28
References 156 References Abdelnasser S. S. I., Nefisa M. A. EI-Shayeb, Sohair S. M. (2007). Isolation and Identification of Alkaline Protease Producing Alkaliphilic Bacteria from an Egyptian Soda Lake. Journal of Applied Sciences Research, 3(11), 1363-1368. Abdel-Raouf O. M. (1990). Studies of proteolytic bacteria isolated from certain localities in Aswan city. A Master section thesis, Faculty of Sciences, Al-Azhar University. Abida Anwar, Shah Ali Ul Qader, Aliya Raiz, Samina Iqbal, Abid Azhar (2009). Calcium Alginate: A Support Material for Immobilization of Proteases from Newly Isolated Strain of Bacillus subtilis KIBGE-HAS. World Applied Sciences Journal 7(10), 1281-1286. Adinarayana K., Ellaiah P., Prasad D. S. (2003). Purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis PE-11. AAPS Pharm Sci Tech 4, 1-9. Agarwal D., Patidar P., Banerjee T., Patil S. (2004). Production of alkaline protease by Penicillium sp. Under SSF conditions and its application to soy protein hydrolysis. Process Biochemistry 39, 977-981. Agboola F. K., Thomson A., Afolayan A. (2003). Isolation and properties of cytoplasmic α-glycerol 3-phospahe dehydrogenase from the pectoral muscle of the fruit bat, Eidolon helvum. Journal of Biochemistry and Molecular Biology 36, 159–166. Ahuja S. K., Ferreira G. M., Moreira A. R. (2004). Application of Plackett–Burman design and response surface methodology to achieve exponential growth for aggregated shipworm bacterium. Biotechnology and Bioengineering 85, 666–675. Aizenman E., Engelberg-Kulka H., Glaser G. (1996). An Escherichia coli chromosomal "addiction module" regulated by 3',5'-bispyrophosphate: a model for programmed bacterial cell death. Proc. Natl. Acad. Sci. USA 93, 6059-6063 Alagarsamy S., Christian L., Ashok P. (2006). Microbiology and Industrial Biotechnology of Food-Grade Proteases: A Perspective. Food Technology and Biotechnology 44(2), 211–220.

References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

156

References

� Abdelnasser S. S. I., Nefisa M. A. EI-Shayeb, Sohair S. M. (2007). Isolation and

Identification of Alkaline Protease Producing Alkaliphilic Bacteria from an Egyptian

Soda Lake. Journal of Applied Sciences Research, 3(11), 1363-1368.

� Abdel-Raouf O. M. (1990). Studies of proteolytic bacteria isolated from certain

localities in Aswan city. A Master section thesis, Faculty of Sciences, Al-Azhar

University.

� Abida Anwar, Shah Ali Ul Qader, Aliya Raiz, Samina Iqbal, Abid Azhar (2009).

Calcium Alginate: A Support Material for Immobilization of Proteases from Newly

Isolated Strain of Bacillus subtilis KIBGE-HAS. World Applied Sciences Journal 7(10),

1281-1286.

� Adinarayana K., Ellaiah P., Prasad D. S. (2003). Purification and partial

characterization of thermostable serine alkaline protease from a newly

isolated Bacillus subtilis PE-11. AAPS Pharm Sci Tech 4, 1-9.

� Agarwal D., Patidar P., Banerjee T., Patil S. (2004). Production of alkaline protease by

Penicillium sp. Under SSF conditions and its application to soy protein hydrolysis.

Process Biochemistry 39, 977-981.

� Agboola F. K., Thomson A., Afolayan A. (2003). Isolation and properties of

cytoplasmic α-glycerol 3-phospahe dehydrogenase from the pectoral muscle of the

fruit bat, Eidolon helvum. Journal of Biochemistry and Molecular Biology 36, 159–166.

� Ahuja S. K., Ferreira G. M., Moreira A. R. (2004). Application of Plackett–Burman

design and response surface methodology to achieve exponential growth for

aggregated shipworm bacterium. Biotechnology and Bioengineering 85, 666–675.

� Aizenman E., Engelberg-Kulka H., Glaser G. (1996). An Escherichia coli

chromosomal "addiction module" regulated by 3',5'-bispyrophosphate: a model for

programmed bacterial cell death. Proc. Natl. Acad. Sci. USA 93, 6059-6063

� Alagarsamy S., Christian L., Ashok P. (2006). Microbiology and Industrial

Biotechnology of Food-Grade Proteases: A Perspective. Food Technology and

Biotechnology 44(2), 211–220.

Page 2: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

157

� Aleksieva P., Djerova A., Tchorbanov B., Girarov J. (1981). Submerged cultivation of

a strain of Humicola lutea 72 producing acid protease. European Journal of Applied

Microbiology and Biotechnology 13, 165-169.

� Ali O. A. (1991). Extracellular thermostable protease produced by thermophilic

Bacillus sp. Journal of Applied Microbiology 11, 78-95.

� Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local

alignments search tool. Journal of Molecular Biology 215, 403–410.

� Alva S., Anupama J., Savla J., Chiu Y. Y., Vyshali P., Shruti M., Yogeetha B. S.,

Bhavya D., Purvi J., Ruchi K., Kumudini B. S., Varalakshmi K. N. (2007). Production

and characterization of fungal amylase enzyme isolated from Aspergillus sp. JGI 12 in

solid state culture. African Journal of Biotechnology 6, 576-581.

� Ammar M. S., El-Louboudy S. S., Abdulraouf U. M. (1991). Protease (s) from Bacillus

anthracis S-44 and B. cereus var. mycoids, S-98 isolated from a temple and slaughter

house in Aswan city. Arizona Journal of Microbiology 13, 12-29.

� Anandan D., Marmer W. N., Dudley R. L. (2007). Isolation, characterization and

optimization of culture parameters for production of an alkaline protease isolated

from Aspergillus tamari. Journal of Industrial Microbiology and Biotechnology 34,

339-347.

� Anissa Haddar, Noomen Hmidet, Olfa Ghorbel-Bellaaj, Nahed Fakhfakh-Zouari,

Alya Sellami-Kamoun, Moncef Nasri (2011). Alkaline Proteases Produced by Bacillus

licheniformis RP1 Grown on Shrimp Wastes: Application in Chitin Extraction,

Chicken Feather degradation and as a Dehairing Agent Biotechnology Bioprocess

Engineering 16(4), 669-678.

� Anonyme (2007). World enzymes to 2011 (2229). Focus on Catalysts, 2-2.

� Anridson S., Holme T., Lindholm B. (1973). Studies on extracellular proteolytic

enzymes from Staphylococcus aureus: Purification and characterization of one neutral

and alkaline protease. Biochimica et Biophysica Acta 302, 135-148.

� Anwar A. and Mohammed S. (1998). Alkaline proteases: A review. Bioresource

Technology 64(3), 175-183.

Page 3: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

158

� Anwar A., Saleemuddin M. (1997). Alkaline pH acting digestive enzymes of the

polyphagous insect pest Spilosoma obliqua: stability and potential as detergent

additives. Biotechnology and Applied Biochemistry 25, 43–46.

� Aparna M. T. (2001). Molecular aspects of a fungal alkaline protease., National

Chemical Laboratory Pune pp.-16

� Arnorsdottir J., Smaradottir R. B., Magnusson O. T., Thorbjarnardottir S. H.,

Eggertsson G., Kristjansson M. M. (2002). Characterization of a cloned subtilisin-like

serine proteinase from a psychrotrophic Vibrio species. European Journal of

Biochemistry 269, 5536–5546.

� Aronson A. I., Angelo N., Holt S. C. (1971). Regulation of extracellular protease

production in Bacillus cereus T. Characterization of mutants producing altered

amounts of protease. Journal of Bacteriology 106, 10 16-1025.

� Arya S. K., Srivastava S. K. (2006). Kinetics of immobilized cyclodextrin

gluconotransferase produced by Bacillus macerans ATCC 8244.

Enzyme and Microbial Technology 39, 507-510.

� Ashour S. A., El-Shore H. M., Habib S. A. (1996). Fungal fermentation of whey

incorporated with certain supplements for production of proteases. Microbios

86(346), 59-69.

� Aunstrup K. (1980). Proteinases. In: Rose AH, editor. Economic Microbiology: Microbial

Enzymes and Bioconversions, Vol. 5. New York: Academic Press, pp. 50–114.

� Bach H. J., Munch J. C. (2000). Identification of bacterial sources of soil peptidases.

Biology and Fertility of Soils 34(3-4), 219-224.

� Bae M. and Park P. Y. (1989). Purification and characterization of thermotolerable

alkaline protease by alkalophilic Bacillus sp. No. 8–16. Korean Journal of

Microbiology and Bioengineering 17, 545–551.

� Bairoch A. and Apweiler R. (2000). The SWISS-PROT protein sequence database and

its supplement TrEMBL in 2000. Nucleic Acids Research 28, 45-48.

� Bandaru V. V. R., Somalanka S. R., Menduc D. R., Madicherla N. R., Chityala A.

(2006). Optimization of fermentation conditions for the production of ethanol from

sago starch by co-immobilized amyloglucosidase and cells of Zymomonas mobilis

Page 4: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

159

using response surface methodology. Enzyme and Microbial Technology 38, 209–

214.

� Banerjee U. C., Sani R. K., Azmi W. (1999). Thermostable alkaline protease from

Bacillus brevis and its characterisation as a laundry detergent additive. Process

Biochemistry 35, 213–219.

� Banerjee U. C., Sani R. K., Azmi W., Soni R. (1999). Thermostable alkaline protease

from Bacillus brevis and its characterization as a laundry detergent additive. Process

Biochemistry 35, 213-219.

� Barberis S., Quiroga E., Morcelle S., Priolo N., Luco J. M. (2006). Journal of Molecular

Catalysis B: Enzymes 38, 95–103.

� Barett A. J. (1994). Proteolytic enzymes: serine and cysteine peptidases. Methods in

Enzymology 244, 1-15.

� Barett A. J. (1995). Proteolytic enzymes: aspartic and metallopeptidases. Methods in

Enzymology 248, 183-194.

� Barett A., Rawlings N., Woessner J. (1998). In, Handbook of Proteolytic Enzymes

Academic Press Inc., London.

� Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

Applications of Bacterial Alkaline Proteases: the Case of SAPB and KERAB. Progress

in Molecular and Environmental Bioengineering 20-22.

� BCC Research (2012). Market Research Reports and Technical Publications Product

Catalog, Report ID: BIO093A.

� Beg Q. K. and Gupta R. (2003a). Purification and characterization of an oxidation

stable, thiol-dependent serine alkaline protease from Bacillus mojavensis. Enzyme

and Microbial Technology 32, 294-304.

� Beg Q. K., Sahai V., Gupta R. (2003b). Statistical media optimization and alkaline

protease production from Bacillus mojavensis in a bioreactor. Process Biochemistry 39,

203–209.

� Beg Q. K., Saxena R. K., Gupta R. (2002a). De-repression and subsequent induction of

protease synthesis by Bacillus mojavensis under fed-batch operations. Process

Biochemistry 37, 1103–110.

Page 5: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

160

� Beg Q. K., Saxena R. K., Gupta R. (2002b). Kinetic constants determination for an

alkaline protease from Bacillus mojavensis using response surface methodology.

Biotechnology and Bioengineering 78, 289–298.

� Bell D. J., Hoare M., Dunnill P. (1893). The formation of protein precipitates and their

centrifugal recovery. Advances in Biochemical Engineering/Biotechnology 26, 1–72

� Bergey D. H., John G. H., Noel R. K., Peter H. A. S. (1994). Bergey's Manual of

Determinative Bacteriology (9th ed.). Lippincott Williams and Wilkins.

� Bhosale S. H., Rao M. B., Deshpande V. V., Srinivasan M. C. (1995). Ther-mostability

of high-activity alkaline protease from Conidiobolus coronatus (NCL 86.8.20). Enzyme

and Microbial Technology 17, 136-139.

� Bing-Lan Liu and Yew-Min Tzeng (1998). Optimization of growth medium for the

production of spores from Bacillus thuringiensis using response surface

methodology. Bioprocess and Biosystems Engineering 18(6), 413-418.

� Bochner B. R. (2006). Biolog: Modern Phenotypic Microbial Identification.

Encyclopedia of Rapid Microbiological Methods 2(3), 55-73.

� Bohdziewicz J. (1994). Ultrafiltration of technical proteolytic enzymes. Process

Biochemistry 29, 109-118.

� Boominadhan U., Rajakumar R., Sivakumaar P. K. V., Joe M. M. (2009). Optimization

of protease enzyme production using Bacillus sp. isolated from different wastes.

International Journal of Botany 2, 83–87.

� Boris Turk (1996). Targeting proteases: successes, failures and future prospects.

Nature reviews, Drug discovery 5, 785-799.

� Box G. E. and Hunser J. S. (1975). Multiple experimental designs for exploring

response surfaces, The Annals of Mathematical Statistics 28, 195–241.

� Boyer P. D. (1971). The enzymes, 3rd ed. Academic Press, Inc., New York, N.Y.

� Brenner S. (1988). The molecular evolution of genes and proteins: a tale of two

serines. Nature 334, 528-530

� Browner M. F., Smith W. W., Castelhano A. L. (1995). Matrilysin-inhibitor

complexes: common themes among metalloproteinases. Biochemistry 34, 6601-6610

Page 6: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

161

� Calik P., Bilir E., Calik G. Ozdamar T. H. (2002). Influence of pH conditions on

metabolic regulations in serine alkaline protease production by Bacillus

licheniformis. Enzyme and Microbial Technology 31(5), 685-697.

� Chakraborty R. and Srinivasan M. (1993). Production of a thermostable alkaline

protease by a new Pseudomonas sp. by solid substrate fermentation. Journal of

Microbial Biotechnology 8, 7–16.

� Chaloupka J. (1985). Temperature as a factor regulating the synthesis of microbial

enzymes. Microbiological Science 1985(2), 86–90.

� Chandrasekaran S. and Dhar S. C. (1983). A low cost method for the production of

extracellular alkaline proteinase using tapioca starch. Journal of Fermentation

Technology 61, 511–514.

� Channe P. S. and Shewale J. G. (1998). Continuous production of cheese by

immobilized milk-clotting protease from Aspergillus niger MC4. Biotechnology

Progress 14(6), 885-889.

� Chaphalkar S. and Dey S. (1994). Some aspects of production of extracellular

protease from Streptomyces diastaticus. Journal of Microbial Biotechnology 9, 85–100.

� Chaphalkar S. R. and Deys S. (1998). Thermostable alkaline metalloprotease from

newly isolated alkaliphilic Streptomyces diastaticus Strain SSI. Indian Journal of

Biochemistry and Biophysics 35(1), 34–40.

� Chaplin M. and Bucke C. (1990). The large-scale use of enzymes in solution, In:

Enzyme Technology, edited by Chaplin M. and Bucke C. Cambridge University

Press.

� Chauhan B. and Gupta R. (2004). Application of statistical experimental design for

optimization of alkaline protease production from Bacillus sp. RGR-14. Process

Biochemistry 39, 2115–2122.

� Che Nyonya Abd Razak, Tang S. W., Mahiran B., Abu B. S. (1997) Preliminary Study

on the Production of Extracellular Protease from a Newly Isolated Bacillus sp. (No.1)

and the Physical Factors affecting Its Production. Pertanika Journal of Science &

Technology 5(2), 169-177.

Page 7: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

162

� Chi Z. and Zhao S. (2003). Optimization of medium and cultivation conditions for

pullulan production by a new pullulan-producing yeast. Enzyme and Microbial

Technology 33, 206–221.

� Chiplonkar J. M., Gangodkar S. V., Wagh U. V., Ghadge G. D., Rele M. V., Srinivasan

M. C. (1985). Applications of alkaline protease from Conidiobolus in animal cell

culture. Biotechnolgy Letters 7, 665–668.

� Chomsri N. (2001). Thermostable Protease Enzymes. Master thesis in Biotechnology.

Chiangmai: The Graduate school, Chiangmai University.

� Chu I. M., Lee C., Li T. S. (1992). Production and degradation of alkaline protease in

batch culture of Bacillus subtilis ATCC 14416. Enzyme Microbial Technology 14, 755-

761.

� Chudasama C. J., Jani S. A., Jajda H. M., Patel H. (2010) Optimization and production

of alkaline protease From Bacillus thuringiensis cc7. J. Cell and Tissue research 10(2),

2257-2262.

� Cowan D. A. (1994). Industrial Enzymes, In: Biotechnology-The science and the

business, edited by Moses V. and Cape R. E. (Harwood Academic Publishers,

Switzerland) 326-328.

� Cowan D. A., Daniel, R. M., Morgan H. W. (1987b). A comparison of extracellular

serine proteases from four strains of Tbermus aquaticus. FEMS Microbiology Letters

43(2), 155–159.

� Daguerre K., Cuevase C. M., Mazza L. A., Balatti A. P. (1975). Alkaline protease

production. Rev Asoc Argent Microbiology 7(2), 49-55.

� Dahot M. U. (1993). Cultivation of Penicillium expansum on rice husk powder for

protease production. Journal of Islamic Academic Science 6(3), 193-196.

� Dalev P. G. (1994). Utilisation of waste feathers from poultry slaughter for

production of a protein concentrate. Bioresource Technology 48, 265–67.

� Darah I. and Ibrahim C. O. (1996). Effect of agitation on production of lignin-

degrading enzymes by Phanerochaete chrysosporium grown in shake-flask cultures.

Asia-Pacific Journal of Molecular Biology and Biotechnology 4, 174-182.

� De Toni C. H., Richter M. F., Chagas J. R., Henriques J. A., Termignoni C. (2002).

Purification and characterization of an alkaline serine endopeptidase from a feather-

Page 8: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

163

degrading Xanthomonas maltophilia strain. Canadian Journal of Microbiology 48(4),

342-348.

� Debette J. (1991). Isolation and characterization of an extracellular proteinase

produced by a soil strain of Xanthomonas maltophila. Current Microbiology 22, 85–90.

� DeLano W. L. (2002). The PyMOL Molecular Graphics System. DeLano Scientific

LLC, San Carlos, CA, USA.

� Dey G., Mitra A., Banerjee R., Maiti B. R. (2001). Enhanced production of amylase by

optimization of nutritional constituents using response surface methodology.

Biochemical Engineering Journal 7, 227–231.

� Dhandapani R., Vijayaragavan R. (1994). Production of a thermophilic extracellular

alkaline protease by Bacillus stearothermophilus AP-4. World Journal of

Microbiological Biotechnology 10, 33–35.

� Dixon M. and Webb E. C. (1979). Enzymes, 3rd ed., pp. 48-180, Longman Group,

London.

� Dr. Jürgen Behnen, Helene Köster, Gerd Neudert, Dr. Tobias Craan, Dr. Andreas

Heine, Prof. Gerhard Klebe (2012). Experimental and computational active site

mapping as a starting point to fragment-based lead discovery. Chemmedchem 7,

248-261.

� Durham D. R. (1987). Utility of subtilisin GX as a detergent additive. Journal of

Applied Bacteriology 63, 381–86.

� Durham D. R., Stewart D. B., Stellwag E. J. (1987). Novel alkaline-and heat-stable

serine proteases from alkalophilic Bacillus sp. strain GX6638. Journal of Bacteriology

169, 2762–2768.

� Dutt K., Gupta P., Saran S., Misra S., Saxena R. K. (2009). Production of milk-clotting

protease from Bacillus subtilis. Applied Biochemistry and Biotechnology 158, 761-772.

� El Hadj-Ali N., Agrebi R., Ghorbel-Frikha B., Sellami-Kamoun A., Kanoun S., Nasri

M. (2007). Biochemical and molecular characterization of a detergent stable alkaline

serine-protease from a newly isolated Bacillus licheniformis NH1. Enzyme Microbial

Technology 40, 515–523.

Page 9: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

164

� El-Kastawy S. F. M. (1998). Application of enzyme inhibitor technique in regulating

the activities of purified constitutive protease produced by Staphylococcus aureus 1-10

isolated from a clinical source. Egypt Journal of Biomedical Science (2), 53-66.

� Erlacher A., Sousa F., Schroeder M., Jus S., Kokol V., Cavaco-Paulo A., Guebitz G. M.

(2006). A new cuticle scale hydrolysing protease from Beauveria brongniartii.

Biotechnology Letters 28, 703–710.

� Fakhfakh N., Kanoun S., Manni L., Nasri M. (2009). Production and biochemical and

molecular characterization of a keratinolytic serine protease from chicken feather-

degrading Bacillus licheniformis RPk. Canadian Journal of Microbiology 55, 427–436.

� Fazel M. J. and Bailey J. E. (1980). Analysis of fermentation processes using flow

microflurometry amylase and protease activities in Bacillus subtilis culture.

Biotechnology and Bioengineering 22(8), 1657-1670.

� Felse P. A. and Panda T. (1999). Self-directing optimization of parameters for

extracellular chitinase production by Trichoderma harzianum in batch mode. Process

Biochemistry 34, 563-566.

� Feng Y. Y., Yang W. B., Ong S. L., Hu J. Y., Ng W. J. (2001). Fermentation of starch for

enhanced alkaline protease production by constructing an alkalophilic Bacillus

pumilis strain. Applied Microbiology and Biotechnology 57, 153–160

� Fernandez M., Villalonga M. L., Cao R., Alex F., Villalonga R. (2002). Stabilization of

á-chymotrypsin by modification with â-cyclodextrin derivatives. Biotechnology 36,

235-239.

� Fernandez-Lahore H. M., Fraile E. R., Cascone O. (1998). Acid protease recovery

from a solid-state fermentation system. Journal of Biotechnology 62(2), 83-93.

� Ferreira J. P., Sasisekharan R., Louie 0., Langer R. (1993). Influence of chemistry in

immobilization of cobra venom phospholipase A2 - Implications as to mechanism.

Biochemistry 32, 8098-8102.

� Ferrero M. A., Castro G. R., Abate C. M., Biagori M. D., Siňeriz F. (1996).

Thermostable alkaline proteases of Bacillus licheniformis MIR 29: isolation, production

and characterization. Applied Microbiology and Biotechnology 45, 327-332.

� Fox J. W., Shannon J. D., Bjarnason J. B. (1991). Proteinases and their inhibitors in

biotechnology. Enzymes in biomass conversion. ACS Symposium Series 460, 62–79.

Page 10: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

165

� Frankena J., Koningstein G. M., Van Verseveld H. W., Stouthamer A. H. (1986). Effect

of different limitations in chemostat cultures on growth and production of

exocellular protease by Bacillus licheniformis. Applied Microbiology and

Biotechnology 24, 106–112.

� Fraser J. E., Bickerstaff G. F. (1997). Entrapment of enzymes and cells in calcium

alginate. In Immobilisation of Enzymes and Cells, Humana Press, 61-66.

� Freeman S. A., Peek K., Prescott M., Daniel R. (1993). Characterization of chelator-

resistant proteinase from Thermus strain Rt4A2. Biochemistry Journal 295, 463-469.

� Fu X. T., Yoo S. G., Kim S. M. (2008). Characterization of a salt-tolerant acid protease

produced by Bacillus megaterium KLP-98 and its potential as a fermentation starter

for the manufacture of fish sauce. Journal of Food Biochemistry 32, 279–298.

� Fujiwara N. and Yamamoto K. (1987). Production of alkaline protease in a low-cost

medium by alkalophilic Bacillus sp. and properties of the enzyme. Journal of

Fermentation Technology 65, 345-348.

� Fujiwara N., Yamamoto K., Masui A. (1991). Utilization of a thermostable alkaline

protease from an alkalophilic thermophile for the recovery of silver from used X-ray

film. Journal of Fermentation and Bioengineering 72(4), 306-308.

� Gajju H., Bhalla T. C., Agarwal H. O. (1996a). Thermostable alkaline protease from

thermophilic Bacillus coagulans PB-77. Indian Journal of Microbiology 36, 153-155.

� Gajju H., Bhalla T. C., Agarwal H. O. (1996b). Utilization of thermostable alkaline

protease from Bacillus coagulans PB-77 for silver recovery from used X-ray films. In:

Proceedings of 37th Annual Conference of Association of Microbiologists of India,

December 4–6, 1996, Chennai, India, (Abstract no. IM-4), pp. 79–79

� Ganesh K. A., N. Nagesh N., Prabhakar T. G., Sekaran G. (2008). Purification of

extracellular acid protease and analysis of fermentation metabolites by Synergistes sp.

utilizing proteinaceous solid waste from tanneries. Bioresource Technology 99, 2364–

2372

� Ganesh K. and Hiroshi T. (1999). Microbial alkaline proteases: From a bioindustrial

viewpoint. Biotechnology Advances 17, 561–594

Page 11: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

166

� Gessesse A. (1997). The use of nug meal as a low-cost substrate for the production of

alkaline protease by the alkaliphilic Bacillus sp. AR-009 and some properties of the

enzyme. Bioresource Technology 62, 59-61.

� Gessesse A., Kaul R. H., Gashe B. A., Mattiasson B. (2003). Novel alkaline proteases

from alkaliphilic bacteria grown on chicken feather. Enzyme Microbial Technology

32, 519–524.

� Ghorbel-Frikha B., Sellami-Kamoun A., Fakhfakh N., Haddar A., Manni L., Nasri M.

(2005). Production and purification of a calciumdependent protease from Bacillus

cererus BG1. Journal of Industrial Microbiology and Biotechnology 32, 186-194.

� Gilbert H. J., Blazek R., Bullman H. M. S., Minton N. P. (1986). Cloning and

expression of the Erwinia chrysanthemi asparaginase gene in Escherichia coli and

Erwinia carotovora. Journal of General Microbiology 132,151–160.

� Gimenez M. I., Studdert C. A., Sanchez J., De Castro R. E. (2000). Extracellular

protease of Natrialba magadii: purification and biochemical characterization.

Extremophiles 4, 181–188.

� Godfrey T. and West S. (1996). Industrial enzymology, 2nd ed., pp. 3. Macmillan

Publishers Inc., New York.

� Goud M. J. P., Suryam A., Lakshmipathi V., Singara C. M. A. (2009). Extracellular

hydrolytic enzyme profiles of certain South Indian basidiomycetes. African Journal

of Biotechnology 8, 354-360.

� Guex N. and Peitsch M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: An

environment for comparative protein modeling. Electrophoresis 18, 2714-2723.

� Gupta R., Beg Q. K., Khan S., Chauhan B., (2002a). An overview on fermentation,

downstream processing and properties of microbial alkaline proteases. Applied

Microbiology and Biotechnology 60, 381-395.

� Gupta R., Beg Q. K., Lorenz P. (2002b). Bacterial alkaline proteases: molecular

approaches and industrial applications. Applied Microbiology and Biotechnology

59, 15-32.

� Haddar A., Agrebi R., Bougatef A., Hmidet N., Sellami-Kamoun A., Nasri M. (2009).

Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21:

Page 12: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

167

purification, characterization and potential application as a laundry Detergent

additive. Bioresource Technology 100, 3366–3373.

� Hajji M., Kanoun S., Nasri M., Gharsallah N. (2007). Purification and characterization

of an 523 alkaline serine-protease produced by a newly isolated Aspergillus clavatus

ES1. Process Biochemistry 42, 791–797.

� Haki G. D. and Rakshit S. K. (2003). Developments in industrially important

thermostable enzymes: a review. Bioresource Technology 89, 17-34.

� Hameed A., Keshavarz T., Evans C. S. (1999). Effect of dissolved oxygen tension and

pH on the production of extracellular protease from a new isolate of Bacillus subtilis

K2, for use in leather processing. Journal of Chemical Technology and Biotechnology

74, 5–8.

� Hande G. (2004). Studies on Alkaline Protease Production from Bacillus sp., Lzmir

Institute of Technology Lzmir, Turkey.

� Hattori M., Isomura S., Yokoyama E., Ujita M., Hara A. (2005). Extracellular trypsin-

like proteases produced by Cordyceps militaris. Journal of Bioscience and

Bioengineering 100, 631-636.

� Henning S., Eva K., Kitaru S., Bettina W., Ariel L., Gottfried S., Andreas E., Carolyn

K. S. (1999). Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped

protease with seven flexible subunits Proc. Natl. Acad. Sci. USA Vol. 96, 6787–6790.

� Hodgson J. (1994). The changing bulk catalysis market: recombinant DNA

techniques have changed bulk enzyme production dramatically. Biotechnology 12,

789–790.

� Hoffman T. (1974). Food related enzymes. Advances in Chemistry Series 136, 146-

185.

� Holmes M. A. and Matthews B. W. (1981). Binding of hydroxamic acid inhibitors to

crystalline thermolysine suggests a pentacoordinate zinc intermediate in catalysis.

Biochemistry 20, 6912-6920.

� Horikoshi K. (1971). Production of alkaline enzymes by alkalophilic microorganisms.

Part I. Alkaline protease produced by Bacillus No. 221. Agricultural and Biological

Chemistry 35, 1407–1414

Page 13: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

168

� Horikoshi K. (1990). Enzymes of alkalophilies. In: Microbial Enzyme and

Biotechnology 2nd , 275-94.

� Horikoshi K. (1999). Alkaliphiles: Some applications of their products for

biotechnology. Microbiology and Molecular Biology Reviews 63(4), 735-750.

� Horikoshi K. and Akiba T. (1982). Alkalophilic Microorganisms: A New Microbial

World. Tokyo, Japan: Japan Scientific Societies Press and Berlin, Germany: Springer-

Verlag.

� Huang Q., Peng Y., Li X., Wang H., Zhang Y. (2003). Purification and

characterization of an extracellular alkaline serine protease with dehairing function

from Bacillus pumilus. Current Microbiology 46, 0169-0173.

� Hubner U., Bock U., Schügerl K. (1993). Production of alkaline serine protease

subtilisin Carlsberg by Bacillus licheniformis on complex medium in a stirred tank

reactor. Applied Microbiology and Biotechnology 40, 182–188.

� Huruya A., Ikeda Y. (1960). studies on the call wall lytic enzymes produced by

streptomyces species Part I. The strain and their lytic activity towards saccharomyces.

Journal of the Agriculture Chemical Society 34, 33-38.

� Hutadilok-Towatana N., Painupong A., Suntinanalert P. (1999). Purification and

characterization of an extracellular protease from alkaliphilic and

thermophilic Bacillus sp. PS 719. Journal of Bioscience and Bioengineering 87, 581-

587.

� Ishikawa H., Ishimi K., Sugiura M., Sowa A., Fujiwara N. (1993). Kinetics and

mechanism of enzymatic hydrolysis of gelatin layers of X-ray film and release of

silver particles. Journal of Fermentation and Bioengineering 76, 300-305.

� Ito S., Kobayashi T., Ara K., Ozaki K., Kawai S. (1998). Alkaline detergent enzymes

from alkaliphiles: enzymatic properties, genetics and structure. Extremophiles 2, 185-

190.

� Jadwiga K. and Sierecka A. (1998). Purification and partial characterization of a

neutral protease from a virulent strain of Bacillus cerues. Journal of Biochemistry and

Cell Biology 30, 579-595.

Page 14: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

169

� Jean L., Hackett F., Martin S. R., Blackman M. J. (2003). Functional characterization of

the propeptide of Plasmodium falciparum subtilisin-like protease-1. Journal of

Biological Chemistry 278, 28572–28579.

� Jellouli K., Bougatef A., Manni L., Agrebi R., Siala R., Younes I., Nasri M. (2009).

Molecular and biochemical characterization of an extracellular serine-protease from

Vibrio metschnikovii J1. Journal of Industrial Microbiology and Biotechnology 36, 939–

948.

� Johnvesly B. and Naik G. R. (2001). Studies on production of thermostable alkaline

protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined

medium. Process Biochemistry 37(2), 139-144.

� Jones B. E., Grant W. D., Collins N. D., Mwatha W. E. (1994). Alkaliphiles: diversity

and identification. In: Priest F. G., Ramos-Cormenzana A., Tindall B. editors.

Bacterial Diversity and Systematics, New York: Plenum Press, 1994. pp. 195–230.

� Joo H. S., Kumar C. G., Park G. C., Kim K. T., Paik S. R., Chang C. S. (2002).

Optimization of the production of an extracellular alkaline protease from Bacillus

hirikoshii. Process Biochemistry 38(2), 155-159.

� Jorda L., Conejero V., Vera P. (2000). Characterization of P69E and P69F, two

differentially regulated genes encoding new members of the subtilisin-like

proteinase family from tomato plants. Plant Physiology 122, 67–74.

� Julia P. G. and Christina A. (2008). Kellogg Cross-Kingdom Amplification Using

Bacteria-Specific Primers: Complications for Studies of Coral Microbial Ecology.

Applied and Environmental Microbiology 74(24), 7828–7831.

� Kalisz H. M. (1988). Microbial proteinases. Advances in Biochemical

Engineering/Biotechnology 36, 1–6.

� Kanehisa K. (2000). Woven or knit fabrics manufactured using yarn dyed raw silk.

US Patent 6,080,68.

� Kanekar K. K., Nilegaonkar S. S., SArnaik S. S. and Kelkar A. S. (2002). Optimization

of protease activity of alkaliphilic bacteria isolated from a alkaline lake in India.

Bioresource Technology 85, 87-93.

Page 15: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

170

� Kanekar P. P., Nilegaonkar S. S., Sarnaik S. S., Kelkar A. S. (2002). Optimization of

proteases activity of alkaliphilic bacteria isolated from an alkaline lake in India.

Bioresource Technology 85(1), 87-93.

� Katsuhiko F., Kayoko M., F., Makoto K., Shingo F., Junzo H., Minoru H. (1998).

Dipeptidyl peptidase III is a zinc metallo-exopeptidase Molecular cloning and

expression. Biochemistry Journal 329, 275-282.

� Kaur S., Vohra R. M., Kapoor M., Khalil Q., Hoondal G. S. (2001). Enhanced

production and characterization of a highly thermostable alkaline protease from

Bacillus sp. P-2. World Journal of Microbiology and Biotechnology 17, 125–129.

� Kim J. M., Lim W. J., Suh H. J. (2001). Feather-degrading Bacillus species from

poultry waste. Process Biochemistry 37(3), 287-291.

� Kim S. B., Lee D. W., Cheigh C. I., Choe E. A., Lee S. J., Hong Y. H., Choi H. J., Pyun

Y. R. (2006). Purification and characterization of a fibrinolytic subtilisin-like protease

of Bacillus subtilis TP-6 from an Indonesian fermented soybean, Tempeh. Journal of

Industrial Microbiology and Biotechnology 33, 436–444.

� Kim W., Choi K., Kim Y., Park H., Choi J., Lee Y., Oh H., Kwon I., Lee S. (1996).

Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp.

strain CK 11-4 screened from Chungkook-Jang. Applied and Environmental

Microbiology 62, 2482–2488.

� Klibanov A. M. (1983). Stabilization of enzymes against thermal inactivation, In A. I.

Lastin (ed.), Advances in Applied Microbiology vol. 29 Academic Press, p. 1-28.

� Kluskens L. D., Voorhorst W. G., Siezen R. J., Schwerdtfeger R. M., Antranikian G.,

Van Der Oost J., De Vos W. M. (2002). Molecular characterization of fervidolysin, a

subtilisin-like serine protease from the thermophilic bacterium Fervidobacterium

pennivorans. Extremophiles 6, 185–194.

� Kobayashi S., Yamada M., Asaoka M., Kitamura T. (1996). Essential role of the

posterior morphogen nanos for germline development in

Drosophila. Nature 380(6576), 708--711.

� Kobayashi T., Ogasawara A., Ito S., Saitoh M. (1985). Purification and some

properties of alkaline proteinase produced by Pseudomonas maltophila.

Agricultural and Biological Chemistry 49, 693–698.

Page 16: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

171

� Koide Y., Nakamura A., Uozumi T., Beppu T. (1986). Cloning and Sequencing of the

Major Intracellular Serine Protease Gene of Bacillus subtilis. Journal of Bacteriology

167, 110–116.

� Kole M. M., Draper I., Gerson D. F. (1988). Production of protease by Bacillus subtilis

using simultaneous control of glucose and ammonium concentrations. Journal of

Chemical Technology and Biotechnology 41, 197-206.

� Kristjansson M. M., Magnusson O. T., Gudmundsson H. M., Alfredsson G. A.,

Matsuzawa H. (1999). Properties of a subtilisin-like proteinase from a psychrotrophic

Vibrio species comparison with proteinase K and aqualysin I. European Journal of

Biochemistry 260, 752–760.

� Kudrya V. A., Simonenko I. A. (1994). Alkaline serine proteinase and lectin isolation

from the culture fluid of Bacillus subtilis. Applied Microbiology and Biotechnology

41, 505–509.

� Kumar C. G., Tiwari M. P., Jany K. D. (1997). Purification and characterization of two

alkaline proteases from an alkalophilic Bacillus sp. Zeitschrift fur Ernährungs-

Wissenschaft 36, 48.

� Kumar C. G., Tiwari M. P., Jany K. D. (1999). Novel alkaline serine proteases from

alkalophilic Bacillus sp.: Purification and some properties. Process Biochemistry 34,

441-449.

� Kumar D., Gajju H., Bhalla T. C. (2002). Production of athermostable protease by

Bacillus sp. APR-4. Asian Journal of Microbiology, Biotechnology and Environmental

Sciences 4, 533-540.

� Kun C., Fu-Ping L., Ming L., Li-Li Liu, Xiao-Mei L. (2010). Purification and

biochemical characterization of a serine alkaline protease TC4 from a new isolated

Bacillus alcalophilus TCCC11004 in detergent formulations. African Journal of

Biotechnology 9(31), 4942-4953.

� Kurmar C. G. and Tagaki H. (1999). Microbial alkaline proteases: from bioindustrial

viewpoint. Biotechnology Advances 17, 561-594.

� Kwon Y. T., Kim J. O., Moon S. Y., Lee H. H., Rho H. M. (1994). Extracellular alkaline

protease from alkalophilic Vibrio metschnikovii strain RH530. Biotechnology Letters

16, 413–418.

Page 17: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

172

� Laemmli U. K (1970). Cleavage of Structural Proteins during the Assembly of the

Head of Bacteriophage T4. Nature 227, 680-685.

� Li C., Bai J., Cai Z., Ouyang F. (2002). Optimization of a cultural medium for

bacteriocin production by Lactococcus lactis using response surface methodology.

Journal of Biotechnology 93, 27-34.

� Liesack W., Janssen P. H., Rainey F. A., Ward R., Stackebrandt E. (1997). Microbial

diversity in soil: the need for a combined approach using molecular and cultivation

techniques. In J. D. van Elsas, J. T. Trevors, E. M. H. Wellington (Eds.), Modern soil

microbiology (pp. 375-439). New York: Marcel Dekke.

� Lin B., Averett W. F., Novak J., Chatham W. W., Hollingshead S. K., Coligan J. E.,

Egan M. L., Pritchard D. G. (1996). Characterization of PepB, a group B Streptococcal

oligopeptidase. Infection and Immunity 64(8), 3401-3406.

� Liu B. L. and Tzeng Y. M. (1998). Optimization of growth medium for production of

spores from Bacillus thuringiensis using response surface methodology. Bioprocess

Engineering 18, 413-418.

� Liu J. J., Li J., Wu W. T., Hu M. Q. (1996). Cloning and expression of the E.coli

asparaginase gene in Escherichia coli. Journal of China Pharma Univesity 27, 696–700.

� Loperana L., Ferrari M. D., Belobrajdic L., Weyrauch R., Varela H. (1994). Study of

Bacillus sp. Culture condition to promote production of unhairing proteases.

Reviews in Argent-Microbial 26(3), 105-115.

� Lowry O. H., Roserbrough N. J., Farr A. L., Randall R. (1951). Protein measurement

with Folin Phenol Reagent. Journal of Biological Chemistry 193(1), 265-275.

� Lui H. L., Lan Y. M., Cheng Y. C. (2004). Optimal production of sulfuric acid by

Thiobacillus thiooxidans using response surface methodology. Process Biochemistry

39, 1953–1961.

� Luscher B., Rousseaux-Schmid M., Naim H. Y., MacDonald H. R., Bron C. (1985).

Biosynthesis and maturation of the Lyt-2/3 molecular complex in mouse

thymocytes. Journal of Immunology 135(3), 1937-1944.

� Mabrouk S. S., Hashem A. M., El-Shayeb N. M. A., Ismail A. M. S., Abdel-Fattah A.

F. (1999). Optimization of alkaline protease productivity by Bacillus lichenformis

ATCC 21415. Bioresource Technology 69, 155-159.

Page 18: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

173

� Maheshwari R., Bharadwaj G., Bhat M. K. (2000). Thermophilic fungi: their

physiology and enzymes. Microbiology and Molecular Biology Reviews 64, 461–488.

� Mala B. R., Aparna M. T., Mohini S. G., Vasanti V. D. (1998). Molecular and

Biotechnological Aspects of Microbial Proteases. Microbiology and Molecular

Biology Reviews 62(3), 597–635.

� Manachini P. L., Parini C., Fortina M. C. (1988). Pectic enzymes from Aureobasidium

pullulans, LV10. Enzyme Microbiology and Biotechnology 10, 682-685.

� Mao W., Pan R., Freedman D. (1992). High production of alkaline protease by

Bacillus licheniformis in a fed-batch fermentation using a synthetic medium. Journal of

Industrial Microbiology 11, 1–6.

� Margesin R., Palma N., Knauseder F., Schinner F. (1992). Purification and

characterization of an alkaline serine protease produced by a psychrotrophic Bacillus

sp. Journal of Biotechnology 24, 203-206.

� Mark D. A., Chris F., Craig V. J., Argos P. (1987). Automated DNA sequencing and

analysis. Journal of Molecular Biology 193, 385–396.

� Masumeh A. and Gholam K. (2011). Production and Characterization of Alkaline

Protease from Bacillus licheniformis sp. Isolated from Iranian Northern Soils with Ram

Horn Hydrolysate. Trends in Applied Sciences Research 6, 1206-1213.

� Masumeh Anvari and Gholam Khayati (2011). Production and Characterization of

Alkaline Protease from Bacillus licheniformis sp. Isolated from Iranian Northern Soils

with Ram Horn Hydrolysate. Trends in Applied Sciences Research 6, 1206-1213.

� Maurer K. H. (2004). Detergent proteases. Current Opinion in Biotechnology 15, 330-

334.

� McGarvey P. B., Hongzhan H., Winona C. B., Bruce C. O., John S. G., Geetha Y. S.,

Lai-Su L. Y., Chunlin X., Cathy H. W. (2000). The PIR Web site: New resource for

bioinformatics, Bioinformatics 16, 1-3.

� Mehrotra S., Pandey P. K., Gaur R., Darmwal N. S. (1999). The production of alkaline

protease by a Bacillus species isolate Bioresource Technology 67, 201-203.

� Mikhailova E. O., Mardanova A. M., Balaban N. P., Rudenskaya G. N., Sharipova M.

R. (2007). Isolation and characterization of a subtilisin-like proteinase of Bacillus

Page 19: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

174

intermedius secreted by the Bacillus subtilis recombinant strain AJ73 at different

growth stages. Biochemistry (Mosc) 72, 192–198.

� Montgomery D. C. (2002). Design and Analysis of Experiments. Singapore: John Wiley

and Sons.

� Moon S. H. and Parulekar S. J. (1991). A parametric study of protease production in

batch and fed-batch cultures of Bacillus firmus. Biotechnology and Bioengineering 37,

467–83.

� Naim H. Y., Sterchi E. E., Lentze M. J. (1988). Biosynthesis of the human sucrase-

isomaltase complex. Differential O-glycosylation of the sucrase subunit correlates

with its position within the enzyme complex. Journal of Biological Chemistry

263(15), 7242-7253.

� Nakanishi T. and Yamamoto T. (1974). Action and specificity of a Streptomyces

alkalophilic proteinase. Agricultural and Biological Chemistry 38, 2391–2397.

� Nascimento W. C. and Martins M. L. (2004). Production and properties of an

extracellular protease from thermophilic Bacillus sp. SMIA2. Brazilian Journal of

Microbiology 35, 91-96.

� Nedra E. H., Rym A., Basma G., Alya S., Safia K., Moncef N. (2007). Biochemical and

molecular characterization of a detergent stable alkaline serine-protease from a

newly isolated Bacillus licheniformis NH1. Enzyme Microbiology and Technology

40, 515-523.

� Nelson D. L. (2005). Lehninger’s Principles of Biochemistry 4th Eds. New Delhi: CBS

publishers and distributors.

� Neurath H. (1984). Evolution of proteolytic enzymes. Science 224(4647), 350-357.

� Nisa R., Patoomporn Chim-anagae, Jangchud A. (2010). Optimization of silk

degumming protease production from Bacillus subtilis C4 using Plackett-Burman

design and response surface methodology. Science Asia 36, 118–124.

� Norouzian D. (2003). Review, Enzyme immobilization, the state of art in

Biotechnology. Iranian Journal of Biotechnology 1, 197-206.

� Official Methods of Analysis (1965). Section 1. Society of Leather Trades’ Chemists.

Page 20: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

175

� Ozturk B. (2001). Immobilization of lipase from Candida rugosa on hydrophobic and

hydrophilic supports, M. S. Thesis, Izmir Institute of Technology, Biotechnology

Department, Izmir.

� Page R. D. M. (1996). Tree View: an application to display phylogenetic trees on

personal computers. Computer Applications in the Biosciences 12, 357–358.

� Palmieri G., Bianco C., Cennamo G., Giardina P., Marino G., Monti M., Sannia G.

(2001). Purification, Characterization, and Functional Role of a Novel Extracellular

Protease from Pleurotus ostreatus. Applied and Environmental Microbiology 67, 2754-

2759.

� Pantelis G. B., Theodore D. L., Ioannis C. S., Stavros J. H. (2004). PRED-TMBB: a web

server for predicting the topology of ß-barrel outer membrane proteins. Nucleic

Acids Research 1, 32.

� Pany J. M., Tumbull P. C. B., Gibson J. R. (1983). A Color Atlas of Bacillus Species.

London, Wolfe medical.

� Pappin D. J., Hojrup P., Bleasby A. J. (1993). Rapid identification of proteins by

peptide-mass fingerprinting. Current Biology 3, 327-332.

� Periasamy A., Azariah H., Hwal-Won S., Byung-Ki H., Jayanthi S. (2008).

Extracellular keratinase from Trichophyton sp. HA-2 isolated from feather dumping

soil. International Biodeterioration and Biodegradation 62(3), 287-292.

� Phadatare S. U., Deshpande V. V., Srinivasan M. C. (1993). High activity alkaline

protease from Conidiobolus coronatus (NCL 86.8.20): Enzyme production and

compatibility with commercial detergents Enzyme and Microbial Technology 15, 72-

76.

� Phadatare S., Rao M., Deshpande V. (1997). A serine alkaline protease from the

fungus Conidiobolus coronatus with a distinctly different structure than the serine

protease subtilisin Carlsberg. Archives in Microbiology 166, 414-417

� Phadtare S. U., Deshpande V. V., Srinivasan M. C. (1993). High activity alkaline

protease from Conidiobolus coronatus (NCL 86.8.20): enzyme production and

compatibility with detergents. Enzyme and Microbial Technology 15, 72–76.

� Plackett R. L. and Burman J. P. (1946). The design of optimum multifactorial

experiments. Biometrika 33, 305-325.

Page 21: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

176

� Poldermans B. (1990). Proteolytic enzymes. In: Gerhartz W, editor. Proteolytic

enzymes in industry: production and applications. Weinheim, Germany: VCH

Publishers pp. 108–123.

� Poole C. B., Jin J., McReynolds L. A. (2003). Cloning and biochemical characterization

of blisterase, a subtilisin-like convertase from the filarial parasite, Onchocerca

volvulus. The Journal of Biological Chemistry 278, 36183–36190.

� Pourrat H., Barthomeut C., Texier O., Pourrut A. (1988). Production of semi-alkaline

protease by Aspergillus niger. Journal of Fermentation Technology 66, 383-388.

� PR Newswire (2011). Global Industrial Enzymes Market is Expected to Reach $4.4

Billion by 2015. DALLAS, Texas, January 25.

� Prasad R., Malik P. K., Mathur D. K. (1984). Optimization of nutritional and

environmental factors for the production of caseinolytic enzyme of a Micrococcus sp.

isolated from Cheddar cheese Asian Journal of Dairy Research 3, 25-36.

� Priest F.G. (1977). Bacteriological Reviews 41, 711-753.

� Puri S., Beg Q. K., Gupta R. (2002). Optimization of alkaline protease production

from Bacillus sp. using response surface methodology. Current Microbiology 44,

286–29.

� Purva S. S. K., Gupta L. K., Gupta J. K. (1998). Thermostable alkaline protease from

alkaliphilic Bacillus sp.Is-3. Indian Journal Microbiology 38, 149-156.

� Rahman A. R., Illias M. D. R., Nawawi M. G. M., Ismail A. F., Hassan O.,

Kamaraduddin K. (2004). Optimization of growth medium for the production of

cyclodextrin glucanotransferease from Bacillus stearothermophilus HR1 using response

surface methodology. Process Biochemistry 39, 2053–2060.

� Rahman R. N. Z. A., Geok L. P., Basri M., Salleh A. B. (2005). Bioresource Technology

96, 429-436.

� Rahman R. N. Z. A., Razak C. N., Ampon K., Basri M., Yunus W. M. Z. W., Salleh A.

B. (1994). Purification and characterization of a heat-stable alkaline protease from

Bacillus stearothermophilus F1. Applied Microbiology and Biotechnology 40, 822-827.

� Ramachandran Rithwik, Noorbakhsh Farshid, DeFea Kathryn and Hollenberg

Morley D. (2012). Targeting proteinase-activated receptors: therapeutic potential and

challenges. Nature Reviews Drug Discovery 11, 69-86.

Page 22: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

177

� Rao Ch. S., Bhadra B., Prakasham R. S. (2009b). Wealth from waste: Protease

production by Bacillus sp. RSP12 and its biotechnological application. Emerging

Trends in Modern Biology 6(1), 157-171.

� Rao Ch. S., Sathish T., Ravichandra P., Prakasham R. S. (2009a). Characterization of

thermo- and detergent stable serine protease from isolated Bacillus circulans and

evaluation of eco-friendly applications. Process Biochemistry 44, 262–268.

� Rao M. B., Tanksale A. M., Ghatge M. S., Deshpande V. V. (1998). Molecular and

Biotechnological Aspects of Microbial Proteases. Microbiology and molecular

biology reviews 62(3), 597–63.

� Ravichandra P., Subhakar C. H., Pavani A., and Jetty A. (2008). Evaluation of various

parameters of calcium-alginate immobilization method for enhanced alkaline

protease production by Bacillus licheniformis NCIM-2042 using statistical methods.

Bioresource Technology 99, 1776-1786.

� Rawlings N. D. and Barrett A. J. (1993). Evolutionary families of peptidases.

Biochemistry Journal 290, 205–218.

References

� Rehm H. J. (1980). Industrielle Mikrobiologie. Springer-Verlag, Berlin-Heidelberg, New

York, 1980, 2nd ed.

� Richard J. (2003). Nomenclature on Proteases, Proteinases, and Peptidases. Simpson,

Adapted from “Peptide Mapping and Sequence Analysis of Gel-Resolved Proteins,”

Chapter 7, in Proteins and Proteomics (ed. Simpson). Cold Spring Harbor Laboratory

Press, Cold Spring Harbor, NY, USA.

� Roger A. S. and Milner W. E. J. (1995). Ras Mol: Biomolecular graphics for all. Trends

in Biochemical Sciences 20(9), 374-376.

� Roig M. G., Rashid D. H., Kenndy J. F. (1995). High-alkaline protease from Bacillus

PB92 entrapped in calcium alginate gel: Physicochemical and microscopic studies.

Applied Biochemistry and Biotechnology 55, 95-121.

� Rous P., and Jones F. S. (1916). Amethod for obtaining suspensions of living cells

from fixed tissues and for plating individual cells. Journal of Experimental Medicine

23, 549-555.

Page 23: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

178

� Sambrook J. and Russel D. W. (2001). Rapid isolation of yeast DNA. In: Molecular

cloning, a laboratory manual (Sambrook J and Russel DW, eds.). Cold Spring Harbor

Laboratory, New York, 631-632.

� Schechler I. and Berger A. (1967). On the size of the active site in proteases I papain.

Biochemical and Biophysical Research Communications 27, 157-162.

� Secades P. and Guijarro J. A. (1999). Purification and characterization of an

extracellular protease from fish pathogen Yersinia ruckeri and effect of culture

condition on production. Applied and Environmental Microbiology 65(9), 3969-3975.

� Seife C. (1997). Blunting nature's Swiss army knife. Science, 277(5332), 1602-1603.

� Sellami-Kamoun A., Haddar A., N Hadj-Ali El., Ghorbel-Frikha B., Kanoun S., Nasri

M. (2008). Stability of thermostable alkaline protease from Bacillus licheniformis RP1

in commercial solid laundry detergent formulations. Microbiology Research 163,

299-306.

� Sen S. and Satyanarayana T. (1993). Optimization of alkaline protease production by

thermophilic Bacillus licheniformis S-40. Indian Journal of Microbiology 33, 43-47.

� Sharma S., Giri S., Khuller G. K. (1998). Ca2+/calmodulin dependent protein kinase

from Mycobacterium smegmatis ATCC 607 Molecular Cell Biology 183, 183–191.

� Shevchenko L. S., Luk’yanov P. A., Mikhailov V. V. (1995). Elastolytic activity of a

marine isolate of Bacillus pumilus. Microbiologia 64, 642–44.

� Shiv Shankar (2010). Biochemical Characterization Of Protease, PhD Thesis, chapter-

3, 69-106.

� Sielecki A. R., Fujinaga M., Read R. J., James M. N. G. (1991). Refined structure of

porcine pepsinogen at 1.8A resolution. Journal of Molecular Biology 219, 671-692

� Sigma D. S. and Mooser G. (1975). Chemical studies of enzyme active sites. Annual

Reviews of Biochemistry 44, 889-931.

� Singh J., Batra N., Sobti C. R. (2001b). Serine alkaline protease from a newly isolated

Bacillus sp. SSR1. Process Biochemistry 36, 781-785.

� Singh J., Vohra R. M., Sahoo D. K. (2004). Enhanced production of alkaline proteases

by Bacillus sphaericus using fed-batch culture, Process Biochemistry 39, 1093–1101.

Page 24: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

179

� Singh S. K., Singh S. K., Tripathi V. R., Garg S. K. (2011). An oxidant, detergent and

salt stable alkaline protease from Bacillus cereus SIU1. African Journal of

Biotechnology 10(57), 12257-12264.

� Sinha N. and Satyanarayana T. (1991). Alkaline protease production by thermophilic

Bacillus licheniformis. Indian Journal of Microbiology 31, 425–430.

� Sivasubramanian S., Murali M. B., Rajaram A., Puvanakrishna R. (2008). Ecofriendly

lime and sulfide free enzymatic dehairing of skins and hides using a bacterial

alkaline protease. Chemosphere 70, 1015–24.

� Sneath P. H. A. (1986a). Endospore-Forming Gram Positive Rods and Cocci. In:

Bergey’s Manual of Systematic and Bacteriology, Sneath, P.H.A., M.S. Nicholas, M.E.

Sharpe and J.G. Holt (Eds.). Williams and Wilkins, Baltimore, MD, USA.

� Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. (1986b). eds. Bergey's manual of

systematic bacteriology. Vol. 2. Baltimore: Williams & Wilkins.

� Sookkheo B., Sinchaikul S., Phutrakul S., Chen S. T. (2000). Purification and

characterization of the highly thermostable proteases from Bacillus

stearothermophilus TLS33. Protein Expression and Purification 20, 142-151.

� Sreenivas R. R., Prakasham R. S., Krishna P. K., Rajesham S., Sarma P. N.,

Venkateswar R. L. (2004). Xylitol production by Candida sp.: parameter optimization

using Taguchi approach. Process Biochemistry 39, 951–956.

� Steele D. B., Fiske M. J., Steele B. P., Kelley V. C. (1992). Production of a low-

molecular-weight, alkaline active thermostable protease by a novel spiral-shaped

bacterium Kurthia spiroforme sp. nov. Enzyme and Microbial Technology 14(5), 358–

360.

� Strongin A. Y., Izotova L. S., Abramov Z. T., Gorodetsky D. I., Ermakova L. H.,

Baratova L. A., Belyanova L. P., Stepanov V. M. (1978). Intracellular serine protease

of Bacillus subtilis; sequence homology with extracellular subtilisins. Journal of

Bacteriology 133, 1401-1411.

� Studdert C. A., Seitz M. K. H., Gilv M. I. P., Sanchez J. J., De Castro R. E. (2001).

Purification and biochemical characterization of the Haloalkaliphilic archaeon

Natronococcus occultus extracellular serine protease. Journal of Basic Microbiology 6,

375–83.

Page 25: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

180

� Subhabrata S. and Mayura D. (2006). Industrial and clinical applications excluding

Diagnostic. Clinical Enzymology 16, 521-530.

� Sundararajan S., Kannan C. N., Chittibabu S. (2011). Alkaline protease from Bacillus

cereus VITSN04: Potential application as a dehairing agent. Journal of Bioscience and

Bioengineering 111(2), 128–133.

� Sutar I. I., Srinivasan M. C., Vartak H. G. (1991). A low molecular weight alkaline

protease from Conidiobolus coronatus. Biotechnology Letters 13, 119–124.

� Swaisgood, H. E. and Horton H. R. (1989). ‘Immobilized enzymes as processing aids

or analytical tools’, in Whitaker JR and Sonnet PE, Biocatalysis in Agricultural

Biotechnology, ACS Symp. Series 389, Washington, DC, Amrecan Chemical Society,

242-261.

� Takagi H. (1993). Protein engineering on subtilisin. International Journal of

Biochemistry 25, 307–312.

� Takagi M., Imanaka T., Aiba S. (1985). Nucleotide sequence and promoter region for

the neutral protease gene from Bacillus stearothermophilus. Journal of Bacteriology

163, 824-831.

� Takami H., Akiba T., Horikoshi K. (1989). Production of extremely thermostable

alkaline protease from Bacillus sp. No. AH-101. Applied Microbiology and

Biotechnology 30, 120-124.

� Takami H., Akiba T., Horikoshi K. (1990). Characterization of an alkaline protease

from Bacillus sp. no. AH-101. Applied Microbiology and Biotechnology 33, 519–523.

� Tamura K., Dudley J., Nei M., Kumar S. (2007). MEGA4: Molecular Evolutionary

Genetics Analysis (MEGA) software version 4.0. Molecular Biology and

Evolution 24, 1596-1599.

� Tari C., Genckal H., Tokatli F. (2006) Optimization of a growth medium using a

statistical approach for the production of an alkaline protease from a newly isolated

Bacillus sp. L21, Process Biochemistry 41, 659–665.

� Thangram E. B. and Rajkumar G. S. (2002). Purification of Alkaline Protease from

Alcaligenes faecalis, Biotechnology and Applied Biochemistry 35, 149-154.

� Thanikaivelan P., Bharath C. K., Saravanabhavan S., Rao J. R., Chandrasekaran B.,

Chandrababu N. K., Nair B. U. (2007). Integrated hair removal and fiber opening

Page 26: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

181

process using mixed enzymes Clean Technologies and Environmental Policy 9(1),

61-68.

� Tobe S., Nagoh Y., Watnabe T., Mukaiyama T. (2005). Bacteriolytic activity of

detergent protease and its enhancement by getrgent’s materials. Journal of Oleo

Science 54(7), 389-395.

� Tobe S., Takami T., Hirose Y., Mitsugi K. (1975). Purification and some properties of

alkaline proteinases from Bacillus sp. Agricultural and Biological Chemistry 39,

1749–1755.

� Tsuchida O., Yamagota Y., Ishizuka J., Arai J., Yamada J., Takeuchi M., Ichishima E.

(1986). An alkaline proteinase of an alkalophilic Bacillus sp. Current Microbiology 14,

7-12.

� Tsujibo H., Miyamoto K., Hasegawa T., Inamori Y. (1990). Purification and

characterization of two types of alkaline serine proteases produced by an

alkalophilic actinomycete. Journal of Applied Bacteriology 69, 520–529.

� Tunga R., Shrivastava B., Banerjee R. (2003). Purification and characterization of a

protease from solid state cultures of Aspergillus parasiticus. Process Biochemistry 38,

1553-1558.

� Ueno Y. and Omura S. (2003). Microbial chemistry, 4th edn., Nankoudou Ltd, Japan,

66-67.

� Van Melderen L., Bernard P., Couturier M. (1994). Lon-dependent proteolysis of

CcdA is the key control for activation of CcdB in plasmid-free segregant bacteria.

Molecular Microbiology 11(6), 1151-1157.

� Varela H., Ferrari M. D., Belobradjic L., Vazquez A., Loperena M. L. (1997). Skin

unhairing proteases of Bacillus subtilis: production and partial characterization.

Biotechnol Lett 19, 755–758.

� Vriend G. and Sander C. (1993). Quality control of protein models: Directional

atomic contact analysis. Journal of Applied Crystallography 26, 47-60.

� Wahon H. C., Branion R. M. R., Strasdine G. A. (1980). Protease production by

fermentation of fish soluble from salmon canning processes. Canadian Journal of

Microbiology 26(9), 1049-1059.

Page 27: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

182

� Walker W. E. and Campbell L. L. (1983). Review of Frequency-Pulsed Electron-

Capture Gas-Liquid Chromatography Studies of Diarrheal Diseases Caused by

Members of the Family Enterobacteriaceae, Clostridium difficile, and Rotavirus

Journal of Bacteriology 86, 687-691.

� Wang S. L., Chen Y. H., Wang C. L., Yen Y. H., Chern M. K. (2005). Purification and

characterization of a serine protease extracellularly produced by Aspergillus fumigates

in a shrimp and crab shell powder medium. Enzyme and Microbial Technology 36,

660–665.

� Ward O. P. (1985). Proteolytic enzymes. In: Blanch H. W., Drew S., Wang D. I.,

editors. Comprehensive Biotechnology-The Principles, Applications and Regulations

of Biotechnology in Industry, Volume 3. Oxford and New York: Pergamon Press pp.

709–818

� Wiederstein and Sippl (2007). ProSA-web: interactive web service for the recognition

of errors in three-dimensional structures of proteins. Nucleic Acids Research 35,

W407-W410.

� Yadav S. C., Jagannadham M. V., Kundu S., Jagannadham M. V. (2010). A kinetically

stable plant subtilase with unique peptide mass fingerprints and dimerization

properties. Biophysical Chemistry 139, 13–23.

� Yamagata Y. and Ichishima E. (1989). A new alkaline proteinase with PI 2.8 from

alkalophilic Bacillus species. Current Microbiology 19, 259-264.

� Yum D. Y., Chung H. C., Bai D. H., Oh D. H., Yu J. H. (1994). Purification and

characterization of alkaline serine protease from an alkalophilic Streptomyces sp.

Bioscience, Biotechnology, and Biochemistry 58, 470–474.

� Zeynep U. and Metin D. (2002). Alkaliphilic microorganisms and habitats. Turkish

Journal of Biology 26(3), 181-191.

� Zhang Q., Qian W. J., Knyushko T. V., Therese R. W., Clauss S. O. P., Ronald J.

(2007). Moore, Colette A. Sacksteder, Mark H. Chin, Desmond J. Smith, David G.

Camp II, Diana J. Bigelow, and Richard D. Smith. A method for selective enrichment

and analysis of nitrotyrosine-containing peptides in complex proteome

samples. Journal of Proteome Research 6, 2257-2268.

Page 28: References - Shodhgangashodhganga.inflibnet.ac.in/bitstream/10603/7238/16/16_reference.pdf · Bassem J., Badis A., Nedia Z. J., Samir B. (2011). The Bioengineering and Industrial

References

183

� Zibaee A. and Bandani A. R. (2009). Purification and characterization of the cuticle-

degrading protease produced by the entomopathogenic fungus, Beauveria bassiana

in the presence of Sunn pest Eurygaster integriceps (Hemiptera: Scutelleridae) cuticle.

Biocontrol Science and Technology 19, 797–808.

� Zvidzai C. J. and Zvauya R. (2001). Purification of a protease from an alkalophllic

bacillus subtilis chz1 isolated from a zimbabwean hot spring. Journal of Food

Biochemistry 25, 1–13.