109
References Atkins, P.W., “Physical Chemistry”, Oxford University Press Castellan, G.W., “Physical Chemistry”, Addison Wesley Levine, I.R., “Physical Chemistry”, McGraw-Hill Laidler & Meiser, “Physical Chemistry”, Houghton Mifflin Co. THERMODYNAMICS

References Atkins, P.W., “Physical Chemistry”, Oxford University Press Castellan, G.W., “Physical Chemistry”, Addison Wesley Levine, I.R., “Physical

Embed Size (px)

Citation preview

Page 1: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

References     Atkins, P.W., “Physical Chemistry”, Oxford University Press     Castellan, G.W., “Physical Chemistry”, Addison Wesley     Levine, I.R., “Physical Chemistry”, McGraw-Hill     Laidler & Meiser, “Physical Chemistry”, Houghton Mifflin Co.     Alberty, R.A. and Silbey, R., “Physical Chemistry”, Wiley

THERMODYNAMICS

Page 2: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

definitionsdescriptions

no proofs

no violations

Events,Experiments,Observations

Laws of Thermodynamics:0th, 1st, 2nd, 3rd 

Applications, Verifications

abstract generalize

dynamics – changesthermo – heat

Page 3: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Note:      does not worry about rate of changes (kinetics) but the states before and after the change     not dealing with time

Page 4: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Classical Thermodynamics

Marcoscopic observables T, P, V, …

Statistical Thermodynamics

Microscopic details dipole moment, molecular size, shape

Page 5: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Joule’s experiment

 

  

T mgh adiabatic wall

(adiabatic process)

U (energy change) = W (work) = mgh

w

h

Thermometer

Page 6: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

w

T time interval of heatingU = q (heat)

Conclusion: work and heat has the same effect to system (internal energy change)

FIRST LAW: U = q + W*

Page 59

Page 7: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

U: internal energy is a state function [ = Kinetic Energy (K.E.) + Potential Energy (P.E.) ] q: energy transfer by temp gradient W: force distance E-potential charge surface tension distance pressure volume

First Law: The internal energy of an isolated system is constant

Page 8: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Positive: heat flows into system work done onto systemNegative: heat flows out of system work done by system

Convention:

Pressure-volume Work

P1 = P2

V2V1

MM

d work F dlext M gdhpiston

weight

AAdh

P Adhext

P dVext work P V Vext 2 1

Mg h

Page 9: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

If weight unknown, but only properties of systemare measured, how can we evaluate work?

PV1V2P

MM

Assume the process is slow and steady,

Pint = Pext

Page 10: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Free Expansion:

Free expansion occurs when the external pressure is zero, i.e. there is no opposing force

Page 11: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Reversible change: a change that can be reversed by an infinitesimal modification of a variable. Quasi equilibrium process: Pint = Pext + dP (takes a long time to complete)

infinitesimal at any time

quasi equilibrium process

ò dVPW extò dVPint

Page 12: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

1 2P

V

Example: P1 = 200kPa = P2

V1 = 0.04m3 V2 = 0.1m3

W PdV1 21

2

P V V2 1

200 01 0 04 3kPa m. . 12kJ

what we have consider was isobaric expansion(constant pressure) other types of reversible expansion of a gas: isothermal, adiabatic

*

Page 64-66

Page 13: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Isothermal expansion

remove sand slowlyat the same time maintain temperature by heating slowly

W PdVrev 1

2

nRT

VdV

1

2

nRTdV

V1

2

nRT

V

Vln 2

1

T

VV1 V2

P

area under curve

*

Page 65-66

Page 14: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Ex. V1 = 0.04m3 P1 = 200kPa V2 = 0.1m3

W nRTV

Vrev 1

2

1

ln

PV

V

V1 12

1

ln

200 0 04

01

0 043kPa m. ln

.

. 7 33. kJ

PPV

VkPa2

1 1

2

80

Page 15: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Adiabatic Reversible Expansion

For this processPV = constant for ideal gas(proved later)

V1

P1 T1

V2

P2 T2

(slightly larger than 1)

C

Cp

v

W PdVPV dV

V 1 1

1

2

1

2

PV V V1 1 21

11

1

P V PV2 2 1 1

1

Page 16: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Ex. V1 = 0.04m3, P1 = 200kPa, V2 = 0.1m3,

= 1.3

P kPa2

1 3

2000 04

01060 77

.

..

.

W kJ

60 77 01 200 0 04

1 136 41

. . .

..

volume change

|Wa|>|Wb|>|Wc|>|Wd|

W PdV 0

a

db

V

P

200kPaconst

isothermal

adibatic

Page 17: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

State Function Vs Path Function State function: depends only on position in

the x,y plane e.g.: height (elevation)

300200

100mB

AX

Y

1 2

Page 18: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Path Function: depends on which path is taken to reach destination

from 1 2, difference of 300m (state function)but path A will require more effort.Internal energy is a state function, heat and work are path functions

3

2481.13K

192.45K

P

200kPa

V/m30.04 0.1

1

Page 19: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

5 moles of monoatomic gas

C R

U nC T R kJ

W kJ

Q U kJ kJ

W kJ kJ

Q kJ kJ kJ

V

V

3

23

2 289 5 18

12

12 30

7 33 0 7 33

7 33 18 25 33

1 2

1 2

1 3 2

1 3 2

. .

. .

Page 20: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

f x y z w, , , ,

Consider a 2 variable functionor f x y, z f x y , a surface in three

dimensional plot

C

C’

z or

yx

ycxc

Multivariable Calculus

Page 21: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

At point C, there are two slopes orthogonal to each other in constant x or constant y direction

y

zz

x x=xC y=yc

C’C C

C’

Page 22: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

the change in can be calculated as a sum of two parts: change in x direction and change in y direction

z z dx

dxy

dyC Cy xc c

partial derivative partial derivative w.r.t. x w.r.t. y

Page 23: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Joule’s second experiment

Energy UU(V,T) ???

V1V2

thermometer

At time zero, open valve

adiabatic wall

Page 24: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

After time zero, V1 V1+V2

T=0 Q=0 W=0 no Pext U=0

thermometer

No temperature change

adiabatic wall

Page 25: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

dTCdVV

UdT

T

UdU

V

U

VTV

T

0

0 (for ideal gas)CV is constant volume heat capacity

U=U(T) Energy is only a function of temperature for ideal gas*

Page 99

Page 26: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Kinetic Model for Gases

Qualitatively:

• Gases consists of spheres of negligible size, far apart from one other.

• Particles in ceaseless random motion; no interactions except collisions

Page 27: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

U

V

T

U

V

ConstantTemperature

VV T

UC

T

U

Page 28: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Energy is a function of Volume and temperature for real gases

Interaction among molecules

*

Page 29: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

*Enthalpy

Define H = U + PV   state function intensive variables locating the state

Enthalpy is also a state function

H = U + PV + VP

Page 101

Page 30: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

PPTP

CCdPP

HdT

T

HdH

PTHH

0

,

for ideal gases C C R

C

C

P V

P

V

(proved later)

At constant pressureH = U+PV = U - W = QH = QP constant pressure heating

H is expressed as a functional of T and P

Page 31: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Thermochemistry Heat transferred at constant volume qV = U

Heat transferred at constant pessure qP = H

Exothermic H = -ve

Endothermic H = +ve

Page 32: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Standard states, standard conditions do not measure energies and enthalpies absolutely but only the differences, U or H

The choice of standard state is purely a matter of convenience

Analogy – differences in altitudes between 100 points and their elevation with respect to sea level

Page 33: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

The standard states of a substance at a specified temperature is its pure form at 1 bar

What is the standard state ?*

Page 34: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

25oC, 1 bar: the most stable forms of elements assign “zero enthalpy”

Ho298 = 0 used for chemical reactions

Page 35: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Standard enthalpy of formation

Standard enthalpy change for the formationof the compound from its elements in their reference states.

Reference state of an element is its most stablestate at the specified temperature & 1 bar

C (s) + 2H2 (g) CH4 (g) Hfo = -75 kJ

289K, 1 atm

From the definition, Hfo for elements 0

Page 36: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Hess’s Law

The standard enthalpy of an overall reaction is the sum of thestandard enthalpies of the individual reactions into which areaction may be divided.

Standard reaction enthalpy is the change in enthalpy when the reactants in their standard states change to products in their standard states.

Page 37: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Hess’ Law

R X Y PH H H 2 3 4

H1

H1 = H2 + H3 + H4 state function

Hess’s law is a simple application of the first law of thermodynamics

Page 38: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

e.g. C (s) + 2H2 (g) CH4 (g) H1o = ?

298K, 1 atm

C (s,graphite) + O2 (g) CO2 (g)

Ho = -393.7 kJ H2 (g) + ½O2(g) H2O (l)

Ho = -285.8 kJ CH4 (g) + 2O2 (g) CO2 (g) + 2H2O (l)

Ho = -890.4 kJ H1

o = -393.7 + 2(-285.8) - (-890.4)

= -75 kJ/mole

Page 39: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Heat of Reaction (Enthalpy of Reaction) Enthalpy change in a reaction, which may be obtained from Hf

o of products and reactants

Reactants Products

products tsreaac

oreactionfR

oprodfp

or HnHnH

tan,,

i fo

iproductsreac ts

Htan

I stoichiometric coefficient, + ve products,

- ve reactantsE.g. CH4 (g) + Cl2 (g) CH3Cl (g) + HCl (g)

Page 40: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Hfo/ kJ

CH3Cl -83.7

HCl -92.0

Cl2 0

CH4 -75.3

Hro = (-83.7-92.0) - (-75.3+0) = -100.4 kJ

Reactants Products

elements elements

n HR f Ro , n Hp f p

o ,

Page 41: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

jfo

jo

r HH ,

2A + B 3C + D

0 = 3C + D - 2A - B

Generally,0 = J J J

J denotes substances, J are the stoichiometric numbers

*

Page 83

Page 42: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Bond energy (enthalpy)

Assumption – the strength of the bond is independent of the molecular environment in which the atom pair may occur.

C (s,graphite) + 2H2 (g) CH4(g)Ho = -75.4 kJ

H2 (g) 2H (g) Ho = 435.3 kJ

C (s,graphite) C (g) Ho= 715.8 kJ C (s,graphite) + 2H2 (g) C (g) + 4H (g)

Ho = 2(435.3)+715.8 = 1586.5 kJ C (g) + 4H (g) CH4 (g) H = -75.4-1586.5

= -1661.9 kJCH Bond enthalpy = 1661.9/4 kJ = 415.5 kJ

Page 43: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Temperature dependence of Hr

productsreactantsreactants

reaction,products

products, ipiRippipP

T

T

po

rT

r

CnCnCC

dTCHHo

CP,R

CP,P

Hro

P

R

HrT

298 T

Page 44: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

What is the enthalpy change for vaporization (enthalpy of vaporization) of water at 0oC?

H2O (l) H2O (g)

Ho = -241.93 - (-286.1) = 44.01 kJmol-1 H2 = Ho + CP(T2-T1) assume CP,i

constant wrt T

H (273) = Ho(298) + CP(H2O,g) - CP (H2O,l)(273-298) = 44.10 - (33.59-75.33)(-25) = 43.0 kJ/mole

Page 45: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

For ideal Gases:

H

P

H

TC C R

T PP V

0,

dUU

VdV

U

TdT

dHH

PdP

H

TdT

T V

T P

Page 46: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

dH dU PdV VdP

U

VdV

U

TdT VdP P

V

PdP

V

TdT

U

VdV

U

V

V

PdP

V

TdT

dHU

T

U

V

V

T V T P

T T T P

V T

,

TP

V

TdT V P

V

P

U

V

V

PdP

H

T

U

TP

U

V

V

TC R

P P T T T

P V T PV

0 = R/P for ideal gas

H

PV P

U

V

V

PV P

RT

PV V

T T T

2 0

0 for ideal gas

Page 47: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Prove PV = constant

for adiabatic reversible expansion of an ideal gas

dVV

UdTCdU

TV

0 for ideal gas

Page 48: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

VCR

V

V

V

V

V

V

T

T

V

V

C

R

T

T

VRdTdCV

dVR

T

dTC

dVV

RTPdVdTC

QWQdU

1

2

1

2

1

2

1

2

0

lnln

lnln

,

Adiabatic expansion

1122

2

1

1

2

1

1

2

1

2

11

22

VPVP

V

V

V

V

P

P

V

V

VP

VP

V

V

C

R

CR

Page 49: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Reversible vs IrreversibleNon-spontaneous changes vs Spontaneous

changesReversibility vs Spontaneity

First law does not predict direction of changes,cannot tell which process is spontaneous. Only U = Q + W

Page 50: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Second Law of Thermodynamics

•Origin of the driving force of physical and chemical change

•The driving force: Entropy

•Application of Entropy: • Heat Engines & Refrigerators• Spontaneous Chemical Reactions

•Free Energy

Page 51: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Second Law of Thermodynamics

No process is possible in which the sole result is the absorptionof heat from a reservoir and its complete conversion into work

Hot Reservoir

q

w

Engine

* Page 120

Page 52: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Direction of Spontaneous Change

More Chaotic !!!

Page 53: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Entropy (S) is a measurement of the randomness of the system, and is a state function!

S Q S 1 / T

Spontaneous change is usually accompanied by a dispersal of energy into a disorder form, and its consequence is equivalent to heating

Page 54: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Expansion into a vacuum

irreversible reversible

Vac

V1

V2

V1

V2

W P dV

nRTV

V

q W

rev ext

rev rev

ln 2

1

W P dV

U Q

V V W nRTV

V

irr ext

irr

0

0

2 12

1

, lnmin

qrev > qirr

-Wrev > -Wirr Wirr = 0 = qirr = U

Page 55: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

T

dqdS rev

Entropy S

For a reversible process, the change of entropy is defined as

Another expression of the Second Law:

The entropy of an isolated systems increases in the course of aspontaneous change:

Stot > 0

where Stot is the total entropy of the isolated system

(thermodynamic definition of the entropy)

*

Page 122

Page 56: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Entropy S

The entropy of an isolated systems increases in the course of areversible change:

Stot = 0

where Stot is the total entropy of the isolated system

Page 57: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

V1

V2

revrev

extrev

revrev

Wq

V

VnRT

dVPW

V

VnR

T

qdqS T

1

2

1

21

ln

ln

Entropy Change for an isothermal expansion of a perfect gas

Entropy is a state function

Depend only on V

Page 58: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Carnot’s Theoretical Heat Engine

Heat flows from a high temperature reservoirto a low temperature body. The heat can be utilized to generate work.

e.g. steam engine.

Page 59: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

For the cycle,-Wnet = -(W1+W2+W3+W4)

= qnet = q1+q3

Ucycle=0

q1 positive

q3 negative

qnet positive

|q3| < |q1|

Consider the sequence of reversible processes

Page 60: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Net effect of the gas going through a cycle

|q1| qH

|q3| qL

|Wnet| W

Page 61: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Efficiency of theoretical heat engine

1

3

1

3

1

31

1

11q

q

q

q

q

qq

q

W

q

W

heatavailable

W net

H

netnet

Carnot theorem: Engines operating between two temperature TH, TL have

the same efficiency

Page 62: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

H

Lth

A

B

C

D

A

B

D

C

A

B

A

D

B

C

C

D

A

B

T

T

T

T

VV

nRT

VV

nRTVV

nRT

q

qq

V

V

V

V

V

V

T

T

V

V

T

T

UqV

VnRTW

UqV

VnRTW

1

1

0

0

1

3

1

31

1

31

1

1

3

1

1

3

333

111

ln

lnln

,

,ln

,ln

Page 63: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

limiting thermal efficiency of a heat engineIn actual cases, heat engine have much lowerefficient. irreversible processes, friction losses, etc..

Kelvin: It is impossible, by means of a cycle to take heat from q reservoir and convent it to work without at the same time transferring heat from a hot to cold reservoir. (We cannot have a 100% efficient heat engine)

Page 64: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Show that 2nd law and Kelvin’s principle areequivalent

Examine an adiabatic irreversible process. We want to evaluate the entropy change for the process by an reversible path BCDA

D C B C adiabatic

compression C D isothermal A compression B D A adiabatic Q=0 expansion

Wnet

irreversible

Page 65: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

1st law for the cycle, U = 0 0-(WAB + WBA) = QBA + QAB

-Wnet = QBA

By Kelvin’s principle, -Wnet must be negative,

otherwise a 100% efficient heat engine QBA = -Wnet must be negative

QBA 0

SQ

Trev

Q

T

A BA B

B A

H

0

Page 66: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Evaluation of Entropy Changesisothermal expansion:TdS dq dU PdV

Sdq

T

PdV

T

nRdV

VnR

V

VnR

P

P

rev

rev

ln ln2

1

1

2

Page 67: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Tm: melting pt., Tb: boiling pt.,

If CP = constant,

S CT

TPln 2

1

H/S VL

S

Tm Tb T2

isobaric heating:

2

1

T

T

gasp

b

v

T

T

liqP

m

m

T

T

solidP

b

b

m

m

dTT

C

T

HdT

T

C

T

HdT

T

CS ,,,

T1

Page 68: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

change of temperature and volume (pressure)

TdS dU PdVU

TdT PdV nC dT PdV

S nC

TdT

P

TdV

nCT

TnR

V

V

nCT

TnR

P

P

VV

V

V

P

1

2

1

2

2

1

2

1

2

1

1

2

ln ln

ln ln 1

2P

V

Page 69: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

The efficiencies of heat engines

Hot Reservoir

q

w

Engine

S = - |q|/Th < 0 not possible! contrary to the second law*

Page 142

Page 70: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

The efficiencies of heat engines

Hot Reservoir

qh

w

Cold Reservoir

qc

Sh = - |qh|/Th

Sc = + |qc|/Tc

S = - |qh|/Th + |qc|/Tc 0

|wmax| = |qh|- |qc,min| = (1- Tc /Th) |qh|

Maximum efficiency:rev= |wmax|/|qh|= 1- Tc /Th

rev 1 as Tc 0 or Th

Page 130

Page 71: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Energetics of Refrigeration

Hot Reservoir

Cold Reservoir

Sh = + |qc|/Th

Sc = - |qc|/Tc

S = - |qc|/Tc + |qc|/Th < 0

not possible!|qc|

Page 144

Page 72: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

The energetics of refrigeration

Hot Reservoir

qh

w

Cold Reservoir

qc

Sh = + |qh|/Th

Sc = - |qc|/Tc

S = |qh|/Th - |qc|/Tc 0

|wmin| = |qh,min|- |qc,| = (Th /Tc-1) |qc|

Maximum efficiency of performance:crev= |qc|/ |wmin| = Tc /(Th- Tc)

qh

Page 144

Page 73: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

The energetics of refrigeration

Hot Reservoir

qh

w

Cold Reservoir

qc

Sh = + |qh|/Th

Sc = - |qc|/Tc

How to keep it cool?dqc/dt = A(Th -Tc)

d|w|/dt = (1/ crev) dqc/dt = A (Th -Tc)2 / Tc

qh

Page 145

Page 74: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

The Nernst Theorem

The entropy change accompanying any physical or chemical transformation approaches zero as the temperature approaches zero.

S 0 as T0

Page 75: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Third Law of Thermodynamics

If the entropy of each element in its most state is taken as zero at the absolute zero of temperature, every substance has a positive entropy. But at 0K, the entropy of substance may equals to 0, and does become zero in perfect crystalline solids.

Crystalline form: complete ordered, minimum entropy

Implication: all perfect materials have the same entropy (S=0) at absolute zero temperature

* Page 147

Page 76: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Statistical Interpretation of S

S = 0 at 0K for perfect crystals S = k ln

  Boltzmann number of arrangements postulate of entropy Boltzmann constant

Page 77: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Entropy Change of Mixing

one distinguish arrangement

S k S kA B ln!

!, ln

!

!

4

40

4

40

A B

A B

A B

A B

N N

N N

S k

!

! !

ln

8 7 6 5

4 3 2 170

70

number of arrangement increased

Page 78: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

In general mixing NA, NB

!!

!ln

BA

BAmix NN

NNkS

Entropy change of mixingStirling’s approximation: ln N! N ln N + 0(N)

for large N

0

BBAABA

BBAABABA

BBAABABAmix

XXXXNNk

NXNXNNNNk

NNNNNNNNkS

lnln

lnlnln

lnlnln

Page 79: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

From classical thermodynamics, isothermal reversible expansion of gases A & B

0

BBAAT

A

BAB

A

BAAmix

B

BAB

B

rev

A

BAA

A

BAA

A

rev

A

rev

XXXXRn

V

VVRn

V

VVRnS

V

VVRn

T

q

V

VVRn

V

VV

T

RTn

T

W

T

q

lnln

lnln

ln

ln

ln

Page 80: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Assignment (due on 06/12/1999)

2.4, 2.5, 2.37, 3.5, 3.23, 4.10, 4.29

Page 81: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Extensions of 2nd Law 

TdS dq Clausius Inequality

For adiabatic process,

TdS or dS 0 0

Entropy will always attain maximum in adiabatic processes.

A similar function for other processes?

*Page 133

Page 82: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Define Helmholtz free energyA = U - TS Thermodynamic

State Function dA = dU - TdS - SdTSubstitute into Clausius Inequality

0

0

0

dq TdS

dq dA dU SdT

PdV dA SdTfor isothermal, isochoric (constant volume)process,

0dA

*

*

Page 149

Page 83: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

A will tend to a minimum value

isothermal, isochoric process,dA 0dA 0

equilibriumspontaneous

If only isothermal, 0

dA PdV

PdV dA

W dAisothermal reversible expansion

W RTV

VA ln 2

1

*

Page 84: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

change in Helmholtz free energy = maximum isothermal work

Example of isothermal, isochoric process: combustion in a bomb calorimeter

O2 +fuel

Temp. bath

O2, CO2,H2O

Higher P heat givenout

Page 85: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Gibbs Free Energy

Define Gibbs free energy G = H - TS Thermodynamic

state function = U + PV -TS dG = dU +PdV + VdP -TdS -SdT

substitute into Clausius inequality

SdTVdPdG

SdTVdPdG

TdSPdVdU

TdSdq

0

0

0

* Page 149-155

Page 86: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

constant pressure, constant temperature

dG0

G will tend to a minimum value equilibrium spontaneous change

dG 0dG 0

More applications since most processes areisothermal, isobaric

chemical reactions at constant T, PReactants Productsendothermic H is positiveexothermic H is negative

time

G

*

*Page 154

Page 87: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

H is not a criteria for spontaneityS only isolated system G = H - TS

R

P

G

rxn. Co-ord.

S H G    

+ ve - ve - ve spontaneous dissociation of unstable compounds

- ve + ve + ve non-spontaneous

forming unstable compounds

+ ve + ve ? ? dissociation of a strong compound

- ve - ve ? ? recombination reactione.g. H + H H2

Page 88: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Change of Gibbs free energy with temperature(constant pressure)

ST

G

SdTGG

VdPSdTdG

P

12

0

Page 89: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

oo

oo

P

fRTGG

P

PRTGG

f

fRT

P

PRT

VdPGG

SdTVdPdG

ln

ln

ln

ln

1

2

1

2

12

0

Ideal gas

Real gas fugacity

Change of Gibbs free energy with pressure(constant temperature)

Ideal gas

Real gas

Page 90: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Gibbs free energy

oio

oio

i

P

fRTG

P

pRTGG

ln

ln Ideal Gases

Real Gases

Total Gibbs free energy of a mixture of gases

BBAAiBBiAA

oB

BoBBo

AA

oAA

BBAA

XRTXXRTXGXGXn

P

pRTnGn

P

pRTnGn

GnGnG

lnln

lnln

,,

÷øöçèæ

÷øöçèæ

*

Page 168-174

Page 91: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

0

mix

iiimixmix

iii

oii

H

XRTXSTG

XRTXGXn

ln

ln

for ideal gases

Chemical Equilibria

aA + bB cC + dDconsider G for a pass of the reaction at constant T & P

G = cGC + dGD - aGA - bGB

molar Gibbs free energy

Page 92: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

ioii fRTGG ln

pure state fugacity

i

ioii

bB

aA

dD

cCo

BADCoB

oA

oD

oC

fRTG

ff

ffRTG

fbRTfaRTfdRTfcRTbGaGdGcGG

ln

ln

lnlnlnln

At equilibrium, G = 0

Kff

ff

RT

Gb

Ba

A

dD

cC

o

lnln

equilibrium constant

fi in the unit of bar

0 = JJ J

*

Page 93: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

for ideal gaseous mixture fi = pi

nxb

Ta

T

cT

dT

bB

aA

cC

dD

p

T

ii

nc

n

aA

bB

cC

dD

p

ii

i

p

p

o

bB

aA

dD

cC

PKPP

PP

XX

XXK

p

pX

RTKRTcc

ccK

RTcV

RTnp

constK

constK

RT

G

pp

pp

÷÷øöççèæ.

.ln

ln

ci = concentration

varies withtotal pressure

n = c+d-a-b

Page 94: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

For liquids, use activity

G

RT

a a

a aK

oC

cD

d

Aa

Bb eqln ln

Gibbs - Helmholtz Equation

G VdP SdT

G

TS

P

Also, G H TS H TG

T P

Page 95: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

G

T

H

T

G

T

GTT

G

T T

G

T

P

P

P

2

1

GTT

H

T

orG

T

TH

P

P

2

1

Gibbs - Helmholtz Equation

Page 96: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

For a reaction

GT

T

H

T

GT

TH

P

P

2

1

Similarly,

AT

TU

P

1

1/T

G/TSlope=H

G2

H

G1

1/T

G/T

Page 97: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Change of equilibrium constant with temperature

G RT K

G

TR K

To

To

ln

ln

Gibbs Helmholtz equation

GT

T

H

T

RK

T

H

T

O

To

To

2

2

ln

Page 98: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

ln K

T

H

RTTo

2Van’t Hoff Equation

If constant (i.e. HP -HR is constant)Hrxno

ln tanKH

RTcons t

o

endothermic, H + ve, K with Texothermic, H - ve, K with T

Page 99: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Relation between Thermodynamic functions

dU = TdS-PdV 1st lawdH = TdS+VdP, H = U+PVdA = -SdT-PdV, A = U-TSdG = -SdT+VdP, G = H-TS

From multivariable differential calculus dz = M dx + N dy total differential, i.e.

z depends on x & y

M

y

N

xx y

*

Page 149

Page 100: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Maxwell Relations

T

V

P

S

T

P

V

S

S

V

P

T

S

P

V

T

S V S P

T V T P

,

,

Phase equilibrium

Clapeyron equationmolar Gibbs free energy

G=0G=G-G

Page 163

Page 101: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

G G

dG dG

V dP S dT V dP S dT

dP

dT

S S

V V

S

V

H

T V

P

T

liq

vaps

Clausius- Clapeyron equationFor vaporization and sublimation

Page 102: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

dP

dT

H

T V

H

TV

P H

RT

dP

Pd P

H

RTdT

PH

RTconst

P

P

H T T

RT T

vap

vap

vap

vap

vap

vap

sat vap

sat

vap

2

2

2

1

2 1

1 2

ln

ln .

ln1/T

In P

Page 103: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Example: What is the change in the boiling point of water at 100oC per torr change in atmospheric pressure?

 Hvap = 9725 cal mol-1

Vliq = 0.019 l mol-1

Vvap = 30.199 l mol-1

dP

dT

H

T V V

cal mol l atmcal

K l mol

atm K

torr K

dT

dPK torr

sat

sat

vap

v l

9725 0 04129

37315 30180

0 03566

2710

0 0369

1 1

1

1

1

1

.

. .

.

.

.

Page 104: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Example: Calculate the change in pressurerequired to change the freezing point of water 1oC.

 At 0oC, the heat of the fusion of ice is 79.7cal g-1,the density of water is 0.9998 g cm-3 and that of ice is 0.9168 g

V V l g

P

T

H

T V V

cal g l atmcal

K l gatm K

l s

sat

sat

fus

l s

1

0 9998

1

0 91689 06 10

79 7 0 04129

2731 9 06 10133

5 1

1 1

5 1

1

. ..

. .

. .

Page 105: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

liq

vapsolid

P

T

50kg

skate blade

iceliq. H2O

Page 106: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Example 2.1A certain electric motor produced 15 kJ of energy each second as mechanical work and lost 2 kJ as heat to the surroundings. What was the change in the internal energy of the motor and its power supply each second?

Example 2.2Calculate the work done when 50 g of iron reacts with hydrochloricacid in: (a) a closed vessel of fixed volume; (b) an open beaker at25oC.

Example 2.3The internal energy change when 1.0 mole CaCO3 in the form ofcalcite converts to aragonite is 0.21 kJ. Calculate the difference between the enthalpy change and the change in internal energy.

Page 107: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Example 2.4The enthalpy change accompanying the formation of 1.00 mole NH3(g) from its elements at 298 K is -46.1 kJ. Estimate the change in internal energy.

Example 2.5Water is heated to boiling under pressure of 1.0 atm. When an electric current of 0.50 A from 12-V supply is passed for 300 sthrough a resistance in thermal contact with it, it is found that 0.798 g of water is vaporized. Calculate the molar internal energyand enthalpy changes at the boiling point (373.15 K).

Exercise 2.6At very low temperatures the heat capacity of a solid is proportionalto T3, and we can write Cv=aT3. What is the change in enthalpy ofsuch a substance when it is heated from 0 to T?

Page 108: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Example 3.6A sample of argon at 1.0 atm pressure and 25oC expands reversiblyand adiabatically from 0.50 L to 1.00 L. Calculate its final tempera-ture, the work done during the expansion, and the change in internalenergy. The molar heat capacity of argon at constant volume is 12.48 JK-1 mol-1.

Example 4.1Calculate the entropy change in the surroundings when 1.00 molH2O(l) is formed from its elements under standard conditions at298.15 K.

Example 4.4Calculate the entropy change when argon at 25oC and 1.00 atm in a container of volume 500 cm3 is allowed to expand to 1000 cm3

and is simultaneously heated to 100oC.

Page 109: References  Atkins, P.W., “Physical Chemistry”, Oxford University Press  Castellan, G.W., “Physical Chemistry”, Addison Wesley  Levine, I.R., “Physical

Example 5.4The pressure deep inside the Earth is probably greater than 3×103 kbar,and the temperature is around 4×103 oC. Estimate the change in Gon going from crust to core for a process in which V=1.0 cm3 mol-1

and S = 2.1 JK-1 mol-1.

Example 5.5Calculate the change in molar Gibbs energy when water vaporizes at1 bar and 25 oC. Note that the molar Gibbs energies of formation are-237.13 and -228.57 kJ mol-1 for water and its vapor, respectively.

Example 5.6Suppose that the attractive interactions between gas particles can be neglected and find an expression for the fugacity of a van der Waals gas in terms of the pressure.