27
REFERENCES Abdelgawad, A. M., Hudson, S. M. and Rojas, O. J. (2014). Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydrate Polymers, 100(0), 166-178. Agarwal, S., Wendorff, J. H. and Greiner, A. (2008). Use of electrospinning technique for biomedical applications. Polymer, 49(26), 5603-5621. Agrawal, C. M. and Ray, R. B. (2001). Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. Journal of Biomedical Materials Research, 55(2), 141-150. Allahyarzadeh, V., Montazer, M., Nejad, N. H. and Samadi, N. (2013). In situ synthesis of nano silver on polyester using NaOH/Nano TiO2. Journal of Applied Polymer Science, 129(2), 892-900. Allemann, F., Mizuno, S., Eid, K., Yates, K. E., Zaleske, D. and Glowacki, J. (2001). Effects of hyaluronan on engineered articular cartilage extracellular matrix gene expression in 3-dimensional collagen scaffolds. Journal of Biomedical Materials Research, 55(1), 13-19. Andreadis, S. (2007). Gene-Modified Tissue-Engineered Skin: The Next Generation of Skin Substitutes. In K. Lee & D. Kaplan (Eds.), Tissue Engineering II (Vol. 103, pp. 241-274): Springer Berlin Heidelberg. Andreassi, A., Bilenchi, R., Biagioli, M. and D'Aniello, C. (2005). Classification and pathophysiology of skin grafts. Clinics in Dermatology, 23(4), 332-337. Armentano, I., Dottori, M., Fortunati, E., Mattioli, S. and Kenny, J. M. (2010). Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polymer Degradation and Stability, 95(11), 2126-2146. Arun Richard, C., Venugopal, J., Sundarrajan, S. and Ramakrishna, S. (2011). Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration. Biomedical Materials, 6(1), 015001.

REFERENCES - COnnecting REpositoriesEvaluation of an in situ forming hydrogel wound dressing based on oxidized ... synthesis and optical properties of silver–chitosan complexes and

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • REFERENCES

    Abdelgawad, A. M., Hudson, S. M. and Rojas, O. J. (2014). Antimicrobial wound

    dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl

    alcohol) systems. Carbohydrate Polymers, 100(0), 166-178.

    Agarwal, S., Wendorff, J. H. and Greiner, A. (2008). Use of electrospinning

    technique for biomedical applications. Polymer, 49(26), 5603-5621.

    Agrawal, C. M. and Ray, R. B. (2001). Biodegradable polymeric scaffolds for

    musculoskeletal tissue engineering. Journal of Biomedical Materials

    Research, 55(2), 141-150.

    Allahyarzadeh, V., Montazer, M., Nejad, N. H. and Samadi, N. (2013). In situ

    synthesis of nano silver on polyester using NaOH/Nano TiO2. Journal of

    Applied Polymer Science, 129(2), 892-900.

    Allemann, F., Mizuno, S., Eid, K., Yates, K. E., Zaleske, D. and Glowacki, J. (2001).

    Effects of hyaluronan on engineered articular cartilage extracellular matrix

    gene expression in 3-dimensional collagen scaffolds. Journal of Biomedical

    Materials Research, 55(1), 13-19.

    Andreadis, S. (2007). Gene-Modified Tissue-Engineered Skin: The Next Generation

    of Skin Substitutes. In K. Lee & D. Kaplan (Eds.), Tissue Engineering II

    (Vol. 103, pp. 241-274): Springer Berlin Heidelberg.

    Andreassi, A., Bilenchi, R., Biagioli, M. and D'Aniello, C. (2005). Classification and

    pathophysiology of skin grafts. Clinics in Dermatology, 23(4), 332-337.

    Armentano, I., Dottori, M., Fortunati, E., Mattioli, S. and Kenny, J. M. (2010).

    Biodegradable polymer matrix nanocomposites for tissue engineering: A

    review. Polymer Degradation and Stability, 95(11), 2126-2146.

    Arun Richard, C., Venugopal, J., Sundarrajan, S. and Ramakrishna, S. (2011).

    Fabrication of a nanofibrous scaffold with improved bioactivity for culture of

    human dermal fibroblasts for skin regeneration. Biomedical Materials, 6(1),

    015001.

  • 130

    Athanasiou, K. A., Niederauer, G. G. and Agrawal, C. M. (1996). Sterilization,

    toxicity, biocompatibility and clinical applications of polylactic acid/

    polyglycolic acid copolymers. Biomaterials, 17(2), 93-102.

    Atiyeh, B. S. and Costagliola, M. (2007). Cultured epithelial autograft (CEA) in burn

    treatment: Three decades later. Burns, 33(4), 405-413.

    Auger, F. A., Rouabhia, M., Goulet, F., Berthod, F., Moulin, V. and Germain, L.

    (1998). Tissue-engineered human skin substitutes developed from collagen-

    populated hydrated gels: clinical and fundamental applications. Medical and

    Biological Engineering and Computing, 36(6), 801-812.

    Balakrishnan, B., Mohanty, M., Umashankar, P. R. and Jayakrishnan, A. (2005).

    Evaluation of an in situ forming hydrogel wound dressing based on oxidized

    alginate and gelatin. Biomaterials, 26(32), 6335-6342.

    Bannasch, H., Unterberg, T., Föhn, M., Weyand, B., Horch, R. E. and Stark, G. B.

    (2008). Cultured keratinocytes in fibrin with decellularised dermis close

    porcine full-thickness wounds in a single step. Burns, 34(7), 1015-1021.

    Baumgarten, P. K. (1971). Electrostatic spinning of acrylic microfibers. Journal of

    Colloid and Interface Science, 36(1), 71-79.

    Behler, K., Havel, M. and Gogotsi, Y. (2007). New solvent for polyamides and its

    application to the electrospinning of polyamides 11 and 12. Polymer, 48(22),

    6617-6621.

    Berger, J., Reist, M., Mayer, J. M., Felt, O., Peppas, N. A. and Gurny, R. (2004).

    Structure and interactions in covalently and ionically crosslinked chitosan

    hydrogels for biomedical applications. European Journal of Pharmaceutics

    and Biopharmaceutics, 57(1), 19-34.

    Bhattarai, N., Li, Z., Gunn, J., Leung, M., Cooper, A., Edmondson, D., et al. (2009).

    Natural-Synthetic Polyblend Nanofibers for Biomedical Applications.

    Advanced Materials, 21(27), 2792-2797. doi: 10.1002/adma.200802513

    Blakeney, B. A., Tambralli, A., Anderson, J. M., Andukuri, A., Lim, D.-J., Dean, D.

    R., et al. (2011). Cell infiltration and growth in a low density, uncompressed

    three-dimensional electrospun nanofibrous scaffold. Biomaterials, 32(6),

    1583-1590.

    Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. and Fuchs, E. (2004). Self-

    Renewal, Multipotency, and the Existence of Two Cell Populations within an

    Epithelial Stem Cell Niche. Cell, 118(5), 635-648.

  • 131

    Bonaventure, J., Kadhom, N., Cohen-Solal, L., Ng, K. H., Bourguignon, J., Lasselin,

    C., et al. (1994). Reexpression of Cartilage-Specific Genes by

    Dedifferentiated Human Articular Chondrocytes Cultured in Alginate Beads.

    Experimental Cell Research, 212(1), 97-104.

    Borradori, L. and Sonnenberg, A. (1999). Structure and Function of

    Hemidesmosomes: More Than Simple Adhesion Complexes. 112(4), 411-

    418.

    Böttcher-Haberzeth, S., Biedermann, T. and Reichmann, E. (2010). Tissue

    engineering of skin. Burns, 36(4), 450-460.

    Boyan, B. D., Hummert, T. W., Dean, D. D. and Schwartz, Z. (1996). Role of

    material surfaces in regulating bone and cartilage cell response. Biomaterials,

    17(2), 137-146.

    Boyce, S. T. (2001). Design principles for composition and performance of cultured

    skin substitutes. Burns, 27(5), 523-533.

    Božanić, D. K., Trandafilović, L. V., Luyt, A. S. and Djoković, V. (2010). ‘Green’

    synthesis and optical properties of silver–chitosan complexes and

    nanocomposites. Reactive and Functional Polymers, 70(11), 869-873.

    Causa, F., Netti, P. A., Ambrosio, L., Ciapetti, G., Baldini, N., Pagani, S., et al.

    (2006). Poly-ε-caprolactone/hydroxyapatite composites for bone

    regeneration: In vitro characterization and human osteoblast response.

    Journal of Biomedical Materials Research - Part A, 76(1), 151-162.

    Chen, Z., Mo, X. and Qing, F. (2007). Electrospinning of collagen–chitosan

    complex. Materials Letters, 61(16), 3490-3494.

    Chew, S. Y., Wen, J., Yim, E. K. F. and Leong, K. W. (2005). Sustained Release of

    Proteins from Electrospun Biodegradable Fibers. Biomacromolecules, 6(4),

    2017-2024. doi: 10.1021/bm0501149

    Chiono, V., Vozzi, G., D'Acunto, M., Brinzi, S., Domenici, C., Vozzi, F., et al.

    (2009). Characterisation of blends between poly(ε-caprolactone) and

    polysaccharides for tissue engineering applications. Materials Science and

    Engineering: C, 29(7), 2174-2187.

    Chong, E. J., Phan, T. T., Lim, I. J., Zhang, Y. Z., Bay, B. H., Ramakrishna, S., et al.

    (2007). Evaluation of electrospun PCL/gelatin nanofibrous scaffold for

    wound healing and layered dermal reconstitution. Acta Biomaterialia, 3(3),

    321-330.

  • 132

    Christopher Mahoney, Matthew, B. M., Jagannathan, S. and Narayan, B. (2012).

    Nanofibrous Structure of Chitosan for Biomedical Applications. Journal of

    nanomedicine and biotherapeutic discovery, 2(1).

    Chu, C.-S., McManus, A. T., Matylevich, N. P., Goodwin, C. W. and Pruitt, B. A. J.

    (2002). Integra as a Dermal Replacement in a Meshed Composite Skin Graft

    in a Rat Model: A One-Step Operative Procedure. Journal of Trauma and

    Acute Care Surgery, 52(1), 122-129.

    Chunder, A., Sarkar, S., Yu, Y. and Zhai, L. (2007). Fabrication of ultrathin

    polyelectrolyte fibers and their controlled release properties. Colloids and

    Surfaces B: Biointerfaces, 58(2), 172-179.

    Cohen, M., Joester, D., Geiger, B. and Addadi, L. (2004). Spatial and Temporal

    Sequence of Events in Cell Adhesion: From Molecular Recognition to Focal

    Adhesion Assembly. ChemBioChem, 5(10), 1393-1399.

    Cooper, A., Bhattarai, N. and Zhang, M. (2011). Fabrication and cellular

    compatibility of aligned chitosan-PCL fibers for nerve tissue regeneration.

    Carbohydrate Polymers, 85(1), 149-156.

    Dahlberg, L. and Kreicbergs, A. (1991). Demineralized allogeneic bone matrix for

    cartilage repair. Journal of Orthopaedic Research, 9(1), 11-19.

    Dan, K., Molamma, P. P., Benjamin, S., Markus, E., Erich, W. and Seeram, R.

    (2012). Mechanical properties and in vitro behavior of nanofiber–hydrogel

    composites for tissue engineering applications. Nanotechnology, 23(9),

    095705.

    Deisinger, U., Stenzel, F. and Ziegler, G. (2004) Development of Hydroxyapatite

    Ceramics with Tailored Pore Structure. Vol. 254-256 (pp. 977-980).

    Del Gaudio, C., Bianco, A., Folin, M., Baiguera, S. and Grigioni, M. (2009).

    Structural characterization and cell response evaluation of electrospun PCL

    membranes: Micrometric versus submicrometric fibers. Journal of

    Biomedical Materials Research Part A, 89A(4), 1028-1039.

    Dobkowski, J., Kołos, R., Kamiński, J. and Kowalczyńska, H. M. (1999). Cell

    adhesion to polymeric surfaces: Experimental study and simple theoretical

    approach. Journal of Biomedical Materials Research, 47(2), 234-242.

    Doshi, J. and Reneker, D. H. (1995). Electrospinning process and applications of

    electrospun fibers. Journal of Electrostatics, 35(2-3), 151-160.

  • 133

    Dr. K. P. Chellamani, R. S. V. B., D. Veerasubramanian. (2014). Development of

    Wound Dressing Made of Electro Spun Tetracycline Hydrochloride Drug

    Incorporated PCL (Poly (ɛ-Caprolactone)) Nanomembrane International

    Journal of Emerging Technology and Advanced Engineering 4(4), 6.

    Duan, Y.-y., Jia, J., Wang, S.-h., Yan, W., Jin, L. and Wang, Z.-y. (2007).

    Preparation of antimicrobial poly(ϵ-caprolactone) electrospun nanofibers

    containing silver-loaded zirconium phosphate nanoparticles. Journal of

    Applied Polymer Science, 106(2), 1208-1214.

    Duan, Y. Y., Jia, J., Wang, S. H., Yan, W., Jin, L. and Wang, Z. Y. (2007).

    Preparation of antimicrobial poly(e-caprolactone) electrospun nanofibers

    containing silver-loaded zirconium phosphate nanoparticles. Journal of

    Applied Polymer Science, 106(2), 1208-1214.

    Dunn, G. A. and Heath, J. P. (1976). A new hypothesis of contact guidance in tissue

    cells. Experimental Cell Research, 101(1), 1-14.

    Edwards, M. D., Mitchell, G. R., Mohan, S. D. and Olley, R. H. (2010).

    Development of orientation during electrospinning of fibres of poly(e-

    caprolactone). European Polymer Journal, 46(6), 1175-1183.

    Eichhorn, S. J. and Sampson, W. W. (2005). Statistical geometry of pores and

    statistics of porous nanofibrous assemblies. Journal of The Royal Society

    Interface, 2(4), 309-318.

    Elsabee, M. Z., Naguib, H. F. and Morsi, R. E. (2012). Chitosan based nanofibers,

    review. Materials Science and Engineering: C, 32(7), 1711-1726.

    Falconnet, D., Csucs, G., Michelle Grandin, H. and Textor, M. (2006). Surface

    engineering approaches to micropattern surfaces for cell-based assays.

    Biomaterials, 27(16), 3044-3063.

    feng. A Novel Biodegradable System Based on BSA/PCL Core-shell Structured

    Nanofibers for Controlled Drug Delivery.

    Flemming, R. G., Murphy, C. J., Abrams, G. A., Goodman, S. L. and Nealey, P. F.

    (1999). Effects of synthetic micro- and nano-structured surfaces on cell

    behavior. Biomaterials, 20(6), 573-588.

    Fu, Y. and Kao, W. J. (2010). Drug release kinetics and transport mechanisms of

    non-degradable and degradable polymeric delivery systems. Expert Opinion

    on Drug Delivery, 7(4), 429-444.

  • 134

    Fuchs, J. R., Nasseri, B. A. and Vacanti, J. P. (2001). Tissue engineering: A 21st

    century solution to surgical reconstruction. Annals of Thoracic Surgery,

    72(2), 577-591.

    Garlick, J. (2007). Engineering Skin to Study Human Disease – Tissue Models for

    Cancer Biology and Wound Repair. In K. Lee & D. Kaplan (Eds.), Tissue

    Engineering II (Vol. 103, pp. 207-239): Springer Berlin Heidelberg.

    Gaumer, J., Prasad, A., Lee, D. and Lannutti, J. (2009). Structure-function

    relationships and source-to-ground distance in electrospun polycaprolactone.

    Acta Biomaterialia, 5(5), 1552-1561.

    Ghasemi-Mobarakeh, L., Semnani, D. and Morshed, M. (2007). A novel method for

    porosity measurement of various surface layers of nanofibers mat using

    image analysis for tissue engineering applications. Journal of Applied

    Polymer Science, 106(4), 2536-2542.

    Gibson, P., Schreuder-Gibson, H. and Rivin, D. (2001). Transport properties of

    porous membranes based on electrospun nanofibers. Colloids and Surfaces

    A: Physicochemical and Engineering Aspects, 187-188, 469-481.

    Gibson, P. W., Schreuder-Gibson, H. L. and Rivin, D. (1999). Electrospun fiber

    mats: Transport properties. AIChE Journal, 45(1), 190-195.

    Green, A. M., Jansen, J. A., van der Waerden, J. P. C. M. and Von Recum, A. F.

    (1994). Fibroblast response to microtextured silicone surfaces: Texture

    orientation into or out of the surface. Journal of Biomedical Materials

    Research, 28(5), 647-653.

    Gunatillake, P. A., Adhikari, R. and Gadegaard, N. (2003). Biodegradable synthetic

    polymers for tissue engineering. European Cells and Materials, 5, 1-16.

    Guo, H.-F., Li, Z.-S., Dong, S.-W., Chen, W.-J., Deng, L., Wang, Y.-F., et al.

    (2012). Piezoelectric PU/PVDF electrospun scaffolds for wound healing

    applications. Colloids and Surfaces B: Biointerfaces, 96(0), 29-36.

    Hajra, M. G., Mehta, K. and Chase, G. G. (2003). Effects of humidity, temperature,

    and nanofibers on drop coalescence in glass fiber media. Separation and

    Purification Technology, 30(1), 79-88.

    Harding, K. G., Morris, H. L. and Patel, G. K. (2002). Healing chronic wounds (Vol.

    324).

  • 135

    Harish Prashanth, K. V. and Tharanathan, R. N. (2007). Chitin/chitosan:

    modifications and their unlimited application potential—an overview. Trends

    in Food Science & Technology, 18(3), 117-131.

    Harris, L. D., Kim, B. S. and Mooney, D. J. (1998). Open pore biodegradable

    matrices formed with gas foaming. Journal of Biomedical Materials

    Research, 42(3), 396-402.

    Haslik, W., Kamolz, L. P., Nathschläger, G., Andel, H., Meissl, G. and Frey, M.

    (2007). First experiences with the collagen-elastin matrix Matriderm® as a

    dermal substitute in severe burn injuries of the hand. Burns, 33(3), 364-368.

    He, C. L., Huang, Z. M., Han, X. J., Liu, L., Zhang, H. S. and Chen, L. S. (2006).

    Coaxial electrospun poly(L-lactic acid) ultrafine fibers for sustained drug

    delivery. Journal of Macromolecular Science, Part B: Physics, 45 B(4), 515-

    524.

    He, C. L., Huang, Z. M., Han, X. J., Liu, L., Zhang, H. S. and Chen, L. S. (2006).

    Coaxial Electrospun Poly(L‐Lactic Acid) Ultrafine Fibers for Sustained Drug

    Delivery. Journal of Macromolecular Science, Part B, 45(4), 515-524.

    Heikkilä, P. and Harlin, A. (2008). Parameter study of electrospinning of polyamide-

    6. European Polymer Journal, 44(10), 3067-3079.

    Heitland, A., Piatkowski, A., Noah, E. M. and Pallua, N. (2004). Update on the use

    of collagen/glycosaminoglycate skin substitute—six years of experiences

    with artificial skin in 15 German burn centers. Burns, 30(5), 471-475.

    Ho, M. H., Kuo, P. Y., Hsieh, H. J., Hsien, T. Y., Hou, L. T., Lai, J. Y., et al. (2004).

    Preparation of porous scaffolds by using freeze-extraction and freeze-gelation

    methods. Biomaterials, 25(1), 129-138.

    Homayoni, H., Ravandi, S. A. H. and Valizadeh, M. (2009a). Electrospinning of

    chitosan nanofibers: Processing optimization. Carbohydrate Polymers, 77(3),

    656-661.

    Homayoni, H., Ravandi, S. A. H. and Valizadeh, M. (2009b). Influence of the

    molecular weight of chitosan on the spinnability of chitosan/poly(vinyl

    alcohol) blend nanofibers. Journal of Applied Polymer Science, 113(4), 2507-

    2513.

    Hong, K. H. (2007). Preparation and properties of electrospun poly(vinyl

    alcohol)/silver fiber web as wound dressings. Polymer Engineering &

    Science, 47(1), 43-49.

  • 136

    Hsu, C.-M. and Shivkumar, S. (2004). N,N-Dimethylformamide Additions to the

    Solution for the Electrospinning of Poly(ε-caprolactone) Nanofibers.

    Macromolecular Materials and Engineering, 289(4), 334-340.

    Hsu, F.-Y., Hung, Y.-S., Liou, H.-M. and Shen, C.-H. (2010). Electrospun

    hyaluronate–collagen nanofibrous matrix and the effects of varying the

    concentration of hyaluronate on the characteristics of foreskin fibroblast

    cells. Acta Biomaterialia, 6(6), 2140-2147.

    Hsu, Y.-Y., Gresser, J. D., Trantolo, D. J., Lyons, C. M., Gangadharam, P. R. J. and

    Wise, D. L. (1997). Effect of polymer foam morphology and density on

    kinetics of in vitro controlled release of isoniazid from compressed foam

    matrices. Journal of Biomedical Materials Research, 35(1), 107-116.

    Huang, X. and Brazel, C. S. (2001). On the importance and mechanisms of burst

    release in matrix-controlled drug delivery systems. Journal of Controlled

    Release, 73(2–3), 121-136.

    Huang, Z.-M., He, C.-L., Yang, A., Zhang, Y., Han, X.-J., Yin, J., et al. (2006).

    Encapsulating drugs in biodegradable ultrafine fibers through co-axial

    electrospinning. Journal of Biomedical Materials Research Part A, 77A(1),

    169-179.

    Huang, Z.-M., Zhang, Y. Z., Kotaki, M. and Ramakrishna, S. (2003). A review on

    polymer nanofibers by electrospinning and their applications in

    nanocomposites. Composites Science and Technology, 63(15), 2223-2253.

    Humphires, M. J. and Newham, P. (1998). The structure of cell-adhesion molecules.

    Trends in Cell Biology, 8(2), 78-83.

    Hutmacher, D. W. (2001). Scaffold design and fabrication technologies for

    engineering tissues — state of the art and future perspectives. Journal of

    Biomaterials Science, Polymer Edition, 12(1), 107-124.

    Huttenlocher, A., Sandborg, R. R. and Horwitz, A. F. (1995). Adhesion in cell

    migration. Current Opinion in Cell Biology, 7(5), 697-706.

    Jayarama Reddy, V., Radhakrishnan, S., Ravichandran, R., Mukherjee, S.,

    Balamurugan, R., Sundarrajan, S., et al. (2013). Nanofibrous structured

    biomimetic strategies for skin tissue regeneration. Wound Repair and

    Regeneration, 21(1), 1-16.

    Jeong, S. I., Lee, A.-Y., Lee, Y. M. and Shin, H. (2008). Electrospun gelatin/poly(L-

    lactide-co-ε-caprolactone) nanofibers for mechanically functional tissue-

  • 137

    engineering scaffolds. Journal of Biomaterials Science, Polymer Edition,

    19(3), 339-357.

    Jeun, J. P., Lim, Y. M. and Nho, Y. C. (2005). Study on Morphology of Electrospun

    Poly(caprolactone) Nanofiber. [Article]. Journal of Industrial and

    Engineering Chemistry, 11(4), 573-578.

    Ji, W., Yang, F., van den Beucken, J. J. J. P., Bian, Z., Fan, M., Chen, Z., et al.

    (2010). Fibrous scaffolds loaded with protein prepared by blend or coaxial

    electrospinning. Acta Biomaterialia, 6(11), 4199-4207.

    Jiang, H., Hu, Y., Li, Y., Zhao, P., Zhu, K. and Chen, W. (2005). A facile technique

    to prepare biodegradable coaxial electrospun nanofibers for controlled release

    of bioactive agents. Journal of Controlled Release, 108(2–3), 237-243.

    Jin, G., Prabhakaran, M. P., Nadappuram, B. P., Singh, G., Kai, D. and

    Ramakrishna, S. (2012). Electrospun Poly(L-Lactic Acid)-co-Poly(ϵ-

    Caprolactone) Nanofibres Containing Silver Nanoparticles for Skin-Tissue

    Engineering. Journal of Biomaterials Science, Polymer Edition, 23(18),

    2337-2352.

    Jung, S.-N., Chung, J.-W., Yim, Y.-M. and Kwon, H. (2008). One-Stage Skin

    Grafting of the Exposed Skull With Acellular Human Dermis (AlloDerm).

    Journal of Craniofacial Surgery, 19(6), 1660-1662.

    Kai, D., Jin, G., Prabhakaran, M. P. and Ramakrishna, S. (2013). Electrospun

    synthetic and natural nanofibers for regenerative medicine and stem cells.

    Biotechnology Journal, 8(1), 59-72.

    Kamel, R. A., Ong, J. F., Eriksson, E., Junker, J. P. E. and Caterson, E. J. (2013).

    Tissue Engineering of Skin. Journal of the American College of Surgeons,

    217(3), 533-555.

    Karageorgiou, V. and Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and

    osteogenesis. Biomaterials, 26(27), 5474-5491.

    Karande, T. S., Ong, J. L. and Agrawal, C. M. (2004). Diffusion in musculoskeletal

    tissue engineering scaffolds: Design issues related to porosity, permeability,

    architecture, and nutrient mixing. Annals of Biomedical Engineering, 32(12),

    1728-1743.

    Kariduraganavar, M. Y., Davis, F. J., Mitchell, G. R. and Olley, R. H. (2010). Using

    an additive to control the electrospinning of fibres of poly(ε-caprolactone).

    Polymer International, 59(6), 827-835.

  • 138

    Karuppuswamy, P., Reddy Venugopal, J., Navaneethan, B., Luwang Laiva, A. and

    Ramakrishna, S. Polycaprolactone nanofibers for the controlled release of

    tetracycline hydrochloride. Materials Letters, (0).

    Katoh, K., Tanabe, T. and Yamauchi, K. (2004). Novel approach to fabricate keratin

    sponge scaffolds with controlled pore size and porosity. Biomaterials,

    25(18), 4255-4262.

    Keane, T. J. and Badylak, S. F. (2014). Biomaterials for tissue engineering

    applications. Seminars in Pediatric Surgery, 23(3), 112-118.

    Kearney, J. N. (2001). Clinical evaluation of skin substitutes. Burns, 27(5), 545-551.

    Kenawy, E.-R., Abdel-Hay, F. I., El-Newehy, M. H. and Wnek, G. E. (2007).

    Controlled release of ketoprofen from electrospun poly(vinyl alcohol)

    nanofibers. Materials Science and Engineering: A, 459(1–2), 390-396.

    Kenawy, E.-R., Bowlin, G. L., Mansfield, K., Layman, J., Simpson, D. G., Sanders,

    E. H., et al. (2002). Release of tetracycline hydrochloride from electrospun

    poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. Journal of

    Controlled Release, 81(1–2), 57-64.

    Kenawy, E. R., Abdel-Hay, F. I., El-Newehy, M. H. and Wnek, G. E. (2007).

    Controlled release of ketoprofen from electrospun poly(vinyl alcohol)

    nanofibers. Materials Science and Engineering A, 459(1-2), 390-396.

    Kenawy, E. R., Bowlin, G. L., Mansfield, K., Layman, J., Simpson, D. G., Sanders,

    E. H., et al. (2002). Release of tetracycline hydrochloride from electrospun

    poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. Journal of

    Controlled Release, 81(1-2), 57-64.

    Khil, M. S., Cha, D. I., Kim, H. Y., Kim, I. S. and Bhattarai, N. (2003). Electrospun

    Nanofibrous Polyurethane Membrane as Wound Dressing. Journal of

    Biomedical Materials Research - Part B Applied Biomaterials, 67(2), 675-

    679.

    Ki, C. S., Baek, D. H., Gang, K. D., Lee, K. H., Um, I. C. and Park, Y. H. (2005).

    Characterization of gelatin nanofiber prepared from gelatin-formic acid

    solution. Polymer, 46(14), 5094-5102.

    Kim, J. H., Choung, P. H., Kim, I. Y., Lim, K. T., Son, H. M., Choung, Y. H., et al.

    (2009). Electrospun nanofibers composed of poly(ε-caprolactone) and

    polyethylenimine for tissue engineering applications. Materials Science and

    Engineering C, 29(5), 1725-1731.

  • 139

    Kim, K., Luu, Y. K., Chang, C., Fang, D., Hsiao, B. S., Chu, B., et al. (2004).

    Incorporation and controlled release of a hydrophilic antibiotic using

    poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. Journal

    of Controlled Release, 98(1), 47-56.

    Kim, K., Yu, M., Zong, X., Chiu, J., Fang, D., Seo, Y.-S., et al. (2003). Control of

    degradation rate and hydrophilicity in electrospun non-woven poly(d,l-

    lactide) nanofiber scaffolds for biomedical applications. Biomaterials,

    24(27), 4977-4985.

    Kim, S. S., Sun Park, M., Jeon, O., Yong Choi, C. and Kim, B. S. (2006).

    Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue

    engineering. Biomaterials, 27(8), 1399-1409.

    Kim, T. G., Lee, D. S. and Park, T. G. (2007). Controlled protein release from

    electrospun biodegradable fiber mesh composed of poly(ɛ-caprolactone) and

    poly(ethylene oxide). International Journal of Pharmaceutics, 338(1–2),

    276-283.

    Kim, T. G., Lee, D. S. and Park, T. G. (2007). Controlled protein release from

    electrospun biodegradable fiber mesh composed of poly(ε-caprolactone) and

    poly(ethylene oxide). International Journal of Pharmaceutics, 338(1-2), 276-

    283.

    Kowalczyk, T., Nowicka, A., Elbaum, D. and Kowalewski, T. A. (2008).

    Electrospinning of Bovine Serum Albumin. Optimization and the Use for

    Production of Biosensors. Biomacromolecules, 9(7), 2087-2090.

    Krause, B., Koops, G. H., Van Der Vegt, N. F. A., Wessling, M., Wübbenhorst, M.

    and Van Turnhout, J. (2002). Ultralow-k dielectrics made by supercritical

    foaming of thin polymer films. Advanced Materials, 14(15), 1041-1046.

    Krause, B., Mettinkhof, R., Van Der Vegt, N. F. A. and Wessling, M. (2001).

    Microcellular foaming of amorphous high-Tg polymers using carbon dioxide.

    Macromolecules, 34(4), 874-884.

    Krause, B., Van Der Vegt, N. F. A. and Wessling, M. (2002). Open nanoporous

    morphologies from polymeric blends by carbon dioxide foaming.

    Macromolecules, 35(5), 1738-1745.

    Kurpinski, K. T., Stephenson, J. T., Janairo, R. R. R., Lee, H. and Li, S. (2010). The

    effect of fiber alignment and heparin coating on cell infiltration into

    nanofibrous PLLA scaffolds. Biomaterials, 31(13), 3536-3542.

  • 140

    Langer, R. and Vacanti, J. (1993). Tissue engineering. Science, 260(5110), 920-926.

    Langer, R. and Vacanti, J. P. (1993). Tissue engineering. Science, 260(5110), 920-

    926.

    Lao, L. L., Venkatraman, S. S. and Peppas, N. A. (2008). Modeling of drug release

    from biodegradable polymer blends. European Journal of Pharmaceutics and

    Biopharmaceutics, 70(3), 796-803.

    Lee, K. H., Kim, H. Y., Khil, M. S., Ra, Y. M. and Lee, D. R. (2003).

    Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via

    electrospinning. Polymer, 44(4), 1287-1294.

    Li, A., Simmons, P. J. and Kaur, P. (1998). Identification and isolation of candidate

    human keratinocyte stem cells based on cell surface phenotype. Proceedings

    of the National Academy of Sciences, 95(7), 3902-3907.

    Li, L. and Hsieh, Y.-L. (2006). Chitosan bicomponent nanofibers and nanoporous

    fibers. Carbohydrate Research, 341(3), 374-381.

    Li, W.-J., Laurencin, C. T., Caterson, E. J., Tuan, R. S. and Ko, F. K. (2002).

    Electrospun nanofibrous structure: A novel scaffold for tissue engineering.

    Journal of Biomedical Materials Research, 60(4), 613-621.

    Li, W. J., Tuli, R., Okafor, C., Derfoul, A., Danielson, K. G., Hall, D. J., et al.

    (2005). A three-dimensional nanofibrous scaffold for cartilage tissue

    engineering using human mesenchymal stem cells. Biomaterials, 26(6), 599-

    609.

    Li, X., Su, Y., Liu, S., Tan, L., Mo, X. and Ramakrishna, S. (2010). Encapsulation of

    proteins in poly(l-lactide-co-caprolactone) fibers by emulsion

    electrospinning. Colloids and Surfaces B: Biointerfaces, 75(2), 418-424.

    Li, X., Zhang, H., Li, H., Tang, G., Zhao, Y. and Yuan, X. (2008). Self-accelerated

    biodegradation of electrospun poly(ethylene glycol)-poly(l-lactide)

    membranes by loading proteinase K. Polymer Degradation and Stability,

    93(3), 618-626.

    Li, X., Zhang, H., Li, H., Tang, G., Zhao, Y. and Yuan, X. (2008). Self-accelerated

    biodegradation of electrospun poly(ethylene glycol)–poly(l-lactide)

    membranes by loading proteinase K. Polymer Degradation and Stability,

    93(3), 618-626.

  • 141

    Liao, S., Ramakrishna, S. and Ramalingam, M. (2012). Electrospun Nanofiber and

    Stem Cells in Tissue Engineering Integrated Biomaterials in Tissue

    Engineering (pp. 91-118): John Wiley & Sons, Inc.

    Lim, S. H. and Mao, H.-Q. (2009). Electrospun scaffolds for stem cell engineering.

    Advanced Drug Delivery Reviews, 61(12), 1084-1096.

    Limat, A., Mauri, D. and Hunziker, T. (1996). Successful Treatment of Chronic Leg

    Ulcers with Epidermal Equivalents Generated from Cultured Autologous

    Outer Root Sheath Cells. [Original Article]. J Investig Dermatol, 107(1),

    128-135.

    Lin, C.-C. and Metters, A. T. (2006). Hydrogels in controlled release formulations:

    Network design and mathematical modeling. Advanced Drug Delivery

    Reviews, 58(12–13), 1379-1408.

    Lips, P. A. M., Velthoen, I. W., Dijkstra, P. J., Wessling, M. and Feijen, J. (2005).

    Gas foaming of segmented poly(ester amide) films. Polymer, 46(22), 9396-

    9403.

    Liu, N., Chen, X.-G., Park, H.-J., Liu, C.-G., Liu, C.-S., Meng, X.-H., et al. (2006).

    Effect of MW and concentration of chitosan on antibacterial activity of

    Escherichia coli. Carbohydrate Polymers, 64(1), 60-65.

    Liu, X., Lin, T., Fang, J., Yao, G., Zhao, H., Dodson, M., et al. (2010). In vivo

    wound healing and antibacterial performances of electrospun nanofibre

    membranes. Journal of Biomedical Materials Research Part A, 94A(2), 499-

    508.

    Loh, X. J., Peh, P., Liao, S., Sng, C. and Li, J. (2010). Controlled drug release from

    biodegradable thermoresponsive physical hydrogel nanofibers. Journal of

    Controlled Release, 143(2), 175-182.

    Lowery, J. L., Datta, N. and Rutledge, G. C. (2010). Effect of fiber diameter, pore

    size and seeding method on growth of human dermal fibroblasts in

    electrospun poly(ε-caprolactone) fibrous mats. Biomaterials, 31(3), 491-504.

    Luong-Van, E., Grøndahl, L., Chua, K. N., Leong, K. W., Nurcombe, V. and Cool,

    S. M. (2006). Controlled release of heparin from poly(ε-caprolactone)

    electrospun fibers. Biomaterials, 27(9), 2042-2050.

    Ma, P. X. and Choi, J. W. (2001). Biodegradable polymer scaffolds with well-

    defined interconnected spherical pore network. Tissue Engineering, 7(1), 23-

    33.

  • 142

    Ma, Z., Kotaki, M. and Ramakrishna, S. (2005). Electrospun cellulose nanofiber as

    affinity membrane. Journal of Membrane Science, 265(1-2), 115-123.

    MacNeil, S. (2007). Progress and opportunities for tissue-engineered skin.

    [10.1038/nature05664]. Nature, 445(7130), 874-880.

    MacNeil, S. (2008). Biomaterials for tissue engineering of skin. Materials Today,

    11(5), 26-35.

    Malheiro, V. N., Caridade, S. G., Alves, N. M. and Mano, J. F. (2010). New poly(ε-

    caprolactone)/chitosan blend fibers for tissue engineering applications. Acta

    Biomaterialia, 6(2), 418-428.

    Maneerung, T., Tokura, S. and Rujiravanit, R. (2008). Impregnation of silver

    nanoparticles into bacterial cellulose for antimicrobial wound dressing.

    Carbohydrate Polymers, 72(1), 43-51.

    Maretschek, S., Greiner, A. and Kissel, T. (2008). Electrospun biodegradable

    nanofiber nonwovens for controlled release of proteins. Journal of

    Controlled Release, 127(2), 180-187.

    Mario, G. and Gabriele, G. (2005). Mathematical Modelling and Controlled Drug

    Delivery: Matrix Systems. Current Drug Delivery, 2(1), 97-116.

    Marler, J. J., Upton, J., Langer, R. and Vacanti, J. P. (1998). Transplantation of cells

    in matrices for tissue regeneration. Advanced Drug Delivery Reviews, 33(1–

    2), 165-182.

    Mataram, A., Ismail, A. F. and Matsuura, T. (2012). Polyacrylonitrile Nanofiber

    Assembled by Electrospinning: Effect of Dope Concentrations on the

    Structural and Pore Characterizations Sustainable Membrane Technology for

    Energy, Water, and Environment (pp. 51-58): John Wiley & Sons, Inc.

    Matthews, J. A., Wnek, G. E., Simpson, D. G. and Bowlin, G. L. (2002).

    Electrospinning of collagen nanofibers. Biomacromolecules, 3(2), 232-238.

    Meinel, A. J., Germershaus, O., Luhmann, T., Merkle, H. P. and Meinel, L. (2012).

    Electrospun matrices for localized drug delivery: Current technologies and

    selected biomedical applications. European Journal of Pharmaceutics and

    Biopharmaceutics, 81(1), 1-13.

    Meng, Z. X., Xu, X. X., Zheng, W., Zhou, H. M., Li, L., Zheng, Y. F., et al. (2011).

    Preparation and characterization of electrospun PLGA/gelatin nanofibers as a

    potential drug delivery system. Colloids and Surfaces B: Biointerfaces,

    84(1), 97-102.

  • 143

    Meng, Z. X., Zheng, W., Li, L. and Zheng, Y. F. (2011). Fabrication,

    characterization and in vitro drug release behavior of electrospun

    PLGA/chitosan nanofibrous scaffold. Materials Chemistry and Physics,

    125(3), 606-611.

    Meuli, M. and Raghunath, M. (1997). Tops and flops using cultured epithelial

    autografts in children. Pediatric Surgery International, 12(7), 471-477.

    Mikos, A. G., Sarakinos, G., Leite, S. M., Vacant, J. P. and Langer, R. (1993).

    Laminated three-dimensional biodegradable foams for use in tissue

    engineering. Biomaterials, 14(5), 323-330.

    Mikos, A. G., Thorsen, A. J., Czerwonka, L. A., Bao, Y., Langer, R., Winslow, D.

    N., et al. (1994). Preparation and characterization of poly(l-lactic acid)

    foams. Polymer, 35(5), 1068-1077.

    Min, H., Qingkai, W., Miao, D., Peirong, X., Chaochen, G., Xiang, J., et al. (2015).

    Fabrication of electrospun thermoplastic polyurethane blended poly (l-

    lactide-co-e-caprolactone) microyarn scaffolds for engineering of female

    pelvic-floor tissue. Biomedical Materials, 10(1), 015005.

    Moghe, A. K., Hufenus, R., Hudson, S. M. and Gupta, B. S. (2009). Effect of the

    addition of a fugitive salt on electrospinnability of poly(ε-caprolactone).

    Polymer, 50(14), 3311-3318.

    Montazer, M. and Malekzadeh, S. B. (2012). Electrospun antibacterial nylon

    nanofibers through in situ synthesis of nanosilver: preparation and

    characteristics. Journal of Polymer Research, 19(10), 1-6.

    Mooney, D. J., Baldwin, D. F., Suh, N. P., Vacanti, J. P. and Langer, R. (1996).

    Novel approach to fabricate porous sponges of poly(d,l-lactic-co-glycolic

    acid) without the use of organic solvents. Biomaterials, 17(14), 1417-1422.

    Moore, K., McCallion, R., Searle, R. J., Stacey, M. C. and Harding, K. G. (2006).

    Prediction and monitoring the therapeutic response of chronic dermal

    wounds. International Wound Journal, 3(2), 89-98.

    Narasimhan, B. (2001). Mathematical models describing polymer dissolution:

    consequences for drug delivery. Advanced Drug Delivery Reviews, 48(2–3),

    195-210.

    Narasimhan, B. and Peppas, N. A. (1997). Molecular analysis of drug delivery

    systems controlled by dissolution of the polymer carrier. Journal of

    Pharmaceutical Sciences, 86(3), 297-304.

  • 144

    Nelson, C. M. and Bissell, M. J. (2006). Of Extracellular Matrix, Scaffolds, and

    Signaling: Tissue Architecture Regulates Development, Homeostasis, and

    Cancer. Annual Review of Cell and Developmental Biology, 22(1), 287-309.

    Ngawhirunpat, T., Opanasopit, P., Rojanarata, T., Akkaramongkolporn, P.,

    Ruktanonchai, U. and Supaphol, P. (2009). Development of meloxicam-

    loaded electrospun polyvinyl alcohol mats as a transdermal therapeutic agent.

    Pharmaceutical Development and Technology, 14(1), 70-79.

    Nguyen, T.-H., Lee, K.-H. and Lee, B.-T. (2010). Fabrication of Ag nanoparticles

    dispersed in PVA nanowire mats by microwave irradiation and electro-

    spinning. Materials Science and Engineering: C, 30(7), 944-950.

    Norouzi, M., Soleimani, M., Shabani, I., Atyabi, F., Ahvaz, H. H. and Rashidi, A.

    (2013). Protein encapsulated in electrospun nanofibrous scaffolds for tissue

    engineering applications. Polymer International, 62(8), 1250-1256.

    O'Connor, N., Mulliken, J., Banks-Schlegel, S., Kehinde, O. and Green, H. (1981).

    GRAFTING OF BURNS WITH CULTURED EPITHELIUM PREPARED

    FROM AUTOLOGOUS EPIDERMAL CELLS. The Lancet, 317(8211), 75-

    78.

    Ohyama, M. (2007). Advances in the Study of Stem-Cell-Enriched Hair Follicle

    Bulge Cells: A Review Featuring Characterization and Isolation of Human

    Bulge Cells. Dermatology, 214(4), 342-351.

    Papenburg, B. J., Vogelaar, L., Bolhuis-Versteeg, L. A. M., Lammertink, R. G. H.,

    Stamatialis, D. and Wessling, M. (2007). One-step fabrication of porous

    micropatterned scaffolds to control cell behavior. Biomaterials, 28(11), 1998-

    2009.

    Papini, R. (2004). ABC of burns: Management of burn injuries of various depths.

    British Medical Journal, 329(7458), 158-160.

    Papini, R. (2004). Management of burn injuries of various depths (Vol. 329).

    Pham, C., Greenwood, J., Cleland, H., Woodruff, P. and Maddern, G. (2007).

    Bioengineered skin substitutes for the management of burns: A systematic

    review. Burns, 33(8), 946-957.

    Phipps, M. C., Clem, W. C., Grunda, J. M., Clines, G. A. and Bellis, S. L. (2012).

    Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of

    polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration.

    Biomaterials, 33(2), 524-534.

  • 145

    Piras, A. M., Nikkola, L., Chiellini, F., Ashammakhi, N. and Chiellini, E. (2006).

    Development of diclofenac sodium releasing bio-erodible polymeric

    nanomats. Journal of Nanoscience and Nanotechnology, 6(9-10), 3310-3320.

    Place, E. S., Evans, N. D. and Stevens, M. M. (2009). Complexity in biomaterials for

    tissue engineering. [10.1038/nmat2441]. Nat Mater, 8(6), 457-470.

    Ponticiello, M. S., Schinagl, R. M., Kadiyala, S. and Barry, F. P. (2000). Gelatin-

    based resorbable sponge as a carrier matrix for human mesenchymal stem

    cells in cartilage regeneration therapy. Journal of Biomedical Materials

    Research, 52(2), 246-255.

    Powell, H. M., Supp, D. M. and Boyce, S. T. (2008). Influence of electrospun

    collagen on wound contraction of engineered skin substitutes. Biomaterials,

    29(7), 834-843.

    Qi, Hu, P., Xu, J. and Wang. (2006). Encapsulation of Drug Reservoirs in Fibers by

    Emulsion Electrospinning:  Morphology Characterization and Preliminary

    Release Assessment. Biomacromolecules, 7(8), 2327-2330.

    Qi, H., Hu, P., Xu, J. and Wang, A. (2006). Encapsulation of drug reservoirs in

    fibers by emulsion electrospinning: Morphology characterization and

    preliminary release assessment. Biomacromolecules, 7(8), 2327-2330.

    Ramakrishna, S., Mayer, J., Wintermantel, E. and Leong, K. W. (2001). Biomedical

    applications of polymer-composite materials: A review. Composites Science

    and Technology, 61(9), 1189-1224.

    Ranganath, S. H. and Wang, C.-H. (2008). Biodegradable microfiber implants

    delivering paclitaxel for post-surgical chemotherapy against malignant

    glioma. Biomaterials, 29(20), 2996-3003.

    Ranganath, S. H. and Wang, C. H. (2008). Biodegradable microfiber implants

    delivering paclitaxel for post-surgical chemotherapy against malignant

    glioma. Biomaterials, 29(20), 2996-3003.

    Ravichandran, R., Sundarrajan, S., Venugopal, J. R., Mukherjee, S. and

    Ramakrishna, S. (2012). Advances in Polymeric Systems for Tissue

    Engineering and Biomedical Applications. Macromolecular Bioscience,

    12(3), 286-311.

    Reneker, D. H. and Chun, I. (1996). Nanometre diameter fibres of polymer,

    produced by electrospinning. Nanotechnology, 7(3), 216-223.

  • 146

    Reneker, D. H. and Yarin, A. L. (2008). Electrospinning jets and polymer

    nanofibers. Polymer, 49(10), 2387-2425.

    Reneker, D. H., Yarin, A. L., Fong, H. and Koombhongse, S. (2000). Bending

    instability of electrically charged liquid jets of polymer solutions in

    electrospinning. Journal of Applied Physics, 87(9 I), 4531-4547.

    Rezwan, K., Chen, Q. Z., Blaker, J. J. and Boccaccini, A. R. (2006). Biodegradable

    and bioactive porous polymer/inorganic composite scaffolds for bone tissue

    engineering. Biomaterials, 27(18), 3413-3431.

    Rheinwald, J. G. and Green, H. (1977). Epidermal growth factor and the

    multiplication of cultured human epidermal keratinocytes.

    [10.1038/265421a0]. Nature, 265(5593), 421-424.

    Rheinwatd, J. G. and Green, H. (1975). Seria cultivation of strains of human

    epidemal keratinocytes: the formation keratinizin colonies from single cell is.

    Cell, 6(3), 331-343.

    Rnjak-Kovacina, J., Wise, S. G., Li, Z., Maitz, P. K. M., Young, C. J., Wang, Y., et

    al. (2011). Tailoring the porosity and pore size of electrospun synthetic

    human elastin scaffolds for dermal tissue engineering. Biomaterials, 32(28),

    6729-6736.

    Roozbahani, F., Sultana, N., Fauzi Ismail, A. and Nouparvar, H. (2013). Effects of

    Chitosan Alkali Pretreatment on the Preparation of Electrospun

    PCL/Chitosan Blend Nanofibrous Scaffolds for Tissue Engineering

    Application. Journal of Nanomaterials, 2013, 6.

    RoyChowdhury, P. and Kumar, V. (2006). Fabrication and evaluation of porous 2,3-

    dialdehydecellulose membrane as a potential biodegradable tissue-

    engineering scaffold. Journal of Biomedical Materials Research - Part A,

    76(2), 300-309.

    Rujitanaroj, P.-o., Pimpha, N. and Supaphol, P. (2008). Wound-dressing materials

    with antibacterial activity from electrospun gelatin fiber mats containing

    silver nanoparticles. Polymer, 49(21), 4723-4732.

    Ryu, Y. J., Kim, H. Y., Lee, K. H., Park, H. C. and Lee, D. R. (2003). Transport

    properties of electrospun nylon 6 nonwoven mats. European Polymer

    Journal, 39(9), 1883-1889.

    Said, S. S., El-Halfawy, O. M., El-Gowelli, H. M., Aloufy, A. K., Boraei, N. A. and

    El-Khordagui, L. K. (2012). Bioburden-responsive antimicrobial PLGA

  • 147

    ultrafine fibers for wound healing. European Journal of Pharmaceutics and

    Biopharmaceutics, 80(1), 85-94.

    Sanders, J. E., Stiles, C. E. and Hayes, C. L. (2000). Tissue response to single-

    polymer fibers of varying diameters: Evaluation of fibrous encapsulation and

    macrophage density. Journal of Biomedical Materials Research, 52(1), 231-

    237.

    Schiffman, J. D. and Schauer, C. L. (2008). A Review: Electrospinning of

    Biopolymer Nanofibers and their Applications. Polymer Reviews, 48(2), 317-

    352.

    Schneider, A., Wang, X. Y., Kaplan, D. L., Garlick, J. A. and Egles, C. (2009).

    Biofunctionalized electrospun silk mats as a topical bioactive dressing for

    accelerated wound healing. Acta Biomaterialia, 5(7), 2570-2578.

    Schreuder-Gibson, H., Gibson, P., Senecal, K., Sennett, M., Walker, J., Yeomans,

    W., et al. (2002). Protective textile materials based on electrospun nanofibers.

    Journal of Advanced Materials, 34(3), 44-55.

    Scott, J. E. (1995). Extracellular matrix, supramolecular organisation and shape.

    Journal of Anatomy, 187(Pt 2), 259-269.

    Serra, L., Doménech, J. and Peppas, N. A. (2006). Drug transport mechanisms and

    release kinetics from molecularly designed poly(acrylic acid-g-ethylene

    glycol) hydrogels. Biomaterials, 27(31), 5440-5451.

    Shakespeare, P. (2001). Burn wound healing and skin substitutes. Burns, 27(5), 517-

    522.

    Shakespeare, P. G. (2005). The role of skin substitutes in the treatment of burn

    injuries. Clinics in Dermatology, 23(4), 413-418.

    Shalumon, K. T., Anulekha, K. H., Girish, C. M., Prasanth, R., Nair, S. V. and

    Jayakumar, R. (2010). Single step electrospinning of

    chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent

    mixture. Carbohydrate Polymers, 80(2), 413-419.

    Shalumon, K. T., Anulekha, K. H., Nair, S. V., Nair, S. V., Chennazhi, K. P. and

    Jayakumar, R. (2011). Sodium alginate/poly(vinyl alcohol)/nano ZnO

    composite nanofibers for antibacterial wound dressings. International

    Journal of Biological Macromolecules, 49(3), 247-254.

  • 148

    Sharma, V. K., Yngard, R. A. and Lin, Y. (2009). Silver nanoparticles: Green

    synthesis and their antimicrobial activities. Advances in Colloid and Interface

    Science, 145(1–2), 83-96.

    Shevchenko, R. V., James, S. L. and James, S. E. (2010). A review of tissue-

    engineered skin bioconstructs available for skin reconstruction. Journal of

    The Royal Society Interface, 7(43), 229-258.

    Shin, M., Ishii, O., Sueda, T. and Vacanti, J. P. (2004). Contractile cardiac grafts

    using a novel nanofibrous mesh. Biomaterials, 25(17), 3717-3723.

    Shin, Y. M., Hohman, M. M., Brenner, M. P. and Rutledge, G. C. (2001).

    Experimental characterization of electrospinning: the electrically forced jet

    and instabilities. Polymer, 42(25), 09955-09967.

    Siepmann, J. and Göpferich, A. (2001). Mathematical modeling of bioerodible,

    polymeric drug delivery systems. Advanced Drug Delivery Reviews, 48(2–3),

    229-247.

    Sill, T. J. and von Recum, H. A. (2008). Electrospinning: applications in drug

    delivery and tissue engineering. Biomaterials, 29(13), 1989-2006.

    Singh, L., Kumar, V. and Ratner, B. D. (2004). Generation of porous microcellular

    85/15 poly (DL-lactide-co-glycolide) foams for biomedical applications.

    Biomaterials, 25(13), 2611-2617.

    Son, B., Yeom, B.-Y., Song, S. H., Lee, C.-S. and Hwang, T. S. (2009).

    Antibacterial electrospun chitosan/poly(vinyl alcohol) nanofibers containing

    silver nitrate and titanium dioxide. Journal of Applied Polymer Science,

    111(6), 2892-2899.

    Son, W. K., Youk, J. H. and Park, W. H. (2006). Antimicrobial cellulose acetate

    nanofibers containing silver nanoparticles. Carbohydrate Polymers, 65(4),

    430-434.

    Stamatialis, D. F., Papenburg, B. J., Gironés, M., Saiful, S., Bettahalli, S. N. M.,

    Schmitmeier, S., et al. (2008). Medical applications of membranes: Drug

    delivery, artificial organs and tissue engineering. Journal of Membrane

    Science, 308(1–2), 1-34.

    Stanton, R. A. and Billmire, D. A. (2002). Skin resurfacing for the burned patient.

    Clinics in Plastic Surgery, 29(1), 29-51.

    Steyaert, I., Van der Schueren, L., Rahier, H. and de Clerck, K. (2012). An

    Alternative Solvent System for Blend Electrospinning of

  • 149

    Polycaprolactone/Chitosan Nanofibres. Macromolecular Symposia, 321-

    322(1), 71-75.

    Su, Y. and Mo, X. (2011). Dual drug release from coaxial electrospun nanofibers.

    Journal of Controlled Release, 152, Supplement 1(0), e82-e84.

    Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S. and Ramkumar, S. S.

    (2005). Electrospinning of nanofibers. Journal of Applied Polymer Science,

    96(2), 557-569.

    Sultana, N. and Wang, M. (2008). Fabrication of HA/PHBV composite scaffolds

    through the emulsion freezing/freeze-drying process and characterisation of

    the scaffolds. Journal of Materials Science: Materials in Medicine, 19(7),

    2555-2561.

    Suwantong, O., Opanasopit, P., Ruktanonchai, U. and Supaphol, P. (2007).

    Electrospun cellulose acetate fiber mats containing curcumin and release

    characteristic of the herbal substance. Polymer, 48(26), 7546-7557.

    Taepaiboon, P., Rungsardthong, U. and Supaphol, P. (2006). Drug-loaded

    electrospun mats of poly(vinyl alcohol) fibres and their release characteristics

    of four model drugs. Nanotechnology, 17(9), 2317-2329.

    Taepaiboon, P., Rungsardthong, U. and Supaphol, P. (2007). Vitamin-loaded

    electrospun cellulose acetate nanofiber mats as transdermal and dermal

    therapeutic agents of vitamin A acid and vitamin E. European Journal of

    Pharmaceutics and Biopharmaceutics, 67(2), 387-397.

    Tang, C., Ozcam, A. E., Stout, B. and Khan, S. A. (2012). Effect of pH on Protein

    Distribution in Electrospun PVA/BSA Composite Nanofibers.

    Biomacromolecules, 13(5), 1269-1278.

    Tessmar, J. K. and Göpferich, A. M. (2007). Matrices and scaffolds for protein

    delivery in tissue engineering. Advanced Drug Delivery Reviews, 59(4–5),

    274-291.

    Thakur, R. A., Florek, C. A., Kohn, J. and Michniak, B. B. (2008). Electrospun

    nanofibrous polymeric scaffold with targeted drug release profiles for

    potential application as wound dressing. International Journal of

    Pharmaceutics, 364(1), 87-93.

    Theron, S. A., Zussman, E. and Yarin, A. L. (2004). Experimental investigation of

    the governing parameters in the electrospinning of polymer solutions.

    Polymer, 45(6), 2017-2030.

  • 150

    Thirugnanaselvam, M., Gobi, N. and Arun Karthick, S. (2013). SPI/PEO blended

    electrospun martrix for wound healing. Fibers and Polymers, 14(6), 965-969.

    Tumbar, T. (2006). Epithelial Skin Stem Cells. In K. Irina & L. Robert (Eds.),

    Methods in Enzymology (Vol. Volume 419, pp. 73-99): Academic Press.

    Tungprapa, S., Jangchud, I. and Supaphol, P. (2007). Release characteristics of four

    model drugs from drug-loaded electrospun cellulose acetate fiber mats.

    Polymer, 48(17), 5030-5041.

    Twu, Y.-K., Chen, Y.-W. and Shih, C.-M. (2008). Preparation of silver nanoparticles

    using chitosan suspensions. Powder Technology, 185(3), 251-257.

    Valmikinathan, C. M., Defroda, S. and Yu, X. (2009). Polycaprolactone and Bovine

    Serum Albumin Based Nanofibers for Controlled Release of Nerve Growth

    Factor. Biomacromolecules, 10(5), 1084-1089.

    Van der Schueren, L., De Schoenmaker, B., Kalaoglu, Ö. I. and De Clerck, K.

    (2011). An alternative solvent system for the steady state electrospinning of

    polycaprolactone. European Polymer Journal, 47(6), 1256-1263.

    Van der Schueren, L., Steyaert, I., De Schoenmaker, B. and De Clerck, K. (2012).

    Polycaprolactone/chitosan blend nanofibres electrospun from an acetic

    acid/formic acid solvent system. Carbohydrate Polymers, 88(4), 1221-1226.

    Vaquette, C. and Cooper-White, J. J. (2011). Increasing electrospun scaffold pore

    size with tailored collectors for improved cell penetration. Acta

    Biomaterialia, 7(6), 2544-2557.

    Vatankhah, E., Prabhakaran, M. P., Jin, G., Ghasemi Mobarakeh, L. and

    Ramakrishna, S. (2013). Development of nanofibrous cellulose

    acetate/gelatin skin substitutes for variety wound treatment applications.

    Journal of Biomaterials Applications.

    Venugopal, J. R., Zhang, Y. and Ramakrishna, S. (2006). In Vitro Culture of Human

    Dermal Fibroblasts on Electrospun Polycaprolactone Collagen Nanofibrous

    Membrane. Artificial Organs, 30(6), 440-446.

    Verreck, G., Chun, I., Rosenblatt, J., Peeters, J., Dijck, A. V., Mensch, J., et al.

    (2003). Incorporation of drugs in an amorphous state into electrospun

    nanofibers composed of a water-insoluble, nonbiodegradable polymer.

    Journal of Controlled Release, 92(3), 349-360.

    Verreck, G., Chun, I., Rosenblatt, J., Peeters, J., Van Dijck, A., Mensch, J., et al.

    (2003). Incorporation of drugs in an amorphous state into electrospun

  • 151

    nanofibers composed of a water-insoluble, nonbiodegradable polymer.

    Journal of Controlled Release, 92(3), 349-360.

    Wan, H., Williams, R. L., Doherty, P. J. and Williams, D. F. (1997). A study of cell

    behaviour on the surfaces of multifilament materials. Journal of Materials

    Science: Materials in Medicine, 8(1), 45-51.

    Wang, C., Yan, K. W., Lin, Y. D. and Hsieh, P. C. H. (2010). Biodegradable

    core/shell fibers by coaxial electrospinning: Processing, fiber

    characterization, and its application in sustained drug release.

    Macromolecules, 43(15), 6389-6397.

    Wang, H., Feng, Y., Zhao, H., Lu, J., Guo, J., Behl, M., et al. (2011). controlled

    heparin release from electrospun gelatin fibers. Journal of Controlled

    Release, 152, Supplement 1(0), e28-e29.

    Wang, X., Drew, C., Lee, S. H., Senecal, K. J., Kumar, J. and Samuelson, L. A.

    (2002). Electrospun Nanofibrous Membranes for Highly Sensitive Optical

    Sensors. Nano Letters, 2(11), 1273-1275.

    Wang, X., Kim, Y. G., Drew, C., Ku, B. C., Kumar, J. and Samuelson, L. A. (2004).

    Electrostatic Assembly of Conjugated Polymer Thin Layers on Electrospun

    Nanofibrous Membranes for Biosensors. Nano Letters, 4(2), 331-334.

    Wang, X., Li, W. and Kumar, V. (2006). A method for solvent-free fabrication of

    porous polymer using solid-state foaming and ultrasound for tissue

    engineering applications. Biomaterials, 27(9), 1924-1929.

    Wang, Y., wang, B., Qiao, W. and Yin, T. (2010). A novel controlled release drug

    delivery system for multiple drugs based on electrospun nanofibers

    containing nanoparticles. Journal of Pharmaceutical Sciences, 99(12), 4805-

    4811.

    Watt, F. M. and Dudhia, J. (1988). Prolonged expression of differentiated phenotype

    by chondrocytes cultured at low density on a composite substrate of collagen

    and agarose that restricts cell spreading. Differentiation, 38(2), 140-147.

    Waymack, P., Duff, R. G. and Sabolinski, M. (2000). The effect of a tissue

    engineered bilayered living skin analog, over meshed split-thickness

    autografts on the healing of excised burn wounds. Burns, 26(7), 609-619.

    Webb, A., Li, A. and Kaur, P. (2004). Location and phenotype of human adult

    keratinocyte stem cells of the skin. Differentiation, 72(8), 387-395.

  • 152

    Whang, K., Thomas, C. H., Healy, K. E. and Nuber, G. (1995). A novel method to

    fabricate bioabsorbable scaffolds. Polymer, 36(4), 837-842.

    Wintermantel, E., Mayer, J., Blum, J., Eckert, K. L., Lüscher, P. and Mathey, M.

    (1996). Tissue engineering scaffolds using superstructures. Biomaterials,

    17(2), 83-91.

    Wong, T., McGrath, J. A. and Navsaria, H. (2007). The role of fibroblasts in tissue

    engineering and regeneration. British Journal of Dermatology, 156(6), 1149-

    1155.

    Woo, K. M., Jun, J.-H., Chen, V. J., Seo, J., Baek, J.-H., Ryoo, H.-M., et al. (2007).

    Nano-fibrous scaffolding promotes osteoblast differentiation and

    biomineralization. Biomaterials, 28(2), 335-343.

    Wood, F. M., Kolybaba, M. L. and Allen, P. (2006). The use of cultured epithelial

    autograft in the treatment of major burn injuries: A critical review of the

    literature. Burns, 32(4), 395-401.

    Wood, F. M., Stoner, M. L., Fowler, B. V. and Fear, M. W. (2007). The use of a

    non-cultured autologous cell suspension and Integra® dermal regeneration

    template to repair full-thickness skin wounds in a porcine model: A one-step

    process. Burns, 33(6), 693-700.

    Wozniak, M. A., Modzelewska, K., Kwong, L. and Keely, P. J. (2004). Focal

    adhesion regulation of cell behavior. Biochimica et Biophysica Acta (BBA) -

    Molecular Cell Research, 1692(2–3), 103-119.

    Xiaoqiang, L., Yan, S., Rui, C., Chuanglong, H., Hongsheng, W. and Xiumei, M.

    (2009). Fabrication and properties of core-shell structure P(LLA-CL)

    nanofibers by coaxial electrospinning. Journal of Applied Polymer Science,

    111(3), 1564-1570. doi: 10.1002/app.29056

    Xie, J., Li, X. and Xia, Y. (2008). Putting electrospun nanofibers to work for

    biomedical research. Macromolecular Rapid Communications, 29(22), 1775-

    1792.

    Xu, C. Y., Inai, R., Kotaki, M. and Ramakrishna, S. (2004). Aligned biodegradable

    nanofibrous structure: a potential scaffold for blood vessel engineering.

    Biomaterials, 25(5), 877-886.

    Xu, J., Jiao, Y., Shao, X. and Zhou, C. (2011). Controlled dual release of

    hydrophobic and hydrophilic drugs from electrospun poly(l-lactic acid) fiber

  • 153

    mats loaded with chitosan microspheres. Materials Letters, 65(17–18), 2800-

    2803.

    Xu, X., Chen, X., Ma, P., Wang, X. and Jing, X. (2008). The release behavior of

    doxorubicin hydrochloride from medicated fibers prepared by emulsion-

    electrospinning. European Journal of Pharmaceutics and Biopharmaceutics,

    70(1), 165-170.

    Xu, X., Yang, L., Xu, X., Wang, X., Chen, X., Liang, Q., et al. (2005). Ultrafine

    medicated fibers electrospun from W/O emulsions. Journal of Controlled

    Release, 108(1), 33-42.

    Yan, S., Xiaoqiang, L., Lianjiang, T., Chen, H. and Xiumei, M. (2009). Poly(l-

    lactide-co-ɛ-caprolactone) electrospun nanofibers for encapsulating and

    sustained releasing proteins. Polymer, 50(17), 4212-4219.

    Yan, S., Xiaoqiang, L., Shuiping, L., Xiumei, M. and Ramakrishna, S. (2009).

    Controlled release of dual drugs from emulsion electrospun nanofibrous

    mats. Colloids and Surfaces B: Biointerfaces, 73(2), 376-381.

    Yang, X., Chen, X. and Wang, H. (2009). Acceleration of Osteogenic Differentiation

    of Preosteoblastic Cells by Chitosan Containing Nanofibrous Scaffolds.

    Biomacromolecules, 10(10), 2772-2778.

    Yarin, A. L., Koombhongse, S. and Reneker, D. H. (2001). Bending instability in

    electrospinning of nanofibers. Journal of Applied Physics, 89(5), 3018-3026.

    Yoshimoto, H., Shin, Y. M., Terai, H. and Vacanti, J. P. (2003). A biodegradable

    nanofiber scaffold by electrospinning and its potential for bone tissue

    engineering. Biomaterials, 24(12), 2077-2082.

    You, Y., Min, B.-M., Lee, S. J., Lee, T. S. and Park, W. H. (2005). In vitro

    degradation behavior of electrospun polyglycolide, polylactide, and

    poly(lactide-co-glycolide). Journal of Applied Polymer Science, 95(2), 193-

    200.

    Zahedi, P., Karami, Z., Rezaeian, I., Jafari, S.-H., Mahdaviani, P., Abdolghaffari, A.

    H., et al. (2012). Preparation and performance evaluation of tetracycline

    hydrochloride loaded wound dressing mats based on electrospun nanofibrous

    poly(lactic acid)/poly(ϵ-caprolactone) blends. Journal of Applied Polymer

    Science, 124(5), 4174-4183.

  • 154

    Zahedi, P., Rezaeian, I., Ranaei-Siadat, S.-O., Jafari, S.-H. and Supaphol, P. (2010).

    A review on wound dressings with an emphasis on electrospun nanofibrous

    polymeric bandages. Polymers for Advanced Technologies, 21(2), 77-95.

    Zeng, J., Yang, L., Liang, Q., Zhang, X., Guan, H., Xu, X., et al. (2005). Influence of

    the drug compatibility with polymer solution on the release kinetics of

    electrospun fiber formulation. Journal of Controlled Release, 105(1-2), 43-

    51.

    Zhang, H., Zhao, Y., Han, F., Wang, M. and Yuan, X. (2011). Controlled release of

    bovine serum albumin from electrospun fibrous membranes via an improved

    emulsion-core technique. Journal of Controlled Release, 152, Supplement

    1(0), e181-e182.

    Zhang, Y., Lim, C., Ramakrishna, S. and Huang, Z.-M. (2005). Recent development

    of polymer nanofibers for biomedical and biotechnological applications.

    Journal of Materials Science: Materials in Medicine, 16(10), 933-946.

    Zhang, Y. Z., Venugopal, J., Huang, Z. M., Lim, C. T. and Ramakrishna, S. (2006).

    Crosslinking of the electrospun gelatin nanofibers. Polymer, 47(8), 2911-

    2917.

    Zhang, Y. Z., Wang, X., Feng, Y., Li, J., Lim, C. T. and Ramakrishna, S. (2006).

    Coaxial Electrospinning of (Fluorescein Isothiocyanate-Conjugated Bovine

    Serum Albumin)-Encapsulated Poly(ε-caprolactone) Nanofibers for

    Sustained Release. Biomacromolecules, 7(4), 1049-1057.

    Zhang, Z., Li, X., Wang, C., Wei, L., Liu, Y. and Shao, C. (2009). ZnO Hollow

    Nanofibers: Fabrication from Facile Single Capillary Electrospinning and

    Applications in Gas Sensors. The Journal of Physical Chemistry C, 113(45),

    19397-19403.

    Zhong, S. P., Zhang, Y. Z. and Lim, C. T. (2010). Tissue scaffolds for skin wound

    healing and dermal reconstruction. Wiley Interdisciplinary Reviews:

    Nanomedicine and Nanobiotechnology, 2(5), 510-525.

    Zhou, Y., Yang, D., Chen, X., Xu, Q., Lu, F. and Nie, J. (2008). Electrospun Water-

    Soluble Carboxyethyl Chitosan/Poly(vinyl alcohol) Nanofibrous Membrane

    as Potential Wound Dressing for Skin Regeneration. Biomacromolecules,

    9(1), 349-354.

  • 155

    Zhuang, X., Cheng, B., Kang, W. and Xu, X. (2010). Electrospun chitosan/gelatin

    nanofibers containing silver nanoparticles. Carbohydrate Polymers, 82(2),

    524-527.

    Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B. S. and Chu, B. (2002). Structure and

    process relationship of electrospun bioabsorbable nanofiber membranes.

    Polymer, 43(16), 4403-4412.

    Zong, X., Li, S., Chen, E., Garlick, B., Kim, K. S., Fang, D., et al. (2004). Prevention

    of postsurgery-induced abdominal adhesions by electrospun bioabsorbable

    nanofibrous poly(lactide-co-glycolide)-based membranes. Annals of Surgery,

    240(5), 910-915.

    Zong, X., Ran, S., Kim, K.-S., Fang, D., Hsiao, B. S. and Chu, B. (2003). Structure

    and Morphology Changes during in Vitro Degradation of Electrospun

    Poly(glycolide-co-lactide) Nanofiber Membrane. Biomacromolecules, 4(2),

    416-423.

    Zweifel, C. J., Contaldo, C., Köhler, C., Jandali, A., Künzi, W. and Giovanoli, P.

    (2008). Initial experiences using non-cultured autologous keratinocyte

    suspension for burn wound closure. Journal of Plastic, Reconstructive &

    Aesthetic Surgery, 61(11), e1-e4.