319 pivot element, 87 plate capacitor, 243 plug, 205 point charge, 271 - highly relativistic - - field of, 271 Poisson equation, 23 - complex (electro-quasistatics), 24 polarization, 11, 302 - density, 11 polynomial preconditioning, 155 polynomial representation - BiCG, 111 - BiCGSTAB, 117 - CGS, 112 - CGS2, 113 - COCG, 112 positive definite matrix, 77, 162 positive semi-definite matrix, 77 positive stable matrix, 77 potential equation, 23 potential theory, 23-25, 29 power, 257 - absorption, 315 - conversion, 258 - density, 14, 324 - flow, 253 - loss, 253 - rf-, 255 - supply, 253 power-loss method, 253, 323 Poynting vector, 14 Poynting's theorem, 14 preconditioned methods, 182 - cg, 161, 166, 214 - - on circular cylindrical grids, 175

- CGS, 187 - COCG, 184 preconditioner - SSOR,95 preconditioning, 150-156 - left-handed, 151 - of Krylov subspace methods, 190 - one-sided, 151 - right-handed, 151 - split, 151 principle of multigrid approach, 123 product ansatz of Bernoulli, 28 projection method, 110 propagation constant, 257 pseudo-residual, 110 PSSOR-BiCGSTAB, 189 PSSOR-CGS, 187, 189 PSSOR-TFQMR, 187, 189

QMR, 108, 118, 184 quadrupole component, 276 quality factor, 255, 259, 275, 295, 306,

318 Quasi Minimal Residual, see QMR quasi-constant gradient structure, 261,

282 quasi-symmetric matrix, 77 quasistatic approximation, 18 quasistatic fields, 17 - conditions for, 18-20 - electro-quasistatics, 17 - magneto-quasistatics, 17 - with FIT, 72-73, 234

rate of convergence - cg, 105 re-entrant corners, 148 real symmetric matrix, 162 Red-Black Gauss-Seidel, 94 red-black ordering, 94 Red-Black SOR, 94 reflection coefficient, 237 reflection matrix, 42 relative iteration error, 92 relative residual, 92, 169 relaxation, 92, 125 - for indefinite problems, 146 - optimal relaxation parameter, 93 residual, 51, 92 resistive wall wakes, 272 RESO, 281, 306 resonance, 244 resonant - bead formula, 302

Page 37: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

- bead pull measurement, 294, 302-303 - cavity, 244 - frequency, 42, 244, 303, 306 - mode, 244 restart, 170 restriction, 126 rf deflection, 279 rf-load, 324 rf-window, 323 Ritz-Galerkin approximation, 101 Robbin's boundary condition, 31 robustness, 100 Rogowski profile, 227 rounding errors, 90 row scaling, 88 row-action procedure, 95

S-band, 245, 248, 249 S-band structure, 320 SBBU, see single bunch beam break-up SBLC, 245, 248, 249, 265-268, 271,

280, 297, 318-320, 323 - accelerating module, 266 - damped accelerating structure, 318 - main parameters, 265 - test facility, 318 - tunnel layout, 266 scalar potential, 23, 35 - for electro-quasistatics, 24 - for stationary current fields, 24 scalar potential function, 23 scalar wave equation, 25 scattering matrix, 38, 41-44, 80, 281 - concatenation, 41 SCBiCG(r, n), 113 SCBiCG(r, n) class, 177 search directions, 103 second boundary value problem, 29 semi-analytical methods, 35, 280 - method of integral equations, 35 - method of moments, 35 - mode matching technique, 35 semi-coarsening, 150 semiconductor, 220 sensor, 213, 214 separation equation, 29 separative plane, 43 SGS,95 SGS preconditioning, 154, 170 shunt impedance, 255, 259, 275, 306,

318 simple plate capacitor, 178 - with layer of water, 178

Index 373

simple test example with current excitation, 184

single bunch - beam break-up, 279 - dynamics - - longitudinal, 279 - - transverse, 279 - emittance, 270 - instabilities, 279-280, 319 singularity, 54 skew projection, 107 skew-Hermitian part, 77 skin depth, 253 SLAC,248 - two-mile accelerator, 270 Slater formula, 303 SLC, 247, 272 slow wave structure, 30, 250 slowly varying fields, 74, 225 smoothing factor, 124 smoothing procedure, 125 soft materials, 16 SOR, 93, 162, 169, 170, 216 - convergence, 93 - sensitivity to the relaxation

parameter, 171 - with optimal relaxation parameter,

164, 176 source field, 75 source-free field, 75 space harmonics, 257 spd matrix, 100, 162 spectral condition number, 159 spectral radius, 92 - of Jacobi matrix, 164 spectrum, 150 speed of light, 250 split preconditioner, 151, 154 spurious modes, 55 SSOR, 95, 164 - preconditioning, 154, 166, 171, 174 stabilized BiCG, 116-118 staggered grids, 57 stagnation, 185, 187 - in BiCGstab(2), 118 standing wave, 42 state variables, 58 - allocation, 58 - correspondence to discrete field

quantities, 66 - of a partially filled elementary area,

136 stationary

Page 38: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

374 Index

- current fields, 16, 217-221 - - scalar potential, 24 - - with FIT, 71 - current problems, 162 - fields, 15-17 -- with FIT, 70-72 - heat conduction, 223-224 - temperature fields, 321 -- with FIT, 72 - temperature problems, 162 stationary methods, 83 stop band, 251 stopping criterion, 92 - for cg, 104 storage requirement - BiCG, 111 - BiCGSTAB, 118 - BiCGstab(l)2l+5 vectors, 118 - CGS, 112 - CGS2, 113 - COCG, 111 - GMRES, 116 - non-Hermitian Lanczos algorithm,

107 - of Gaussian elimination, 89 - of iterative methods, 91 storage ring, 243, 245, 247 stored energy, 43, 254 subdivision - for mode matching, 36 successive over-relaxation, see SOR superconductive accelerating structure,

248 superposition of waves, 42 surface charge, 272 symmetric Gauss-Seidel, see SGS symmetric matrix, 78 symmetric SOR, 95 symmetry plane, 212 SYMMLQ,107 synchrotron radiation, 245, 247

tapered, 258 TBA, see Two-Beam Accelerator TBCI,274 TEol-mode, 323 TE-waves,27 TEAM benchmark problem, 234 TEM-waves, 27 temperature, 14 - distribution, 224, 323, 324 - problems, 57, 223 TESLA, 248, 249, 323

TFQMR, 118, 119, 177, 178, 185, 187 thermal - conduction, 14 - conductivity, 14 - flux, 14 - load, 258 third boundary value problem, 29 three term recurrence, 87 three-dimensional dual non-orthogonal

FIT grids, 68 time-dependence - general time-dependence, 21 - harmonic time-dependence, 22 - - electro-quasistatic, 17 - - magneto-quasistatic, 18 time-dependent - fields, 239 -- with FIT, 74-76 time-harmonic - fields, 184, 234-239 - - electro-quasistatic, 17 - - magneto-quasistatic, 18 - oscillations, 22 TMolO mode, 244 TM-waves, 27 toroid electrode, 227 tracking, 270 transmission, 303 transmission matrix, 42 transport matrix, 270 Transpose-free Quasi-Minimal Residual,

see TFQMR transversal coordinates, 268 transversal waves, 27 - transverse electric, 27 - transverse magnetic, 27 transverse motion, 268 trapped modes, 43, 245, 247, 281,

286-302, 304-315, 319 - field pattern, 287 - geometry studies, 288-289 traveling wave, 42, 244 - structure, 249 - tube, 320 traveling wave tube - iris-loaded, 258 triangular FIT grids, 68 tuning, 259 Two-Beam Accelerator (TBA), 249 two-grid method, 126 two-grid operator, 131

ultra-relativistic particle, 244 under-interpolation, 145

Page 39: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

under-relaxation, 93 uniform coarsening of a FIT grid, 134 unit cube, 162 URMEL,147 URMEL-I, 147, 149 URMEL-T, 278, 281, 288, 289, 295

V-cycle, 128, 148 vacuum system, 323 vector potential, 23, 25, 27, 35 vector wave equation, 25 velocity of light, 12 velocity sensor, 214 virtual spectral radius, 97 VLEPP, 248, 249 voltage, 255, 278 - amplitude, 39 - beam-induced, 260 - distribution (diagram), 283, 284, 297 - effective, 260 - generator-, 260

W-cycle, 128, 148 wake fields, 246, 249, 259, 268, 270-278,

319 - long range, 264, 275, 280 - - recoherence, 262 - long range forces, 277 -- HOM, 277 - longitudinal, 279 - resistive wall, 272 - short range, 271, 275, 279 - short range forces, 277 - transverse, 279 wake function, 277, 278 wake potential, 274-278 - m-pole component, 276 - longitudinal, 274 - - multi pole expansion, 276 - multi pole expansion, 276 - transverse, 274 - - multi pole expansion, 277 wall currents, 323

wall losses, 300, 320-322 water droplet, 227 wave - amplitude, 41 - impedance, 21 - length, 251 - number, 250 wave equation, 25 - for a damped wave, 26

Index 375

- - inhomogeneous equation for electric field, 26

wave front - reflection of, 273 waveguide, 237, 243, 323 - circular cylindrical, 27 -- iris-loaded, 36 - lossy termination, 324 - mode matching for cylindrical

waveguide, 39 - with load, 324 waveguide boundary condition, 31, 184,

324 waveguide coupler, 187 waves - in circular cylindrical waveguides, 27 - - TEM-waves, 27 - incident, 41 - reflected, 41 - standing, 42, 257 - superposition, 42 - transmitted, 41 - traveling, 42, 257 weak formulation, 54 weighted residual method, 50 Whitney forms, 54 Wiedemann-Franz' law, 15

X-band, 248

Young's Theorem, 93

Z-matrix, 43 Zwischenmediumsmethode, 46

Page 40: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

Editorial Policy

§l. Volumes in the following four categories will be published in LNCSE:

i) Research monographs ii) Lecture and seminar notes iii) Conference proceedings iv) Textbooks

Those considering a book which might be suitable for the series are strongly advised to contact the publisher or the series editors at an early stage.

§2. Categories i) and ii). These categories will be emphasized by Lecture Notes in Computational Science and Engineering. Submissions by interdisciplinary teams of authors are encouraged. The goal is to report new developments - quickly, inform­ally, and in a way that will make them accessible to non-specialists. In the evaluation of submissions timeliness of the work is an important criterion. Texts should be well­rounded, well-written and reasonably self-contained. In most cases the work will contain results of others as well as those of the author(s). In each case the author(s) should provide sufficient motivation, examples, and applications. In this respect, Ph.D. theses will usually be deemed unsuitable for the Lecture Notes series. Proposals for volumes in these categories should be submitted either to one of the series editors or to Springer-Veriag,Heidelberg, and will be refereed. A provisional judgment on the acceptability of a project can be based on partial information about the work: a detailed outline describing the contents of each chapter, the estimated length, a bibliography, and one or two sample chapters - or a first draft. A final decision whether to accept will rest on an evaluation of the completed work which should include

- at least 100 pages of text; - a table of contents; - an informative introduction perhaps with some historical remarks which should be

accessible to readers unfamiliar with the topic treated; - a subject index.

§3. Category iii). Conference proceedings will be considered for publication provided that they are both of exceptional interest and devoted to a single topic. One (or more) expert participants will act as the scientific editor(s) of the volume. They select the papers which are suitable for inclusion and have them individually refereed as for a journal. Papers not closely related to the central topic are to be excluded. Organizers should contact Lecture Notes in Computational Science and Engineering at the planning stage. In exceptional cases some other multi-author-volumes may be considered in this category.

§4. Category iv) Textbooks on topics in the field of computational science and engineering will be considered. They should be written for courses in CSE education. Both graduate and undergraduate level are appropriate. Multidisciplinary topics are especially welcome.

§5. Format. Only works in English are considered. They should be submitted in camera-ready form according to Springer-Verlag's specifications. Electronic material can be included if appropriate. Please contact the publisher. Technical instructions and/or TEX macros are available via http://www.springer.de/author/tex/help-tex.html; the name of the macro package is "LNCSE - LaTEX2e class for Lecture Notes in Computational Science and Engineering". The macros can also be sent on request.

Page 41: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

General Remarks

Lecture Notes are printed by photo-offset from the master-copy delivered in camera­ready form by the authors. For this purpose Springer-Verlag provides technical instructions for the preparation of manuscripts. See also Editorial Policy.

Careful preparation of manuscripts will help keep production time short and ensure a satisfactory appearance of the finished book. The actual production of a Lecture Notes volume normally takes approximately 12 weeks.

The following terms and conditions hold:

Categories i), ii), and iii): Authors receive 50 free copies of their book. No royalty is paid. Commitment to publish is made by letter of intent rather than by signing a formal contract. Springer­Verlag secures the copyright for each volume.

For conference proceedings, editors receive a total of 50 free copies of their volume for distribution to the contributing authors.

Category iv): Regarding free copies and royalties, the standard terms for Springer mathematics monographs and textbooks hold. Please write to [email protected] for details. The standard contracts are used for publishing agreements.

All categories: Authors are entitled to purchase further copies of their book and other Springer mathematics books for their personal use, at a discount of 33,3 % directly from Springer-Verlag.

Addresses:

Professor M. Griebel Institut fUr Angewandte Mathematik der Universita.t Bonn Wegelerstr. 6 D-53115 Bonn, Germany e-mail: [email protected]

Professor D. E. Keyes Computer Science Department Old Dominion University Norfolk, VA 23529-0162, USA e-mail: [email protected]

Professor R. M. Nieminen Laboratory of Physics Helsinki University of Technology 02150 Espoo, Finland e-mail: [email protected]

Professor D. Roose Department of Computer Science Katholieke Universiteit Leuven Celestijnenlaan 200A 3001 Leuven-Heverlee, Belgium e-mail: [email protected]

Professor T. Schlick Department of Chemistry and Courant Institute of Mathematical Sciences New York University and Howard Hughes Medical Institute 251 Mercer Street, Rm 509 New York, NY 10012-1548, USA e-mail: [email protected]

Springer-Verlag, Mathematics Editorial Tiergartenstrasse 17 D-69121 Heidelberg, Germany Tel.: *49 (6221) 487-185 e-mail: [email protected] http://www.springer.de/math/ peters.html

Page 42: References - link.springer.com3A978-3... · Third international conference on numerical methods in fluid mechanics, pages 82-89, Paris, France, July 1972. ... R.W. Clough. The Finite

Lecture Notes in Computational Science and Engineering

Vol. I D. Funaro, Spectral Elements for Transport-Dominated Equations. 1997. X, 211 pp. Softcover. ISBN 3-540-62649-2

Vol. 2 H. P. Langtangen, Computational Partial Differential Equations. Numer­ical Methods and Diffpack Programming. 1999. XXIII, 682 pp. Hardcover. ISBN 3-540-65274-4

Vol. 3 W. Hackbusch, G. Wittum (eds.), Multigrid Methods V. Proceedings of the Fifth European Multigrid Conference held in Stuttgart, Germany, October 1-4,1996. 1998. VIII, 334 pp. Softcover. ISBN 3-540-63133-X

Vol. 4 P. Deufihard, J. Hermans, B. Leimkuhler, A. E. Mark, S. Reich, R. D. Skeel (eds.), Computational Molecular Dynamics: Challenges, Methods, Ideas. Proceed­ings of the 2nd International Symposium on Algorithms for Macromolecular Mod­elling, Berlin, May 21-24, 1997. 1998. XI, 489 pp. Softcover. ISBN 3-540-63242-5

Vol. 5 D. Kroner, M. Ohlberger, C. Rohde (eds.), An Introduction to Recent Devel­opments in Theory and Numerics for Conservation Laws. Proceedings of the Inter­national School on Theory and Numerics for Conservation Laws, Freiburg / Litten­weiler, October 20-24, 1997. 1998. VII, 285 pp. Softcover. ISBN 3-540-65081-4

Vol. 6 S. Turek, Efficient Solvers for Incompressible Flow Problems. An Algorith­mic and Computational Approach. 1999. XVII, 352 pp, with CD-ROM. Hardcover. ISBN 3-540-65433-X .

Vol. 7 R. von Schwerin, Multi Body System SIM ulation. Numerical Methods, Algorithms, and Software. 1999. XX, 338 pp. Softcover. ISBN 3-540-65662-6

Vol. 8 H.-J. Bungartz, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Computing. Proceedings of the International FORTWIHR Conference on HPSEC, Munich, March 16-18,1998. 1999. X, 471 pp. Softcover. 3-540-65730-4

Vol. 9 T. J. Barth, H. Deconinck (eds.), High-Order Methods for Computational Physics. 1999. VII, 582 pp. Hardcover. 3-540-65893-9

VOI.IO H. P. Langtangen, A. M. Bruaset, E. Quak (eds.), Advances in Software Tools for Scientific Computing. 2000. X, 357 pp. Softcover. 3-540-66557-9

Vol.u B. Cockburn, G. E. Karniadakis, C.-W. Shu (eds.), Discontinuous Galerkin Methods. Theory, Computation and Applications. 2000. XI, 470 pp. Hardcover. 3-540-66787-3