26
REE -Sr-Ba minerals from the Khibina carbonatites, Kola Peninsula, Russia: their mineralogy, paragenesis and evolution ANATOLY N. ZAITSEV Department of Mineralogy, St Petersburg University, St Petersburg 199034, Russia FRANCES WALL Department of Mineralogy, The Natural History Museum, Cromwell Road, London, SW7 5BD AND MICHAEL J. LE BAS Department of Geology, University of Southampton, Southampton Oceanography Centre, Southampton, SO14 3ZH ABSTRACT Carbonatites from the Khibina Alkaline Massif (360 ų 380 Ma), Kola Peninsula, Russia, contain one of the most diverse assemblages of REE minerals described thus far from carbonatites and provide an excellent opportunity to track the evolution of late-stage carbonatites and their sub-solidus (secondary) changes. Twelve rare earth minerals have been analysed in detail and compared with literature analyses. These minerals include some common to carbonatites (e.g. Ca-rare-earth fluocarbonates and ancylite-(Ce)) plus burbankite and carbocernaite and some very rare Ba,REE fluocarbonates . Overall the REE patterns change from light rare earth-enriched in the earliest carbonatites to heavy rare earth-enriched in the late carbonate-zeolite veins, an evolution which is thought to reflect the increasing carbohydrothermal nature of the rock-forming fluid. Many of the carbonatites have been subject to sub-solidus metasomatic processes whose products include hexagonal prismatic pseudo- morphs of ancylite-(Ce) or synchysite-(Ce), strontianite and baryte after burbankite and carbocernaite . The metasomatic processes cause little change in the rare earth patterns and it is thought that they took place soon after emplacement. KEYWORDS: Khibina, carbonatite, REE, burbankite, carbocernaite, metasomatism. Introduction RARE-EARTH-RICH carbonatites, containing wt. % levels of REE and discrete RE minerals, are common as late-stage products in carbonatite complexes. Occasionally, they form the major part of the complex and may be of economic importance, e. g. at Mountain Pass (Olsen et al ., 1954), Vuoriyarvi (Kukharenko et al ., 1965), Verkhnesayanskii and Nizhnesayanskii (Somina, 1975), and Kangankunde (Wall and Mariano, 1996) but usually their volume is small in comparison with earlier carbonatites, e.g. Fen (Andersen, 1986), and Qaqarssuk (Knudsen, 1991). Rare earth-rich carbonatites usually contain high levels of Ba and also commonly Sr. The principal RE minerals in carbonatites are the phosphate, monazite-(Ce); the fluocarbonates, bastna ¨site-(Ce), synchysite-(Ce), and parisite- (Ce); and the hydrated carbonate, ancylite-(Ce) . Other rare earth minerals such as burbankite, carbocernaite, huanghoite-(Ce), calkinsite-(Ce) and fluocerite-(Ce) have been reported from a few carbonatite localities. Carbonatites from the Khibina alkaline massif, Kola Peninsula, Russia, (Minakov and Dudkin, 1974; Minakov et al ., 1981) present a good opportunity for a comprehensive study of the mineralogy and petrogenesis of RE-rich carbona- tites. Taken from drillcore, the carbonatites are Mineralogical Magazine, April 1998, Vol. 62(2), pp. 225–250 # 1998 The Mineralogical Society

REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

REE-Sr-Ba minerals from the Khibina carbonatites KolaPeninsula Russia their mineralogy paragenesis and evolution

ANATOLY N ZAITSEV

Department of Mineralogy St Petersburg University St Petersburg 199034 Russia

FRANCES WALL

Department of Mineralogy The Natural History Museum Cromwell Road London SW7 5BD

AND

MICHAEL J LE BAS

Department of Geology University of Southampton Southampton Oceanography Centre Southampton SO14 3ZH

ABSTRACT

Carbonatites from the Khibina Alkaline Massif (360shy 380 Ma) Kola Peninsula Russia contain one ofthe most diverse assemblages of REE minerals described thus far from carbonatites and provide anexcellent opportunity to track the evolution of late-stage carbonatites and their sub-solidus (secondary)changes Twelve rare earth minerals have been analysed in detail and compared with literatureanalyses These minerals include some common to carbonatites (e g Ca-rare-earth fluocarbonates andancylite-(Ce)) plus burbankite and carbocernaite and some very rare BaREE fluocarbonates

Overall the REE patterns change from light rare earth-enriched in the earliest carbonatites to heavyrare earth-enriched in the late carbonate-zeolite veins an evolution which is thought to reflect theincreasing lsquocarbohydrothermalrsquo nature of the rock-forming fluid Many of the carbonatites have beensubject to sub-solidus metasomatic processes whose products include hexagonal prismatic pseudo-morphs of ancylite-(Ce) or synchysite-(Ce) strontianite and baryte after burbankite and carbocernaiteThe metasomatic processes cause little change in the rare earth patterns and it is thought that they tookplace soon after emplacement

KEY WORDS Khibina carbonatite REE burbankite carbocernaite metasomatism

Introduction

RARE-EARTH-RICH carbonatites containing wtlevels of REE and discrete RE minerals arecommon as late-stage products in carbonatitecomplexes Occasionally they form the majorpart of the complex and may be of economicimportance e g at Mountain Pass (Olsen et al 1954) Vuoriyarvi (Kukharenko et al 1965)Verkhnesayanskii and Nizhnesayanskii (Somina1975) and Kangankunde (Wall and Mariano1996) but usually their volume is small incomparison with earlier carbonatites e g Fen(Andersen 1986) and Qaqarssuk (Knudsen1991) Rare earth-rich carbonatites usually

contain high levels of Ba and also commonlySr The principal RE minerals in carbonatites arethe phosphate monazite-(Ce) the fluocarbonatesbastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) and the hydrated carbonate ancylite-(Ce)Other rare earth minerals such as burbankitecarbocernaite huanghoite-(Ce) calkinsite-(Ce)and fluocerite-(Ce) have been reported from afew carbonatite localities

Carbonatites from the Khibina alkaline massifKola Peninsula Russia (Minakov and Dudkin1974 Minakov et al 1981) present a goodopportunity for a comprehensive study of themineralogy and petrogenesis of RE-rich carbona-tites Taken from drillcore the carbonatites are

Mineralogical Magazine April 1998 Vol 62(2) pp 225ndash250

1998 The Mineralogical Society

fresh coarse-grainedand consist of a sequence ofearly to late carbonatites that contain high levelsof REE Sr and Ba

The aims of our study are twofold (i) to presentmineralogical data on Khibina REE-Sr-Baminerals because little information on many ofthese minerals is available in the literature and (ii)to determine the history of crystallization andsubsequent alteration of the Khibina minerals

General geology and geochemistry of theKhibina carbonatites

The Khibina alkaline massif is located in thecentral part of the Kola Alkaline Province whichconsists of 24 ultrabasic-alkaline-carbonatitecomplexes of Devonian age According to Rb-Srdating the age of the Khibina massif ranges from377 to 362 Ma (Kramm et al 1993 Kramm andKogarko 1994) The Khibina massif is aconcentrically zoned pluton consisting of ultra-basic (peridotite pyroxenite) alkaline silicate(nepheline syenite foidolite) and apatite-nephe-line rocks and carbonatites Its general geologygeochemistry and mineralogy have beendescribed in numerous publications (e gKhomyakov 1995 Kogarko et al 1995)

Zaitsev (1996 Fig 1) gives a general map ofthe Khibina massif that shows the location ofcarbonatite drill holes A Sr and Nd isotope studyhas been made by Zaitsev and Bell (inpreparation)

The carbonatites form a stockwork (Zaitsev1996) in which it is possible to distinguish earlycalcite carbonatites (C I) and later calcitemanganoan ankeriteshy calcite and ferroan rhodo-chrositeshy manganoan siderite carbonatites (C II)The later carbonatites account for about 90 byvolume of the Khibina carbonatite series andoccur as veins 1 cm to 6 m wide Other rockswhich are not carbonatites sensu stricto but aregenetically connected with them are representedby phoscorite (BAA) and carbonate-zeolite rocks(CZ III) The silicate country rocks (ijolitefoyaite olivine melanephelinite and phonolite)hosting the carbonatites are intensively fenitizedand consist of albite biotite and calcite

Representative whole-rock major and traceelement analyses for the carbonatites are givenin Table 1 In terms of the major oxides (CaOMgO FeO and MnO) the Khibina carbonatitescan be subdivided into calciocarbonatites andferrocarbonatites(Fig 1a) and show a progressiveincrease in Fe and Mn from the oldest C I to the

FIG 1 Plots showing the compositional range of the Khibina carbonatites which (a) classify as calcio- andferrocarbonatites according to Woolley and Kempe (1989) but (b) sometimes contain more Mn than Fe and may be

classified as manganocarbonatites

A N ZAITSEV ETAL

226

youngest CII-3 carbonatites However someferrocarbonatites contain more Mn than Fe andthey can be classified as manganocarbonatiteswith CaO(CaO + MgO + FeO + Fe2O3 + MnO)less than 08 MgOlt(FeO+MnO) and MnOgtFeO(Table 1 and Fig 1b) The manganocarbonatitescontain up to 128 wt MnO and contain Mn-bearing carbonates such as manganoan ankeriteferroan kutnohorite ferroan rhodochrosite andmanganoan siderite (Zaitsev 1996) Other

unusual chemical characteristics of the Khibinacarbonatites include the following

1 Some carbonatites contain burbankite orcarbocernaite (C II-1) and are characterized byhigh Na contents (1 20shy 494 wt Na2O) butcontain no Na-bearing silicates such as pyroxeneamphibole or feldspar

2 Synchysite-(Ce)-bearing carbonatites(C II-2) have high F contents (0 76 shy 128 wt)whereas other late carbonatites (C II-1 and C II-3)

TABLE 1 Representative whole-rock and trace element analyses of the Khibina carbonatites

Rock C I C I C II-1 C II-1 C II-2 C II-2 C II-3 C II-3Sample 632B1934 632B1960 633477 7 6031655 604454 603225 60389 60490

SiO2 wt 4 81 3 68 0 64 0 19 0 44 0 87 188 2 09TiO2 0 64 0 22 0 03 0 02 0 01 0 04 002 0 08Al2O3 0 88 0 49 0 25 0 06 0 10 0 29 069 0 70FeOT 4 99 3 02 3 79 2 29 5 64 8 09 19 14 22 97MnO 0 37 0 39 1 56 0 85 5 86 11 39 12 78 12 60MgO 1 20 0 97 0 41 0 35 2 05 3 72 397 2 35CaO 46 50 45 95 32 52 35 12 2870 24 59 12 13 18 40Na2O 0 36 0 59 3 09 1 68 0 14 0 22 021 0 25K2O 1 45 0 38 0 09 0 05 0 12 0 03 055 0 69P2O5 1 25 1 67 0 02 0 04 0 09 0 08 011 0 91S 0 32 0 20 0 73 0 53 0 74 0 41 159 1 12F 0 09 0 19 0 06 0 41 0 84 1 03 021 0 12Cl 0 01 0 01 0 02 0 01 0 01 0 03 002 0 01shy O=SF2Cl2 0 20 0 18 0 39 0 44 0 73 0 65 088 0 61

Total 64 79 59 57 61 02 62 92 5821 62 19 58 16 65 16

Rb ppm 37 25 bd bd bd bd 5 9Ba 1343 1268 13102 10205 11380 10990 28374 1280Th 13 10 127 103 44 17 84 76Nb 416 515 bd 10 15 28 112 86La 437 492 28384 35565 18589 22891 2540 4064Ce 955 1078 37990 50727 31341 37558 6823 8868Sr 13449 12307 63819 73004 20495 16174 5533 7017Nd 403 418 7969 10620 6395 8852 2814 3099Zr 184 135 bd 5 bd bd 7 20Y 62 44 113 137 98 52 43 102Sc 40 8 56 28 21 32 19 21V 96 112 bd 14 25 bd 201 156Cr 22 40 bd 15 10 bd 286 4Co 20 18 23 14 19 bd 40 4Cu 34 27 76 39 28 47 84 45Ni 4 6 24 18 20 24 15 16Zn 76 44 57 120 995 2354 1850 3073

FeOT - total iron as FeO - including trace elements as oxides bd - below detectionWhole-rock analyses were made on fusion beads for major elements and powder pellets for trace-elements by X-rayfluorescence analysis at the University of Leicester using a Philips PW1400 X-ray spectrometer CO2 and H2O notanalysed

REE-SR-BA MINERALS

227

have low F contents However the intensivefluoritization of wall rocks around the carbona-tites which now have low amounts of F suggeststhat the initial F content was higher

3 The late carbonatites (C II) have high BaO(0 81 shy 3 22 wt ) SrO (061 shy 8 65 wt ) andlight REE (1 25shy 1135 wt La2O3 + Ce2O3 +Nd2O3) and these elements become majorcomponents of these carbonatites

Multi-element variation diagrams for theKhibina carbonatite samples (Fig 2) normalizedto primordial mantle of Wood et al (1979) showthat the general chemical features of the Khibinacarbonatites are similar to those described formost carbonatites (e g Nelson et al 1988 Clarkeet al 1992) The early calcite carbonatites (C I)have comparable element variation patterns toaverage data for the calciocarbonatites of Woolleyand Kempe (1989) although the Khibina samplesshow slightly higher Sr (Fig 2a) The Sr is hostedby calcite which contains 1 1 shy 18 wt SrO(Zaitsev 1996)

The element variation patterns for the latecarbonatites C II (Fig 2b) suggest that thesecarbonatites have undergone fractional crystal-lization similar to that shown by Clarke et al(1992) The plot shows a depletion in La Ce Ndand Sr normalized values from the relativelyearly-formed calcite carbonatites with burbankiteor carbocernaite (C II-1) to the late manganoanankerite-calcite carbonatites with synchysite-(Ce)(C II-2) and to the latest ferroan rhodochrosi-teshy manganoan siderite carbonatites with synchy-site-(Ce) or cordylite-(Ce) (C II-3)

Although the normalized Ba values are similarin the C II-1 and C II-2 carbonatite types theyshow wide variation in C II-3 carbonatites Someof the C II-3 carbonatites are depleted in Bacompared to C II-1 and C II-2 types and theycontain synchysite-(Ce) as a minor or accessorymineral However most of C II-3 carbonatites areenriched in Ba and contain cordylite-(Ce) as amajor mineral

Analytical methods

The identification and description of REE-Sr-Baminerals is often difficult due to their complexchemical compositions with a wide variety ofsolid solutions and some polymorphs As a resultthey have variable physical properties infra-redand X-ray diffraction patterns Other difficultiesarise from the limitations of electron microprobeanalysis including the inability to determine H2O

and CO2 loss of Na and F under the electronbeam and the high interference corrections for Baand the REE In addition RE mineral dataavailable from the literature are commonlyincomplete and sometimes inconsistent Thesefacts prompted us to use as many differenttechniques as possible for the mineralogicalinvestigation of the REE-Sr-Ba minerals fromthe Khibina carbonatites

Identification of minerals was based on opticalexamination IR-spectroscopy (UR-20 Carl Zeissspectrophotometer) and X-ray diffraction (RKUcamera - 57 3 mm diameter and Fe-Ka radiation1146 mm diameter and Cr-Ka radiation)Electron microprobe analyses were made using aCameca SX 50 wavelength-dispersive electronmicroprobe at The Natural History MuseumLondon after preliminary work had been carried

FIG 2 Multi-element variation diagrams for (a) earlyand (b) late Khibina carbonatites normalized toprimordial mantle of Wood et al (1979) Calcio- andferrocarbonatites are average values from Woolley and

Kempe (1989)

A N ZAITSEV ETAL

228

out on a Hitachi S2500 scanning electronmicroscope equipped with a Link AN1055Senergy-dispersive analysis system The Camecawas operated at 15 kV and 10shy 20 nA with spotsizes as large as possible up to 30 mm in order tominimize beam damage Individual REE calciumaluminium silicate glasses obtained from theUniversity of Edinburgh were used as standardsfor the REE jadeite was used for Na wollastoniteand apatite for Ca celestine for Sr and bariumfluoride for Ba and F Detailed information aboutconditions of microprobe analyses is availablefrom Williams (1996)

Mineralogy and mineral chemistry

At least 17 minerals containingREE Sr andor Baas major elements have been identified in the latecarbonatites (C II) and the carbonate-zeoliterocks(CZ III) (Table 2) The mineralogy and paragen-esis of these and the associated minerals issummarized in Table 3 This table also shows thesequence of formation of phoscorites carbonatitesand carbonate-zeoliterocks in the Khibina massif

Alkaline Sr-Ca-REE-Ba carbonates burbankite andcarbocernaite

The alkaline Sr-Ca-REE-Ba carbonates burban-kite and carbocernaite are rock-forming mineralsin the calcite carbonatites (C II-1) (Table 3) Fieldrelationships show that the carbonatites withburbankite and carbocernaite are the earliest ofthe C II group of carbonatites (Zaitsev 1996)

Burbankite a rare mineral known from severalcarbonatite complexes always occurs in late-stage carbonatites It has been described from theBearpaw Mountains (Pecora and Kerr 1953)Vuoriyarvi (Kukharenko et al 1965 Kapustin1980) Ozernyi (Zdorik 1966) Arbarastakh(Zhabin et al 1971) Nizhnesayanskii (Somina1975) Chipman Lake (Platt and Woolley 1990)and Qaqarssuk (Knudsen 1991)

Burbankite is a double carbonate with thegeneral formula A3B3(CO3)5 where the A-site isoccupied by Na and Ca and the B-site contains SrREE Ba and Ca (Effenberger et al 1985) Thereare only seven wet chemical analyses ofburbankite from carbonatites made more than25 years ago (Pecora and Kerr 1953 Kukharenkoet al 1965 Zdorik 1966 Zhabin et al 1971Kapustin 1980) and twelve electron microprobeanalyses published recently (Effenberger et al 1985 Platt and Woolley 1990 Knudsen 1991)

These data show a large variation in major oxidesNa2O (4 04 shy 13 89 wt ) SrO (6 17 shy 32 60wt ) CaO (9 81 shy 21 09 wt ) SREE2O3

(2 50 shy 23 00 wt ) and BaO (1 85 shy 14 60wt) Wet chemical analyses of burbankite canshow high contents of Si Al and S but these areprobably the result of admixtures Publishedmicroprobe analyses have high cation deficienciesin the A-site (up to 065 per formula unit)attributed to the loss of Na under the electronbeam (Platt and Woolley 1990) or have hightotals with calculated CO2 (108 26 shy 11349 wt)(Knudsen 1991) which also indicate possibleanalytical problems

Average chemical compositions of the Khibinaburbankite determined by wet chemical analysisof 2 g of pure hand-picked burbankite andapproximately 40 electron microprobe analysesare given in Table 4 The wet chemical andmicroprobe results are in good agreement andindicate that the burbankite is relatively low in Bacompared with other carbonatites The one

TABLE 2 Minerals containing REE Sr andor Ba asmajor elements identified in Khibina late carbo-natites (C II) and carbonate-zeolite rocks (CZ III)

Mineral Formula

burbankite (NaCa)3(SrBaCe)3(CO3)5carbocernaite (NaCa)(SrCeBa)(CO3)2

ancylite-(Ce) SrCe(CO3)2(OH) H2O

synchysite-(Ce) Ca(CeLa)(CO3)2Fparisite-(Ce) Ca(CeLa)2(CO3)3F2

bastnasite-(Ce) (CeLa)(CO3)F

cordylite-(Ce) Ba(CeLa)2(CO3)3F2

cebaite-(Ce) Ba3(CeLa)2(CO3)5F2

kukharenkoite-(Ce) Ba2Ce(CO3)3F

mckelveyite-(Y) Ba3Na(CaU)Y(CO3)6 3H2Oewaldite Ba(CaYNaK)(CO3)2donnayite-(Y) Sr3NaCaY(CO3)6 3H2O

edingtonite BaAl2Si3O10 4H2Oharmotome (BaK)1shy 2(SiAl)8O16 6H2O

strontianite SrCO3

baryte BaSO4

barytocalcite BaCa(CO3)2

REE-SR-BA MINERALS

229

TA

BL

E3

Min

eral

ogy

and

para

gene

sis

ofK

hibi

naR

EE

-Sr-

Ba

min

eral

s

BA

Aph

osco

rite

-bio

tite

-aeg

irin

e-ap

atite

No

prim

ary

rare

eart

hm

iner

als

CI

earl

yca

lcit

eca

rbon

atit

eN

opr

imar

yra

reea

rth

min

eral

s

CII

-1la

teca

lcit

eca

rbon

atit

ew

ithbu

rban

kite

orca

rboc

erna

ite

Prim

ary

phas

es

Bur

bank

ite

10shy

50

volu

me

yell

ow-b

row

nin

fres

hly

brok

enha

ndsp

ecim

ens

Usu

ally

larg

ehe

xago

nal

pris

mat

iccr

ysta

ls(5

shy50

mm

long

61

shy25

mm

diam

eter

)S

omet

imes

grow

infr

om

and

abou

tpe

rpen

dicu

lar

to

the

cont

act

ofth

eve

ins

Dis

trib

utio

nis

hete

roge

neou

sA

lso

asdr

op-l

ike

incl

usio

ns(3

0shy

200

m m)

inca

lcit

eas

soci

ated

wit

heu

hedr

alzo

ned

apat

ite

(Fig

3a

)

Car

boce

rnai

te10

-50

volu

me

NB

do

esno

toc

cur

wit

hbu

rban

kite

L

emon

yell

owin

hand

spec

imen

Is

omet

ric

grai

ns1

shy5

mm

diam

eter

indi

stin

ctcl

uste

rs

Alt

erat

ion

Eit

her

oftw

oal

tera

tion

asse

mbl

ages

can

com

plet

ely

pseu

dom

orph

burb

anki

te

pres

ervi

ngit

spr

ism

atic

he

xago

nal

crys

tal

form

(Fig

3b

)1)

Rep

lace

men

tass

embl

age

ofan

cyli

te-(

Ce)

str

onti

anit

ean

dle

ssof

ten

bary

tean

dra

rely

harm

otom

ean

ded

ingt

onit

eA

llst

ages

ofal

tera

tion

seen

fro

msi

ngle

fine

vein

s(5

shy20

m m)

ofan

cyli

te-(

Ce)

inbu

rban

kite

(Fig

3d

)to

poro

usag

greg

ates

ofan

cyli

te-(

Ce)

and

stro

ntia

nite

com

plet

ely

repl

acin

gbu

rban

kite

A

ncyl

ite-

(Ce)

usua

lly

aspi

nkto

red

anhe

dral

crys

tals

upto

4m

mbu

tal

soso

me

euhe

dral

crys

tals

and

zone

dst

ront

iani

tein

cavi

ties

2)

Por

ous

aggr

egat

esof

sync

hysi

te-(

Ce)

st

ront

iani

tean

dba

ryte

B

urba

nkit

ere

lics

seen

inst

ront

iani

tecr

ysta

lsan

dal

soin

sync

hysi

te-(

Ce)

and

bary

te

Fig

3c

Car

boce

rnai

teis

ofte

npa

rtly

repl

aced

bypo

rous

aggr

e-ga

tes

ofst

ront

iani

te

cord

y-li

te-(

Ce)

sy

nchy

site

-(C

e)an

dba

ryte

C

arbo

cern

aite

usua

lly

pres

erve

din

cent

ral

part

sof

the

form

ercr

ysta

ls

Stro

ntia

nite

usua

lly

colo

urle

ssan

hedr

alcr

ysta

lsbu

tal

soas

pris

mat

iczo

ned

crys

tals

upto

2m

m

Bar

yte

usua

lly

colo

urle

ss

anhe

dral

0

1shy

1m

mgr

ains

Edi

ngto

nite

and

harm

otom

esp

heru

liti

cag

greg

ates

onan

cyli

te-(

Ce)

orst

ront

iani

te

A N ZAITSEV ETAL

230

TA

BL

E3

(con

td)

CII

-2la

tem

anga

noan

anke

rite

-cal

cite

carb

onat

ite

with

sync

hysi

te-(

Ce)

Prim

ary

phas

es

Syn

taxi

alin

terg

row

ths

(Don

nay

and

Don

nay

1953

)of

sync

hysi

te-

(Ce)

par

isit

ean

dba

stna

site

-(C

e)(F

ig

4a)

Inte

rgro

wth

sar

eve

ryfi

nendash

1shy

20m m

wid

ean

d50

shy50

0m m

long

A

ssoc

iate

dw

ith

stro

ntia

nite

Syn

chys

ite-

(Ce)

whi

chis

not

inte

rgro

wn

isa

maj

orro

ck-f

orm

ing

min

eral

W

hite

yel

low

(usu

ally

wit

hca

lcit

e)or

red

(usu

ally

wit

hfe

rroa

nku

tnoh

orit

e)ta

bula

rcr

ysta

ls

01

shy3

m mdi

amet

er

Oft

enir

regu

lar

tora

diat

ing

agre

gate

s

Kuk

hare

nkoi

te-(

Ce)

as

late

-sta

ge0

01shy

1m

mpr

ism

atic

crys

tals

inti

nyca

viti

es

Oft

enas

stel

late

de

ndri

tic

orir

regu

lar

inte

rgro

wth

sup

to3

mm

diam

eter

R

arel

yas

anhe

dral

00

5shy

02

mm

grai

nsor

plat

y0

1shy

2m

mcr

ysta

lsA

ssoc

iate

dw

ith

cord

ylit

e-(C

e)

stro

ntia

nite

an

dra

rely

mck

elve

yite

-(Y

)

Stro

ntia

nite

usua

lly

occu

rsas

colo

urle

ss

subh

edra

lcr

ysta

lsup

to2

mm

diam

eter

CII

-3la

teca

rbon

atit

es-f

erro

anrh

odoc

hros

ite-m

anga

noan

anke

rite

with

sync

hysi

te-(

Ce)

orco

rdyl

ite-

(Ce)

Prim

ary

phas

es

Sync

hysi

te-(

Ce)

som

etim

espr

esen

tin

fine

synt

axia

lin

terg

row

ths

wit

hpa

risi

te-(

Ce)

C

ordy

lite

-(C

e) i

sa

typi

cal

min

eral

W

hite

orye

llow

tabu

lar

crys

tals

0

1shy

1m

man

dso

met

imes

upto

5m

m

eith

ersi

ngle

orin

aggr

egat

es

Mck

elve

yite

-(Y

)ew

aldi

te

and

don-

nayi

te-(

Y)

inca

viti

es

Yel

low

orw

hite

crys

tals

va

riou

sha

bits

from

tabu

lar

colu

mna

rto

barr

el-s

hape

dS

ome

crys

tals

are

hem

imor

phic

Stro

ntia

nite

pr

imar

yu

sual

lyco

lou

rles

ssu

bhed

ral

crys

tals

upto

2m

m

Kuk

hare

nkoi

te-(

Ce)

(See

abov

e)E

ding

toni

tean

dha

rmot

ome

are

com

mon

acce

ssor

ym

iner

als

Usu

ally

eu

hedr

alcr

ysta

ls

upto

2m

m

inca

viti

es

Alt

erat

ion

Vei

n-li

keag

greg

ates

ofsy

nchy

site

-(C

e)

stro

ntia

nite

ba

ryte

and

bast

nasi

te-(

Ce)

repl

ace

the

synt

axia

lin

terg

row

thin

som

ero

cks

Stro

ntia

nite

us

uall

yco

l-ou

rles

san

hedr

alcr

ysta

lsB

aryt

eus

uall

yco

lour

less

an

he-

dral

0

1shy

1m

mgr

ains

REE-SR-BA MINERALS

231

TA

BL

E3

(con

td)

CZ

III-

1ca

rbon

ate-

zeol

ite

vein

s-m

anga

noan

side

rite

-man

gano

anan

keri

te-n

atro

lite

Sync

hysi

te-(

Ce)

som

etim

espr

esen

tC

ordy

lite

-(C

e)is

aty

pica

lm

iner

al

Whi

teor

yell

owta

bula

rcr

ysta

ls

01

shy1

mm

and

som

etim

esup

to5

mm

ei

ther

sing

leor

inag

gre-

gate

s2

vari

etie

s(F

ig

4b)

Ceb

aite

-(C

e)

foun

din

cavi

ties

asye

llow

w

hite

orco

lour

less

crys

tals

upto

02

mm

D

endr

itic

st

ella

teor

irre

gula

rin

terg

row

ths

Co

mm

on

lyas

soci

ated

wit

hm

ckel

veyi

te-(

Ce)

co

rdyl

ite

and

stro

ntia

nite

Mck

elve

yite

-(Y

)ew

al-

dite

and

donn

ayit

e-(Y

)se

eab

ove

Edi

ngto

nite

and

har-

mot

ome

com

mon

ac-

ce

sso

rym

ine

rals

U

sual

ly

euhe

dral

crys

-ta

ls

upto

2m

m

inca

viti

es

Kuk

hare

nkoi

te-(

Ce)

(See

abov

e)St

ront

iani

tew

ith

cord

ylit

e-(C

e)

prim

ary

Bar

yte

ofte

nsh

ort

pris

mat

iccr

ysta

lsin

cavi

ties

CZ

III-

2ca

rbon

ate-

zeol

ite

vein

s-m

anga

noan

side

rite

-nor

dstr

andi

te-n

atro

lite

Co

rdyl

ite-

(Ce)

isa

lsquotyp

ical

rsquom

iner

al

Whi

teor

yell

owta

bula

rcr

ysta

ls

01

shy1

mm

and

som

e-ti

mes

upto

5m

m

eith

ersi

ngle

orin

aggr

egat

es

Mck

elve

yite

-(Y

)ew

aldi

tean

ddo

nnay

ite-

(Y)

Bar

ytoc

alci

te

euhe

dral

orsu

b-he

dral

1

shy2

mm

whi

tecr

ysta

lsin

cavi

ties

Id

enti

fica

tion

base

don

XR

Dan

dIR

spec

tra

Stro

ntia

nite

wit

hco

r-dy

lite

-(C

e)

prim

ary

Bar

yte

ofte

nsh

ort

pr

ism

atic

crys

tals

inca

viti

es

CZ

III-

3ca

rbon

ate-

zeol

ite

vein

s-na

trol

ite-

man

gano

ansi

deri

te-d

awso

nite

Mck

elve

yite

-(Y

)ew

aldi

tean

ddo

nnay

ite-

(Y)

Stro

ntia

nite

wit

hco

rdyl

ite-

(Ce)

pr

imar

yB

aryt

eof

ten

shor

tpr

ism

atic

crys

tals

inca

viti

es

A N ZAITSEV ETAL

232

exception (sample 633B79 5) has 6 65 wtBaO There is no zoning in Khibina burbankitecrystals and the compositions are also uniformwithin each rock sample

There are two morphological types of burban-kite large prismatic crystals and small drop-likeinclusions within calcite crystals and along theirboundaries (Fig 3a Table 3) Although theircompositions are the same (Table 4) the

difference in morphology suggests they mayhave formed by different processes Largeeuhedral prismatic crystals could have crystal-lized at an early stage of carbonatite formationand sometimes large burbankite crystals areobserved near the contact of veins that arecharacterized by a crustification texture (vein-filling) The drop-like burbankite inclusions incalcite probably did not form by exsolution of

TABLE 4 Chemical composition of burbankite at Khibina

Rock C II-1Sample 607277 633477 7 6334777 581013 633B79 5

large crystal drop-like inclusion large crystal large crystalmean (9) sd mean (4) sd mean (10) sd mean (9) sd

Na2O 12 45 11 93 0 13 11 80 0 27 1260 0 44 12 03 0 85CaO 12 60 11 94 0 53 12 57 0 54 1020 0 49 10 08 1 22SrO 19 60 24 74 0 31 24 57 0 38 1838 0 61 17 71 0 92BaO 0 78 1 76 0 12 1 86 0 04 2 52 0 49 6 65 0 47La2O3 5 20 5 65 0 14 5 11 0 25 7 05 0 30 4 77 0 26Ce2O3 9 91 7 15 0 16 6 97 0 28 1106 0 41 9 26 0 43Pr2O3 0 64 0 47 0 04 0 47 0 05 0 80 0 10 0 88 0 07Nd2O3 1 53 1 24 0 10 1 33 0 03 2 53 0 28 3 11 0 31Sm2O3 0 05 b d b d 0 31 0 11 0 39 0 12Gd2O3 b d b d b d b d 0 20 0 07ThO2 n d b d b d b d 0 16 0 10CO2 35 40 34 68 34 79 3421 33 38

Total 99 76 99 56 99 47 9966 98 62

Calculated to 5 (CO3)2shy groups

Na 2 508 2 442 2 408 2 615 2 558Ca 0 338 0 498 0 529 0 267 0 345A site total 2 846 2 941 2 937 2 882 2 903

Sr 1 181 1 514 1 499 1 141 1 126Ca 1 065 0 852 0 889 0 903 0 840La 0 199 0 220 0 198 0 278 0 193Ce 0 377 0 276 0 268 0 433 0 372Pr 0 024 0 018 0 018 0 031 0 035Nd 0 056 0 047 0 050 0 097 0 122Sm 0 003 0 011 0 015Gd 0 007Ba 0 032 0 073 0 077 0 106 0 286Th 0 004B site total 3 000 3 000 3 000 3 000 3 000C 5 021

Sample 607277 - wet chemical analysis other samples - electron microprobe analysessd - standard deviation - including MgO 0 02 K2O 0 02 MnO 007 FeO 0 42 SiO2 020 F 0 04 and H2O 0 85 all wt - including Mn 0 006 Fe 0 037 and Si 0 021b d - below detection limits Mg Mn Fe Y and F are below detection limits in the microprobe analyses CO2 inmicroprobe analyses calculated by stoichiometry n d ndash not determined

REE-SR-BA MINERALS

233

FIG 3 Backscattered electron images (BEI) of (a) large crystals and drop-like inclusions of burbankite (white) incalcite (black) (b) a contact print of a thin section containing a pseudomorph of synchysite-(Ce) strontianite andbaryte after burbankite The width of the burbankite pseudomorph is 9 mm C II-1 calcite carbonatite sample 603265 (c) zoned altered burbankite (grey and dark-grey) with ancylite-(Ce) veins (white) C II-1 calcite carbonatite

sample 633B79 5 (d) relics of burbankite (dark grey) in strontianite (grey) and synchysite-(Ce) (white)

A N ZAITSEV ETAL

234

burbankite from calcite rich in Na Sr and REE asmight be thought at first from Fig 3a and asproposed for a similar occurrence by Knudsen(1991) because the burbankite crystals areassociated with euhedral zoned apatites Theyare more likely to be the result of lsquocotecticrsquocrystallization of burbankite and calcite after theprecipitation of the apatite

Carbocernaite has been found in many Khibinacarbonatite samples (Table 3) It was describedoriginally as a primary mineral crystallized at alate stage of carbonatite formation at VuorijarviKola Peninsula (Bulakh et al 1961) Zdorik(1966) and Kapustin (1980) found that carbocer-naite in carbonatites from the Ozernyi andVuoriyarvi massifs occurs as a secondarymineral after burbankite The most unusualoccurrence of carbocernaite is the exsolutionlamellae and cotectic textures for carbocernaiteand calcite in Sarnu-Dandali carbonatitedescribed by Wall et al (1993) Carbocernaite isalso reported from carbonatite in the Si PanRange Vietnam (Bulakh and Izokh 1966)

Carbocernaite like burbankite is a doublecarbonate with a general formula AB(CO3)2 withNa and Ca in the A-site and Sr REE and Ba in theB-site There are few studies of the chemicalcomposition of carbocernaite Before the detailedinvestigation of Wall et al (1993) only a few wetchemical analyses were published (Bulakh et al 1961 Bulakh and Izokh 1966 Zdorik 1966Kapustin 1980) Although available data forcarbocernaite show some variation in thecontent of major elements there is less variationthan in burbankite The Na2O values range from243 to 612 wt the BaO from 095 to 596 theSrO from 558 to 2398 the CaO from 1593 to1927 and the SREE2O3 from 17 06 to 2631 allwt In general the compositional variations inburbankite and carbocernaite are similar butcarbocernaite contains less Na2O (commonlyabout 4 shy 5 wt ) compared with burbankite(commonly about 10 shy 12 wt ) This differencein sodium content makes it possible to identifycarbocernaite and burbankite on the basis ofelectron microprobe analyses

Selected average compositions of carbocernaitefrom Khibina are given in Table 5 These datashow that carbocernaite from the Khibinacarbonatites is a low Ba variety Khibinacarbocernaite like burbankite is not zoned

Harris (1972) reported high F (3 86 wt ) incarbocernaite from Sturgeon Narrows Canadaand proposed that F together with OH could be

additional anion group (FOH)2 in the mineralformula Our data show that the F content ofKhibina carbocernaite is near the electron micro-probe detection limit of about 0 1 wt and IRinvestigations show an absence of any absorptionband related to OH- group or H2O It is possiblethat the mineral described from the SturgeonNarrows is a different mineral species The lackof Na in Sturgeon Narrows carbocernaite alsosupports our conclusion

In the Khibina carbonatite samples burbankiteand carbocernaite do not occur together so it hasnot been possible to establish their relative agesHowever both burbankite and carbocernaite-containing carbonatites are cut by later C II-2and C II-3 carbonatites

TABLE 5 Chemical composition of carbocernaite atKhibina

Rock C II-1Sample 603165 603287

mean (12) sd mean (10) sd

Na2O 4 98 0 18 4 33 0 42CaO 11 94 0 42 1360 0 33SrO 22 33 0 76 2020 0 27BaO 0 37 0 13 0 56 0 07La2O3 9 27 0 61 1053 0 33Ce2O3 13 19 0 51 1419 0 30Pr2O3 0 97 0 09 0 94 0 08Nd2O3 2 34 0 25 2 56 0 19Sm2O3 0 14 0 05 0 32 0 04F 0 10 0 10 0 14 0 03CO2 32 79 3379shy O=F2 0 04 0 06

Total 98 36 10110

Calculated to 2 (CO3)2shy groups

Na 0 431 0 364Ca 0 571 0 632A site total 1 003 0 996

Sr 0 578 0 508La 0 153 0 168Ce 0 216 0 225Pr 0 016 0 015Nd 0 037 0 040Sm 0 002 0 005Ba 0 007 0 010B site total 1 008 0 971F 0 014 0 019

Mg Mn Fe Gd Y Th and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

235

Alteration of burbankite and carbocernaite

Burbankite in carbonatites is commonly replacedby ancylite-(Ce) strontianite and baryte (Somina1975 Kapustin 1980) and rarely by ancylite-(Ce)calkinsite lanthanite and baryte (Pecora and Kerr1953) Multi-stage alteration of burbankite fromthe Ozernyi carbonatites has been documented byZdorik (1966) where carbocernaite strontianitebastnasite-(Ce) calcite baryte allanite-(Ce)monazite-(Ce) and epidote have been identifiedas alteration products of burbankite

In the Khibina carbonatites burbankite andcarbocernaite are commonly replaced by variouscombinationsof ancylite-(Ce) strontianite synch-ysite-(Ce) baryte less commonly by cordylite-(Ce) and rarely by harmotome and edingtonite(Table 3) Even when burbankite is completelyreplaced evidence of its existence is preserved inthe form of hexagonal prismatic pseudomorphs(Fig 3b) and islands of relict burbankite (Fig 3cand d) Pseudomorphs of a similar form have beenmentioned from some other rare earth-richcarbonatites e g Gem Park Wigu HillKangankunde (Wall and Mariano 1996) but inthese cases there is no evidence of the precursormineral The presence of primary and replacedburbankite at Khibina is good evidence that thepseudomorphs reported from these other carbo-natites may well have originally been burbankite

Ancylite

Ancylite-(Ce) is a hydrous carbonate containingREE and Sr as major cations On the basis of astructural study of material from the Mont Saint-Hilaire massif its formula has been proposed asREEx(SrCa)2 shy x(CO3)2(OH)x (2 shy x)H2O with acation-anion substitution of Sr2+ + H2O gtREE3+ + OH shy (Dal Negro et al 1975)Although ancylite-(Ce) is a relatively commonmineral in carbonatites there are only a fewanalyses available (Kukharenko et al 1965Kapustin 1980 Knudsen 1991) and this is thefirst detailed investigation of its chemicalcomposition Selected average chemical composi-tions are given in Table 6 The composition ofancylite-(Ce) from Khibina is relatively uniformwith Ca Ba and Th present only as traces Theatomic proportion of Sr and REE in the formula isnear 11 with a small excess of REE An importantfinding is the presence of fluorine in ancylite-(Ce)The Khibina ancylite-(Ce) contains between 0 75and 250 wt of fluorine corresponding to

0 148shy 0 488 F per formula unit Since REE andSr are present in equal abundances it is suggestedthat F- substitutes for OH- Thus the mineral fromthe Khibina carbonatites can be classified as F-bearing ancylite-(Ce) Fluorine was also detectedin two ancylite-(Ce) samples from Qaqarssukcarbonatites at 0 37 and 058 wt respectively(Knudsen 1991)

Ca-REE fluocarbonates

Synchysite-(Ce)is common at Khibina bastnasite-(Ce) and parisite-(Ce) are also found but are rare(Table 3) The textures vary as described in Table3 and include syntaxial intergrowths (Fig 4a)Ca-REE fluocarbonates are present in numerouscarbonatites e g Mountain Pass (Olsen et al 1954) Gatineau (Hogarth et al 1985)Kizilcaoren (Hatzl 1992) Tundulu (Ngwenya1994) and are the most well-studied of thecarbonatite REE-minerals (e g Kapustin 1980Hogarth et al 1985 Andersen 1986 Wall andMariano 1996) Selected average microprobeanalyses of Khibina synchysite-(Ce) made onminerals from different mineral assemblages arepresented in Table 7 Synchysite-(Ce) is char-acterized by having little substitution of otherelements for Ca and REE Primary synchysite-(Ce) from syntaxial intergrowths secondarysynchysite-(Ce) from the alteration products ofburbankite carbocernaite and syntaxial inter-growths of synchysite-(Ce) with parisite-(Ce) allhave similar chemical compositions Sr Ba and Thare typical minor constituentsin all the synchysite-(Ce) and Fe is present in the red variety associatedwith manganoan ankerite or ferroan kutnohorite

Parisite-(Ce) and bastnasite-(Ce) (Table 8) arenear their theoretical compositions with onlyminor amounts of Sr and Ba substituting for Caand Th substituting for REE

Syntaxial intergrowths of Ca-REE fluocarbo-nates are considered to be evidence for theirprimary origin the intergrowth being related tochanges in the chemical composition of the hostfluid (Ni et al 1993)

Ba-REE fluocarbonates

Ba-REE fluocarbonates are extremely rare incarbonatites Huanghoite-(Ce) is the onlymember of the group previously described froman unnamed Siberian carbonatite (Kapustin 1973)and from Qaqarssuk carbonatites (Knudsen1991) However cordylite-(Ce) kukharenkoite-

A N ZAITSEV ETAL

236

(Ce) and cebaite-(Ce) have all been identified atKhibina (Table 3)

Cordylite-(Ce) is known only from Greenland(Flink 1901) Mont Saint-Hilaire Canada (Chenand Chao 1975) and Bayan Obo China (Zhangand Tao 1986) Its occurrence at Khibina is thefirst documented occurrence which is certainlyfrom carbonatites Kukharenkoite-(Ce) is a newBa-REE fluocarbonate mineral which has beenfound in the Khibina carbonatites and fromVuoriyavri Kola Peninsula Mont Saint-Hilaireand the Saint-Amable sill Quebec Canada(Zaitsev et al 1996) The occurrence of

cebaite-(Ce) at Khibina is only the seconddocumented occurrence The first was fromBayan Obo (Zhang and Tao 1986)

There are no data on the chemical compositionof cordylite-(Ce) from carbonatites and our reportis the first for this mineral (Table 9) There arethree distinct chemical compositions of cordylite-(Ce) from Khibina Cordylite-(Ce) with low Caand Sr (Table 9) occurs in manganoan siderite-manganoan ankerite-natrolite veins (CZ III-1)where it forms tabular crystals which areassociated with strontianite and sometimeskukharenkoite-(Ce) High Ca and Sr cordylite-

TABLE 6 Chemical composition of ancylite-(Ce) at Khibina

Rock C II-1Sample 633B795 646001 646451

mean (8) sd mean (21) sd mean (24) sd

SrO 2397 1 25 21 70 1 19 20 65 1 63CaO 1 35 0 40 2 09 0 51 1 93 0 59BaO 0 59 0 09 0 85 0 24 0 85 0 25FeO 0 19 0 35 b d 0 20 0 30La2O3 1308 1 18 15 56 0 83 16 53 1 17Ce2O3 2340 1 04 23 46 1 09 23 59 0 89Pr2O3 1 94 0 11 1 74 0 14 1 69 0 12Nd2O3 5 35 0 52 4 42 0 38 4 34 0 33Sm2O3 0 29 0 06 0 28 0 05 0 23 0 04Gd2O3 0 14 0 13 0 17 0 09 b dThO2 0 53 0 20 b d b dF 2 15 0 30 1 83 0 34 1 19 0 17CO2 2344 23 32 23 07shy O=F2 0 90 0 77 0 50

Total 9551 94 66 93 77

Calculated to 2 (CO3)2shy groups

La 0 300 0 357 0 381Ce 0 532 0 534 0 539Pr 0 044 0 040 0 039Nd 0 119 0 098 0 097Sm 0 006 0 006 0 005Gd 0 003 0 004Th 0 008

Total 1 012 1 038 1 061

Sr 0 864 0 783 0 748Ca 0 090 0 139 0 129Ba 0 014 0 021 0 021Fe 0 010 0 010

Total 0 979 0 943 0 909

F 0 422 0 360 0 235

Na Mg Mn Y and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

237

(Ce) (Table 9) is observed in the same samples asmantles on crystals of low Ca and Sr cordylite-(Ce) and as abundant laths in the surroundingnatrolite and manganoan ankerite (Fig 4b) It hasalso formed as a secondary mineral duringcarbocernaite alteration Cordylite-(Ce) withmoderate Ca and Sr (Table 9) occurs in ferroanrhodochrosite-manganoan ankerite carbonatites(C II-3) and is associated with strontianite

The atomic proportions of Na-Ca and REE-Srpairs show a negative correlation with a slopenear shy 1 and a plot of Na+REE vs Ca+Sr (Fig 5)shows a trend in composition from Sr-Ca-poor toSr-Ca-rich cordylite-(Ce) The slope of thiscorrelation suggests a 11 exchange of Na andREE for Ca and Sr with a substitution scheme ofNa+ + REE3+ Ca2+ + Sr2+ On the basis of theseobservations a general formula for cordylite-(Ce)can be expressed as (NaCa)Ba(REESr)2(CO3)4FOur X-ray and IR data are identical for eachcompositional variety and also identical to thoseof lsquobaiyuneboite-(Ce)rsquo (Fu and Su 1988) whichis now recognized to be cordylite-(Ce) (JZemann personal communication 1996)

Kukharenkoite-(Ce) occurs in Khibina C II-2and C II-3 carbonatites and in carbonate-zeoliteveins (Table 3) It was described as a new mineralby Zaitsev et al (1996) The composition of thekukharenkoite-(Ce) (Zaitsev et al 1996) deter-

FIG 4 (a) BEI of syntaxial intergrowths of synchysite-(Ce) (grey) parisite-(Ce) (grey) and bastnasite-(Ce) (white) CII-2 manganoan ankerite-calcite carbonatite sample 633A414 1 (b) BEI of large crystals of low Ca and Sr cordylite-(Ce) pale grey in centre) associated with laths of high Ca and Sr cordylite-(Ce) (dark grey) and kukharenkoite-(Ce)

(white) CZ III-1 manganoan siderite-manganoan ankerite shy natrolite vein sample 60775

FIG 5 Atomic proportions of Na+REE vs Ca+Sr forcordylite-(Ce)

A N ZAITSEV ETAL

238

mined from electron microprobe analysis is BaO4893 SrO 0 42 MnO 026 Na2O 0 08 CaO0 05 La2O3 6 16 Ce2O3 15 12 Pr2O3 149Nd2O3 4 08 ThO2 0 10 and F 320 wt Theatomic ratios of Ba REE and F are near 211requiring 3 (CO3)

2shy groups per formula unit(calculated CO2 21 73 wt ) and the idealf o r m u l a f o r k u k h a r e n k o i t e - ( C e ) i sBa2REE(CO3)3F

The chemical composition of cebaite-(Ce) fromKhibina was determined by 18 electron micro-

probe analyses (Table 10) Although analysistotals are less then 100 calculated atomic ratiosfor Ba REE and F are near 322 and closelyc o r r e s p o n d t o a n i d e a l f o r m u l a o fBa3REE2(CO3)5F2 Cebaite-(Ce) contains minorSrO (101shy 261 wt ) CaO (033shy 118 wt)and ThO2 (0 49shy 126 wt) in addition rela-tively high MnO (up to 0 83 wt ) and FeO (up to0 61 wt ) were observed in some analyses Allcebaite-(Ce) crystals are unzoned See Table 3 formineralogical details

TABLE 7 Chemical composition of synchysite-(Ce) at Khibina

Rock C II-2 C II-3 C II-1 C II-1 C II-1Sample 633A414 1 604413 633485 5 603265 603165

syntaxial intergrowths secondary after burbankite secondary aftercarbocernaite

mean (8) sd mean (6) sd mean (9) sd mean (15) sd mean (4) sd

CaO 17 47 0 38 16 89 0 62 1618 070 16 08 0 88 17 23 033FeO bd 0 35 0 49 b d b d bdSrO 024 0 12 0 43 0 18 0 87 066 0 59 0 28 056 021BaO 009 0 05 0 15 0 04 0 12 007 0 06 0 05 011 006La2O3 16 54 0 42 13 06 0 58 1798 087 20 34 0 86 13 63 073Ce2O3 26 19 0 85 27 21 0 79 2591 065 25 77 0 50 25 26 085Pr2O3 215 0 12 2 53 0 07 1 94 011 1 78 0 08 258 010Nd2O3 614 0 44 7 90 0 22 5 54 027 4 53 0 41 969 086Sm2O3 038 0 06 0 62 0 10 0 38 004 0 31 0 07 068 038Y2O3 bd b d b d b d 011 009ThO2 bd 0 38 0 21 0 15 009 b d 017 014F 549 0 18 5 69 0 21 5 83 023 5 61 0 23 578 011CO2 28 12 27 81 2718 27 59 28 11shy O=F2 231 2 40 2 46 2 36 243

Total 10049 100 62 9961 100 30 101 46

Calculated to 2 (CO3)2shy groups

Ca 0975 0 953 0 934 0 915 0962Sr 0007 0 013 0 027 0 018 0017Ba 0002 0 003 0 002 0 001 0002Fe 0 015

Total 0984 0 985 0 964 0 934 0981

La 0318 0 254 0 357 0 398 0262Ce 0499 0 524 0 511 0 501 0481Pr 0041 0 049 0 038 0 034 0049Nd 0114 0 149 0 107 0 086 0180Sm 0007 0 011 0 007 0 006 0012Y 0003Th 0 005 0 002 0002

Total 0979 0 991 1 022 1 025 0990F 0904 0 948 0 994 0 943 0953

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

239

Y-rich carbonates mckelveyite-(Y) ewaldite anddonnayite-(Y)

A detailed description of these minerals fromKhibina Vuoriyarvi and Sallanlatvi is given byVoloshin et al (1990 1992) This was the firsttime that they had been documented in carbona-tites Mckelveyite-(Y) is the best-studied of thegroup at Khibina (Table 3)

Chemical compositions of mckelveyite-(Y) andewaldite from Kola carbonatites are represented by

three electron microprobe analyses of mckelveyite-(Y) from Vuoriyarvi carbonatites one from theSallanlatvi carbonatite and two analyses ofewaldite from Vuoriyarvi (Voloshin et al 19901992) However even these limited data showcompositional variation and three groups havebeen identified Na-free mckelveyite-(Y) Y-freeLREE-enriched mckelveyite and Y-free ewaldite

Five separate crystals of mckelveyite-(Y) wereanalysed from Khibina (Table 11) and areuniform in chemical composition The formula

TABLE 8 Chemical composition of parisite-(Ce) and bastnasite-(Ce) at Khibina

Rock C II-2 C II-3 C II-2Sample 633A4141 604413 633A414 1Mineral parisite-(Ce) bastnasite-(Ce)

mean (2) mean (5) sd mean (6) sd

CaO 9 72 9 29 1 03 084 0 29SrO 0 56 0 79 0 18 085 0 34BaO 0 07 0 30 0 29 008 0 05FeO 0 05 0 38 0 28La2O3 1963 15 96 0 72 26 35 0 99Ce2O3 3172 32 28 0 45 37 41 0 54Pr2O3 2 30 2 87 0 14 250 0 13Nd2O3 6 83 8 74 0 22 660 0 48Sm2O3 0 45 0 60 0 02 036 0 07Y2O3 0 10 0 22 0 12 bdThO2 b d 0 24 0 10 bdF 7 02 6 79 0 17 811 0 22CO2 2433 24 54 20 67shy O=F2 2 95 2 86 342

Total 9982 100 13 100 35

Calculated to 3 (CO3)2shy groups Calculated to 1 (CO3)

2shy groupCa 0 941 0 892 0033Sr 0 029 0 041 0018Ba 0 002 0 011 0001Fe 0 004 0 029

Total 0 976 0 972

La 0 654 0 527 0357Ce 1 048 1 057 0503Pr 0 076 0 094 0033Nd 0 220 0 280 0087Sm 0 014 0 018 0005Y 0 005 0 010Th 0 005

Total 2 017 1 992 1037

F 2 004 1 923 0942

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

240

of mckelveyite-(Y) is still the subject of debate Inthe original description Milton et al (1965) gavethe formula as Na19Ba40Ca11Sr02REE15U03

(CO3)9 5H2O Later Chao et al (1978) suggestedan isomorphous relationship between mckel-veyite-(Y) and donnayite-(Y) and gave theformula of NaCaBa3Y(CO3)6 3H2O In a recentstudy of mckelveyite-(Y) and ewaldite Voloshinet al (1990 1992) showed a similarity betweenthese two minerals and suggested that they areprobably polymorphs The formula of ewalditewas determined as (CaNaREE )(BaSr )(CO3)2 nH2O where part of the H2O is zeolitic

Chemical data from the Khibina mckelveyite-(Y) were calculated on the basis of the IMAaccepted formula NaCaBa3Y(CO3)6 3H2O (Table

11) Our data and those of Voloshin et al (1990)show significant substitutions the main one beingBa2+ Sr2+ which is related to the mckelveyite-(Y)-donnayite-(Y) pair where these minerals are Baand Sr end-members respectively The assignationof REE to two different sites in the mckelveyite-(Y) formula is problematic It is based on formulabalance and the REE chondrite-normalizeddistribution which is discussed below in thesection on lsquoRare earth patternsrsquo

Strontianite baryte barytocalcite edingtonite andharmotome

Minerals rich in Ba and Sr but with no REE arerepresented in the Khibina carbonatites by

TABLE 9 Chemical composition of cordylite-(Ce) at Khibina

Rock CZ III-1 C II-3 CZ III-1 CZ III-1 C II-1Sample 60775 6032646 6032515 60775 6031650Variety low Ca and Sr moderate Ca and Sr high Ca and Sr

mean (15) sd mean (17) sd mean (15) sd mean (10) sd mean (17) sd

Na2O 412 0 12 3 66 0 24 3 67 0 12 2 60 0 15 256 0 16CaO 073 0 18 1 54 0 31 1 50 0 08 3 82 0 18 410 0 26SrO 058 0 23 2 48 0 57 2 09 0 31 6 03 0 43 590 0 50BaO 22 28 0 33 22 29 0 51 22 32 0 32 23 02 0 25 23 11 0 36La2O3 994 0 36 10 46 0 38 11 82 0 53 7 58 0 30 11 49 0 51Ce2O3 24 46 0 43 23 82 0 68 22 18 0 28 20 26 0 38 17 90 0 67Pr2O3 241 0 18 1 85 0 24 1 69 0 25 2 19 0 27 145 0 30Nd2O3 747 0 49 5 88 0 31 5 70 0 41 6 97 0 49 536 0 54ThO2 011 0 17 0 13 0 14 0 12 0 16 0 13 0 12 013 0 16F 262 0 10 2 97 0 28 2 95 0 33 2 60 0 08 285 0 31CO2 24 92 25 16 24 78 25 77 25 75shy O=F2 110 1 25 1 24 1 10 120

Total 98 55 98 98 97 57 99 88 99 40

Calculated for 4 (CO3)2shy groups

Na 0945 0 821 0 837 0 579 0567Ca 0093 0 191 0 189 0 470 0501

Total 1038 1 012 1 026 1 049 1068

Ba 1032 1 011 1 028 1 036 1033La 0434 0 446 0 513 0 321 0483Ce 1058 1 008 0 954 0 851 0747Pr 0104 0 078 0 072 0 092 0060Nd 0315 0 243 0 239 0 286 0218Sr 0040 0 167 0 142 0 402 0390Th 0003 0 003 0 003 0 003 0003

Total 1954 1 945 1 923 1 955 1901

F 0981 1 088 1 096 0 946 1029

Fe Mn and Sm are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

241

strontianite baryte barytocalcite edingtonite andharmotome (Table 3) The first two minerals arecommon in late-stage carbonatites e g MountainPass (Olsen et al 1954) Vuoriyarvi SeblyavrSallanlatvi (Kapustin 1980) Sarnu-Dandali (Wallet al 1993) and Kangankunde (Wall andMariano 1996)

Barytocalcite is extremely rare in carbonatitesand has been described only from Vuoriyarvi andan unnamed Siberian carbonatite (Kapustin 1980)and possibly Chipman Lake (Platt and Woolley1990)

Edingtonite and harmotome are bariumzeolites Their occurrence at Khibina is the first

TABLE 10 Chemical composition of cebaite-(Ce) at Khibina

Rock CZ III-1Sample 6031435Analysis 14 24 25 29 30 33 Mean (18) Sd

Na2O 0 09 0 10 0 08 0 11 0 13 0 10 0 10 0 03CaO 0 40 1 18 0 47 0 61 0 52 0 70 0 61 0 21MnO 0 07 0 47 0 12 0 73 0 83 0 13 0 16 0 24FeO 0 45 0 13 b d 0 14 0 61 b d 0 16 0 19SrO 1 40 1 27 1 45 1 25 1 28 1 31 1 43 0 36BaO 43 93 40 51 42 19 42 09 42 59 42 93 42 77 1 84La2O3 5 30 7 28 6 71 5 58 5 48 5 72 5 67 0 52Ce2O3 13 59 14 33 14 52 14 66 13 66 14 91 14 45 1 16Pr2O3 1 54 1 69 1 83 1 78 1 51 1 81 1 63 0 19Nd2O3 6 15 5 69 5 99 6 32 5 70 5 34 5 54 0 48Sm2O3 0 60 0 61 0 50 0 38 0 42 0 34 0 48 0 11Eu2O3 0 17 0 18 b d 0 24 b d b d 0 07 0 11Gd2O3 0 59 0 66 0 53 0 49 0 40 0 37 0 50 0 13ThO2 0 99 0 51 0 49 0 92 1 07 0 99 0 92 0 22F 4 24 4 10 4 15 3 78 3 99 3 61 3 76 0 21CO2 21 57 21 79 21 41 21 79 21 65 21 41 21 42shy O=F2 1 78 1 73 1 75 1 59 1 68 1 52 1 58

Total 99 31 98 77 98 78 99 29 98 15 98 15 98 10

Calculated for 5 (CO3)2shy groups

Na 0 031 0 032 0 025 0 038 0 042 0 034 0 032Ca 0 073 0 212 0 085 0 111 0 095 0 130 0 114Mn 0 010 0 066 0 018 0 105 0 119 0 018 0 023Fe 0 064 0 018 0 020 0 087 0 023Sr 0 137 0 124 0 143 0 123 0 127 0 132 0 144Ba 2 915 2 659 2 802 2 805 2 855 2 926 2 900

Total 3 230 3 111 3 072 3 201 3 325 3 240 3 236

La 0 331 0 450 0 419 0 350 0 346 0 367 0 362Ce 0 841 0 878 0 900 0 911 0 854 0 948 0 914Pr 0 095 0 103 0 113 0 110 0 094 0 115 0 102Nd 0 372 0 340 0 362 0 384 0 348 0 332 0 342Sm 0 035 0 035 0 029 0 022 0 024 0 021 0 029Eu 0 010 0 011 0 014 0 004Gd 0 033 0 036 0 030 0 028 0 023 0 021 0 029Th 0 038 0 019 0 019 0 036 0 042 0 039 0 036

Total 1 755 1 872 1 873 1 855 1 730 1 843 1 819

F 2 268 2 174 2 221 2 033 2 159 1 986 2 057

Y Dy Er Yb and Lu are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

242

TABLE 11 Chemical position of mckelveyite-(Y) at Khibina

Rock CZ IIISample 6031435Point 1 2 4 5 9 10 Mean (12) sd

Na2O 3 12 3 05 3 21 3 10 3 33 3 14 3 19 0 10CaO 4 56 4 34 4 32 4 34 4 20 4 72 4 43 0 38MnO 0 06 b d b d b d b d 0 06FeO b d b d 0 64 b d 0 07 0 11 0 18 0 26BaO 29 43 29 89 28 47 28 73 29 69 27 13 28 97 0 98SrO 9 16 9 56 9 29 10 41 8 25 12 42 9 56 1 26Y2O3 6 39 6 33 5 32 7 02 5 84 8 42 6 44 0 93La2O3 1 22 1 22 1 60 0 85 1 84 0 96 1 34 0 34Ce2O3 1 93 1 79 2 43 1 17 2 96 1 77 2 18 0 65Pr2O3 0 22 0 22 0 15 0 30 0 24 0 15 0 22 0 06Nd2O3 0 69 0 77 0 91 1 11 0 71 0 37 0 84 0 24Sm2O3 0 81 0 87 0 81 0 89 0 85 0 20 0 78 0 23Eu2O3 0 49 0 64 0 50 0 36 0 60 0 34 0 47 0 10Gd2O3 2 15 1 94 2 18 2 05 2 32 1 05 2 02 0 38Dy2O3 2 39 2 40 2 97 2 29 2 83 2 00 2 48 0 29Er2O3 1 03 1 09 1 28 0 87 0 68 1 03 0 94 0 19Yb2O3 0 44 0 44 0 56 0 59 0 25 0 61 0 47 0 12ThO2 b d 0 17 b d b d b d b dF 0 18 0 15 b d b d 0 17 0 16 0 14 0 09CO2 25 71 25 70 25 86 25 81 25 71 26 72 25 93H2O 10 52 10 51 10 58 10 56 10 52 10 93 10 61shy O=F2 0 07 0 06 0 07 0 07 0 06

Total 100 43 101 01 101 07 100 44 100 98 102 24 101 13

Calculated to 6 (CO3)2shy and 3H2O groups

Na 1 000 0 984 1 000 1 000 1 000 0 978 1 000Ca 0 735 0 757 0 561 0 778 0 565 0 785 0 676Na 0 009 0 040 0 006 0 075 0 023La 0 075 0 075 0 099 0 052 0 113 0 057 0 082Ce 0 118 0 109 0 148 0 071 0 181 0 104 0 132Pr 0 013 0 013 0 009 0 018 0 014 0 009 0 013Nd 0 041 0 046 0 054 0 067 0 042 0 021 0 050Mn 0 009 0 008 0 000Fe 0 089 0 010 0 015 0 025

Total 1 000 1 000 1 000 0 992 1 000 1 000 1 000

Ba 1 923 1 950 1 865 1 884 1 941 1 707 1 880Sr 0 885 0 922 0 900 1 009 0 798 1 156 0 917Ca 0 080 0 017 0 212 0 185 0 026 0 110

Total 2 888 2 890 2 977 2 893 2 924 2 889 2 907

Y 0 567 0 561 0 473 0 625 0 518 0 719 0 567Sm 0 047 0 050 0 047 0 051 0 049 0 011 0 045Eu 0 028 0 036 0 029 0 021 0 034 0 018 0 026Gd 0 119 0 107 0 121 0 114 0 128 0 056 0 111Dy 0 128 0 129 0 160 0 123 0 152 0 104 0 132Er 0 054 0 057 0 067 0 045 0 036 0 052 0 049Yb 0 023 0 022 0 028 0 030 0 013 0 030 0 024Th 0 007

Total 0 965 0 969 0 925 1 009 0 930 0 990 0 954

F 0 092 0 081 0 088 0 082 0 071

Lu is below detection limit CO2 and H2O calculated by stoichiometry

REE-SR-BA MINERALS

243

TA

BL

E12

C

hem

ical

com

posi

tion

ofst

ront

iani

teat

Khi

bina

Roc

kC

II-2

CII

-3C

ZII

I-1

CII

-1C

II-1

CII

-1S

ampl

e63

3A4

141

604

413

060

325

15

646

451

060

336

364

600

1pr

imar

yst

ront

iani

teas

soci

ated

wit

hse

cond

ary

stro

ntia

nite

(aft

erbu

rban

kite

)as

soci

ated

wit

hsy

nchy

site

-(C

e)

sync

hysi

te-(

Ce)

cord

ylit

e-(C

e)an

cyli

te-(

Ce)

sync

hysi

te-(

Ce)

ancy

lite

-(C

e)an

dba

ryte

pari

site

-(C

e)an

dan

dpa

risi

te-(

Ce)

and

bary

tean

dba

ryte

bast

nasi

te-(

Ce)

mea

n(1

0)sd

mea

n(6

)sd

mea

n(3

)m

ean

(25)

sdm

ean

(4)

sdm

ean

(6)

sdm

ean

(4)

sdm

ean

(8)

sdco

rem

antl

eri

m

Na 2

Ob

db

db

d0

140

05b

d0

210

050

100

04b

dC

aO3

250

563

230

443

073

461

003

370

331

580

373

720

325

970

20S

rO66

21

068

668

00

5166

62

635

71

2664

34

051

682

00

6063

95

100

625

80

78B

aO0

190

170

160

070

221

610

471

630

150

720

290

830

092

000

57L

a 2O

3b

db

d0

160

480

20b

d0

620

120

330

060

150

04C

e 2O

30

180

120

110

110

570

610

240

190

080

760

160

420

050

250

05C

O2

307

930

99

310

530

71

305

131

11

306

931

99

Tot

al10

063

101

2910

169

100

5810

004

103

2010

004

102

94

Cal

cula

ted

to1

(CO

3)2

shygr

oup

Na

000

60

010

000

5C

a0

083

008

20

077

008

80

087

004

00

095

014

6S

r0

913

091

50

911

087

90

895

093

10

885

083

1B

a0

002

000

10

002

001

50

015

000

70

008

001

8L

a0

001

000

40

005

000

30

001

Ce

000

20

001

000

50

005

000

20

007

000

40

002

Tot

al0

999

100

00

997

099

80

999

099

90

999

099

8

Mg

Mn

Fe

Pr

Nd

Sm

Y

T

han

dU

are

belo

wde

tect

ion

lim

its

CO

2ca

lcul

ated

byst

oich

iom

etry

A N ZAITSEV ETAL

244

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 2: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

fresh coarse-grainedand consist of a sequence ofearly to late carbonatites that contain high levelsof REE Sr and Ba

The aims of our study are twofold (i) to presentmineralogical data on Khibina REE-Sr-Baminerals because little information on many ofthese minerals is available in the literature and (ii)to determine the history of crystallization andsubsequent alteration of the Khibina minerals

General geology and geochemistry of theKhibina carbonatites

The Khibina alkaline massif is located in thecentral part of the Kola Alkaline Province whichconsists of 24 ultrabasic-alkaline-carbonatitecomplexes of Devonian age According to Rb-Srdating the age of the Khibina massif ranges from377 to 362 Ma (Kramm et al 1993 Kramm andKogarko 1994) The Khibina massif is aconcentrically zoned pluton consisting of ultra-basic (peridotite pyroxenite) alkaline silicate(nepheline syenite foidolite) and apatite-nephe-line rocks and carbonatites Its general geologygeochemistry and mineralogy have beendescribed in numerous publications (e gKhomyakov 1995 Kogarko et al 1995)

Zaitsev (1996 Fig 1) gives a general map ofthe Khibina massif that shows the location ofcarbonatite drill holes A Sr and Nd isotope studyhas been made by Zaitsev and Bell (inpreparation)

The carbonatites form a stockwork (Zaitsev1996) in which it is possible to distinguish earlycalcite carbonatites (C I) and later calcitemanganoan ankeriteshy calcite and ferroan rhodo-chrositeshy manganoan siderite carbonatites (C II)The later carbonatites account for about 90 byvolume of the Khibina carbonatite series andoccur as veins 1 cm to 6 m wide Other rockswhich are not carbonatites sensu stricto but aregenetically connected with them are representedby phoscorite (BAA) and carbonate-zeolite rocks(CZ III) The silicate country rocks (ijolitefoyaite olivine melanephelinite and phonolite)hosting the carbonatites are intensively fenitizedand consist of albite biotite and calcite

Representative whole-rock major and traceelement analyses for the carbonatites are givenin Table 1 In terms of the major oxides (CaOMgO FeO and MnO) the Khibina carbonatitescan be subdivided into calciocarbonatites andferrocarbonatites(Fig 1a) and show a progressiveincrease in Fe and Mn from the oldest C I to the

FIG 1 Plots showing the compositional range of the Khibina carbonatites which (a) classify as calcio- andferrocarbonatites according to Woolley and Kempe (1989) but (b) sometimes contain more Mn than Fe and may be

classified as manganocarbonatites

A N ZAITSEV ETAL

226

youngest CII-3 carbonatites However someferrocarbonatites contain more Mn than Fe andthey can be classified as manganocarbonatiteswith CaO(CaO + MgO + FeO + Fe2O3 + MnO)less than 08 MgOlt(FeO+MnO) and MnOgtFeO(Table 1 and Fig 1b) The manganocarbonatitescontain up to 128 wt MnO and contain Mn-bearing carbonates such as manganoan ankeriteferroan kutnohorite ferroan rhodochrosite andmanganoan siderite (Zaitsev 1996) Other

unusual chemical characteristics of the Khibinacarbonatites include the following

1 Some carbonatites contain burbankite orcarbocernaite (C II-1) and are characterized byhigh Na contents (1 20shy 494 wt Na2O) butcontain no Na-bearing silicates such as pyroxeneamphibole or feldspar

2 Synchysite-(Ce)-bearing carbonatites(C II-2) have high F contents (0 76 shy 128 wt)whereas other late carbonatites (C II-1 and C II-3)

TABLE 1 Representative whole-rock and trace element analyses of the Khibina carbonatites

Rock C I C I C II-1 C II-1 C II-2 C II-2 C II-3 C II-3Sample 632B1934 632B1960 633477 7 6031655 604454 603225 60389 60490

SiO2 wt 4 81 3 68 0 64 0 19 0 44 0 87 188 2 09TiO2 0 64 0 22 0 03 0 02 0 01 0 04 002 0 08Al2O3 0 88 0 49 0 25 0 06 0 10 0 29 069 0 70FeOT 4 99 3 02 3 79 2 29 5 64 8 09 19 14 22 97MnO 0 37 0 39 1 56 0 85 5 86 11 39 12 78 12 60MgO 1 20 0 97 0 41 0 35 2 05 3 72 397 2 35CaO 46 50 45 95 32 52 35 12 2870 24 59 12 13 18 40Na2O 0 36 0 59 3 09 1 68 0 14 0 22 021 0 25K2O 1 45 0 38 0 09 0 05 0 12 0 03 055 0 69P2O5 1 25 1 67 0 02 0 04 0 09 0 08 011 0 91S 0 32 0 20 0 73 0 53 0 74 0 41 159 1 12F 0 09 0 19 0 06 0 41 0 84 1 03 021 0 12Cl 0 01 0 01 0 02 0 01 0 01 0 03 002 0 01shy O=SF2Cl2 0 20 0 18 0 39 0 44 0 73 0 65 088 0 61

Total 64 79 59 57 61 02 62 92 5821 62 19 58 16 65 16

Rb ppm 37 25 bd bd bd bd 5 9Ba 1343 1268 13102 10205 11380 10990 28374 1280Th 13 10 127 103 44 17 84 76Nb 416 515 bd 10 15 28 112 86La 437 492 28384 35565 18589 22891 2540 4064Ce 955 1078 37990 50727 31341 37558 6823 8868Sr 13449 12307 63819 73004 20495 16174 5533 7017Nd 403 418 7969 10620 6395 8852 2814 3099Zr 184 135 bd 5 bd bd 7 20Y 62 44 113 137 98 52 43 102Sc 40 8 56 28 21 32 19 21V 96 112 bd 14 25 bd 201 156Cr 22 40 bd 15 10 bd 286 4Co 20 18 23 14 19 bd 40 4Cu 34 27 76 39 28 47 84 45Ni 4 6 24 18 20 24 15 16Zn 76 44 57 120 995 2354 1850 3073

FeOT - total iron as FeO - including trace elements as oxides bd - below detectionWhole-rock analyses were made on fusion beads for major elements and powder pellets for trace-elements by X-rayfluorescence analysis at the University of Leicester using a Philips PW1400 X-ray spectrometer CO2 and H2O notanalysed

REE-SR-BA MINERALS

227

have low F contents However the intensivefluoritization of wall rocks around the carbona-tites which now have low amounts of F suggeststhat the initial F content was higher

3 The late carbonatites (C II) have high BaO(0 81 shy 3 22 wt ) SrO (061 shy 8 65 wt ) andlight REE (1 25shy 1135 wt La2O3 + Ce2O3 +Nd2O3) and these elements become majorcomponents of these carbonatites

Multi-element variation diagrams for theKhibina carbonatite samples (Fig 2) normalizedto primordial mantle of Wood et al (1979) showthat the general chemical features of the Khibinacarbonatites are similar to those described formost carbonatites (e g Nelson et al 1988 Clarkeet al 1992) The early calcite carbonatites (C I)have comparable element variation patterns toaverage data for the calciocarbonatites of Woolleyand Kempe (1989) although the Khibina samplesshow slightly higher Sr (Fig 2a) The Sr is hostedby calcite which contains 1 1 shy 18 wt SrO(Zaitsev 1996)

The element variation patterns for the latecarbonatites C II (Fig 2b) suggest that thesecarbonatites have undergone fractional crystal-lization similar to that shown by Clarke et al(1992) The plot shows a depletion in La Ce Ndand Sr normalized values from the relativelyearly-formed calcite carbonatites with burbankiteor carbocernaite (C II-1) to the late manganoanankerite-calcite carbonatites with synchysite-(Ce)(C II-2) and to the latest ferroan rhodochrosi-teshy manganoan siderite carbonatites with synchy-site-(Ce) or cordylite-(Ce) (C II-3)

Although the normalized Ba values are similarin the C II-1 and C II-2 carbonatite types theyshow wide variation in C II-3 carbonatites Someof the C II-3 carbonatites are depleted in Bacompared to C II-1 and C II-2 types and theycontain synchysite-(Ce) as a minor or accessorymineral However most of C II-3 carbonatites areenriched in Ba and contain cordylite-(Ce) as amajor mineral

Analytical methods

The identification and description of REE-Sr-Baminerals is often difficult due to their complexchemical compositions with a wide variety ofsolid solutions and some polymorphs As a resultthey have variable physical properties infra-redand X-ray diffraction patterns Other difficultiesarise from the limitations of electron microprobeanalysis including the inability to determine H2O

and CO2 loss of Na and F under the electronbeam and the high interference corrections for Baand the REE In addition RE mineral dataavailable from the literature are commonlyincomplete and sometimes inconsistent Thesefacts prompted us to use as many differenttechniques as possible for the mineralogicalinvestigation of the REE-Sr-Ba minerals fromthe Khibina carbonatites

Identification of minerals was based on opticalexamination IR-spectroscopy (UR-20 Carl Zeissspectrophotometer) and X-ray diffraction (RKUcamera - 57 3 mm diameter and Fe-Ka radiation1146 mm diameter and Cr-Ka radiation)Electron microprobe analyses were made using aCameca SX 50 wavelength-dispersive electronmicroprobe at The Natural History MuseumLondon after preliminary work had been carried

FIG 2 Multi-element variation diagrams for (a) earlyand (b) late Khibina carbonatites normalized toprimordial mantle of Wood et al (1979) Calcio- andferrocarbonatites are average values from Woolley and

Kempe (1989)

A N ZAITSEV ETAL

228

out on a Hitachi S2500 scanning electronmicroscope equipped with a Link AN1055Senergy-dispersive analysis system The Camecawas operated at 15 kV and 10shy 20 nA with spotsizes as large as possible up to 30 mm in order tominimize beam damage Individual REE calciumaluminium silicate glasses obtained from theUniversity of Edinburgh were used as standardsfor the REE jadeite was used for Na wollastoniteand apatite for Ca celestine for Sr and bariumfluoride for Ba and F Detailed information aboutconditions of microprobe analyses is availablefrom Williams (1996)

Mineralogy and mineral chemistry

At least 17 minerals containingREE Sr andor Baas major elements have been identified in the latecarbonatites (C II) and the carbonate-zeoliterocks(CZ III) (Table 2) The mineralogy and paragen-esis of these and the associated minerals issummarized in Table 3 This table also shows thesequence of formation of phoscorites carbonatitesand carbonate-zeoliterocks in the Khibina massif

Alkaline Sr-Ca-REE-Ba carbonates burbankite andcarbocernaite

The alkaline Sr-Ca-REE-Ba carbonates burban-kite and carbocernaite are rock-forming mineralsin the calcite carbonatites (C II-1) (Table 3) Fieldrelationships show that the carbonatites withburbankite and carbocernaite are the earliest ofthe C II group of carbonatites (Zaitsev 1996)

Burbankite a rare mineral known from severalcarbonatite complexes always occurs in late-stage carbonatites It has been described from theBearpaw Mountains (Pecora and Kerr 1953)Vuoriyarvi (Kukharenko et al 1965 Kapustin1980) Ozernyi (Zdorik 1966) Arbarastakh(Zhabin et al 1971) Nizhnesayanskii (Somina1975) Chipman Lake (Platt and Woolley 1990)and Qaqarssuk (Knudsen 1991)

Burbankite is a double carbonate with thegeneral formula A3B3(CO3)5 where the A-site isoccupied by Na and Ca and the B-site contains SrREE Ba and Ca (Effenberger et al 1985) Thereare only seven wet chemical analyses ofburbankite from carbonatites made more than25 years ago (Pecora and Kerr 1953 Kukharenkoet al 1965 Zdorik 1966 Zhabin et al 1971Kapustin 1980) and twelve electron microprobeanalyses published recently (Effenberger et al 1985 Platt and Woolley 1990 Knudsen 1991)

These data show a large variation in major oxidesNa2O (4 04 shy 13 89 wt ) SrO (6 17 shy 32 60wt ) CaO (9 81 shy 21 09 wt ) SREE2O3

(2 50 shy 23 00 wt ) and BaO (1 85 shy 14 60wt) Wet chemical analyses of burbankite canshow high contents of Si Al and S but these areprobably the result of admixtures Publishedmicroprobe analyses have high cation deficienciesin the A-site (up to 065 per formula unit)attributed to the loss of Na under the electronbeam (Platt and Woolley 1990) or have hightotals with calculated CO2 (108 26 shy 11349 wt)(Knudsen 1991) which also indicate possibleanalytical problems

Average chemical compositions of the Khibinaburbankite determined by wet chemical analysisof 2 g of pure hand-picked burbankite andapproximately 40 electron microprobe analysesare given in Table 4 The wet chemical andmicroprobe results are in good agreement andindicate that the burbankite is relatively low in Bacompared with other carbonatites The one

TABLE 2 Minerals containing REE Sr andor Ba asmajor elements identified in Khibina late carbo-natites (C II) and carbonate-zeolite rocks (CZ III)

Mineral Formula

burbankite (NaCa)3(SrBaCe)3(CO3)5carbocernaite (NaCa)(SrCeBa)(CO3)2

ancylite-(Ce) SrCe(CO3)2(OH) H2O

synchysite-(Ce) Ca(CeLa)(CO3)2Fparisite-(Ce) Ca(CeLa)2(CO3)3F2

bastnasite-(Ce) (CeLa)(CO3)F

cordylite-(Ce) Ba(CeLa)2(CO3)3F2

cebaite-(Ce) Ba3(CeLa)2(CO3)5F2

kukharenkoite-(Ce) Ba2Ce(CO3)3F

mckelveyite-(Y) Ba3Na(CaU)Y(CO3)6 3H2Oewaldite Ba(CaYNaK)(CO3)2donnayite-(Y) Sr3NaCaY(CO3)6 3H2O

edingtonite BaAl2Si3O10 4H2Oharmotome (BaK)1shy 2(SiAl)8O16 6H2O

strontianite SrCO3

baryte BaSO4

barytocalcite BaCa(CO3)2

REE-SR-BA MINERALS

229

TA

BL

E3

Min

eral

ogy

and

para

gene

sis

ofK

hibi

naR

EE

-Sr-

Ba

min

eral

s

BA

Aph

osco

rite

-bio

tite

-aeg

irin

e-ap

atite

No

prim

ary

rare

eart

hm

iner

als

CI

earl

yca

lcit

eca

rbon

atit

eN

opr

imar

yra

reea

rth

min

eral

s

CII

-1la

teca

lcit

eca

rbon

atit

ew

ithbu

rban

kite

orca

rboc

erna

ite

Prim

ary

phas

es

Bur

bank

ite

10shy

50

volu

me

yell

ow-b

row

nin

fres

hly

brok

enha

ndsp

ecim

ens

Usu

ally

larg

ehe

xago

nal

pris

mat

iccr

ysta

ls(5

shy50

mm

long

61

shy25

mm

diam

eter

)S

omet

imes

grow

infr

om

and

abou

tpe

rpen

dicu

lar

to

the

cont

act

ofth

eve

ins

Dis

trib

utio

nis

hete

roge

neou

sA

lso

asdr

op-l

ike

incl

usio

ns(3

0shy

200

m m)

inca

lcit

eas

soci

ated

wit

heu

hedr

alzo

ned

apat

ite

(Fig

3a

)

Car

boce

rnai

te10

-50

volu

me

NB

do

esno

toc

cur

wit

hbu

rban

kite

L

emon

yell

owin

hand

spec

imen

Is

omet

ric

grai

ns1

shy5

mm

diam

eter

indi

stin

ctcl

uste

rs

Alt

erat

ion

Eit

her

oftw

oal

tera

tion

asse

mbl

ages

can

com

plet

ely

pseu

dom

orph

burb

anki

te

pres

ervi

ngit

spr

ism

atic

he

xago

nal

crys

tal

form

(Fig

3b

)1)

Rep

lace

men

tass

embl

age

ofan

cyli

te-(

Ce)

str

onti

anit

ean

dle

ssof

ten

bary

tean

dra

rely

harm

otom

ean

ded

ingt

onit

eA

llst

ages

ofal

tera

tion

seen

fro

msi

ngle

fine

vein

s(5

shy20

m m)

ofan

cyli

te-(

Ce)

inbu

rban

kite

(Fig

3d

)to

poro

usag

greg

ates

ofan

cyli

te-(

Ce)

and

stro

ntia

nite

com

plet

ely

repl

acin

gbu

rban

kite

A

ncyl

ite-

(Ce)

usua

lly

aspi

nkto

red

anhe

dral

crys

tals

upto

4m

mbu

tal

soso

me

euhe

dral

crys

tals

and

zone

dst

ront

iani

tein

cavi

ties

2)

Por

ous

aggr

egat

esof

sync

hysi

te-(

Ce)

st

ront

iani

tean

dba

ryte

B

urba

nkit

ere

lics

seen

inst

ront

iani

tecr

ysta

lsan

dal

soin

sync

hysi

te-(

Ce)

and

bary

te

Fig

3c

Car

boce

rnai

teis

ofte

npa

rtly

repl

aced

bypo

rous

aggr

e-ga

tes

ofst

ront

iani

te

cord

y-li

te-(

Ce)

sy

nchy

site

-(C

e)an

dba

ryte

C

arbo

cern

aite

usua

lly

pres

erve

din

cent

ral

part

sof

the

form

ercr

ysta

ls

Stro

ntia

nite

usua

lly

colo

urle

ssan

hedr

alcr

ysta

lsbu

tal

soas

pris

mat

iczo

ned

crys

tals

upto

2m

m

Bar

yte

usua

lly

colo

urle

ss

anhe

dral

0

1shy

1m

mgr

ains

Edi

ngto

nite

and

harm

otom

esp

heru

liti

cag

greg

ates

onan

cyli

te-(

Ce)

orst

ront

iani

te

A N ZAITSEV ETAL

230

TA

BL

E3

(con

td)

CII

-2la

tem

anga

noan

anke

rite

-cal

cite

carb

onat

ite

with

sync

hysi

te-(

Ce)

Prim

ary

phas

es

Syn

taxi

alin

terg

row

ths

(Don

nay

and

Don

nay

1953

)of

sync

hysi

te-

(Ce)

par

isit

ean

dba

stna

site

-(C

e)(F

ig

4a)

Inte

rgro

wth

sar

eve

ryfi

nendash

1shy

20m m

wid

ean

d50

shy50

0m m

long

A

ssoc

iate

dw

ith

stro

ntia

nite

Syn

chys

ite-

(Ce)

whi

chis

not

inte

rgro

wn

isa

maj

orro

ck-f

orm

ing

min

eral

W

hite

yel

low

(usu

ally

wit

hca

lcit

e)or

red

(usu

ally

wit

hfe

rroa

nku

tnoh

orit

e)ta

bula

rcr

ysta

ls

01

shy3

m mdi

amet

er

Oft

enir

regu

lar

tora

diat

ing

agre

gate

s

Kuk

hare

nkoi

te-(

Ce)

as

late

-sta

ge0

01shy

1m

mpr

ism

atic

crys

tals

inti

nyca

viti

es

Oft

enas

stel

late

de

ndri

tic

orir

regu

lar

inte

rgro

wth

sup

to3

mm

diam

eter

R

arel

yas

anhe

dral

00

5shy

02

mm

grai

nsor

plat

y0

1shy

2m

mcr

ysta

lsA

ssoc

iate

dw

ith

cord

ylit

e-(C

e)

stro

ntia

nite

an

dra

rely

mck

elve

yite

-(Y

)

Stro

ntia

nite

usua

lly

occu

rsas

colo

urle

ss

subh

edra

lcr

ysta

lsup

to2

mm

diam

eter

CII

-3la

teca

rbon

atit

es-f

erro

anrh

odoc

hros

ite-m

anga

noan

anke

rite

with

sync

hysi

te-(

Ce)

orco

rdyl

ite-

(Ce)

Prim

ary

phas

es

Sync

hysi

te-(

Ce)

som

etim

espr

esen

tin

fine

synt

axia

lin

terg

row

ths

wit

hpa

risi

te-(

Ce)

C

ordy

lite

-(C

e) i

sa

typi

cal

min

eral

W

hite

orye

llow

tabu

lar

crys

tals

0

1shy

1m

man

dso

met

imes

upto

5m

m

eith

ersi

ngle

orin

aggr

egat

es

Mck

elve

yite

-(Y

)ew

aldi

te

and

don-

nayi

te-(

Y)

inca

viti

es

Yel

low

orw

hite

crys

tals

va

riou

sha

bits

from

tabu

lar

colu

mna

rto

barr

el-s

hape

dS

ome

crys

tals

are

hem

imor

phic

Stro

ntia

nite

pr

imar

yu

sual

lyco

lou

rles

ssu

bhed

ral

crys

tals

upto

2m

m

Kuk

hare

nkoi

te-(

Ce)

(See

abov

e)E

ding

toni

tean

dha

rmot

ome

are

com

mon

acce

ssor

ym

iner

als

Usu

ally

eu

hedr

alcr

ysta

ls

upto

2m

m

inca

viti

es

Alt

erat

ion

Vei

n-li

keag

greg

ates

ofsy

nchy

site

-(C

e)

stro

ntia

nite

ba

ryte

and

bast

nasi

te-(

Ce)

repl

ace

the

synt

axia

lin

terg

row

thin

som

ero

cks

Stro

ntia

nite

us

uall

yco

l-ou

rles

san

hedr

alcr

ysta

lsB

aryt

eus

uall

yco

lour

less

an

he-

dral

0

1shy

1m

mgr

ains

REE-SR-BA MINERALS

231

TA

BL

E3

(con

td)

CZ

III-

1ca

rbon

ate-

zeol

ite

vein

s-m

anga

noan

side

rite

-man

gano

anan

keri

te-n

atro

lite

Sync

hysi

te-(

Ce)

som

etim

espr

esen

tC

ordy

lite

-(C

e)is

aty

pica

lm

iner

al

Whi

teor

yell

owta

bula

rcr

ysta

ls

01

shy1

mm

and

som

etim

esup

to5

mm

ei

ther

sing

leor

inag

gre-

gate

s2

vari

etie

s(F

ig

4b)

Ceb

aite

-(C

e)

foun

din

cavi

ties

asye

llow

w

hite

orco

lour

less

crys

tals

upto

02

mm

D

endr

itic

st

ella

teor

irre

gula

rin

terg

row

ths

Co

mm

on

lyas

soci

ated

wit

hm

ckel

veyi

te-(

Ce)

co

rdyl

ite

and

stro

ntia

nite

Mck

elve

yite

-(Y

)ew

al-

dite

and

donn

ayit

e-(Y

)se

eab

ove

Edi

ngto

nite

and

har-

mot

ome

com

mon

ac-

ce

sso

rym

ine

rals

U

sual

ly

euhe

dral

crys

-ta

ls

upto

2m

m

inca

viti

es

Kuk

hare

nkoi

te-(

Ce)

(See

abov

e)St

ront

iani

tew

ith

cord

ylit

e-(C

e)

prim

ary

Bar

yte

ofte

nsh

ort

pris

mat

iccr

ysta

lsin

cavi

ties

CZ

III-

2ca

rbon

ate-

zeol

ite

vein

s-m

anga

noan

side

rite

-nor

dstr

andi

te-n

atro

lite

Co

rdyl

ite-

(Ce)

isa

lsquotyp

ical

rsquom

iner

al

Whi

teor

yell

owta

bula

rcr

ysta

ls

01

shy1

mm

and

som

e-ti

mes

upto

5m

m

eith

ersi

ngle

orin

aggr

egat

es

Mck

elve

yite

-(Y

)ew

aldi

tean

ddo

nnay

ite-

(Y)

Bar

ytoc

alci

te

euhe

dral

orsu

b-he

dral

1

shy2

mm

whi

tecr

ysta

lsin

cavi

ties

Id

enti

fica

tion

base

don

XR

Dan

dIR

spec

tra

Stro

ntia

nite

wit

hco

r-dy

lite

-(C

e)

prim

ary

Bar

yte

ofte

nsh

ort

pr

ism

atic

crys

tals

inca

viti

es

CZ

III-

3ca

rbon

ate-

zeol

ite

vein

s-na

trol

ite-

man

gano

ansi

deri

te-d

awso

nite

Mck

elve

yite

-(Y

)ew

aldi

tean

ddo

nnay

ite-

(Y)

Stro

ntia

nite

wit

hco

rdyl

ite-

(Ce)

pr

imar

yB

aryt

eof

ten

shor

tpr

ism

atic

crys

tals

inca

viti

es

A N ZAITSEV ETAL

232

exception (sample 633B79 5) has 6 65 wtBaO There is no zoning in Khibina burbankitecrystals and the compositions are also uniformwithin each rock sample

There are two morphological types of burban-kite large prismatic crystals and small drop-likeinclusions within calcite crystals and along theirboundaries (Fig 3a Table 3) Although theircompositions are the same (Table 4) the

difference in morphology suggests they mayhave formed by different processes Largeeuhedral prismatic crystals could have crystal-lized at an early stage of carbonatite formationand sometimes large burbankite crystals areobserved near the contact of veins that arecharacterized by a crustification texture (vein-filling) The drop-like burbankite inclusions incalcite probably did not form by exsolution of

TABLE 4 Chemical composition of burbankite at Khibina

Rock C II-1Sample 607277 633477 7 6334777 581013 633B79 5

large crystal drop-like inclusion large crystal large crystalmean (9) sd mean (4) sd mean (10) sd mean (9) sd

Na2O 12 45 11 93 0 13 11 80 0 27 1260 0 44 12 03 0 85CaO 12 60 11 94 0 53 12 57 0 54 1020 0 49 10 08 1 22SrO 19 60 24 74 0 31 24 57 0 38 1838 0 61 17 71 0 92BaO 0 78 1 76 0 12 1 86 0 04 2 52 0 49 6 65 0 47La2O3 5 20 5 65 0 14 5 11 0 25 7 05 0 30 4 77 0 26Ce2O3 9 91 7 15 0 16 6 97 0 28 1106 0 41 9 26 0 43Pr2O3 0 64 0 47 0 04 0 47 0 05 0 80 0 10 0 88 0 07Nd2O3 1 53 1 24 0 10 1 33 0 03 2 53 0 28 3 11 0 31Sm2O3 0 05 b d b d 0 31 0 11 0 39 0 12Gd2O3 b d b d b d b d 0 20 0 07ThO2 n d b d b d b d 0 16 0 10CO2 35 40 34 68 34 79 3421 33 38

Total 99 76 99 56 99 47 9966 98 62

Calculated to 5 (CO3)2shy groups

Na 2 508 2 442 2 408 2 615 2 558Ca 0 338 0 498 0 529 0 267 0 345A site total 2 846 2 941 2 937 2 882 2 903

Sr 1 181 1 514 1 499 1 141 1 126Ca 1 065 0 852 0 889 0 903 0 840La 0 199 0 220 0 198 0 278 0 193Ce 0 377 0 276 0 268 0 433 0 372Pr 0 024 0 018 0 018 0 031 0 035Nd 0 056 0 047 0 050 0 097 0 122Sm 0 003 0 011 0 015Gd 0 007Ba 0 032 0 073 0 077 0 106 0 286Th 0 004B site total 3 000 3 000 3 000 3 000 3 000C 5 021

Sample 607277 - wet chemical analysis other samples - electron microprobe analysessd - standard deviation - including MgO 0 02 K2O 0 02 MnO 007 FeO 0 42 SiO2 020 F 0 04 and H2O 0 85 all wt - including Mn 0 006 Fe 0 037 and Si 0 021b d - below detection limits Mg Mn Fe Y and F are below detection limits in the microprobe analyses CO2 inmicroprobe analyses calculated by stoichiometry n d ndash not determined

REE-SR-BA MINERALS

233

FIG 3 Backscattered electron images (BEI) of (a) large crystals and drop-like inclusions of burbankite (white) incalcite (black) (b) a contact print of a thin section containing a pseudomorph of synchysite-(Ce) strontianite andbaryte after burbankite The width of the burbankite pseudomorph is 9 mm C II-1 calcite carbonatite sample 603265 (c) zoned altered burbankite (grey and dark-grey) with ancylite-(Ce) veins (white) C II-1 calcite carbonatite

sample 633B79 5 (d) relics of burbankite (dark grey) in strontianite (grey) and synchysite-(Ce) (white)

A N ZAITSEV ETAL

234

burbankite from calcite rich in Na Sr and REE asmight be thought at first from Fig 3a and asproposed for a similar occurrence by Knudsen(1991) because the burbankite crystals areassociated with euhedral zoned apatites Theyare more likely to be the result of lsquocotecticrsquocrystallization of burbankite and calcite after theprecipitation of the apatite

Carbocernaite has been found in many Khibinacarbonatite samples (Table 3) It was describedoriginally as a primary mineral crystallized at alate stage of carbonatite formation at VuorijarviKola Peninsula (Bulakh et al 1961) Zdorik(1966) and Kapustin (1980) found that carbocer-naite in carbonatites from the Ozernyi andVuoriyarvi massifs occurs as a secondarymineral after burbankite The most unusualoccurrence of carbocernaite is the exsolutionlamellae and cotectic textures for carbocernaiteand calcite in Sarnu-Dandali carbonatitedescribed by Wall et al (1993) Carbocernaite isalso reported from carbonatite in the Si PanRange Vietnam (Bulakh and Izokh 1966)

Carbocernaite like burbankite is a doublecarbonate with a general formula AB(CO3)2 withNa and Ca in the A-site and Sr REE and Ba in theB-site There are few studies of the chemicalcomposition of carbocernaite Before the detailedinvestigation of Wall et al (1993) only a few wetchemical analyses were published (Bulakh et al 1961 Bulakh and Izokh 1966 Zdorik 1966Kapustin 1980) Although available data forcarbocernaite show some variation in thecontent of major elements there is less variationthan in burbankite The Na2O values range from243 to 612 wt the BaO from 095 to 596 theSrO from 558 to 2398 the CaO from 1593 to1927 and the SREE2O3 from 17 06 to 2631 allwt In general the compositional variations inburbankite and carbocernaite are similar butcarbocernaite contains less Na2O (commonlyabout 4 shy 5 wt ) compared with burbankite(commonly about 10 shy 12 wt ) This differencein sodium content makes it possible to identifycarbocernaite and burbankite on the basis ofelectron microprobe analyses

Selected average compositions of carbocernaitefrom Khibina are given in Table 5 These datashow that carbocernaite from the Khibinacarbonatites is a low Ba variety Khibinacarbocernaite like burbankite is not zoned

Harris (1972) reported high F (3 86 wt ) incarbocernaite from Sturgeon Narrows Canadaand proposed that F together with OH could be

additional anion group (FOH)2 in the mineralformula Our data show that the F content ofKhibina carbocernaite is near the electron micro-probe detection limit of about 0 1 wt and IRinvestigations show an absence of any absorptionband related to OH- group or H2O It is possiblethat the mineral described from the SturgeonNarrows is a different mineral species The lackof Na in Sturgeon Narrows carbocernaite alsosupports our conclusion

In the Khibina carbonatite samples burbankiteand carbocernaite do not occur together so it hasnot been possible to establish their relative agesHowever both burbankite and carbocernaite-containing carbonatites are cut by later C II-2and C II-3 carbonatites

TABLE 5 Chemical composition of carbocernaite atKhibina

Rock C II-1Sample 603165 603287

mean (12) sd mean (10) sd

Na2O 4 98 0 18 4 33 0 42CaO 11 94 0 42 1360 0 33SrO 22 33 0 76 2020 0 27BaO 0 37 0 13 0 56 0 07La2O3 9 27 0 61 1053 0 33Ce2O3 13 19 0 51 1419 0 30Pr2O3 0 97 0 09 0 94 0 08Nd2O3 2 34 0 25 2 56 0 19Sm2O3 0 14 0 05 0 32 0 04F 0 10 0 10 0 14 0 03CO2 32 79 3379shy O=F2 0 04 0 06

Total 98 36 10110

Calculated to 2 (CO3)2shy groups

Na 0 431 0 364Ca 0 571 0 632A site total 1 003 0 996

Sr 0 578 0 508La 0 153 0 168Ce 0 216 0 225Pr 0 016 0 015Nd 0 037 0 040Sm 0 002 0 005Ba 0 007 0 010B site total 1 008 0 971F 0 014 0 019

Mg Mn Fe Gd Y Th and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

235

Alteration of burbankite and carbocernaite

Burbankite in carbonatites is commonly replacedby ancylite-(Ce) strontianite and baryte (Somina1975 Kapustin 1980) and rarely by ancylite-(Ce)calkinsite lanthanite and baryte (Pecora and Kerr1953) Multi-stage alteration of burbankite fromthe Ozernyi carbonatites has been documented byZdorik (1966) where carbocernaite strontianitebastnasite-(Ce) calcite baryte allanite-(Ce)monazite-(Ce) and epidote have been identifiedas alteration products of burbankite

In the Khibina carbonatites burbankite andcarbocernaite are commonly replaced by variouscombinationsof ancylite-(Ce) strontianite synch-ysite-(Ce) baryte less commonly by cordylite-(Ce) and rarely by harmotome and edingtonite(Table 3) Even when burbankite is completelyreplaced evidence of its existence is preserved inthe form of hexagonal prismatic pseudomorphs(Fig 3b) and islands of relict burbankite (Fig 3cand d) Pseudomorphs of a similar form have beenmentioned from some other rare earth-richcarbonatites e g Gem Park Wigu HillKangankunde (Wall and Mariano 1996) but inthese cases there is no evidence of the precursormineral The presence of primary and replacedburbankite at Khibina is good evidence that thepseudomorphs reported from these other carbo-natites may well have originally been burbankite

Ancylite

Ancylite-(Ce) is a hydrous carbonate containingREE and Sr as major cations On the basis of astructural study of material from the Mont Saint-Hilaire massif its formula has been proposed asREEx(SrCa)2 shy x(CO3)2(OH)x (2 shy x)H2O with acation-anion substitution of Sr2+ + H2O gtREE3+ + OH shy (Dal Negro et al 1975)Although ancylite-(Ce) is a relatively commonmineral in carbonatites there are only a fewanalyses available (Kukharenko et al 1965Kapustin 1980 Knudsen 1991) and this is thefirst detailed investigation of its chemicalcomposition Selected average chemical composi-tions are given in Table 6 The composition ofancylite-(Ce) from Khibina is relatively uniformwith Ca Ba and Th present only as traces Theatomic proportion of Sr and REE in the formula isnear 11 with a small excess of REE An importantfinding is the presence of fluorine in ancylite-(Ce)The Khibina ancylite-(Ce) contains between 0 75and 250 wt of fluorine corresponding to

0 148shy 0 488 F per formula unit Since REE andSr are present in equal abundances it is suggestedthat F- substitutes for OH- Thus the mineral fromthe Khibina carbonatites can be classified as F-bearing ancylite-(Ce) Fluorine was also detectedin two ancylite-(Ce) samples from Qaqarssukcarbonatites at 0 37 and 058 wt respectively(Knudsen 1991)

Ca-REE fluocarbonates

Synchysite-(Ce)is common at Khibina bastnasite-(Ce) and parisite-(Ce) are also found but are rare(Table 3) The textures vary as described in Table3 and include syntaxial intergrowths (Fig 4a)Ca-REE fluocarbonates are present in numerouscarbonatites e g Mountain Pass (Olsen et al 1954) Gatineau (Hogarth et al 1985)Kizilcaoren (Hatzl 1992) Tundulu (Ngwenya1994) and are the most well-studied of thecarbonatite REE-minerals (e g Kapustin 1980Hogarth et al 1985 Andersen 1986 Wall andMariano 1996) Selected average microprobeanalyses of Khibina synchysite-(Ce) made onminerals from different mineral assemblages arepresented in Table 7 Synchysite-(Ce) is char-acterized by having little substitution of otherelements for Ca and REE Primary synchysite-(Ce) from syntaxial intergrowths secondarysynchysite-(Ce) from the alteration products ofburbankite carbocernaite and syntaxial inter-growths of synchysite-(Ce) with parisite-(Ce) allhave similar chemical compositions Sr Ba and Thare typical minor constituentsin all the synchysite-(Ce) and Fe is present in the red variety associatedwith manganoan ankerite or ferroan kutnohorite

Parisite-(Ce) and bastnasite-(Ce) (Table 8) arenear their theoretical compositions with onlyminor amounts of Sr and Ba substituting for Caand Th substituting for REE

Syntaxial intergrowths of Ca-REE fluocarbo-nates are considered to be evidence for theirprimary origin the intergrowth being related tochanges in the chemical composition of the hostfluid (Ni et al 1993)

Ba-REE fluocarbonates

Ba-REE fluocarbonates are extremely rare incarbonatites Huanghoite-(Ce) is the onlymember of the group previously described froman unnamed Siberian carbonatite (Kapustin 1973)and from Qaqarssuk carbonatites (Knudsen1991) However cordylite-(Ce) kukharenkoite-

A N ZAITSEV ETAL

236

(Ce) and cebaite-(Ce) have all been identified atKhibina (Table 3)

Cordylite-(Ce) is known only from Greenland(Flink 1901) Mont Saint-Hilaire Canada (Chenand Chao 1975) and Bayan Obo China (Zhangand Tao 1986) Its occurrence at Khibina is thefirst documented occurrence which is certainlyfrom carbonatites Kukharenkoite-(Ce) is a newBa-REE fluocarbonate mineral which has beenfound in the Khibina carbonatites and fromVuoriyavri Kola Peninsula Mont Saint-Hilaireand the Saint-Amable sill Quebec Canada(Zaitsev et al 1996) The occurrence of

cebaite-(Ce) at Khibina is only the seconddocumented occurrence The first was fromBayan Obo (Zhang and Tao 1986)

There are no data on the chemical compositionof cordylite-(Ce) from carbonatites and our reportis the first for this mineral (Table 9) There arethree distinct chemical compositions of cordylite-(Ce) from Khibina Cordylite-(Ce) with low Caand Sr (Table 9) occurs in manganoan siderite-manganoan ankerite-natrolite veins (CZ III-1)where it forms tabular crystals which areassociated with strontianite and sometimeskukharenkoite-(Ce) High Ca and Sr cordylite-

TABLE 6 Chemical composition of ancylite-(Ce) at Khibina

Rock C II-1Sample 633B795 646001 646451

mean (8) sd mean (21) sd mean (24) sd

SrO 2397 1 25 21 70 1 19 20 65 1 63CaO 1 35 0 40 2 09 0 51 1 93 0 59BaO 0 59 0 09 0 85 0 24 0 85 0 25FeO 0 19 0 35 b d 0 20 0 30La2O3 1308 1 18 15 56 0 83 16 53 1 17Ce2O3 2340 1 04 23 46 1 09 23 59 0 89Pr2O3 1 94 0 11 1 74 0 14 1 69 0 12Nd2O3 5 35 0 52 4 42 0 38 4 34 0 33Sm2O3 0 29 0 06 0 28 0 05 0 23 0 04Gd2O3 0 14 0 13 0 17 0 09 b dThO2 0 53 0 20 b d b dF 2 15 0 30 1 83 0 34 1 19 0 17CO2 2344 23 32 23 07shy O=F2 0 90 0 77 0 50

Total 9551 94 66 93 77

Calculated to 2 (CO3)2shy groups

La 0 300 0 357 0 381Ce 0 532 0 534 0 539Pr 0 044 0 040 0 039Nd 0 119 0 098 0 097Sm 0 006 0 006 0 005Gd 0 003 0 004Th 0 008

Total 1 012 1 038 1 061

Sr 0 864 0 783 0 748Ca 0 090 0 139 0 129Ba 0 014 0 021 0 021Fe 0 010 0 010

Total 0 979 0 943 0 909

F 0 422 0 360 0 235

Na Mg Mn Y and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

237

(Ce) (Table 9) is observed in the same samples asmantles on crystals of low Ca and Sr cordylite-(Ce) and as abundant laths in the surroundingnatrolite and manganoan ankerite (Fig 4b) It hasalso formed as a secondary mineral duringcarbocernaite alteration Cordylite-(Ce) withmoderate Ca and Sr (Table 9) occurs in ferroanrhodochrosite-manganoan ankerite carbonatites(C II-3) and is associated with strontianite

The atomic proportions of Na-Ca and REE-Srpairs show a negative correlation with a slopenear shy 1 and a plot of Na+REE vs Ca+Sr (Fig 5)shows a trend in composition from Sr-Ca-poor toSr-Ca-rich cordylite-(Ce) The slope of thiscorrelation suggests a 11 exchange of Na andREE for Ca and Sr with a substitution scheme ofNa+ + REE3+ Ca2+ + Sr2+ On the basis of theseobservations a general formula for cordylite-(Ce)can be expressed as (NaCa)Ba(REESr)2(CO3)4FOur X-ray and IR data are identical for eachcompositional variety and also identical to thoseof lsquobaiyuneboite-(Ce)rsquo (Fu and Su 1988) whichis now recognized to be cordylite-(Ce) (JZemann personal communication 1996)

Kukharenkoite-(Ce) occurs in Khibina C II-2and C II-3 carbonatites and in carbonate-zeoliteveins (Table 3) It was described as a new mineralby Zaitsev et al (1996) The composition of thekukharenkoite-(Ce) (Zaitsev et al 1996) deter-

FIG 4 (a) BEI of syntaxial intergrowths of synchysite-(Ce) (grey) parisite-(Ce) (grey) and bastnasite-(Ce) (white) CII-2 manganoan ankerite-calcite carbonatite sample 633A414 1 (b) BEI of large crystals of low Ca and Sr cordylite-(Ce) pale grey in centre) associated with laths of high Ca and Sr cordylite-(Ce) (dark grey) and kukharenkoite-(Ce)

(white) CZ III-1 manganoan siderite-manganoan ankerite shy natrolite vein sample 60775

FIG 5 Atomic proportions of Na+REE vs Ca+Sr forcordylite-(Ce)

A N ZAITSEV ETAL

238

mined from electron microprobe analysis is BaO4893 SrO 0 42 MnO 026 Na2O 0 08 CaO0 05 La2O3 6 16 Ce2O3 15 12 Pr2O3 149Nd2O3 4 08 ThO2 0 10 and F 320 wt Theatomic ratios of Ba REE and F are near 211requiring 3 (CO3)

2shy groups per formula unit(calculated CO2 21 73 wt ) and the idealf o r m u l a f o r k u k h a r e n k o i t e - ( C e ) i sBa2REE(CO3)3F

The chemical composition of cebaite-(Ce) fromKhibina was determined by 18 electron micro-

probe analyses (Table 10) Although analysistotals are less then 100 calculated atomic ratiosfor Ba REE and F are near 322 and closelyc o r r e s p o n d t o a n i d e a l f o r m u l a o fBa3REE2(CO3)5F2 Cebaite-(Ce) contains minorSrO (101shy 261 wt ) CaO (033shy 118 wt)and ThO2 (0 49shy 126 wt) in addition rela-tively high MnO (up to 0 83 wt ) and FeO (up to0 61 wt ) were observed in some analyses Allcebaite-(Ce) crystals are unzoned See Table 3 formineralogical details

TABLE 7 Chemical composition of synchysite-(Ce) at Khibina

Rock C II-2 C II-3 C II-1 C II-1 C II-1Sample 633A414 1 604413 633485 5 603265 603165

syntaxial intergrowths secondary after burbankite secondary aftercarbocernaite

mean (8) sd mean (6) sd mean (9) sd mean (15) sd mean (4) sd

CaO 17 47 0 38 16 89 0 62 1618 070 16 08 0 88 17 23 033FeO bd 0 35 0 49 b d b d bdSrO 024 0 12 0 43 0 18 0 87 066 0 59 0 28 056 021BaO 009 0 05 0 15 0 04 0 12 007 0 06 0 05 011 006La2O3 16 54 0 42 13 06 0 58 1798 087 20 34 0 86 13 63 073Ce2O3 26 19 0 85 27 21 0 79 2591 065 25 77 0 50 25 26 085Pr2O3 215 0 12 2 53 0 07 1 94 011 1 78 0 08 258 010Nd2O3 614 0 44 7 90 0 22 5 54 027 4 53 0 41 969 086Sm2O3 038 0 06 0 62 0 10 0 38 004 0 31 0 07 068 038Y2O3 bd b d b d b d 011 009ThO2 bd 0 38 0 21 0 15 009 b d 017 014F 549 0 18 5 69 0 21 5 83 023 5 61 0 23 578 011CO2 28 12 27 81 2718 27 59 28 11shy O=F2 231 2 40 2 46 2 36 243

Total 10049 100 62 9961 100 30 101 46

Calculated to 2 (CO3)2shy groups

Ca 0975 0 953 0 934 0 915 0962Sr 0007 0 013 0 027 0 018 0017Ba 0002 0 003 0 002 0 001 0002Fe 0 015

Total 0984 0 985 0 964 0 934 0981

La 0318 0 254 0 357 0 398 0262Ce 0499 0 524 0 511 0 501 0481Pr 0041 0 049 0 038 0 034 0049Nd 0114 0 149 0 107 0 086 0180Sm 0007 0 011 0 007 0 006 0012Y 0003Th 0 005 0 002 0002

Total 0979 0 991 1 022 1 025 0990F 0904 0 948 0 994 0 943 0953

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

239

Y-rich carbonates mckelveyite-(Y) ewaldite anddonnayite-(Y)

A detailed description of these minerals fromKhibina Vuoriyarvi and Sallanlatvi is given byVoloshin et al (1990 1992) This was the firsttime that they had been documented in carbona-tites Mckelveyite-(Y) is the best-studied of thegroup at Khibina (Table 3)

Chemical compositions of mckelveyite-(Y) andewaldite from Kola carbonatites are represented by

three electron microprobe analyses of mckelveyite-(Y) from Vuoriyarvi carbonatites one from theSallanlatvi carbonatite and two analyses ofewaldite from Vuoriyarvi (Voloshin et al 19901992) However even these limited data showcompositional variation and three groups havebeen identified Na-free mckelveyite-(Y) Y-freeLREE-enriched mckelveyite and Y-free ewaldite

Five separate crystals of mckelveyite-(Y) wereanalysed from Khibina (Table 11) and areuniform in chemical composition The formula

TABLE 8 Chemical composition of parisite-(Ce) and bastnasite-(Ce) at Khibina

Rock C II-2 C II-3 C II-2Sample 633A4141 604413 633A414 1Mineral parisite-(Ce) bastnasite-(Ce)

mean (2) mean (5) sd mean (6) sd

CaO 9 72 9 29 1 03 084 0 29SrO 0 56 0 79 0 18 085 0 34BaO 0 07 0 30 0 29 008 0 05FeO 0 05 0 38 0 28La2O3 1963 15 96 0 72 26 35 0 99Ce2O3 3172 32 28 0 45 37 41 0 54Pr2O3 2 30 2 87 0 14 250 0 13Nd2O3 6 83 8 74 0 22 660 0 48Sm2O3 0 45 0 60 0 02 036 0 07Y2O3 0 10 0 22 0 12 bdThO2 b d 0 24 0 10 bdF 7 02 6 79 0 17 811 0 22CO2 2433 24 54 20 67shy O=F2 2 95 2 86 342

Total 9982 100 13 100 35

Calculated to 3 (CO3)2shy groups Calculated to 1 (CO3)

2shy groupCa 0 941 0 892 0033Sr 0 029 0 041 0018Ba 0 002 0 011 0001Fe 0 004 0 029

Total 0 976 0 972

La 0 654 0 527 0357Ce 1 048 1 057 0503Pr 0 076 0 094 0033Nd 0 220 0 280 0087Sm 0 014 0 018 0005Y 0 005 0 010Th 0 005

Total 2 017 1 992 1037

F 2 004 1 923 0942

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

240

of mckelveyite-(Y) is still the subject of debate Inthe original description Milton et al (1965) gavethe formula as Na19Ba40Ca11Sr02REE15U03

(CO3)9 5H2O Later Chao et al (1978) suggestedan isomorphous relationship between mckel-veyite-(Y) and donnayite-(Y) and gave theformula of NaCaBa3Y(CO3)6 3H2O In a recentstudy of mckelveyite-(Y) and ewaldite Voloshinet al (1990 1992) showed a similarity betweenthese two minerals and suggested that they areprobably polymorphs The formula of ewalditewas determined as (CaNaREE )(BaSr )(CO3)2 nH2O where part of the H2O is zeolitic

Chemical data from the Khibina mckelveyite-(Y) were calculated on the basis of the IMAaccepted formula NaCaBa3Y(CO3)6 3H2O (Table

11) Our data and those of Voloshin et al (1990)show significant substitutions the main one beingBa2+ Sr2+ which is related to the mckelveyite-(Y)-donnayite-(Y) pair where these minerals are Baand Sr end-members respectively The assignationof REE to two different sites in the mckelveyite-(Y) formula is problematic It is based on formulabalance and the REE chondrite-normalizeddistribution which is discussed below in thesection on lsquoRare earth patternsrsquo

Strontianite baryte barytocalcite edingtonite andharmotome

Minerals rich in Ba and Sr but with no REE arerepresented in the Khibina carbonatites by

TABLE 9 Chemical composition of cordylite-(Ce) at Khibina

Rock CZ III-1 C II-3 CZ III-1 CZ III-1 C II-1Sample 60775 6032646 6032515 60775 6031650Variety low Ca and Sr moderate Ca and Sr high Ca and Sr

mean (15) sd mean (17) sd mean (15) sd mean (10) sd mean (17) sd

Na2O 412 0 12 3 66 0 24 3 67 0 12 2 60 0 15 256 0 16CaO 073 0 18 1 54 0 31 1 50 0 08 3 82 0 18 410 0 26SrO 058 0 23 2 48 0 57 2 09 0 31 6 03 0 43 590 0 50BaO 22 28 0 33 22 29 0 51 22 32 0 32 23 02 0 25 23 11 0 36La2O3 994 0 36 10 46 0 38 11 82 0 53 7 58 0 30 11 49 0 51Ce2O3 24 46 0 43 23 82 0 68 22 18 0 28 20 26 0 38 17 90 0 67Pr2O3 241 0 18 1 85 0 24 1 69 0 25 2 19 0 27 145 0 30Nd2O3 747 0 49 5 88 0 31 5 70 0 41 6 97 0 49 536 0 54ThO2 011 0 17 0 13 0 14 0 12 0 16 0 13 0 12 013 0 16F 262 0 10 2 97 0 28 2 95 0 33 2 60 0 08 285 0 31CO2 24 92 25 16 24 78 25 77 25 75shy O=F2 110 1 25 1 24 1 10 120

Total 98 55 98 98 97 57 99 88 99 40

Calculated for 4 (CO3)2shy groups

Na 0945 0 821 0 837 0 579 0567Ca 0093 0 191 0 189 0 470 0501

Total 1038 1 012 1 026 1 049 1068

Ba 1032 1 011 1 028 1 036 1033La 0434 0 446 0 513 0 321 0483Ce 1058 1 008 0 954 0 851 0747Pr 0104 0 078 0 072 0 092 0060Nd 0315 0 243 0 239 0 286 0218Sr 0040 0 167 0 142 0 402 0390Th 0003 0 003 0 003 0 003 0003

Total 1954 1 945 1 923 1 955 1901

F 0981 1 088 1 096 0 946 1029

Fe Mn and Sm are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

241

strontianite baryte barytocalcite edingtonite andharmotome (Table 3) The first two minerals arecommon in late-stage carbonatites e g MountainPass (Olsen et al 1954) Vuoriyarvi SeblyavrSallanlatvi (Kapustin 1980) Sarnu-Dandali (Wallet al 1993) and Kangankunde (Wall andMariano 1996)

Barytocalcite is extremely rare in carbonatitesand has been described only from Vuoriyarvi andan unnamed Siberian carbonatite (Kapustin 1980)and possibly Chipman Lake (Platt and Woolley1990)

Edingtonite and harmotome are bariumzeolites Their occurrence at Khibina is the first

TABLE 10 Chemical composition of cebaite-(Ce) at Khibina

Rock CZ III-1Sample 6031435Analysis 14 24 25 29 30 33 Mean (18) Sd

Na2O 0 09 0 10 0 08 0 11 0 13 0 10 0 10 0 03CaO 0 40 1 18 0 47 0 61 0 52 0 70 0 61 0 21MnO 0 07 0 47 0 12 0 73 0 83 0 13 0 16 0 24FeO 0 45 0 13 b d 0 14 0 61 b d 0 16 0 19SrO 1 40 1 27 1 45 1 25 1 28 1 31 1 43 0 36BaO 43 93 40 51 42 19 42 09 42 59 42 93 42 77 1 84La2O3 5 30 7 28 6 71 5 58 5 48 5 72 5 67 0 52Ce2O3 13 59 14 33 14 52 14 66 13 66 14 91 14 45 1 16Pr2O3 1 54 1 69 1 83 1 78 1 51 1 81 1 63 0 19Nd2O3 6 15 5 69 5 99 6 32 5 70 5 34 5 54 0 48Sm2O3 0 60 0 61 0 50 0 38 0 42 0 34 0 48 0 11Eu2O3 0 17 0 18 b d 0 24 b d b d 0 07 0 11Gd2O3 0 59 0 66 0 53 0 49 0 40 0 37 0 50 0 13ThO2 0 99 0 51 0 49 0 92 1 07 0 99 0 92 0 22F 4 24 4 10 4 15 3 78 3 99 3 61 3 76 0 21CO2 21 57 21 79 21 41 21 79 21 65 21 41 21 42shy O=F2 1 78 1 73 1 75 1 59 1 68 1 52 1 58

Total 99 31 98 77 98 78 99 29 98 15 98 15 98 10

Calculated for 5 (CO3)2shy groups

Na 0 031 0 032 0 025 0 038 0 042 0 034 0 032Ca 0 073 0 212 0 085 0 111 0 095 0 130 0 114Mn 0 010 0 066 0 018 0 105 0 119 0 018 0 023Fe 0 064 0 018 0 020 0 087 0 023Sr 0 137 0 124 0 143 0 123 0 127 0 132 0 144Ba 2 915 2 659 2 802 2 805 2 855 2 926 2 900

Total 3 230 3 111 3 072 3 201 3 325 3 240 3 236

La 0 331 0 450 0 419 0 350 0 346 0 367 0 362Ce 0 841 0 878 0 900 0 911 0 854 0 948 0 914Pr 0 095 0 103 0 113 0 110 0 094 0 115 0 102Nd 0 372 0 340 0 362 0 384 0 348 0 332 0 342Sm 0 035 0 035 0 029 0 022 0 024 0 021 0 029Eu 0 010 0 011 0 014 0 004Gd 0 033 0 036 0 030 0 028 0 023 0 021 0 029Th 0 038 0 019 0 019 0 036 0 042 0 039 0 036

Total 1 755 1 872 1 873 1 855 1 730 1 843 1 819

F 2 268 2 174 2 221 2 033 2 159 1 986 2 057

Y Dy Er Yb and Lu are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

242

TABLE 11 Chemical position of mckelveyite-(Y) at Khibina

Rock CZ IIISample 6031435Point 1 2 4 5 9 10 Mean (12) sd

Na2O 3 12 3 05 3 21 3 10 3 33 3 14 3 19 0 10CaO 4 56 4 34 4 32 4 34 4 20 4 72 4 43 0 38MnO 0 06 b d b d b d b d 0 06FeO b d b d 0 64 b d 0 07 0 11 0 18 0 26BaO 29 43 29 89 28 47 28 73 29 69 27 13 28 97 0 98SrO 9 16 9 56 9 29 10 41 8 25 12 42 9 56 1 26Y2O3 6 39 6 33 5 32 7 02 5 84 8 42 6 44 0 93La2O3 1 22 1 22 1 60 0 85 1 84 0 96 1 34 0 34Ce2O3 1 93 1 79 2 43 1 17 2 96 1 77 2 18 0 65Pr2O3 0 22 0 22 0 15 0 30 0 24 0 15 0 22 0 06Nd2O3 0 69 0 77 0 91 1 11 0 71 0 37 0 84 0 24Sm2O3 0 81 0 87 0 81 0 89 0 85 0 20 0 78 0 23Eu2O3 0 49 0 64 0 50 0 36 0 60 0 34 0 47 0 10Gd2O3 2 15 1 94 2 18 2 05 2 32 1 05 2 02 0 38Dy2O3 2 39 2 40 2 97 2 29 2 83 2 00 2 48 0 29Er2O3 1 03 1 09 1 28 0 87 0 68 1 03 0 94 0 19Yb2O3 0 44 0 44 0 56 0 59 0 25 0 61 0 47 0 12ThO2 b d 0 17 b d b d b d b dF 0 18 0 15 b d b d 0 17 0 16 0 14 0 09CO2 25 71 25 70 25 86 25 81 25 71 26 72 25 93H2O 10 52 10 51 10 58 10 56 10 52 10 93 10 61shy O=F2 0 07 0 06 0 07 0 07 0 06

Total 100 43 101 01 101 07 100 44 100 98 102 24 101 13

Calculated to 6 (CO3)2shy and 3H2O groups

Na 1 000 0 984 1 000 1 000 1 000 0 978 1 000Ca 0 735 0 757 0 561 0 778 0 565 0 785 0 676Na 0 009 0 040 0 006 0 075 0 023La 0 075 0 075 0 099 0 052 0 113 0 057 0 082Ce 0 118 0 109 0 148 0 071 0 181 0 104 0 132Pr 0 013 0 013 0 009 0 018 0 014 0 009 0 013Nd 0 041 0 046 0 054 0 067 0 042 0 021 0 050Mn 0 009 0 008 0 000Fe 0 089 0 010 0 015 0 025

Total 1 000 1 000 1 000 0 992 1 000 1 000 1 000

Ba 1 923 1 950 1 865 1 884 1 941 1 707 1 880Sr 0 885 0 922 0 900 1 009 0 798 1 156 0 917Ca 0 080 0 017 0 212 0 185 0 026 0 110

Total 2 888 2 890 2 977 2 893 2 924 2 889 2 907

Y 0 567 0 561 0 473 0 625 0 518 0 719 0 567Sm 0 047 0 050 0 047 0 051 0 049 0 011 0 045Eu 0 028 0 036 0 029 0 021 0 034 0 018 0 026Gd 0 119 0 107 0 121 0 114 0 128 0 056 0 111Dy 0 128 0 129 0 160 0 123 0 152 0 104 0 132Er 0 054 0 057 0 067 0 045 0 036 0 052 0 049Yb 0 023 0 022 0 028 0 030 0 013 0 030 0 024Th 0 007

Total 0 965 0 969 0 925 1 009 0 930 0 990 0 954

F 0 092 0 081 0 088 0 082 0 071

Lu is below detection limit CO2 and H2O calculated by stoichiometry

REE-SR-BA MINERALS

243

TA

BL

E12

C

hem

ical

com

posi

tion

ofst

ront

iani

teat

Khi

bina

Roc

kC

II-2

CII

-3C

ZII

I-1

CII

-1C

II-1

CII

-1S

ampl

e63

3A4

141

604

413

060

325

15

646

451

060

336

364

600

1pr

imar

yst

ront

iani

teas

soci

ated

wit

hse

cond

ary

stro

ntia

nite

(aft

erbu

rban

kite

)as

soci

ated

wit

hsy

nchy

site

-(C

e)

sync

hysi

te-(

Ce)

cord

ylit

e-(C

e)an

cyli

te-(

Ce)

sync

hysi

te-(

Ce)

ancy

lite

-(C

e)an

dba

ryte

pari

site

-(C

e)an

dan

dpa

risi

te-(

Ce)

and

bary

tean

dba

ryte

bast

nasi

te-(

Ce)

mea

n(1

0)sd

mea

n(6

)sd

mea

n(3

)m

ean

(25)

sdm

ean

(4)

sdm

ean

(6)

sdm

ean

(4)

sdm

ean

(8)

sdco

rem

antl

eri

m

Na 2

Ob

db

db

d0

140

05b

d0

210

050

100

04b

dC

aO3

250

563

230

443

073

461

003

370

331

580

373

720

325

970

20S

rO66

21

068

668

00

5166

62

635

71

2664

34

051

682

00

6063

95

100

625

80

78B

aO0

190

170

160

070

221

610

471

630

150

720

290

830

092

000

57L

a 2O

3b

db

d0

160

480

20b

d0

620

120

330

060

150

04C

e 2O

30

180

120

110

110

570

610

240

190

080

760

160

420

050

250

05C

O2

307

930

99

310

530

71

305

131

11

306

931

99

Tot

al10

063

101

2910

169

100

5810

004

103

2010

004

102

94

Cal

cula

ted

to1

(CO

3)2

shygr

oup

Na

000

60

010

000

5C

a0

083

008

20

077

008

80

087

004

00

095

014

6S

r0

913

091

50

911

087

90

895

093

10

885

083

1B

a0

002

000

10

002

001

50

015

000

70

008

001

8L

a0

001

000

40

005

000

30

001

Ce

000

20

001

000

50

005

000

20

007

000

40

002

Tot

al0

999

100

00

997

099

80

999

099

90

999

099

8

Mg

Mn

Fe

Pr

Nd

Sm

Y

T

han

dU

are

belo

wde

tect

ion

lim

its

CO

2ca

lcul

ated

byst

oich

iom

etry

A N ZAITSEV ETAL

244

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 3: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

youngest CII-3 carbonatites However someferrocarbonatites contain more Mn than Fe andthey can be classified as manganocarbonatiteswith CaO(CaO + MgO + FeO + Fe2O3 + MnO)less than 08 MgOlt(FeO+MnO) and MnOgtFeO(Table 1 and Fig 1b) The manganocarbonatitescontain up to 128 wt MnO and contain Mn-bearing carbonates such as manganoan ankeriteferroan kutnohorite ferroan rhodochrosite andmanganoan siderite (Zaitsev 1996) Other

unusual chemical characteristics of the Khibinacarbonatites include the following

1 Some carbonatites contain burbankite orcarbocernaite (C II-1) and are characterized byhigh Na contents (1 20shy 494 wt Na2O) butcontain no Na-bearing silicates such as pyroxeneamphibole or feldspar

2 Synchysite-(Ce)-bearing carbonatites(C II-2) have high F contents (0 76 shy 128 wt)whereas other late carbonatites (C II-1 and C II-3)

TABLE 1 Representative whole-rock and trace element analyses of the Khibina carbonatites

Rock C I C I C II-1 C II-1 C II-2 C II-2 C II-3 C II-3Sample 632B1934 632B1960 633477 7 6031655 604454 603225 60389 60490

SiO2 wt 4 81 3 68 0 64 0 19 0 44 0 87 188 2 09TiO2 0 64 0 22 0 03 0 02 0 01 0 04 002 0 08Al2O3 0 88 0 49 0 25 0 06 0 10 0 29 069 0 70FeOT 4 99 3 02 3 79 2 29 5 64 8 09 19 14 22 97MnO 0 37 0 39 1 56 0 85 5 86 11 39 12 78 12 60MgO 1 20 0 97 0 41 0 35 2 05 3 72 397 2 35CaO 46 50 45 95 32 52 35 12 2870 24 59 12 13 18 40Na2O 0 36 0 59 3 09 1 68 0 14 0 22 021 0 25K2O 1 45 0 38 0 09 0 05 0 12 0 03 055 0 69P2O5 1 25 1 67 0 02 0 04 0 09 0 08 011 0 91S 0 32 0 20 0 73 0 53 0 74 0 41 159 1 12F 0 09 0 19 0 06 0 41 0 84 1 03 021 0 12Cl 0 01 0 01 0 02 0 01 0 01 0 03 002 0 01shy O=SF2Cl2 0 20 0 18 0 39 0 44 0 73 0 65 088 0 61

Total 64 79 59 57 61 02 62 92 5821 62 19 58 16 65 16

Rb ppm 37 25 bd bd bd bd 5 9Ba 1343 1268 13102 10205 11380 10990 28374 1280Th 13 10 127 103 44 17 84 76Nb 416 515 bd 10 15 28 112 86La 437 492 28384 35565 18589 22891 2540 4064Ce 955 1078 37990 50727 31341 37558 6823 8868Sr 13449 12307 63819 73004 20495 16174 5533 7017Nd 403 418 7969 10620 6395 8852 2814 3099Zr 184 135 bd 5 bd bd 7 20Y 62 44 113 137 98 52 43 102Sc 40 8 56 28 21 32 19 21V 96 112 bd 14 25 bd 201 156Cr 22 40 bd 15 10 bd 286 4Co 20 18 23 14 19 bd 40 4Cu 34 27 76 39 28 47 84 45Ni 4 6 24 18 20 24 15 16Zn 76 44 57 120 995 2354 1850 3073

FeOT - total iron as FeO - including trace elements as oxides bd - below detectionWhole-rock analyses were made on fusion beads for major elements and powder pellets for trace-elements by X-rayfluorescence analysis at the University of Leicester using a Philips PW1400 X-ray spectrometer CO2 and H2O notanalysed

REE-SR-BA MINERALS

227

have low F contents However the intensivefluoritization of wall rocks around the carbona-tites which now have low amounts of F suggeststhat the initial F content was higher

3 The late carbonatites (C II) have high BaO(0 81 shy 3 22 wt ) SrO (061 shy 8 65 wt ) andlight REE (1 25shy 1135 wt La2O3 + Ce2O3 +Nd2O3) and these elements become majorcomponents of these carbonatites

Multi-element variation diagrams for theKhibina carbonatite samples (Fig 2) normalizedto primordial mantle of Wood et al (1979) showthat the general chemical features of the Khibinacarbonatites are similar to those described formost carbonatites (e g Nelson et al 1988 Clarkeet al 1992) The early calcite carbonatites (C I)have comparable element variation patterns toaverage data for the calciocarbonatites of Woolleyand Kempe (1989) although the Khibina samplesshow slightly higher Sr (Fig 2a) The Sr is hostedby calcite which contains 1 1 shy 18 wt SrO(Zaitsev 1996)

The element variation patterns for the latecarbonatites C II (Fig 2b) suggest that thesecarbonatites have undergone fractional crystal-lization similar to that shown by Clarke et al(1992) The plot shows a depletion in La Ce Ndand Sr normalized values from the relativelyearly-formed calcite carbonatites with burbankiteor carbocernaite (C II-1) to the late manganoanankerite-calcite carbonatites with synchysite-(Ce)(C II-2) and to the latest ferroan rhodochrosi-teshy manganoan siderite carbonatites with synchy-site-(Ce) or cordylite-(Ce) (C II-3)

Although the normalized Ba values are similarin the C II-1 and C II-2 carbonatite types theyshow wide variation in C II-3 carbonatites Someof the C II-3 carbonatites are depleted in Bacompared to C II-1 and C II-2 types and theycontain synchysite-(Ce) as a minor or accessorymineral However most of C II-3 carbonatites areenriched in Ba and contain cordylite-(Ce) as amajor mineral

Analytical methods

The identification and description of REE-Sr-Baminerals is often difficult due to their complexchemical compositions with a wide variety ofsolid solutions and some polymorphs As a resultthey have variable physical properties infra-redand X-ray diffraction patterns Other difficultiesarise from the limitations of electron microprobeanalysis including the inability to determine H2O

and CO2 loss of Na and F under the electronbeam and the high interference corrections for Baand the REE In addition RE mineral dataavailable from the literature are commonlyincomplete and sometimes inconsistent Thesefacts prompted us to use as many differenttechniques as possible for the mineralogicalinvestigation of the REE-Sr-Ba minerals fromthe Khibina carbonatites

Identification of minerals was based on opticalexamination IR-spectroscopy (UR-20 Carl Zeissspectrophotometer) and X-ray diffraction (RKUcamera - 57 3 mm diameter and Fe-Ka radiation1146 mm diameter and Cr-Ka radiation)Electron microprobe analyses were made using aCameca SX 50 wavelength-dispersive electronmicroprobe at The Natural History MuseumLondon after preliminary work had been carried

FIG 2 Multi-element variation diagrams for (a) earlyand (b) late Khibina carbonatites normalized toprimordial mantle of Wood et al (1979) Calcio- andferrocarbonatites are average values from Woolley and

Kempe (1989)

A N ZAITSEV ETAL

228

out on a Hitachi S2500 scanning electronmicroscope equipped with a Link AN1055Senergy-dispersive analysis system The Camecawas operated at 15 kV and 10shy 20 nA with spotsizes as large as possible up to 30 mm in order tominimize beam damage Individual REE calciumaluminium silicate glasses obtained from theUniversity of Edinburgh were used as standardsfor the REE jadeite was used for Na wollastoniteand apatite for Ca celestine for Sr and bariumfluoride for Ba and F Detailed information aboutconditions of microprobe analyses is availablefrom Williams (1996)

Mineralogy and mineral chemistry

At least 17 minerals containingREE Sr andor Baas major elements have been identified in the latecarbonatites (C II) and the carbonate-zeoliterocks(CZ III) (Table 2) The mineralogy and paragen-esis of these and the associated minerals issummarized in Table 3 This table also shows thesequence of formation of phoscorites carbonatitesand carbonate-zeoliterocks in the Khibina massif

Alkaline Sr-Ca-REE-Ba carbonates burbankite andcarbocernaite

The alkaline Sr-Ca-REE-Ba carbonates burban-kite and carbocernaite are rock-forming mineralsin the calcite carbonatites (C II-1) (Table 3) Fieldrelationships show that the carbonatites withburbankite and carbocernaite are the earliest ofthe C II group of carbonatites (Zaitsev 1996)

Burbankite a rare mineral known from severalcarbonatite complexes always occurs in late-stage carbonatites It has been described from theBearpaw Mountains (Pecora and Kerr 1953)Vuoriyarvi (Kukharenko et al 1965 Kapustin1980) Ozernyi (Zdorik 1966) Arbarastakh(Zhabin et al 1971) Nizhnesayanskii (Somina1975) Chipman Lake (Platt and Woolley 1990)and Qaqarssuk (Knudsen 1991)

Burbankite is a double carbonate with thegeneral formula A3B3(CO3)5 where the A-site isoccupied by Na and Ca and the B-site contains SrREE Ba and Ca (Effenberger et al 1985) Thereare only seven wet chemical analyses ofburbankite from carbonatites made more than25 years ago (Pecora and Kerr 1953 Kukharenkoet al 1965 Zdorik 1966 Zhabin et al 1971Kapustin 1980) and twelve electron microprobeanalyses published recently (Effenberger et al 1985 Platt and Woolley 1990 Knudsen 1991)

These data show a large variation in major oxidesNa2O (4 04 shy 13 89 wt ) SrO (6 17 shy 32 60wt ) CaO (9 81 shy 21 09 wt ) SREE2O3

(2 50 shy 23 00 wt ) and BaO (1 85 shy 14 60wt) Wet chemical analyses of burbankite canshow high contents of Si Al and S but these areprobably the result of admixtures Publishedmicroprobe analyses have high cation deficienciesin the A-site (up to 065 per formula unit)attributed to the loss of Na under the electronbeam (Platt and Woolley 1990) or have hightotals with calculated CO2 (108 26 shy 11349 wt)(Knudsen 1991) which also indicate possibleanalytical problems

Average chemical compositions of the Khibinaburbankite determined by wet chemical analysisof 2 g of pure hand-picked burbankite andapproximately 40 electron microprobe analysesare given in Table 4 The wet chemical andmicroprobe results are in good agreement andindicate that the burbankite is relatively low in Bacompared with other carbonatites The one

TABLE 2 Minerals containing REE Sr andor Ba asmajor elements identified in Khibina late carbo-natites (C II) and carbonate-zeolite rocks (CZ III)

Mineral Formula

burbankite (NaCa)3(SrBaCe)3(CO3)5carbocernaite (NaCa)(SrCeBa)(CO3)2

ancylite-(Ce) SrCe(CO3)2(OH) H2O

synchysite-(Ce) Ca(CeLa)(CO3)2Fparisite-(Ce) Ca(CeLa)2(CO3)3F2

bastnasite-(Ce) (CeLa)(CO3)F

cordylite-(Ce) Ba(CeLa)2(CO3)3F2

cebaite-(Ce) Ba3(CeLa)2(CO3)5F2

kukharenkoite-(Ce) Ba2Ce(CO3)3F

mckelveyite-(Y) Ba3Na(CaU)Y(CO3)6 3H2Oewaldite Ba(CaYNaK)(CO3)2donnayite-(Y) Sr3NaCaY(CO3)6 3H2O

edingtonite BaAl2Si3O10 4H2Oharmotome (BaK)1shy 2(SiAl)8O16 6H2O

strontianite SrCO3

baryte BaSO4

barytocalcite BaCa(CO3)2

REE-SR-BA MINERALS

229

TA

BL

E3

Min

eral

ogy

and

para

gene

sis

ofK

hibi

naR

EE

-Sr-

Ba

min

eral

s

BA

Aph

osco

rite

-bio

tite

-aeg

irin

e-ap

atite

No

prim

ary

rare

eart

hm

iner

als

CI

earl

yca

lcit

eca

rbon

atit

eN

opr

imar

yra

reea

rth

min

eral

s

CII

-1la

teca

lcit

eca

rbon

atit

ew

ithbu

rban

kite

orca

rboc

erna

ite

Prim

ary

phas

es

Bur

bank

ite

10shy

50

volu

me

yell

ow-b

row

nin

fres

hly

brok

enha

ndsp

ecim

ens

Usu

ally

larg

ehe

xago

nal

pris

mat

iccr

ysta

ls(5

shy50

mm

long

61

shy25

mm

diam

eter

)S

omet

imes

grow

infr

om

and

abou

tpe

rpen

dicu

lar

to

the

cont

act

ofth

eve

ins

Dis

trib

utio

nis

hete

roge

neou

sA

lso

asdr

op-l

ike

incl

usio

ns(3

0shy

200

m m)

inca

lcit

eas

soci

ated

wit

heu

hedr

alzo

ned

apat

ite

(Fig

3a

)

Car

boce

rnai

te10

-50

volu

me

NB

do

esno

toc

cur

wit

hbu

rban

kite

L

emon

yell

owin

hand

spec

imen

Is

omet

ric

grai

ns1

shy5

mm

diam

eter

indi

stin

ctcl

uste

rs

Alt

erat

ion

Eit

her

oftw

oal

tera

tion

asse

mbl

ages

can

com

plet

ely

pseu

dom

orph

burb

anki

te

pres

ervi

ngit

spr

ism

atic

he

xago

nal

crys

tal

form

(Fig

3b

)1)

Rep

lace

men

tass

embl

age

ofan

cyli

te-(

Ce)

str

onti

anit

ean

dle

ssof

ten

bary

tean

dra

rely

harm

otom

ean

ded

ingt

onit

eA

llst

ages

ofal

tera

tion

seen

fro

msi

ngle

fine

vein

s(5

shy20

m m)

ofan

cyli

te-(

Ce)

inbu

rban

kite

(Fig

3d

)to

poro

usag

greg

ates

ofan

cyli

te-(

Ce)

and

stro

ntia

nite

com

plet

ely

repl

acin

gbu

rban

kite

A

ncyl

ite-

(Ce)

usua

lly

aspi

nkto

red

anhe

dral

crys

tals

upto

4m

mbu

tal

soso

me

euhe

dral

crys

tals

and

zone

dst

ront

iani

tein

cavi

ties

2)

Por

ous

aggr

egat

esof

sync

hysi

te-(

Ce)

st

ront

iani

tean

dba

ryte

B

urba

nkit

ere

lics

seen

inst

ront

iani

tecr

ysta

lsan

dal

soin

sync

hysi

te-(

Ce)

and

bary

te

Fig

3c

Car

boce

rnai

teis

ofte

npa

rtly

repl

aced

bypo

rous

aggr

e-ga

tes

ofst

ront

iani

te

cord

y-li

te-(

Ce)

sy

nchy

site

-(C

e)an

dba

ryte

C

arbo

cern

aite

usua

lly

pres

erve

din

cent

ral

part

sof

the

form

ercr

ysta

ls

Stro

ntia

nite

usua

lly

colo

urle

ssan

hedr

alcr

ysta

lsbu

tal

soas

pris

mat

iczo

ned

crys

tals

upto

2m

m

Bar

yte

usua

lly

colo

urle

ss

anhe

dral

0

1shy

1m

mgr

ains

Edi

ngto

nite

and

harm

otom

esp

heru

liti

cag

greg

ates

onan

cyli

te-(

Ce)

orst

ront

iani

te

A N ZAITSEV ETAL

230

TA

BL

E3

(con

td)

CII

-2la

tem

anga

noan

anke

rite

-cal

cite

carb

onat

ite

with

sync

hysi

te-(

Ce)

Prim

ary

phas

es

Syn

taxi

alin

terg

row

ths

(Don

nay

and

Don

nay

1953

)of

sync

hysi

te-

(Ce)

par

isit

ean

dba

stna

site

-(C

e)(F

ig

4a)

Inte

rgro

wth

sar

eve

ryfi

nendash

1shy

20m m

wid

ean

d50

shy50

0m m

long

A

ssoc

iate

dw

ith

stro

ntia

nite

Syn

chys

ite-

(Ce)

whi

chis

not

inte

rgro

wn

isa

maj

orro

ck-f

orm

ing

min

eral

W

hite

yel

low

(usu

ally

wit

hca

lcit

e)or

red

(usu

ally

wit

hfe

rroa

nku

tnoh

orit

e)ta

bula

rcr

ysta

ls

01

shy3

m mdi

amet

er

Oft

enir

regu

lar

tora

diat

ing

agre

gate

s

Kuk

hare

nkoi

te-(

Ce)

as

late

-sta

ge0

01shy

1m

mpr

ism

atic

crys

tals

inti

nyca

viti

es

Oft

enas

stel

late

de

ndri

tic

orir

regu

lar

inte

rgro

wth

sup

to3

mm

diam

eter

R

arel

yas

anhe

dral

00

5shy

02

mm

grai

nsor

plat

y0

1shy

2m

mcr

ysta

lsA

ssoc

iate

dw

ith

cord

ylit

e-(C

e)

stro

ntia

nite

an

dra

rely

mck

elve

yite

-(Y

)

Stro

ntia

nite

usua

lly

occu

rsas

colo

urle

ss

subh

edra

lcr

ysta

lsup

to2

mm

diam

eter

CII

-3la

teca

rbon

atit

es-f

erro

anrh

odoc

hros

ite-m

anga

noan

anke

rite

with

sync

hysi

te-(

Ce)

orco

rdyl

ite-

(Ce)

Prim

ary

phas

es

Sync

hysi

te-(

Ce)

som

etim

espr

esen

tin

fine

synt

axia

lin

terg

row

ths

wit

hpa

risi

te-(

Ce)

C

ordy

lite

-(C

e) i

sa

typi

cal

min

eral

W

hite

orye

llow

tabu

lar

crys

tals

0

1shy

1m

man

dso

met

imes

upto

5m

m

eith

ersi

ngle

orin

aggr

egat

es

Mck

elve

yite

-(Y

)ew

aldi

te

and

don-

nayi

te-(

Y)

inca

viti

es

Yel

low

orw

hite

crys

tals

va

riou

sha

bits

from

tabu

lar

colu

mna

rto

barr

el-s

hape

dS

ome

crys

tals

are

hem

imor

phic

Stro

ntia

nite

pr

imar

yu

sual

lyco

lou

rles

ssu

bhed

ral

crys

tals

upto

2m

m

Kuk

hare

nkoi

te-(

Ce)

(See

abov

e)E

ding

toni

tean

dha

rmot

ome

are

com

mon

acce

ssor

ym

iner

als

Usu

ally

eu

hedr

alcr

ysta

ls

upto

2m

m

inca

viti

es

Alt

erat

ion

Vei

n-li

keag

greg

ates

ofsy

nchy

site

-(C

e)

stro

ntia

nite

ba

ryte

and

bast

nasi

te-(

Ce)

repl

ace

the

synt

axia

lin

terg

row

thin

som

ero

cks

Stro

ntia

nite

us

uall

yco

l-ou

rles

san

hedr

alcr

ysta

lsB

aryt

eus

uall

yco

lour

less

an

he-

dral

0

1shy

1m

mgr

ains

REE-SR-BA MINERALS

231

TA

BL

E3

(con

td)

CZ

III-

1ca

rbon

ate-

zeol

ite

vein

s-m

anga

noan

side

rite

-man

gano

anan

keri

te-n

atro

lite

Sync

hysi

te-(

Ce)

som

etim

espr

esen

tC

ordy

lite

-(C

e)is

aty

pica

lm

iner

al

Whi

teor

yell

owta

bula

rcr

ysta

ls

01

shy1

mm

and

som

etim

esup

to5

mm

ei

ther

sing

leor

inag

gre-

gate

s2

vari

etie

s(F

ig

4b)

Ceb

aite

-(C

e)

foun

din

cavi

ties

asye

llow

w

hite

orco

lour

less

crys

tals

upto

02

mm

D

endr

itic

st

ella

teor

irre

gula

rin

terg

row

ths

Co

mm

on

lyas

soci

ated

wit

hm

ckel

veyi

te-(

Ce)

co

rdyl

ite

and

stro

ntia

nite

Mck

elve

yite

-(Y

)ew

al-

dite

and

donn

ayit

e-(Y

)se

eab

ove

Edi

ngto

nite

and

har-

mot

ome

com

mon

ac-

ce

sso

rym

ine

rals

U

sual

ly

euhe

dral

crys

-ta

ls

upto

2m

m

inca

viti

es

Kuk

hare

nkoi

te-(

Ce)

(See

abov

e)St

ront

iani

tew

ith

cord

ylit

e-(C

e)

prim

ary

Bar

yte

ofte

nsh

ort

pris

mat

iccr

ysta

lsin

cavi

ties

CZ

III-

2ca

rbon

ate-

zeol

ite

vein

s-m

anga

noan

side

rite

-nor

dstr

andi

te-n

atro

lite

Co

rdyl

ite-

(Ce)

isa

lsquotyp

ical

rsquom

iner

al

Whi

teor

yell

owta

bula

rcr

ysta

ls

01

shy1

mm

and

som

e-ti

mes

upto

5m

m

eith

ersi

ngle

orin

aggr

egat

es

Mck

elve

yite

-(Y

)ew

aldi

tean

ddo

nnay

ite-

(Y)

Bar

ytoc

alci

te

euhe

dral

orsu

b-he

dral

1

shy2

mm

whi

tecr

ysta

lsin

cavi

ties

Id

enti

fica

tion

base

don

XR

Dan

dIR

spec

tra

Stro

ntia

nite

wit

hco

r-dy

lite

-(C

e)

prim

ary

Bar

yte

ofte

nsh

ort

pr

ism

atic

crys

tals

inca

viti

es

CZ

III-

3ca

rbon

ate-

zeol

ite

vein

s-na

trol

ite-

man

gano

ansi

deri

te-d

awso

nite

Mck

elve

yite

-(Y

)ew

aldi

tean

ddo

nnay

ite-

(Y)

Stro

ntia

nite

wit

hco

rdyl

ite-

(Ce)

pr

imar

yB

aryt

eof

ten

shor

tpr

ism

atic

crys

tals

inca

viti

es

A N ZAITSEV ETAL

232

exception (sample 633B79 5) has 6 65 wtBaO There is no zoning in Khibina burbankitecrystals and the compositions are also uniformwithin each rock sample

There are two morphological types of burban-kite large prismatic crystals and small drop-likeinclusions within calcite crystals and along theirboundaries (Fig 3a Table 3) Although theircompositions are the same (Table 4) the

difference in morphology suggests they mayhave formed by different processes Largeeuhedral prismatic crystals could have crystal-lized at an early stage of carbonatite formationand sometimes large burbankite crystals areobserved near the contact of veins that arecharacterized by a crustification texture (vein-filling) The drop-like burbankite inclusions incalcite probably did not form by exsolution of

TABLE 4 Chemical composition of burbankite at Khibina

Rock C II-1Sample 607277 633477 7 6334777 581013 633B79 5

large crystal drop-like inclusion large crystal large crystalmean (9) sd mean (4) sd mean (10) sd mean (9) sd

Na2O 12 45 11 93 0 13 11 80 0 27 1260 0 44 12 03 0 85CaO 12 60 11 94 0 53 12 57 0 54 1020 0 49 10 08 1 22SrO 19 60 24 74 0 31 24 57 0 38 1838 0 61 17 71 0 92BaO 0 78 1 76 0 12 1 86 0 04 2 52 0 49 6 65 0 47La2O3 5 20 5 65 0 14 5 11 0 25 7 05 0 30 4 77 0 26Ce2O3 9 91 7 15 0 16 6 97 0 28 1106 0 41 9 26 0 43Pr2O3 0 64 0 47 0 04 0 47 0 05 0 80 0 10 0 88 0 07Nd2O3 1 53 1 24 0 10 1 33 0 03 2 53 0 28 3 11 0 31Sm2O3 0 05 b d b d 0 31 0 11 0 39 0 12Gd2O3 b d b d b d b d 0 20 0 07ThO2 n d b d b d b d 0 16 0 10CO2 35 40 34 68 34 79 3421 33 38

Total 99 76 99 56 99 47 9966 98 62

Calculated to 5 (CO3)2shy groups

Na 2 508 2 442 2 408 2 615 2 558Ca 0 338 0 498 0 529 0 267 0 345A site total 2 846 2 941 2 937 2 882 2 903

Sr 1 181 1 514 1 499 1 141 1 126Ca 1 065 0 852 0 889 0 903 0 840La 0 199 0 220 0 198 0 278 0 193Ce 0 377 0 276 0 268 0 433 0 372Pr 0 024 0 018 0 018 0 031 0 035Nd 0 056 0 047 0 050 0 097 0 122Sm 0 003 0 011 0 015Gd 0 007Ba 0 032 0 073 0 077 0 106 0 286Th 0 004B site total 3 000 3 000 3 000 3 000 3 000C 5 021

Sample 607277 - wet chemical analysis other samples - electron microprobe analysessd - standard deviation - including MgO 0 02 K2O 0 02 MnO 007 FeO 0 42 SiO2 020 F 0 04 and H2O 0 85 all wt - including Mn 0 006 Fe 0 037 and Si 0 021b d - below detection limits Mg Mn Fe Y and F are below detection limits in the microprobe analyses CO2 inmicroprobe analyses calculated by stoichiometry n d ndash not determined

REE-SR-BA MINERALS

233

FIG 3 Backscattered electron images (BEI) of (a) large crystals and drop-like inclusions of burbankite (white) incalcite (black) (b) a contact print of a thin section containing a pseudomorph of synchysite-(Ce) strontianite andbaryte after burbankite The width of the burbankite pseudomorph is 9 mm C II-1 calcite carbonatite sample 603265 (c) zoned altered burbankite (grey and dark-grey) with ancylite-(Ce) veins (white) C II-1 calcite carbonatite

sample 633B79 5 (d) relics of burbankite (dark grey) in strontianite (grey) and synchysite-(Ce) (white)

A N ZAITSEV ETAL

234

burbankite from calcite rich in Na Sr and REE asmight be thought at first from Fig 3a and asproposed for a similar occurrence by Knudsen(1991) because the burbankite crystals areassociated with euhedral zoned apatites Theyare more likely to be the result of lsquocotecticrsquocrystallization of burbankite and calcite after theprecipitation of the apatite

Carbocernaite has been found in many Khibinacarbonatite samples (Table 3) It was describedoriginally as a primary mineral crystallized at alate stage of carbonatite formation at VuorijarviKola Peninsula (Bulakh et al 1961) Zdorik(1966) and Kapustin (1980) found that carbocer-naite in carbonatites from the Ozernyi andVuoriyarvi massifs occurs as a secondarymineral after burbankite The most unusualoccurrence of carbocernaite is the exsolutionlamellae and cotectic textures for carbocernaiteand calcite in Sarnu-Dandali carbonatitedescribed by Wall et al (1993) Carbocernaite isalso reported from carbonatite in the Si PanRange Vietnam (Bulakh and Izokh 1966)

Carbocernaite like burbankite is a doublecarbonate with a general formula AB(CO3)2 withNa and Ca in the A-site and Sr REE and Ba in theB-site There are few studies of the chemicalcomposition of carbocernaite Before the detailedinvestigation of Wall et al (1993) only a few wetchemical analyses were published (Bulakh et al 1961 Bulakh and Izokh 1966 Zdorik 1966Kapustin 1980) Although available data forcarbocernaite show some variation in thecontent of major elements there is less variationthan in burbankite The Na2O values range from243 to 612 wt the BaO from 095 to 596 theSrO from 558 to 2398 the CaO from 1593 to1927 and the SREE2O3 from 17 06 to 2631 allwt In general the compositional variations inburbankite and carbocernaite are similar butcarbocernaite contains less Na2O (commonlyabout 4 shy 5 wt ) compared with burbankite(commonly about 10 shy 12 wt ) This differencein sodium content makes it possible to identifycarbocernaite and burbankite on the basis ofelectron microprobe analyses

Selected average compositions of carbocernaitefrom Khibina are given in Table 5 These datashow that carbocernaite from the Khibinacarbonatites is a low Ba variety Khibinacarbocernaite like burbankite is not zoned

Harris (1972) reported high F (3 86 wt ) incarbocernaite from Sturgeon Narrows Canadaand proposed that F together with OH could be

additional anion group (FOH)2 in the mineralformula Our data show that the F content ofKhibina carbocernaite is near the electron micro-probe detection limit of about 0 1 wt and IRinvestigations show an absence of any absorptionband related to OH- group or H2O It is possiblethat the mineral described from the SturgeonNarrows is a different mineral species The lackof Na in Sturgeon Narrows carbocernaite alsosupports our conclusion

In the Khibina carbonatite samples burbankiteand carbocernaite do not occur together so it hasnot been possible to establish their relative agesHowever both burbankite and carbocernaite-containing carbonatites are cut by later C II-2and C II-3 carbonatites

TABLE 5 Chemical composition of carbocernaite atKhibina

Rock C II-1Sample 603165 603287

mean (12) sd mean (10) sd

Na2O 4 98 0 18 4 33 0 42CaO 11 94 0 42 1360 0 33SrO 22 33 0 76 2020 0 27BaO 0 37 0 13 0 56 0 07La2O3 9 27 0 61 1053 0 33Ce2O3 13 19 0 51 1419 0 30Pr2O3 0 97 0 09 0 94 0 08Nd2O3 2 34 0 25 2 56 0 19Sm2O3 0 14 0 05 0 32 0 04F 0 10 0 10 0 14 0 03CO2 32 79 3379shy O=F2 0 04 0 06

Total 98 36 10110

Calculated to 2 (CO3)2shy groups

Na 0 431 0 364Ca 0 571 0 632A site total 1 003 0 996

Sr 0 578 0 508La 0 153 0 168Ce 0 216 0 225Pr 0 016 0 015Nd 0 037 0 040Sm 0 002 0 005Ba 0 007 0 010B site total 1 008 0 971F 0 014 0 019

Mg Mn Fe Gd Y Th and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

235

Alteration of burbankite and carbocernaite

Burbankite in carbonatites is commonly replacedby ancylite-(Ce) strontianite and baryte (Somina1975 Kapustin 1980) and rarely by ancylite-(Ce)calkinsite lanthanite and baryte (Pecora and Kerr1953) Multi-stage alteration of burbankite fromthe Ozernyi carbonatites has been documented byZdorik (1966) where carbocernaite strontianitebastnasite-(Ce) calcite baryte allanite-(Ce)monazite-(Ce) and epidote have been identifiedas alteration products of burbankite

In the Khibina carbonatites burbankite andcarbocernaite are commonly replaced by variouscombinationsof ancylite-(Ce) strontianite synch-ysite-(Ce) baryte less commonly by cordylite-(Ce) and rarely by harmotome and edingtonite(Table 3) Even when burbankite is completelyreplaced evidence of its existence is preserved inthe form of hexagonal prismatic pseudomorphs(Fig 3b) and islands of relict burbankite (Fig 3cand d) Pseudomorphs of a similar form have beenmentioned from some other rare earth-richcarbonatites e g Gem Park Wigu HillKangankunde (Wall and Mariano 1996) but inthese cases there is no evidence of the precursormineral The presence of primary and replacedburbankite at Khibina is good evidence that thepseudomorphs reported from these other carbo-natites may well have originally been burbankite

Ancylite

Ancylite-(Ce) is a hydrous carbonate containingREE and Sr as major cations On the basis of astructural study of material from the Mont Saint-Hilaire massif its formula has been proposed asREEx(SrCa)2 shy x(CO3)2(OH)x (2 shy x)H2O with acation-anion substitution of Sr2+ + H2O gtREE3+ + OH shy (Dal Negro et al 1975)Although ancylite-(Ce) is a relatively commonmineral in carbonatites there are only a fewanalyses available (Kukharenko et al 1965Kapustin 1980 Knudsen 1991) and this is thefirst detailed investigation of its chemicalcomposition Selected average chemical composi-tions are given in Table 6 The composition ofancylite-(Ce) from Khibina is relatively uniformwith Ca Ba and Th present only as traces Theatomic proportion of Sr and REE in the formula isnear 11 with a small excess of REE An importantfinding is the presence of fluorine in ancylite-(Ce)The Khibina ancylite-(Ce) contains between 0 75and 250 wt of fluorine corresponding to

0 148shy 0 488 F per formula unit Since REE andSr are present in equal abundances it is suggestedthat F- substitutes for OH- Thus the mineral fromthe Khibina carbonatites can be classified as F-bearing ancylite-(Ce) Fluorine was also detectedin two ancylite-(Ce) samples from Qaqarssukcarbonatites at 0 37 and 058 wt respectively(Knudsen 1991)

Ca-REE fluocarbonates

Synchysite-(Ce)is common at Khibina bastnasite-(Ce) and parisite-(Ce) are also found but are rare(Table 3) The textures vary as described in Table3 and include syntaxial intergrowths (Fig 4a)Ca-REE fluocarbonates are present in numerouscarbonatites e g Mountain Pass (Olsen et al 1954) Gatineau (Hogarth et al 1985)Kizilcaoren (Hatzl 1992) Tundulu (Ngwenya1994) and are the most well-studied of thecarbonatite REE-minerals (e g Kapustin 1980Hogarth et al 1985 Andersen 1986 Wall andMariano 1996) Selected average microprobeanalyses of Khibina synchysite-(Ce) made onminerals from different mineral assemblages arepresented in Table 7 Synchysite-(Ce) is char-acterized by having little substitution of otherelements for Ca and REE Primary synchysite-(Ce) from syntaxial intergrowths secondarysynchysite-(Ce) from the alteration products ofburbankite carbocernaite and syntaxial inter-growths of synchysite-(Ce) with parisite-(Ce) allhave similar chemical compositions Sr Ba and Thare typical minor constituentsin all the synchysite-(Ce) and Fe is present in the red variety associatedwith manganoan ankerite or ferroan kutnohorite

Parisite-(Ce) and bastnasite-(Ce) (Table 8) arenear their theoretical compositions with onlyminor amounts of Sr and Ba substituting for Caand Th substituting for REE

Syntaxial intergrowths of Ca-REE fluocarbo-nates are considered to be evidence for theirprimary origin the intergrowth being related tochanges in the chemical composition of the hostfluid (Ni et al 1993)

Ba-REE fluocarbonates

Ba-REE fluocarbonates are extremely rare incarbonatites Huanghoite-(Ce) is the onlymember of the group previously described froman unnamed Siberian carbonatite (Kapustin 1973)and from Qaqarssuk carbonatites (Knudsen1991) However cordylite-(Ce) kukharenkoite-

A N ZAITSEV ETAL

236

(Ce) and cebaite-(Ce) have all been identified atKhibina (Table 3)

Cordylite-(Ce) is known only from Greenland(Flink 1901) Mont Saint-Hilaire Canada (Chenand Chao 1975) and Bayan Obo China (Zhangand Tao 1986) Its occurrence at Khibina is thefirst documented occurrence which is certainlyfrom carbonatites Kukharenkoite-(Ce) is a newBa-REE fluocarbonate mineral which has beenfound in the Khibina carbonatites and fromVuoriyavri Kola Peninsula Mont Saint-Hilaireand the Saint-Amable sill Quebec Canada(Zaitsev et al 1996) The occurrence of

cebaite-(Ce) at Khibina is only the seconddocumented occurrence The first was fromBayan Obo (Zhang and Tao 1986)

There are no data on the chemical compositionof cordylite-(Ce) from carbonatites and our reportis the first for this mineral (Table 9) There arethree distinct chemical compositions of cordylite-(Ce) from Khibina Cordylite-(Ce) with low Caand Sr (Table 9) occurs in manganoan siderite-manganoan ankerite-natrolite veins (CZ III-1)where it forms tabular crystals which areassociated with strontianite and sometimeskukharenkoite-(Ce) High Ca and Sr cordylite-

TABLE 6 Chemical composition of ancylite-(Ce) at Khibina

Rock C II-1Sample 633B795 646001 646451

mean (8) sd mean (21) sd mean (24) sd

SrO 2397 1 25 21 70 1 19 20 65 1 63CaO 1 35 0 40 2 09 0 51 1 93 0 59BaO 0 59 0 09 0 85 0 24 0 85 0 25FeO 0 19 0 35 b d 0 20 0 30La2O3 1308 1 18 15 56 0 83 16 53 1 17Ce2O3 2340 1 04 23 46 1 09 23 59 0 89Pr2O3 1 94 0 11 1 74 0 14 1 69 0 12Nd2O3 5 35 0 52 4 42 0 38 4 34 0 33Sm2O3 0 29 0 06 0 28 0 05 0 23 0 04Gd2O3 0 14 0 13 0 17 0 09 b dThO2 0 53 0 20 b d b dF 2 15 0 30 1 83 0 34 1 19 0 17CO2 2344 23 32 23 07shy O=F2 0 90 0 77 0 50

Total 9551 94 66 93 77

Calculated to 2 (CO3)2shy groups

La 0 300 0 357 0 381Ce 0 532 0 534 0 539Pr 0 044 0 040 0 039Nd 0 119 0 098 0 097Sm 0 006 0 006 0 005Gd 0 003 0 004Th 0 008

Total 1 012 1 038 1 061

Sr 0 864 0 783 0 748Ca 0 090 0 139 0 129Ba 0 014 0 021 0 021Fe 0 010 0 010

Total 0 979 0 943 0 909

F 0 422 0 360 0 235

Na Mg Mn Y and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

237

(Ce) (Table 9) is observed in the same samples asmantles on crystals of low Ca and Sr cordylite-(Ce) and as abundant laths in the surroundingnatrolite and manganoan ankerite (Fig 4b) It hasalso formed as a secondary mineral duringcarbocernaite alteration Cordylite-(Ce) withmoderate Ca and Sr (Table 9) occurs in ferroanrhodochrosite-manganoan ankerite carbonatites(C II-3) and is associated with strontianite

The atomic proportions of Na-Ca and REE-Srpairs show a negative correlation with a slopenear shy 1 and a plot of Na+REE vs Ca+Sr (Fig 5)shows a trend in composition from Sr-Ca-poor toSr-Ca-rich cordylite-(Ce) The slope of thiscorrelation suggests a 11 exchange of Na andREE for Ca and Sr with a substitution scheme ofNa+ + REE3+ Ca2+ + Sr2+ On the basis of theseobservations a general formula for cordylite-(Ce)can be expressed as (NaCa)Ba(REESr)2(CO3)4FOur X-ray and IR data are identical for eachcompositional variety and also identical to thoseof lsquobaiyuneboite-(Ce)rsquo (Fu and Su 1988) whichis now recognized to be cordylite-(Ce) (JZemann personal communication 1996)

Kukharenkoite-(Ce) occurs in Khibina C II-2and C II-3 carbonatites and in carbonate-zeoliteveins (Table 3) It was described as a new mineralby Zaitsev et al (1996) The composition of thekukharenkoite-(Ce) (Zaitsev et al 1996) deter-

FIG 4 (a) BEI of syntaxial intergrowths of synchysite-(Ce) (grey) parisite-(Ce) (grey) and bastnasite-(Ce) (white) CII-2 manganoan ankerite-calcite carbonatite sample 633A414 1 (b) BEI of large crystals of low Ca and Sr cordylite-(Ce) pale grey in centre) associated with laths of high Ca and Sr cordylite-(Ce) (dark grey) and kukharenkoite-(Ce)

(white) CZ III-1 manganoan siderite-manganoan ankerite shy natrolite vein sample 60775

FIG 5 Atomic proportions of Na+REE vs Ca+Sr forcordylite-(Ce)

A N ZAITSEV ETAL

238

mined from electron microprobe analysis is BaO4893 SrO 0 42 MnO 026 Na2O 0 08 CaO0 05 La2O3 6 16 Ce2O3 15 12 Pr2O3 149Nd2O3 4 08 ThO2 0 10 and F 320 wt Theatomic ratios of Ba REE and F are near 211requiring 3 (CO3)

2shy groups per formula unit(calculated CO2 21 73 wt ) and the idealf o r m u l a f o r k u k h a r e n k o i t e - ( C e ) i sBa2REE(CO3)3F

The chemical composition of cebaite-(Ce) fromKhibina was determined by 18 electron micro-

probe analyses (Table 10) Although analysistotals are less then 100 calculated atomic ratiosfor Ba REE and F are near 322 and closelyc o r r e s p o n d t o a n i d e a l f o r m u l a o fBa3REE2(CO3)5F2 Cebaite-(Ce) contains minorSrO (101shy 261 wt ) CaO (033shy 118 wt)and ThO2 (0 49shy 126 wt) in addition rela-tively high MnO (up to 0 83 wt ) and FeO (up to0 61 wt ) were observed in some analyses Allcebaite-(Ce) crystals are unzoned See Table 3 formineralogical details

TABLE 7 Chemical composition of synchysite-(Ce) at Khibina

Rock C II-2 C II-3 C II-1 C II-1 C II-1Sample 633A414 1 604413 633485 5 603265 603165

syntaxial intergrowths secondary after burbankite secondary aftercarbocernaite

mean (8) sd mean (6) sd mean (9) sd mean (15) sd mean (4) sd

CaO 17 47 0 38 16 89 0 62 1618 070 16 08 0 88 17 23 033FeO bd 0 35 0 49 b d b d bdSrO 024 0 12 0 43 0 18 0 87 066 0 59 0 28 056 021BaO 009 0 05 0 15 0 04 0 12 007 0 06 0 05 011 006La2O3 16 54 0 42 13 06 0 58 1798 087 20 34 0 86 13 63 073Ce2O3 26 19 0 85 27 21 0 79 2591 065 25 77 0 50 25 26 085Pr2O3 215 0 12 2 53 0 07 1 94 011 1 78 0 08 258 010Nd2O3 614 0 44 7 90 0 22 5 54 027 4 53 0 41 969 086Sm2O3 038 0 06 0 62 0 10 0 38 004 0 31 0 07 068 038Y2O3 bd b d b d b d 011 009ThO2 bd 0 38 0 21 0 15 009 b d 017 014F 549 0 18 5 69 0 21 5 83 023 5 61 0 23 578 011CO2 28 12 27 81 2718 27 59 28 11shy O=F2 231 2 40 2 46 2 36 243

Total 10049 100 62 9961 100 30 101 46

Calculated to 2 (CO3)2shy groups

Ca 0975 0 953 0 934 0 915 0962Sr 0007 0 013 0 027 0 018 0017Ba 0002 0 003 0 002 0 001 0002Fe 0 015

Total 0984 0 985 0 964 0 934 0981

La 0318 0 254 0 357 0 398 0262Ce 0499 0 524 0 511 0 501 0481Pr 0041 0 049 0 038 0 034 0049Nd 0114 0 149 0 107 0 086 0180Sm 0007 0 011 0 007 0 006 0012Y 0003Th 0 005 0 002 0002

Total 0979 0 991 1 022 1 025 0990F 0904 0 948 0 994 0 943 0953

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

239

Y-rich carbonates mckelveyite-(Y) ewaldite anddonnayite-(Y)

A detailed description of these minerals fromKhibina Vuoriyarvi and Sallanlatvi is given byVoloshin et al (1990 1992) This was the firsttime that they had been documented in carbona-tites Mckelveyite-(Y) is the best-studied of thegroup at Khibina (Table 3)

Chemical compositions of mckelveyite-(Y) andewaldite from Kola carbonatites are represented by

three electron microprobe analyses of mckelveyite-(Y) from Vuoriyarvi carbonatites one from theSallanlatvi carbonatite and two analyses ofewaldite from Vuoriyarvi (Voloshin et al 19901992) However even these limited data showcompositional variation and three groups havebeen identified Na-free mckelveyite-(Y) Y-freeLREE-enriched mckelveyite and Y-free ewaldite

Five separate crystals of mckelveyite-(Y) wereanalysed from Khibina (Table 11) and areuniform in chemical composition The formula

TABLE 8 Chemical composition of parisite-(Ce) and bastnasite-(Ce) at Khibina

Rock C II-2 C II-3 C II-2Sample 633A4141 604413 633A414 1Mineral parisite-(Ce) bastnasite-(Ce)

mean (2) mean (5) sd mean (6) sd

CaO 9 72 9 29 1 03 084 0 29SrO 0 56 0 79 0 18 085 0 34BaO 0 07 0 30 0 29 008 0 05FeO 0 05 0 38 0 28La2O3 1963 15 96 0 72 26 35 0 99Ce2O3 3172 32 28 0 45 37 41 0 54Pr2O3 2 30 2 87 0 14 250 0 13Nd2O3 6 83 8 74 0 22 660 0 48Sm2O3 0 45 0 60 0 02 036 0 07Y2O3 0 10 0 22 0 12 bdThO2 b d 0 24 0 10 bdF 7 02 6 79 0 17 811 0 22CO2 2433 24 54 20 67shy O=F2 2 95 2 86 342

Total 9982 100 13 100 35

Calculated to 3 (CO3)2shy groups Calculated to 1 (CO3)

2shy groupCa 0 941 0 892 0033Sr 0 029 0 041 0018Ba 0 002 0 011 0001Fe 0 004 0 029

Total 0 976 0 972

La 0 654 0 527 0357Ce 1 048 1 057 0503Pr 0 076 0 094 0033Nd 0 220 0 280 0087Sm 0 014 0 018 0005Y 0 005 0 010Th 0 005

Total 2 017 1 992 1037

F 2 004 1 923 0942

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

240

of mckelveyite-(Y) is still the subject of debate Inthe original description Milton et al (1965) gavethe formula as Na19Ba40Ca11Sr02REE15U03

(CO3)9 5H2O Later Chao et al (1978) suggestedan isomorphous relationship between mckel-veyite-(Y) and donnayite-(Y) and gave theformula of NaCaBa3Y(CO3)6 3H2O In a recentstudy of mckelveyite-(Y) and ewaldite Voloshinet al (1990 1992) showed a similarity betweenthese two minerals and suggested that they areprobably polymorphs The formula of ewalditewas determined as (CaNaREE )(BaSr )(CO3)2 nH2O where part of the H2O is zeolitic

Chemical data from the Khibina mckelveyite-(Y) were calculated on the basis of the IMAaccepted formula NaCaBa3Y(CO3)6 3H2O (Table

11) Our data and those of Voloshin et al (1990)show significant substitutions the main one beingBa2+ Sr2+ which is related to the mckelveyite-(Y)-donnayite-(Y) pair where these minerals are Baand Sr end-members respectively The assignationof REE to two different sites in the mckelveyite-(Y) formula is problematic It is based on formulabalance and the REE chondrite-normalizeddistribution which is discussed below in thesection on lsquoRare earth patternsrsquo

Strontianite baryte barytocalcite edingtonite andharmotome

Minerals rich in Ba and Sr but with no REE arerepresented in the Khibina carbonatites by

TABLE 9 Chemical composition of cordylite-(Ce) at Khibina

Rock CZ III-1 C II-3 CZ III-1 CZ III-1 C II-1Sample 60775 6032646 6032515 60775 6031650Variety low Ca and Sr moderate Ca and Sr high Ca and Sr

mean (15) sd mean (17) sd mean (15) sd mean (10) sd mean (17) sd

Na2O 412 0 12 3 66 0 24 3 67 0 12 2 60 0 15 256 0 16CaO 073 0 18 1 54 0 31 1 50 0 08 3 82 0 18 410 0 26SrO 058 0 23 2 48 0 57 2 09 0 31 6 03 0 43 590 0 50BaO 22 28 0 33 22 29 0 51 22 32 0 32 23 02 0 25 23 11 0 36La2O3 994 0 36 10 46 0 38 11 82 0 53 7 58 0 30 11 49 0 51Ce2O3 24 46 0 43 23 82 0 68 22 18 0 28 20 26 0 38 17 90 0 67Pr2O3 241 0 18 1 85 0 24 1 69 0 25 2 19 0 27 145 0 30Nd2O3 747 0 49 5 88 0 31 5 70 0 41 6 97 0 49 536 0 54ThO2 011 0 17 0 13 0 14 0 12 0 16 0 13 0 12 013 0 16F 262 0 10 2 97 0 28 2 95 0 33 2 60 0 08 285 0 31CO2 24 92 25 16 24 78 25 77 25 75shy O=F2 110 1 25 1 24 1 10 120

Total 98 55 98 98 97 57 99 88 99 40

Calculated for 4 (CO3)2shy groups

Na 0945 0 821 0 837 0 579 0567Ca 0093 0 191 0 189 0 470 0501

Total 1038 1 012 1 026 1 049 1068

Ba 1032 1 011 1 028 1 036 1033La 0434 0 446 0 513 0 321 0483Ce 1058 1 008 0 954 0 851 0747Pr 0104 0 078 0 072 0 092 0060Nd 0315 0 243 0 239 0 286 0218Sr 0040 0 167 0 142 0 402 0390Th 0003 0 003 0 003 0 003 0003

Total 1954 1 945 1 923 1 955 1901

F 0981 1 088 1 096 0 946 1029

Fe Mn and Sm are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

241

strontianite baryte barytocalcite edingtonite andharmotome (Table 3) The first two minerals arecommon in late-stage carbonatites e g MountainPass (Olsen et al 1954) Vuoriyarvi SeblyavrSallanlatvi (Kapustin 1980) Sarnu-Dandali (Wallet al 1993) and Kangankunde (Wall andMariano 1996)

Barytocalcite is extremely rare in carbonatitesand has been described only from Vuoriyarvi andan unnamed Siberian carbonatite (Kapustin 1980)and possibly Chipman Lake (Platt and Woolley1990)

Edingtonite and harmotome are bariumzeolites Their occurrence at Khibina is the first

TABLE 10 Chemical composition of cebaite-(Ce) at Khibina

Rock CZ III-1Sample 6031435Analysis 14 24 25 29 30 33 Mean (18) Sd

Na2O 0 09 0 10 0 08 0 11 0 13 0 10 0 10 0 03CaO 0 40 1 18 0 47 0 61 0 52 0 70 0 61 0 21MnO 0 07 0 47 0 12 0 73 0 83 0 13 0 16 0 24FeO 0 45 0 13 b d 0 14 0 61 b d 0 16 0 19SrO 1 40 1 27 1 45 1 25 1 28 1 31 1 43 0 36BaO 43 93 40 51 42 19 42 09 42 59 42 93 42 77 1 84La2O3 5 30 7 28 6 71 5 58 5 48 5 72 5 67 0 52Ce2O3 13 59 14 33 14 52 14 66 13 66 14 91 14 45 1 16Pr2O3 1 54 1 69 1 83 1 78 1 51 1 81 1 63 0 19Nd2O3 6 15 5 69 5 99 6 32 5 70 5 34 5 54 0 48Sm2O3 0 60 0 61 0 50 0 38 0 42 0 34 0 48 0 11Eu2O3 0 17 0 18 b d 0 24 b d b d 0 07 0 11Gd2O3 0 59 0 66 0 53 0 49 0 40 0 37 0 50 0 13ThO2 0 99 0 51 0 49 0 92 1 07 0 99 0 92 0 22F 4 24 4 10 4 15 3 78 3 99 3 61 3 76 0 21CO2 21 57 21 79 21 41 21 79 21 65 21 41 21 42shy O=F2 1 78 1 73 1 75 1 59 1 68 1 52 1 58

Total 99 31 98 77 98 78 99 29 98 15 98 15 98 10

Calculated for 5 (CO3)2shy groups

Na 0 031 0 032 0 025 0 038 0 042 0 034 0 032Ca 0 073 0 212 0 085 0 111 0 095 0 130 0 114Mn 0 010 0 066 0 018 0 105 0 119 0 018 0 023Fe 0 064 0 018 0 020 0 087 0 023Sr 0 137 0 124 0 143 0 123 0 127 0 132 0 144Ba 2 915 2 659 2 802 2 805 2 855 2 926 2 900

Total 3 230 3 111 3 072 3 201 3 325 3 240 3 236

La 0 331 0 450 0 419 0 350 0 346 0 367 0 362Ce 0 841 0 878 0 900 0 911 0 854 0 948 0 914Pr 0 095 0 103 0 113 0 110 0 094 0 115 0 102Nd 0 372 0 340 0 362 0 384 0 348 0 332 0 342Sm 0 035 0 035 0 029 0 022 0 024 0 021 0 029Eu 0 010 0 011 0 014 0 004Gd 0 033 0 036 0 030 0 028 0 023 0 021 0 029Th 0 038 0 019 0 019 0 036 0 042 0 039 0 036

Total 1 755 1 872 1 873 1 855 1 730 1 843 1 819

F 2 268 2 174 2 221 2 033 2 159 1 986 2 057

Y Dy Er Yb and Lu are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

242

TABLE 11 Chemical position of mckelveyite-(Y) at Khibina

Rock CZ IIISample 6031435Point 1 2 4 5 9 10 Mean (12) sd

Na2O 3 12 3 05 3 21 3 10 3 33 3 14 3 19 0 10CaO 4 56 4 34 4 32 4 34 4 20 4 72 4 43 0 38MnO 0 06 b d b d b d b d 0 06FeO b d b d 0 64 b d 0 07 0 11 0 18 0 26BaO 29 43 29 89 28 47 28 73 29 69 27 13 28 97 0 98SrO 9 16 9 56 9 29 10 41 8 25 12 42 9 56 1 26Y2O3 6 39 6 33 5 32 7 02 5 84 8 42 6 44 0 93La2O3 1 22 1 22 1 60 0 85 1 84 0 96 1 34 0 34Ce2O3 1 93 1 79 2 43 1 17 2 96 1 77 2 18 0 65Pr2O3 0 22 0 22 0 15 0 30 0 24 0 15 0 22 0 06Nd2O3 0 69 0 77 0 91 1 11 0 71 0 37 0 84 0 24Sm2O3 0 81 0 87 0 81 0 89 0 85 0 20 0 78 0 23Eu2O3 0 49 0 64 0 50 0 36 0 60 0 34 0 47 0 10Gd2O3 2 15 1 94 2 18 2 05 2 32 1 05 2 02 0 38Dy2O3 2 39 2 40 2 97 2 29 2 83 2 00 2 48 0 29Er2O3 1 03 1 09 1 28 0 87 0 68 1 03 0 94 0 19Yb2O3 0 44 0 44 0 56 0 59 0 25 0 61 0 47 0 12ThO2 b d 0 17 b d b d b d b dF 0 18 0 15 b d b d 0 17 0 16 0 14 0 09CO2 25 71 25 70 25 86 25 81 25 71 26 72 25 93H2O 10 52 10 51 10 58 10 56 10 52 10 93 10 61shy O=F2 0 07 0 06 0 07 0 07 0 06

Total 100 43 101 01 101 07 100 44 100 98 102 24 101 13

Calculated to 6 (CO3)2shy and 3H2O groups

Na 1 000 0 984 1 000 1 000 1 000 0 978 1 000Ca 0 735 0 757 0 561 0 778 0 565 0 785 0 676Na 0 009 0 040 0 006 0 075 0 023La 0 075 0 075 0 099 0 052 0 113 0 057 0 082Ce 0 118 0 109 0 148 0 071 0 181 0 104 0 132Pr 0 013 0 013 0 009 0 018 0 014 0 009 0 013Nd 0 041 0 046 0 054 0 067 0 042 0 021 0 050Mn 0 009 0 008 0 000Fe 0 089 0 010 0 015 0 025

Total 1 000 1 000 1 000 0 992 1 000 1 000 1 000

Ba 1 923 1 950 1 865 1 884 1 941 1 707 1 880Sr 0 885 0 922 0 900 1 009 0 798 1 156 0 917Ca 0 080 0 017 0 212 0 185 0 026 0 110

Total 2 888 2 890 2 977 2 893 2 924 2 889 2 907

Y 0 567 0 561 0 473 0 625 0 518 0 719 0 567Sm 0 047 0 050 0 047 0 051 0 049 0 011 0 045Eu 0 028 0 036 0 029 0 021 0 034 0 018 0 026Gd 0 119 0 107 0 121 0 114 0 128 0 056 0 111Dy 0 128 0 129 0 160 0 123 0 152 0 104 0 132Er 0 054 0 057 0 067 0 045 0 036 0 052 0 049Yb 0 023 0 022 0 028 0 030 0 013 0 030 0 024Th 0 007

Total 0 965 0 969 0 925 1 009 0 930 0 990 0 954

F 0 092 0 081 0 088 0 082 0 071

Lu is below detection limit CO2 and H2O calculated by stoichiometry

REE-SR-BA MINERALS

243

TA

BL

E12

C

hem

ical

com

posi

tion

ofst

ront

iani

teat

Khi

bina

Roc

kC

II-2

CII

-3C

ZII

I-1

CII

-1C

II-1

CII

-1S

ampl

e63

3A4

141

604

413

060

325

15

646

451

060

336

364

600

1pr

imar

yst

ront

iani

teas

soci

ated

wit

hse

cond

ary

stro

ntia

nite

(aft

erbu

rban

kite

)as

soci

ated

wit

hsy

nchy

site

-(C

e)

sync

hysi

te-(

Ce)

cord

ylit

e-(C

e)an

cyli

te-(

Ce)

sync

hysi

te-(

Ce)

ancy

lite

-(C

e)an

dba

ryte

pari

site

-(C

e)an

dan

dpa

risi

te-(

Ce)

and

bary

tean

dba

ryte

bast

nasi

te-(

Ce)

mea

n(1

0)sd

mea

n(6

)sd

mea

n(3

)m

ean

(25)

sdm

ean

(4)

sdm

ean

(6)

sdm

ean

(4)

sdm

ean

(8)

sdco

rem

antl

eri

m

Na 2

Ob

db

db

d0

140

05b

d0

210

050

100

04b

dC

aO3

250

563

230

443

073

461

003

370

331

580

373

720

325

970

20S

rO66

21

068

668

00

5166

62

635

71

2664

34

051

682

00

6063

95

100

625

80

78B

aO0

190

170

160

070

221

610

471

630

150

720

290

830

092

000

57L

a 2O

3b

db

d0

160

480

20b

d0

620

120

330

060

150

04C

e 2O

30

180

120

110

110

570

610

240

190

080

760

160

420

050

250

05C

O2

307

930

99

310

530

71

305

131

11

306

931

99

Tot

al10

063

101

2910

169

100

5810

004

103

2010

004

102

94

Cal

cula

ted

to1

(CO

3)2

shygr

oup

Na

000

60

010

000

5C

a0

083

008

20

077

008

80

087

004

00

095

014

6S

r0

913

091

50

911

087

90

895

093

10

885

083

1B

a0

002

000

10

002

001

50

015

000

70

008

001

8L

a0

001

000

40

005

000

30

001

Ce

000

20

001

000

50

005

000

20

007

000

40

002

Tot

al0

999

100

00

997

099

80

999

099

90

999

099

8

Mg

Mn

Fe

Pr

Nd

Sm

Y

T

han

dU

are

belo

wde

tect

ion

lim

its

CO

2ca

lcul

ated

byst

oich

iom

etry

A N ZAITSEV ETAL

244

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 4: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

have low F contents However the intensivefluoritization of wall rocks around the carbona-tites which now have low amounts of F suggeststhat the initial F content was higher

3 The late carbonatites (C II) have high BaO(0 81 shy 3 22 wt ) SrO (061 shy 8 65 wt ) andlight REE (1 25shy 1135 wt La2O3 + Ce2O3 +Nd2O3) and these elements become majorcomponents of these carbonatites

Multi-element variation diagrams for theKhibina carbonatite samples (Fig 2) normalizedto primordial mantle of Wood et al (1979) showthat the general chemical features of the Khibinacarbonatites are similar to those described formost carbonatites (e g Nelson et al 1988 Clarkeet al 1992) The early calcite carbonatites (C I)have comparable element variation patterns toaverage data for the calciocarbonatites of Woolleyand Kempe (1989) although the Khibina samplesshow slightly higher Sr (Fig 2a) The Sr is hostedby calcite which contains 1 1 shy 18 wt SrO(Zaitsev 1996)

The element variation patterns for the latecarbonatites C II (Fig 2b) suggest that thesecarbonatites have undergone fractional crystal-lization similar to that shown by Clarke et al(1992) The plot shows a depletion in La Ce Ndand Sr normalized values from the relativelyearly-formed calcite carbonatites with burbankiteor carbocernaite (C II-1) to the late manganoanankerite-calcite carbonatites with synchysite-(Ce)(C II-2) and to the latest ferroan rhodochrosi-teshy manganoan siderite carbonatites with synchy-site-(Ce) or cordylite-(Ce) (C II-3)

Although the normalized Ba values are similarin the C II-1 and C II-2 carbonatite types theyshow wide variation in C II-3 carbonatites Someof the C II-3 carbonatites are depleted in Bacompared to C II-1 and C II-2 types and theycontain synchysite-(Ce) as a minor or accessorymineral However most of C II-3 carbonatites areenriched in Ba and contain cordylite-(Ce) as amajor mineral

Analytical methods

The identification and description of REE-Sr-Baminerals is often difficult due to their complexchemical compositions with a wide variety ofsolid solutions and some polymorphs As a resultthey have variable physical properties infra-redand X-ray diffraction patterns Other difficultiesarise from the limitations of electron microprobeanalysis including the inability to determine H2O

and CO2 loss of Na and F under the electronbeam and the high interference corrections for Baand the REE In addition RE mineral dataavailable from the literature are commonlyincomplete and sometimes inconsistent Thesefacts prompted us to use as many differenttechniques as possible for the mineralogicalinvestigation of the REE-Sr-Ba minerals fromthe Khibina carbonatites

Identification of minerals was based on opticalexamination IR-spectroscopy (UR-20 Carl Zeissspectrophotometer) and X-ray diffraction (RKUcamera - 57 3 mm diameter and Fe-Ka radiation1146 mm diameter and Cr-Ka radiation)Electron microprobe analyses were made using aCameca SX 50 wavelength-dispersive electronmicroprobe at The Natural History MuseumLondon after preliminary work had been carried

FIG 2 Multi-element variation diagrams for (a) earlyand (b) late Khibina carbonatites normalized toprimordial mantle of Wood et al (1979) Calcio- andferrocarbonatites are average values from Woolley and

Kempe (1989)

A N ZAITSEV ETAL

228

out on a Hitachi S2500 scanning electronmicroscope equipped with a Link AN1055Senergy-dispersive analysis system The Camecawas operated at 15 kV and 10shy 20 nA with spotsizes as large as possible up to 30 mm in order tominimize beam damage Individual REE calciumaluminium silicate glasses obtained from theUniversity of Edinburgh were used as standardsfor the REE jadeite was used for Na wollastoniteand apatite for Ca celestine for Sr and bariumfluoride for Ba and F Detailed information aboutconditions of microprobe analyses is availablefrom Williams (1996)

Mineralogy and mineral chemistry

At least 17 minerals containingREE Sr andor Baas major elements have been identified in the latecarbonatites (C II) and the carbonate-zeoliterocks(CZ III) (Table 2) The mineralogy and paragen-esis of these and the associated minerals issummarized in Table 3 This table also shows thesequence of formation of phoscorites carbonatitesand carbonate-zeoliterocks in the Khibina massif

Alkaline Sr-Ca-REE-Ba carbonates burbankite andcarbocernaite

The alkaline Sr-Ca-REE-Ba carbonates burban-kite and carbocernaite are rock-forming mineralsin the calcite carbonatites (C II-1) (Table 3) Fieldrelationships show that the carbonatites withburbankite and carbocernaite are the earliest ofthe C II group of carbonatites (Zaitsev 1996)

Burbankite a rare mineral known from severalcarbonatite complexes always occurs in late-stage carbonatites It has been described from theBearpaw Mountains (Pecora and Kerr 1953)Vuoriyarvi (Kukharenko et al 1965 Kapustin1980) Ozernyi (Zdorik 1966) Arbarastakh(Zhabin et al 1971) Nizhnesayanskii (Somina1975) Chipman Lake (Platt and Woolley 1990)and Qaqarssuk (Knudsen 1991)

Burbankite is a double carbonate with thegeneral formula A3B3(CO3)5 where the A-site isoccupied by Na and Ca and the B-site contains SrREE Ba and Ca (Effenberger et al 1985) Thereare only seven wet chemical analyses ofburbankite from carbonatites made more than25 years ago (Pecora and Kerr 1953 Kukharenkoet al 1965 Zdorik 1966 Zhabin et al 1971Kapustin 1980) and twelve electron microprobeanalyses published recently (Effenberger et al 1985 Platt and Woolley 1990 Knudsen 1991)

These data show a large variation in major oxidesNa2O (4 04 shy 13 89 wt ) SrO (6 17 shy 32 60wt ) CaO (9 81 shy 21 09 wt ) SREE2O3

(2 50 shy 23 00 wt ) and BaO (1 85 shy 14 60wt) Wet chemical analyses of burbankite canshow high contents of Si Al and S but these areprobably the result of admixtures Publishedmicroprobe analyses have high cation deficienciesin the A-site (up to 065 per formula unit)attributed to the loss of Na under the electronbeam (Platt and Woolley 1990) or have hightotals with calculated CO2 (108 26 shy 11349 wt)(Knudsen 1991) which also indicate possibleanalytical problems

Average chemical compositions of the Khibinaburbankite determined by wet chemical analysisof 2 g of pure hand-picked burbankite andapproximately 40 electron microprobe analysesare given in Table 4 The wet chemical andmicroprobe results are in good agreement andindicate that the burbankite is relatively low in Bacompared with other carbonatites The one

TABLE 2 Minerals containing REE Sr andor Ba asmajor elements identified in Khibina late carbo-natites (C II) and carbonate-zeolite rocks (CZ III)

Mineral Formula

burbankite (NaCa)3(SrBaCe)3(CO3)5carbocernaite (NaCa)(SrCeBa)(CO3)2

ancylite-(Ce) SrCe(CO3)2(OH) H2O

synchysite-(Ce) Ca(CeLa)(CO3)2Fparisite-(Ce) Ca(CeLa)2(CO3)3F2

bastnasite-(Ce) (CeLa)(CO3)F

cordylite-(Ce) Ba(CeLa)2(CO3)3F2

cebaite-(Ce) Ba3(CeLa)2(CO3)5F2

kukharenkoite-(Ce) Ba2Ce(CO3)3F

mckelveyite-(Y) Ba3Na(CaU)Y(CO3)6 3H2Oewaldite Ba(CaYNaK)(CO3)2donnayite-(Y) Sr3NaCaY(CO3)6 3H2O

edingtonite BaAl2Si3O10 4H2Oharmotome (BaK)1shy 2(SiAl)8O16 6H2O

strontianite SrCO3

baryte BaSO4

barytocalcite BaCa(CO3)2

REE-SR-BA MINERALS

229

TA

BL

E3

Min

eral

ogy

and

para

gene

sis

ofK

hibi

naR

EE

-Sr-

Ba

min

eral

s

BA

Aph

osco

rite

-bio

tite

-aeg

irin

e-ap

atite

No

prim

ary

rare

eart

hm

iner

als

CI

earl

yca

lcit

eca

rbon

atit

eN

opr

imar

yra

reea

rth

min

eral

s

CII

-1la

teca

lcit

eca

rbon

atit

ew

ithbu

rban

kite

orca

rboc

erna

ite

Prim

ary

phas

es

Bur

bank

ite

10shy

50

volu

me

yell

ow-b

row

nin

fres

hly

brok

enha

ndsp

ecim

ens

Usu

ally

larg

ehe

xago

nal

pris

mat

iccr

ysta

ls(5

shy50

mm

long

61

shy25

mm

diam

eter

)S

omet

imes

grow

infr

om

and

abou

tpe

rpen

dicu

lar

to

the

cont

act

ofth

eve

ins

Dis

trib

utio

nis

hete

roge

neou

sA

lso

asdr

op-l

ike

incl

usio

ns(3

0shy

200

m m)

inca

lcit

eas

soci

ated

wit

heu

hedr

alzo

ned

apat

ite

(Fig

3a

)

Car

boce

rnai

te10

-50

volu

me

NB

do

esno

toc

cur

wit

hbu

rban

kite

L

emon

yell

owin

hand

spec

imen

Is

omet

ric

grai

ns1

shy5

mm

diam

eter

indi

stin

ctcl

uste

rs

Alt

erat

ion

Eit

her

oftw

oal

tera

tion

asse

mbl

ages

can

com

plet

ely

pseu

dom

orph

burb

anki

te

pres

ervi

ngit

spr

ism

atic

he

xago

nal

crys

tal

form

(Fig

3b

)1)

Rep

lace

men

tass

embl

age

ofan

cyli

te-(

Ce)

str

onti

anit

ean

dle

ssof

ten

bary

tean

dra

rely

harm

otom

ean

ded

ingt

onit

eA

llst

ages

ofal

tera

tion

seen

fro

msi

ngle

fine

vein

s(5

shy20

m m)

ofan

cyli

te-(

Ce)

inbu

rban

kite

(Fig

3d

)to

poro

usag

greg

ates

ofan

cyli

te-(

Ce)

and

stro

ntia

nite

com

plet

ely

repl

acin

gbu

rban

kite

A

ncyl

ite-

(Ce)

usua

lly

aspi

nkto

red

anhe

dral

crys

tals

upto

4m

mbu

tal

soso

me

euhe

dral

crys

tals

and

zone

dst

ront

iani

tein

cavi

ties

2)

Por

ous

aggr

egat

esof

sync

hysi

te-(

Ce)

st

ront

iani

tean

dba

ryte

B

urba

nkit

ere

lics

seen

inst

ront

iani

tecr

ysta

lsan

dal

soin

sync

hysi

te-(

Ce)

and

bary

te

Fig

3c

Car

boce

rnai

teis

ofte

npa

rtly

repl

aced

bypo

rous

aggr

e-ga

tes

ofst

ront

iani

te

cord

y-li

te-(

Ce)

sy

nchy

site

-(C

e)an

dba

ryte

C

arbo

cern

aite

usua

lly

pres

erve

din

cent

ral

part

sof

the

form

ercr

ysta

ls

Stro

ntia

nite

usua

lly

colo

urle

ssan

hedr

alcr

ysta

lsbu

tal

soas

pris

mat

iczo

ned

crys

tals

upto

2m

m

Bar

yte

usua

lly

colo

urle

ss

anhe

dral

0

1shy

1m

mgr

ains

Edi

ngto

nite

and

harm

otom

esp

heru

liti

cag

greg

ates

onan

cyli

te-(

Ce)

orst

ront

iani

te

A N ZAITSEV ETAL

230

TA

BL

E3

(con

td)

CII

-2la

tem

anga

noan

anke

rite

-cal

cite

carb

onat

ite

with

sync

hysi

te-(

Ce)

Prim

ary

phas

es

Syn

taxi

alin

terg

row

ths

(Don

nay

and

Don

nay

1953

)of

sync

hysi

te-

(Ce)

par

isit

ean

dba

stna

site

-(C

e)(F

ig

4a)

Inte

rgro

wth

sar

eve

ryfi

nendash

1shy

20m m

wid

ean

d50

shy50

0m m

long

A

ssoc

iate

dw

ith

stro

ntia

nite

Syn

chys

ite-

(Ce)

whi

chis

not

inte

rgro

wn

isa

maj

orro

ck-f

orm

ing

min

eral

W

hite

yel

low

(usu

ally

wit

hca

lcit

e)or

red

(usu

ally

wit

hfe

rroa

nku

tnoh

orit

e)ta

bula

rcr

ysta

ls

01

shy3

m mdi

amet

er

Oft

enir

regu

lar

tora

diat

ing

agre

gate

s

Kuk

hare

nkoi

te-(

Ce)

as

late

-sta

ge0

01shy

1m

mpr

ism

atic

crys

tals

inti

nyca

viti

es

Oft

enas

stel

late

de

ndri

tic

orir

regu

lar

inte

rgro

wth

sup

to3

mm

diam

eter

R

arel

yas

anhe

dral

00

5shy

02

mm

grai

nsor

plat

y0

1shy

2m

mcr

ysta

lsA

ssoc

iate

dw

ith

cord

ylit

e-(C

e)

stro

ntia

nite

an

dra

rely

mck

elve

yite

-(Y

)

Stro

ntia

nite

usua

lly

occu

rsas

colo

urle

ss

subh

edra

lcr

ysta

lsup

to2

mm

diam

eter

CII

-3la

teca

rbon

atit

es-f

erro

anrh

odoc

hros

ite-m

anga

noan

anke

rite

with

sync

hysi

te-(

Ce)

orco

rdyl

ite-

(Ce)

Prim

ary

phas

es

Sync

hysi

te-(

Ce)

som

etim

espr

esen

tin

fine

synt

axia

lin

terg

row

ths

wit

hpa

risi

te-(

Ce)

C

ordy

lite

-(C

e) i

sa

typi

cal

min

eral

W

hite

orye

llow

tabu

lar

crys

tals

0

1shy

1m

man

dso

met

imes

upto

5m

m

eith

ersi

ngle

orin

aggr

egat

es

Mck

elve

yite

-(Y

)ew

aldi

te

and

don-

nayi

te-(

Y)

inca

viti

es

Yel

low

orw

hite

crys

tals

va

riou

sha

bits

from

tabu

lar

colu

mna

rto

barr

el-s

hape

dS

ome

crys

tals

are

hem

imor

phic

Stro

ntia

nite

pr

imar

yu

sual

lyco

lou

rles

ssu

bhed

ral

crys

tals

upto

2m

m

Kuk

hare

nkoi

te-(

Ce)

(See

abov

e)E

ding

toni

tean

dha

rmot

ome

are

com

mon

acce

ssor

ym

iner

als

Usu

ally

eu

hedr

alcr

ysta

ls

upto

2m

m

inca

viti

es

Alt

erat

ion

Vei

n-li

keag

greg

ates

ofsy

nchy

site

-(C

e)

stro

ntia

nite

ba

ryte

and

bast

nasi

te-(

Ce)

repl

ace

the

synt

axia

lin

terg

row

thin

som

ero

cks

Stro

ntia

nite

us

uall

yco

l-ou

rles

san

hedr

alcr

ysta

lsB

aryt

eus

uall

yco

lour

less

an

he-

dral

0

1shy

1m

mgr

ains

REE-SR-BA MINERALS

231

TA

BL

E3

(con

td)

CZ

III-

1ca

rbon

ate-

zeol

ite

vein

s-m

anga

noan

side

rite

-man

gano

anan

keri

te-n

atro

lite

Sync

hysi

te-(

Ce)

som

etim

espr

esen

tC

ordy

lite

-(C

e)is

aty

pica

lm

iner

al

Whi

teor

yell

owta

bula

rcr

ysta

ls

01

shy1

mm

and

som

etim

esup

to5

mm

ei

ther

sing

leor

inag

gre-

gate

s2

vari

etie

s(F

ig

4b)

Ceb

aite

-(C

e)

foun

din

cavi

ties

asye

llow

w

hite

orco

lour

less

crys

tals

upto

02

mm

D

endr

itic

st

ella

teor

irre

gula

rin

terg

row

ths

Co

mm

on

lyas

soci

ated

wit

hm

ckel

veyi

te-(

Ce)

co

rdyl

ite

and

stro

ntia

nite

Mck

elve

yite

-(Y

)ew

al-

dite

and

donn

ayit

e-(Y

)se

eab

ove

Edi

ngto

nite

and

har-

mot

ome

com

mon

ac-

ce

sso

rym

ine

rals

U

sual

ly

euhe

dral

crys

-ta

ls

upto

2m

m

inca

viti

es

Kuk

hare

nkoi

te-(

Ce)

(See

abov

e)St

ront

iani

tew

ith

cord

ylit

e-(C

e)

prim

ary

Bar

yte

ofte

nsh

ort

pris

mat

iccr

ysta

lsin

cavi

ties

CZ

III-

2ca

rbon

ate-

zeol

ite

vein

s-m

anga

noan

side

rite

-nor

dstr

andi

te-n

atro

lite

Co

rdyl

ite-

(Ce)

isa

lsquotyp

ical

rsquom

iner

al

Whi

teor

yell

owta

bula

rcr

ysta

ls

01

shy1

mm

and

som

e-ti

mes

upto

5m

m

eith

ersi

ngle

orin

aggr

egat

es

Mck

elve

yite

-(Y

)ew

aldi

tean

ddo

nnay

ite-

(Y)

Bar

ytoc

alci

te

euhe

dral

orsu

b-he

dral

1

shy2

mm

whi

tecr

ysta

lsin

cavi

ties

Id

enti

fica

tion

base

don

XR

Dan

dIR

spec

tra

Stro

ntia

nite

wit

hco

r-dy

lite

-(C

e)

prim

ary

Bar

yte

ofte

nsh

ort

pr

ism

atic

crys

tals

inca

viti

es

CZ

III-

3ca

rbon

ate-

zeol

ite

vein

s-na

trol

ite-

man

gano

ansi

deri

te-d

awso

nite

Mck

elve

yite

-(Y

)ew

aldi

tean

ddo

nnay

ite-

(Y)

Stro

ntia

nite

wit

hco

rdyl

ite-

(Ce)

pr

imar

yB

aryt

eof

ten

shor

tpr

ism

atic

crys

tals

inca

viti

es

A N ZAITSEV ETAL

232

exception (sample 633B79 5) has 6 65 wtBaO There is no zoning in Khibina burbankitecrystals and the compositions are also uniformwithin each rock sample

There are two morphological types of burban-kite large prismatic crystals and small drop-likeinclusions within calcite crystals and along theirboundaries (Fig 3a Table 3) Although theircompositions are the same (Table 4) the

difference in morphology suggests they mayhave formed by different processes Largeeuhedral prismatic crystals could have crystal-lized at an early stage of carbonatite formationand sometimes large burbankite crystals areobserved near the contact of veins that arecharacterized by a crustification texture (vein-filling) The drop-like burbankite inclusions incalcite probably did not form by exsolution of

TABLE 4 Chemical composition of burbankite at Khibina

Rock C II-1Sample 607277 633477 7 6334777 581013 633B79 5

large crystal drop-like inclusion large crystal large crystalmean (9) sd mean (4) sd mean (10) sd mean (9) sd

Na2O 12 45 11 93 0 13 11 80 0 27 1260 0 44 12 03 0 85CaO 12 60 11 94 0 53 12 57 0 54 1020 0 49 10 08 1 22SrO 19 60 24 74 0 31 24 57 0 38 1838 0 61 17 71 0 92BaO 0 78 1 76 0 12 1 86 0 04 2 52 0 49 6 65 0 47La2O3 5 20 5 65 0 14 5 11 0 25 7 05 0 30 4 77 0 26Ce2O3 9 91 7 15 0 16 6 97 0 28 1106 0 41 9 26 0 43Pr2O3 0 64 0 47 0 04 0 47 0 05 0 80 0 10 0 88 0 07Nd2O3 1 53 1 24 0 10 1 33 0 03 2 53 0 28 3 11 0 31Sm2O3 0 05 b d b d 0 31 0 11 0 39 0 12Gd2O3 b d b d b d b d 0 20 0 07ThO2 n d b d b d b d 0 16 0 10CO2 35 40 34 68 34 79 3421 33 38

Total 99 76 99 56 99 47 9966 98 62

Calculated to 5 (CO3)2shy groups

Na 2 508 2 442 2 408 2 615 2 558Ca 0 338 0 498 0 529 0 267 0 345A site total 2 846 2 941 2 937 2 882 2 903

Sr 1 181 1 514 1 499 1 141 1 126Ca 1 065 0 852 0 889 0 903 0 840La 0 199 0 220 0 198 0 278 0 193Ce 0 377 0 276 0 268 0 433 0 372Pr 0 024 0 018 0 018 0 031 0 035Nd 0 056 0 047 0 050 0 097 0 122Sm 0 003 0 011 0 015Gd 0 007Ba 0 032 0 073 0 077 0 106 0 286Th 0 004B site total 3 000 3 000 3 000 3 000 3 000C 5 021

Sample 607277 - wet chemical analysis other samples - electron microprobe analysessd - standard deviation - including MgO 0 02 K2O 0 02 MnO 007 FeO 0 42 SiO2 020 F 0 04 and H2O 0 85 all wt - including Mn 0 006 Fe 0 037 and Si 0 021b d - below detection limits Mg Mn Fe Y and F are below detection limits in the microprobe analyses CO2 inmicroprobe analyses calculated by stoichiometry n d ndash not determined

REE-SR-BA MINERALS

233

FIG 3 Backscattered electron images (BEI) of (a) large crystals and drop-like inclusions of burbankite (white) incalcite (black) (b) a contact print of a thin section containing a pseudomorph of synchysite-(Ce) strontianite andbaryte after burbankite The width of the burbankite pseudomorph is 9 mm C II-1 calcite carbonatite sample 603265 (c) zoned altered burbankite (grey and dark-grey) with ancylite-(Ce) veins (white) C II-1 calcite carbonatite

sample 633B79 5 (d) relics of burbankite (dark grey) in strontianite (grey) and synchysite-(Ce) (white)

A N ZAITSEV ETAL

234

burbankite from calcite rich in Na Sr and REE asmight be thought at first from Fig 3a and asproposed for a similar occurrence by Knudsen(1991) because the burbankite crystals areassociated with euhedral zoned apatites Theyare more likely to be the result of lsquocotecticrsquocrystallization of burbankite and calcite after theprecipitation of the apatite

Carbocernaite has been found in many Khibinacarbonatite samples (Table 3) It was describedoriginally as a primary mineral crystallized at alate stage of carbonatite formation at VuorijarviKola Peninsula (Bulakh et al 1961) Zdorik(1966) and Kapustin (1980) found that carbocer-naite in carbonatites from the Ozernyi andVuoriyarvi massifs occurs as a secondarymineral after burbankite The most unusualoccurrence of carbocernaite is the exsolutionlamellae and cotectic textures for carbocernaiteand calcite in Sarnu-Dandali carbonatitedescribed by Wall et al (1993) Carbocernaite isalso reported from carbonatite in the Si PanRange Vietnam (Bulakh and Izokh 1966)

Carbocernaite like burbankite is a doublecarbonate with a general formula AB(CO3)2 withNa and Ca in the A-site and Sr REE and Ba in theB-site There are few studies of the chemicalcomposition of carbocernaite Before the detailedinvestigation of Wall et al (1993) only a few wetchemical analyses were published (Bulakh et al 1961 Bulakh and Izokh 1966 Zdorik 1966Kapustin 1980) Although available data forcarbocernaite show some variation in thecontent of major elements there is less variationthan in burbankite The Na2O values range from243 to 612 wt the BaO from 095 to 596 theSrO from 558 to 2398 the CaO from 1593 to1927 and the SREE2O3 from 17 06 to 2631 allwt In general the compositional variations inburbankite and carbocernaite are similar butcarbocernaite contains less Na2O (commonlyabout 4 shy 5 wt ) compared with burbankite(commonly about 10 shy 12 wt ) This differencein sodium content makes it possible to identifycarbocernaite and burbankite on the basis ofelectron microprobe analyses

Selected average compositions of carbocernaitefrom Khibina are given in Table 5 These datashow that carbocernaite from the Khibinacarbonatites is a low Ba variety Khibinacarbocernaite like burbankite is not zoned

Harris (1972) reported high F (3 86 wt ) incarbocernaite from Sturgeon Narrows Canadaand proposed that F together with OH could be

additional anion group (FOH)2 in the mineralformula Our data show that the F content ofKhibina carbocernaite is near the electron micro-probe detection limit of about 0 1 wt and IRinvestigations show an absence of any absorptionband related to OH- group or H2O It is possiblethat the mineral described from the SturgeonNarrows is a different mineral species The lackof Na in Sturgeon Narrows carbocernaite alsosupports our conclusion

In the Khibina carbonatite samples burbankiteand carbocernaite do not occur together so it hasnot been possible to establish their relative agesHowever both burbankite and carbocernaite-containing carbonatites are cut by later C II-2and C II-3 carbonatites

TABLE 5 Chemical composition of carbocernaite atKhibina

Rock C II-1Sample 603165 603287

mean (12) sd mean (10) sd

Na2O 4 98 0 18 4 33 0 42CaO 11 94 0 42 1360 0 33SrO 22 33 0 76 2020 0 27BaO 0 37 0 13 0 56 0 07La2O3 9 27 0 61 1053 0 33Ce2O3 13 19 0 51 1419 0 30Pr2O3 0 97 0 09 0 94 0 08Nd2O3 2 34 0 25 2 56 0 19Sm2O3 0 14 0 05 0 32 0 04F 0 10 0 10 0 14 0 03CO2 32 79 3379shy O=F2 0 04 0 06

Total 98 36 10110

Calculated to 2 (CO3)2shy groups

Na 0 431 0 364Ca 0 571 0 632A site total 1 003 0 996

Sr 0 578 0 508La 0 153 0 168Ce 0 216 0 225Pr 0 016 0 015Nd 0 037 0 040Sm 0 002 0 005Ba 0 007 0 010B site total 1 008 0 971F 0 014 0 019

Mg Mn Fe Gd Y Th and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

235

Alteration of burbankite and carbocernaite

Burbankite in carbonatites is commonly replacedby ancylite-(Ce) strontianite and baryte (Somina1975 Kapustin 1980) and rarely by ancylite-(Ce)calkinsite lanthanite and baryte (Pecora and Kerr1953) Multi-stage alteration of burbankite fromthe Ozernyi carbonatites has been documented byZdorik (1966) where carbocernaite strontianitebastnasite-(Ce) calcite baryte allanite-(Ce)monazite-(Ce) and epidote have been identifiedas alteration products of burbankite

In the Khibina carbonatites burbankite andcarbocernaite are commonly replaced by variouscombinationsof ancylite-(Ce) strontianite synch-ysite-(Ce) baryte less commonly by cordylite-(Ce) and rarely by harmotome and edingtonite(Table 3) Even when burbankite is completelyreplaced evidence of its existence is preserved inthe form of hexagonal prismatic pseudomorphs(Fig 3b) and islands of relict burbankite (Fig 3cand d) Pseudomorphs of a similar form have beenmentioned from some other rare earth-richcarbonatites e g Gem Park Wigu HillKangankunde (Wall and Mariano 1996) but inthese cases there is no evidence of the precursormineral The presence of primary and replacedburbankite at Khibina is good evidence that thepseudomorphs reported from these other carbo-natites may well have originally been burbankite

Ancylite

Ancylite-(Ce) is a hydrous carbonate containingREE and Sr as major cations On the basis of astructural study of material from the Mont Saint-Hilaire massif its formula has been proposed asREEx(SrCa)2 shy x(CO3)2(OH)x (2 shy x)H2O with acation-anion substitution of Sr2+ + H2O gtREE3+ + OH shy (Dal Negro et al 1975)Although ancylite-(Ce) is a relatively commonmineral in carbonatites there are only a fewanalyses available (Kukharenko et al 1965Kapustin 1980 Knudsen 1991) and this is thefirst detailed investigation of its chemicalcomposition Selected average chemical composi-tions are given in Table 6 The composition ofancylite-(Ce) from Khibina is relatively uniformwith Ca Ba and Th present only as traces Theatomic proportion of Sr and REE in the formula isnear 11 with a small excess of REE An importantfinding is the presence of fluorine in ancylite-(Ce)The Khibina ancylite-(Ce) contains between 0 75and 250 wt of fluorine corresponding to

0 148shy 0 488 F per formula unit Since REE andSr are present in equal abundances it is suggestedthat F- substitutes for OH- Thus the mineral fromthe Khibina carbonatites can be classified as F-bearing ancylite-(Ce) Fluorine was also detectedin two ancylite-(Ce) samples from Qaqarssukcarbonatites at 0 37 and 058 wt respectively(Knudsen 1991)

Ca-REE fluocarbonates

Synchysite-(Ce)is common at Khibina bastnasite-(Ce) and parisite-(Ce) are also found but are rare(Table 3) The textures vary as described in Table3 and include syntaxial intergrowths (Fig 4a)Ca-REE fluocarbonates are present in numerouscarbonatites e g Mountain Pass (Olsen et al 1954) Gatineau (Hogarth et al 1985)Kizilcaoren (Hatzl 1992) Tundulu (Ngwenya1994) and are the most well-studied of thecarbonatite REE-minerals (e g Kapustin 1980Hogarth et al 1985 Andersen 1986 Wall andMariano 1996) Selected average microprobeanalyses of Khibina synchysite-(Ce) made onminerals from different mineral assemblages arepresented in Table 7 Synchysite-(Ce) is char-acterized by having little substitution of otherelements for Ca and REE Primary synchysite-(Ce) from syntaxial intergrowths secondarysynchysite-(Ce) from the alteration products ofburbankite carbocernaite and syntaxial inter-growths of synchysite-(Ce) with parisite-(Ce) allhave similar chemical compositions Sr Ba and Thare typical minor constituentsin all the synchysite-(Ce) and Fe is present in the red variety associatedwith manganoan ankerite or ferroan kutnohorite

Parisite-(Ce) and bastnasite-(Ce) (Table 8) arenear their theoretical compositions with onlyminor amounts of Sr and Ba substituting for Caand Th substituting for REE

Syntaxial intergrowths of Ca-REE fluocarbo-nates are considered to be evidence for theirprimary origin the intergrowth being related tochanges in the chemical composition of the hostfluid (Ni et al 1993)

Ba-REE fluocarbonates

Ba-REE fluocarbonates are extremely rare incarbonatites Huanghoite-(Ce) is the onlymember of the group previously described froman unnamed Siberian carbonatite (Kapustin 1973)and from Qaqarssuk carbonatites (Knudsen1991) However cordylite-(Ce) kukharenkoite-

A N ZAITSEV ETAL

236

(Ce) and cebaite-(Ce) have all been identified atKhibina (Table 3)

Cordylite-(Ce) is known only from Greenland(Flink 1901) Mont Saint-Hilaire Canada (Chenand Chao 1975) and Bayan Obo China (Zhangand Tao 1986) Its occurrence at Khibina is thefirst documented occurrence which is certainlyfrom carbonatites Kukharenkoite-(Ce) is a newBa-REE fluocarbonate mineral which has beenfound in the Khibina carbonatites and fromVuoriyavri Kola Peninsula Mont Saint-Hilaireand the Saint-Amable sill Quebec Canada(Zaitsev et al 1996) The occurrence of

cebaite-(Ce) at Khibina is only the seconddocumented occurrence The first was fromBayan Obo (Zhang and Tao 1986)

There are no data on the chemical compositionof cordylite-(Ce) from carbonatites and our reportis the first for this mineral (Table 9) There arethree distinct chemical compositions of cordylite-(Ce) from Khibina Cordylite-(Ce) with low Caand Sr (Table 9) occurs in manganoan siderite-manganoan ankerite-natrolite veins (CZ III-1)where it forms tabular crystals which areassociated with strontianite and sometimeskukharenkoite-(Ce) High Ca and Sr cordylite-

TABLE 6 Chemical composition of ancylite-(Ce) at Khibina

Rock C II-1Sample 633B795 646001 646451

mean (8) sd mean (21) sd mean (24) sd

SrO 2397 1 25 21 70 1 19 20 65 1 63CaO 1 35 0 40 2 09 0 51 1 93 0 59BaO 0 59 0 09 0 85 0 24 0 85 0 25FeO 0 19 0 35 b d 0 20 0 30La2O3 1308 1 18 15 56 0 83 16 53 1 17Ce2O3 2340 1 04 23 46 1 09 23 59 0 89Pr2O3 1 94 0 11 1 74 0 14 1 69 0 12Nd2O3 5 35 0 52 4 42 0 38 4 34 0 33Sm2O3 0 29 0 06 0 28 0 05 0 23 0 04Gd2O3 0 14 0 13 0 17 0 09 b dThO2 0 53 0 20 b d b dF 2 15 0 30 1 83 0 34 1 19 0 17CO2 2344 23 32 23 07shy O=F2 0 90 0 77 0 50

Total 9551 94 66 93 77

Calculated to 2 (CO3)2shy groups

La 0 300 0 357 0 381Ce 0 532 0 534 0 539Pr 0 044 0 040 0 039Nd 0 119 0 098 0 097Sm 0 006 0 006 0 005Gd 0 003 0 004Th 0 008

Total 1 012 1 038 1 061

Sr 0 864 0 783 0 748Ca 0 090 0 139 0 129Ba 0 014 0 021 0 021Fe 0 010 0 010

Total 0 979 0 943 0 909

F 0 422 0 360 0 235

Na Mg Mn Y and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

237

(Ce) (Table 9) is observed in the same samples asmantles on crystals of low Ca and Sr cordylite-(Ce) and as abundant laths in the surroundingnatrolite and manganoan ankerite (Fig 4b) It hasalso formed as a secondary mineral duringcarbocernaite alteration Cordylite-(Ce) withmoderate Ca and Sr (Table 9) occurs in ferroanrhodochrosite-manganoan ankerite carbonatites(C II-3) and is associated with strontianite

The atomic proportions of Na-Ca and REE-Srpairs show a negative correlation with a slopenear shy 1 and a plot of Na+REE vs Ca+Sr (Fig 5)shows a trend in composition from Sr-Ca-poor toSr-Ca-rich cordylite-(Ce) The slope of thiscorrelation suggests a 11 exchange of Na andREE for Ca and Sr with a substitution scheme ofNa+ + REE3+ Ca2+ + Sr2+ On the basis of theseobservations a general formula for cordylite-(Ce)can be expressed as (NaCa)Ba(REESr)2(CO3)4FOur X-ray and IR data are identical for eachcompositional variety and also identical to thoseof lsquobaiyuneboite-(Ce)rsquo (Fu and Su 1988) whichis now recognized to be cordylite-(Ce) (JZemann personal communication 1996)

Kukharenkoite-(Ce) occurs in Khibina C II-2and C II-3 carbonatites and in carbonate-zeoliteveins (Table 3) It was described as a new mineralby Zaitsev et al (1996) The composition of thekukharenkoite-(Ce) (Zaitsev et al 1996) deter-

FIG 4 (a) BEI of syntaxial intergrowths of synchysite-(Ce) (grey) parisite-(Ce) (grey) and bastnasite-(Ce) (white) CII-2 manganoan ankerite-calcite carbonatite sample 633A414 1 (b) BEI of large crystals of low Ca and Sr cordylite-(Ce) pale grey in centre) associated with laths of high Ca and Sr cordylite-(Ce) (dark grey) and kukharenkoite-(Ce)

(white) CZ III-1 manganoan siderite-manganoan ankerite shy natrolite vein sample 60775

FIG 5 Atomic proportions of Na+REE vs Ca+Sr forcordylite-(Ce)

A N ZAITSEV ETAL

238

mined from electron microprobe analysis is BaO4893 SrO 0 42 MnO 026 Na2O 0 08 CaO0 05 La2O3 6 16 Ce2O3 15 12 Pr2O3 149Nd2O3 4 08 ThO2 0 10 and F 320 wt Theatomic ratios of Ba REE and F are near 211requiring 3 (CO3)

2shy groups per formula unit(calculated CO2 21 73 wt ) and the idealf o r m u l a f o r k u k h a r e n k o i t e - ( C e ) i sBa2REE(CO3)3F

The chemical composition of cebaite-(Ce) fromKhibina was determined by 18 electron micro-

probe analyses (Table 10) Although analysistotals are less then 100 calculated atomic ratiosfor Ba REE and F are near 322 and closelyc o r r e s p o n d t o a n i d e a l f o r m u l a o fBa3REE2(CO3)5F2 Cebaite-(Ce) contains minorSrO (101shy 261 wt ) CaO (033shy 118 wt)and ThO2 (0 49shy 126 wt) in addition rela-tively high MnO (up to 0 83 wt ) and FeO (up to0 61 wt ) were observed in some analyses Allcebaite-(Ce) crystals are unzoned See Table 3 formineralogical details

TABLE 7 Chemical composition of synchysite-(Ce) at Khibina

Rock C II-2 C II-3 C II-1 C II-1 C II-1Sample 633A414 1 604413 633485 5 603265 603165

syntaxial intergrowths secondary after burbankite secondary aftercarbocernaite

mean (8) sd mean (6) sd mean (9) sd mean (15) sd mean (4) sd

CaO 17 47 0 38 16 89 0 62 1618 070 16 08 0 88 17 23 033FeO bd 0 35 0 49 b d b d bdSrO 024 0 12 0 43 0 18 0 87 066 0 59 0 28 056 021BaO 009 0 05 0 15 0 04 0 12 007 0 06 0 05 011 006La2O3 16 54 0 42 13 06 0 58 1798 087 20 34 0 86 13 63 073Ce2O3 26 19 0 85 27 21 0 79 2591 065 25 77 0 50 25 26 085Pr2O3 215 0 12 2 53 0 07 1 94 011 1 78 0 08 258 010Nd2O3 614 0 44 7 90 0 22 5 54 027 4 53 0 41 969 086Sm2O3 038 0 06 0 62 0 10 0 38 004 0 31 0 07 068 038Y2O3 bd b d b d b d 011 009ThO2 bd 0 38 0 21 0 15 009 b d 017 014F 549 0 18 5 69 0 21 5 83 023 5 61 0 23 578 011CO2 28 12 27 81 2718 27 59 28 11shy O=F2 231 2 40 2 46 2 36 243

Total 10049 100 62 9961 100 30 101 46

Calculated to 2 (CO3)2shy groups

Ca 0975 0 953 0 934 0 915 0962Sr 0007 0 013 0 027 0 018 0017Ba 0002 0 003 0 002 0 001 0002Fe 0 015

Total 0984 0 985 0 964 0 934 0981

La 0318 0 254 0 357 0 398 0262Ce 0499 0 524 0 511 0 501 0481Pr 0041 0 049 0 038 0 034 0049Nd 0114 0 149 0 107 0 086 0180Sm 0007 0 011 0 007 0 006 0012Y 0003Th 0 005 0 002 0002

Total 0979 0 991 1 022 1 025 0990F 0904 0 948 0 994 0 943 0953

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

239

Y-rich carbonates mckelveyite-(Y) ewaldite anddonnayite-(Y)

A detailed description of these minerals fromKhibina Vuoriyarvi and Sallanlatvi is given byVoloshin et al (1990 1992) This was the firsttime that they had been documented in carbona-tites Mckelveyite-(Y) is the best-studied of thegroup at Khibina (Table 3)

Chemical compositions of mckelveyite-(Y) andewaldite from Kola carbonatites are represented by

three electron microprobe analyses of mckelveyite-(Y) from Vuoriyarvi carbonatites one from theSallanlatvi carbonatite and two analyses ofewaldite from Vuoriyarvi (Voloshin et al 19901992) However even these limited data showcompositional variation and three groups havebeen identified Na-free mckelveyite-(Y) Y-freeLREE-enriched mckelveyite and Y-free ewaldite

Five separate crystals of mckelveyite-(Y) wereanalysed from Khibina (Table 11) and areuniform in chemical composition The formula

TABLE 8 Chemical composition of parisite-(Ce) and bastnasite-(Ce) at Khibina

Rock C II-2 C II-3 C II-2Sample 633A4141 604413 633A414 1Mineral parisite-(Ce) bastnasite-(Ce)

mean (2) mean (5) sd mean (6) sd

CaO 9 72 9 29 1 03 084 0 29SrO 0 56 0 79 0 18 085 0 34BaO 0 07 0 30 0 29 008 0 05FeO 0 05 0 38 0 28La2O3 1963 15 96 0 72 26 35 0 99Ce2O3 3172 32 28 0 45 37 41 0 54Pr2O3 2 30 2 87 0 14 250 0 13Nd2O3 6 83 8 74 0 22 660 0 48Sm2O3 0 45 0 60 0 02 036 0 07Y2O3 0 10 0 22 0 12 bdThO2 b d 0 24 0 10 bdF 7 02 6 79 0 17 811 0 22CO2 2433 24 54 20 67shy O=F2 2 95 2 86 342

Total 9982 100 13 100 35

Calculated to 3 (CO3)2shy groups Calculated to 1 (CO3)

2shy groupCa 0 941 0 892 0033Sr 0 029 0 041 0018Ba 0 002 0 011 0001Fe 0 004 0 029

Total 0 976 0 972

La 0 654 0 527 0357Ce 1 048 1 057 0503Pr 0 076 0 094 0033Nd 0 220 0 280 0087Sm 0 014 0 018 0005Y 0 005 0 010Th 0 005

Total 2 017 1 992 1037

F 2 004 1 923 0942

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

240

of mckelveyite-(Y) is still the subject of debate Inthe original description Milton et al (1965) gavethe formula as Na19Ba40Ca11Sr02REE15U03

(CO3)9 5H2O Later Chao et al (1978) suggestedan isomorphous relationship between mckel-veyite-(Y) and donnayite-(Y) and gave theformula of NaCaBa3Y(CO3)6 3H2O In a recentstudy of mckelveyite-(Y) and ewaldite Voloshinet al (1990 1992) showed a similarity betweenthese two minerals and suggested that they areprobably polymorphs The formula of ewalditewas determined as (CaNaREE )(BaSr )(CO3)2 nH2O where part of the H2O is zeolitic

Chemical data from the Khibina mckelveyite-(Y) were calculated on the basis of the IMAaccepted formula NaCaBa3Y(CO3)6 3H2O (Table

11) Our data and those of Voloshin et al (1990)show significant substitutions the main one beingBa2+ Sr2+ which is related to the mckelveyite-(Y)-donnayite-(Y) pair where these minerals are Baand Sr end-members respectively The assignationof REE to two different sites in the mckelveyite-(Y) formula is problematic It is based on formulabalance and the REE chondrite-normalizeddistribution which is discussed below in thesection on lsquoRare earth patternsrsquo

Strontianite baryte barytocalcite edingtonite andharmotome

Minerals rich in Ba and Sr but with no REE arerepresented in the Khibina carbonatites by

TABLE 9 Chemical composition of cordylite-(Ce) at Khibina

Rock CZ III-1 C II-3 CZ III-1 CZ III-1 C II-1Sample 60775 6032646 6032515 60775 6031650Variety low Ca and Sr moderate Ca and Sr high Ca and Sr

mean (15) sd mean (17) sd mean (15) sd mean (10) sd mean (17) sd

Na2O 412 0 12 3 66 0 24 3 67 0 12 2 60 0 15 256 0 16CaO 073 0 18 1 54 0 31 1 50 0 08 3 82 0 18 410 0 26SrO 058 0 23 2 48 0 57 2 09 0 31 6 03 0 43 590 0 50BaO 22 28 0 33 22 29 0 51 22 32 0 32 23 02 0 25 23 11 0 36La2O3 994 0 36 10 46 0 38 11 82 0 53 7 58 0 30 11 49 0 51Ce2O3 24 46 0 43 23 82 0 68 22 18 0 28 20 26 0 38 17 90 0 67Pr2O3 241 0 18 1 85 0 24 1 69 0 25 2 19 0 27 145 0 30Nd2O3 747 0 49 5 88 0 31 5 70 0 41 6 97 0 49 536 0 54ThO2 011 0 17 0 13 0 14 0 12 0 16 0 13 0 12 013 0 16F 262 0 10 2 97 0 28 2 95 0 33 2 60 0 08 285 0 31CO2 24 92 25 16 24 78 25 77 25 75shy O=F2 110 1 25 1 24 1 10 120

Total 98 55 98 98 97 57 99 88 99 40

Calculated for 4 (CO3)2shy groups

Na 0945 0 821 0 837 0 579 0567Ca 0093 0 191 0 189 0 470 0501

Total 1038 1 012 1 026 1 049 1068

Ba 1032 1 011 1 028 1 036 1033La 0434 0 446 0 513 0 321 0483Ce 1058 1 008 0 954 0 851 0747Pr 0104 0 078 0 072 0 092 0060Nd 0315 0 243 0 239 0 286 0218Sr 0040 0 167 0 142 0 402 0390Th 0003 0 003 0 003 0 003 0003

Total 1954 1 945 1 923 1 955 1901

F 0981 1 088 1 096 0 946 1029

Fe Mn and Sm are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

241

strontianite baryte barytocalcite edingtonite andharmotome (Table 3) The first two minerals arecommon in late-stage carbonatites e g MountainPass (Olsen et al 1954) Vuoriyarvi SeblyavrSallanlatvi (Kapustin 1980) Sarnu-Dandali (Wallet al 1993) and Kangankunde (Wall andMariano 1996)

Barytocalcite is extremely rare in carbonatitesand has been described only from Vuoriyarvi andan unnamed Siberian carbonatite (Kapustin 1980)and possibly Chipman Lake (Platt and Woolley1990)

Edingtonite and harmotome are bariumzeolites Their occurrence at Khibina is the first

TABLE 10 Chemical composition of cebaite-(Ce) at Khibina

Rock CZ III-1Sample 6031435Analysis 14 24 25 29 30 33 Mean (18) Sd

Na2O 0 09 0 10 0 08 0 11 0 13 0 10 0 10 0 03CaO 0 40 1 18 0 47 0 61 0 52 0 70 0 61 0 21MnO 0 07 0 47 0 12 0 73 0 83 0 13 0 16 0 24FeO 0 45 0 13 b d 0 14 0 61 b d 0 16 0 19SrO 1 40 1 27 1 45 1 25 1 28 1 31 1 43 0 36BaO 43 93 40 51 42 19 42 09 42 59 42 93 42 77 1 84La2O3 5 30 7 28 6 71 5 58 5 48 5 72 5 67 0 52Ce2O3 13 59 14 33 14 52 14 66 13 66 14 91 14 45 1 16Pr2O3 1 54 1 69 1 83 1 78 1 51 1 81 1 63 0 19Nd2O3 6 15 5 69 5 99 6 32 5 70 5 34 5 54 0 48Sm2O3 0 60 0 61 0 50 0 38 0 42 0 34 0 48 0 11Eu2O3 0 17 0 18 b d 0 24 b d b d 0 07 0 11Gd2O3 0 59 0 66 0 53 0 49 0 40 0 37 0 50 0 13ThO2 0 99 0 51 0 49 0 92 1 07 0 99 0 92 0 22F 4 24 4 10 4 15 3 78 3 99 3 61 3 76 0 21CO2 21 57 21 79 21 41 21 79 21 65 21 41 21 42shy O=F2 1 78 1 73 1 75 1 59 1 68 1 52 1 58

Total 99 31 98 77 98 78 99 29 98 15 98 15 98 10

Calculated for 5 (CO3)2shy groups

Na 0 031 0 032 0 025 0 038 0 042 0 034 0 032Ca 0 073 0 212 0 085 0 111 0 095 0 130 0 114Mn 0 010 0 066 0 018 0 105 0 119 0 018 0 023Fe 0 064 0 018 0 020 0 087 0 023Sr 0 137 0 124 0 143 0 123 0 127 0 132 0 144Ba 2 915 2 659 2 802 2 805 2 855 2 926 2 900

Total 3 230 3 111 3 072 3 201 3 325 3 240 3 236

La 0 331 0 450 0 419 0 350 0 346 0 367 0 362Ce 0 841 0 878 0 900 0 911 0 854 0 948 0 914Pr 0 095 0 103 0 113 0 110 0 094 0 115 0 102Nd 0 372 0 340 0 362 0 384 0 348 0 332 0 342Sm 0 035 0 035 0 029 0 022 0 024 0 021 0 029Eu 0 010 0 011 0 014 0 004Gd 0 033 0 036 0 030 0 028 0 023 0 021 0 029Th 0 038 0 019 0 019 0 036 0 042 0 039 0 036

Total 1 755 1 872 1 873 1 855 1 730 1 843 1 819

F 2 268 2 174 2 221 2 033 2 159 1 986 2 057

Y Dy Er Yb and Lu are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

242

TABLE 11 Chemical position of mckelveyite-(Y) at Khibina

Rock CZ IIISample 6031435Point 1 2 4 5 9 10 Mean (12) sd

Na2O 3 12 3 05 3 21 3 10 3 33 3 14 3 19 0 10CaO 4 56 4 34 4 32 4 34 4 20 4 72 4 43 0 38MnO 0 06 b d b d b d b d 0 06FeO b d b d 0 64 b d 0 07 0 11 0 18 0 26BaO 29 43 29 89 28 47 28 73 29 69 27 13 28 97 0 98SrO 9 16 9 56 9 29 10 41 8 25 12 42 9 56 1 26Y2O3 6 39 6 33 5 32 7 02 5 84 8 42 6 44 0 93La2O3 1 22 1 22 1 60 0 85 1 84 0 96 1 34 0 34Ce2O3 1 93 1 79 2 43 1 17 2 96 1 77 2 18 0 65Pr2O3 0 22 0 22 0 15 0 30 0 24 0 15 0 22 0 06Nd2O3 0 69 0 77 0 91 1 11 0 71 0 37 0 84 0 24Sm2O3 0 81 0 87 0 81 0 89 0 85 0 20 0 78 0 23Eu2O3 0 49 0 64 0 50 0 36 0 60 0 34 0 47 0 10Gd2O3 2 15 1 94 2 18 2 05 2 32 1 05 2 02 0 38Dy2O3 2 39 2 40 2 97 2 29 2 83 2 00 2 48 0 29Er2O3 1 03 1 09 1 28 0 87 0 68 1 03 0 94 0 19Yb2O3 0 44 0 44 0 56 0 59 0 25 0 61 0 47 0 12ThO2 b d 0 17 b d b d b d b dF 0 18 0 15 b d b d 0 17 0 16 0 14 0 09CO2 25 71 25 70 25 86 25 81 25 71 26 72 25 93H2O 10 52 10 51 10 58 10 56 10 52 10 93 10 61shy O=F2 0 07 0 06 0 07 0 07 0 06

Total 100 43 101 01 101 07 100 44 100 98 102 24 101 13

Calculated to 6 (CO3)2shy and 3H2O groups

Na 1 000 0 984 1 000 1 000 1 000 0 978 1 000Ca 0 735 0 757 0 561 0 778 0 565 0 785 0 676Na 0 009 0 040 0 006 0 075 0 023La 0 075 0 075 0 099 0 052 0 113 0 057 0 082Ce 0 118 0 109 0 148 0 071 0 181 0 104 0 132Pr 0 013 0 013 0 009 0 018 0 014 0 009 0 013Nd 0 041 0 046 0 054 0 067 0 042 0 021 0 050Mn 0 009 0 008 0 000Fe 0 089 0 010 0 015 0 025

Total 1 000 1 000 1 000 0 992 1 000 1 000 1 000

Ba 1 923 1 950 1 865 1 884 1 941 1 707 1 880Sr 0 885 0 922 0 900 1 009 0 798 1 156 0 917Ca 0 080 0 017 0 212 0 185 0 026 0 110

Total 2 888 2 890 2 977 2 893 2 924 2 889 2 907

Y 0 567 0 561 0 473 0 625 0 518 0 719 0 567Sm 0 047 0 050 0 047 0 051 0 049 0 011 0 045Eu 0 028 0 036 0 029 0 021 0 034 0 018 0 026Gd 0 119 0 107 0 121 0 114 0 128 0 056 0 111Dy 0 128 0 129 0 160 0 123 0 152 0 104 0 132Er 0 054 0 057 0 067 0 045 0 036 0 052 0 049Yb 0 023 0 022 0 028 0 030 0 013 0 030 0 024Th 0 007

Total 0 965 0 969 0 925 1 009 0 930 0 990 0 954

F 0 092 0 081 0 088 0 082 0 071

Lu is below detection limit CO2 and H2O calculated by stoichiometry

REE-SR-BA MINERALS

243

TA

BL

E12

C

hem

ical

com

posi

tion

ofst

ront

iani

teat

Khi

bina

Roc

kC

II-2

CII

-3C

ZII

I-1

CII

-1C

II-1

CII

-1S

ampl

e63

3A4

141

604

413

060

325

15

646

451

060

336

364

600

1pr

imar

yst

ront

iani

teas

soci

ated

wit

hse

cond

ary

stro

ntia

nite

(aft

erbu

rban

kite

)as

soci

ated

wit

hsy

nchy

site

-(C

e)

sync

hysi

te-(

Ce)

cord

ylit

e-(C

e)an

cyli

te-(

Ce)

sync

hysi

te-(

Ce)

ancy

lite

-(C

e)an

dba

ryte

pari

site

-(C

e)an

dan

dpa

risi

te-(

Ce)

and

bary

tean

dba

ryte

bast

nasi

te-(

Ce)

mea

n(1

0)sd

mea

n(6

)sd

mea

n(3

)m

ean

(25)

sdm

ean

(4)

sdm

ean

(6)

sdm

ean

(4)

sdm

ean

(8)

sdco

rem

antl

eri

m

Na 2

Ob

db

db

d0

140

05b

d0

210

050

100

04b

dC

aO3

250

563

230

443

073

461

003

370

331

580

373

720

325

970

20S

rO66

21

068

668

00

5166

62

635

71

2664

34

051

682

00

6063

95

100

625

80

78B

aO0

190

170

160

070

221

610

471

630

150

720

290

830

092

000

57L

a 2O

3b

db

d0

160

480

20b

d0

620

120

330

060

150

04C

e 2O

30

180

120

110

110

570

610

240

190

080

760

160

420

050

250

05C

O2

307

930

99

310

530

71

305

131

11

306

931

99

Tot

al10

063

101

2910

169

100

5810

004

103

2010

004

102

94

Cal

cula

ted

to1

(CO

3)2

shygr

oup

Na

000

60

010

000

5C

a0

083

008

20

077

008

80

087

004

00

095

014

6S

r0

913

091

50

911

087

90

895

093

10

885

083

1B

a0

002

000

10

002

001

50

015

000

70

008

001

8L

a0

001

000

40

005

000

30

001

Ce

000

20

001

000

50

005

000

20

007

000

40

002

Tot

al0

999

100

00

997

099

80

999

099

90

999

099

8

Mg

Mn

Fe

Pr

Nd

Sm

Y

T

han

dU

are

belo

wde

tect

ion

lim

its

CO

2ca

lcul

ated

byst

oich

iom

etry

A N ZAITSEV ETAL

244

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 5: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

out on a Hitachi S2500 scanning electronmicroscope equipped with a Link AN1055Senergy-dispersive analysis system The Camecawas operated at 15 kV and 10shy 20 nA with spotsizes as large as possible up to 30 mm in order tominimize beam damage Individual REE calciumaluminium silicate glasses obtained from theUniversity of Edinburgh were used as standardsfor the REE jadeite was used for Na wollastoniteand apatite for Ca celestine for Sr and bariumfluoride for Ba and F Detailed information aboutconditions of microprobe analyses is availablefrom Williams (1996)

Mineralogy and mineral chemistry

At least 17 minerals containingREE Sr andor Baas major elements have been identified in the latecarbonatites (C II) and the carbonate-zeoliterocks(CZ III) (Table 2) The mineralogy and paragen-esis of these and the associated minerals issummarized in Table 3 This table also shows thesequence of formation of phoscorites carbonatitesand carbonate-zeoliterocks in the Khibina massif

Alkaline Sr-Ca-REE-Ba carbonates burbankite andcarbocernaite

The alkaline Sr-Ca-REE-Ba carbonates burban-kite and carbocernaite are rock-forming mineralsin the calcite carbonatites (C II-1) (Table 3) Fieldrelationships show that the carbonatites withburbankite and carbocernaite are the earliest ofthe C II group of carbonatites (Zaitsev 1996)

Burbankite a rare mineral known from severalcarbonatite complexes always occurs in late-stage carbonatites It has been described from theBearpaw Mountains (Pecora and Kerr 1953)Vuoriyarvi (Kukharenko et al 1965 Kapustin1980) Ozernyi (Zdorik 1966) Arbarastakh(Zhabin et al 1971) Nizhnesayanskii (Somina1975) Chipman Lake (Platt and Woolley 1990)and Qaqarssuk (Knudsen 1991)

Burbankite is a double carbonate with thegeneral formula A3B3(CO3)5 where the A-site isoccupied by Na and Ca and the B-site contains SrREE Ba and Ca (Effenberger et al 1985) Thereare only seven wet chemical analyses ofburbankite from carbonatites made more than25 years ago (Pecora and Kerr 1953 Kukharenkoet al 1965 Zdorik 1966 Zhabin et al 1971Kapustin 1980) and twelve electron microprobeanalyses published recently (Effenberger et al 1985 Platt and Woolley 1990 Knudsen 1991)

These data show a large variation in major oxidesNa2O (4 04 shy 13 89 wt ) SrO (6 17 shy 32 60wt ) CaO (9 81 shy 21 09 wt ) SREE2O3

(2 50 shy 23 00 wt ) and BaO (1 85 shy 14 60wt) Wet chemical analyses of burbankite canshow high contents of Si Al and S but these areprobably the result of admixtures Publishedmicroprobe analyses have high cation deficienciesin the A-site (up to 065 per formula unit)attributed to the loss of Na under the electronbeam (Platt and Woolley 1990) or have hightotals with calculated CO2 (108 26 shy 11349 wt)(Knudsen 1991) which also indicate possibleanalytical problems

Average chemical compositions of the Khibinaburbankite determined by wet chemical analysisof 2 g of pure hand-picked burbankite andapproximately 40 electron microprobe analysesare given in Table 4 The wet chemical andmicroprobe results are in good agreement andindicate that the burbankite is relatively low in Bacompared with other carbonatites The one

TABLE 2 Minerals containing REE Sr andor Ba asmajor elements identified in Khibina late carbo-natites (C II) and carbonate-zeolite rocks (CZ III)

Mineral Formula

burbankite (NaCa)3(SrBaCe)3(CO3)5carbocernaite (NaCa)(SrCeBa)(CO3)2

ancylite-(Ce) SrCe(CO3)2(OH) H2O

synchysite-(Ce) Ca(CeLa)(CO3)2Fparisite-(Ce) Ca(CeLa)2(CO3)3F2

bastnasite-(Ce) (CeLa)(CO3)F

cordylite-(Ce) Ba(CeLa)2(CO3)3F2

cebaite-(Ce) Ba3(CeLa)2(CO3)5F2

kukharenkoite-(Ce) Ba2Ce(CO3)3F

mckelveyite-(Y) Ba3Na(CaU)Y(CO3)6 3H2Oewaldite Ba(CaYNaK)(CO3)2donnayite-(Y) Sr3NaCaY(CO3)6 3H2O

edingtonite BaAl2Si3O10 4H2Oharmotome (BaK)1shy 2(SiAl)8O16 6H2O

strontianite SrCO3

baryte BaSO4

barytocalcite BaCa(CO3)2

REE-SR-BA MINERALS

229

TA

BL

E3

Min

eral

ogy

and

para

gene

sis

ofK

hibi

naR

EE

-Sr-

Ba

min

eral

s

BA

Aph

osco

rite

-bio

tite

-aeg

irin

e-ap

atite

No

prim

ary

rare

eart

hm

iner

als

CI

earl

yca

lcit

eca

rbon

atit

eN

opr

imar

yra

reea

rth

min

eral

s

CII

-1la

teca

lcit

eca

rbon

atit

ew

ithbu

rban

kite

orca

rboc

erna

ite

Prim

ary

phas

es

Bur

bank

ite

10shy

50

volu

me

yell

ow-b

row

nin

fres

hly

brok

enha

ndsp

ecim

ens

Usu

ally

larg

ehe

xago

nal

pris

mat

iccr

ysta

ls(5

shy50

mm

long

61

shy25

mm

diam

eter

)S

omet

imes

grow

infr

om

and

abou

tpe

rpen

dicu

lar

to

the

cont

act

ofth

eve

ins

Dis

trib

utio

nis

hete

roge

neou

sA

lso

asdr

op-l

ike

incl

usio

ns(3

0shy

200

m m)

inca

lcit

eas

soci

ated

wit

heu

hedr

alzo

ned

apat

ite

(Fig

3a

)

Car

boce

rnai

te10

-50

volu

me

NB

do

esno

toc

cur

wit

hbu

rban

kite

L

emon

yell

owin

hand

spec

imen

Is

omet

ric

grai

ns1

shy5

mm

diam

eter

indi

stin

ctcl

uste

rs

Alt

erat

ion

Eit

her

oftw

oal

tera

tion

asse

mbl

ages

can

com

plet

ely

pseu

dom

orph

burb

anki

te

pres

ervi

ngit

spr

ism

atic

he

xago

nal

crys

tal

form

(Fig

3b

)1)

Rep

lace

men

tass

embl

age

ofan

cyli

te-(

Ce)

str

onti

anit

ean

dle

ssof

ten

bary

tean

dra

rely

harm

otom

ean

ded

ingt

onit

eA

llst

ages

ofal

tera

tion

seen

fro

msi

ngle

fine

vein

s(5

shy20

m m)

ofan

cyli

te-(

Ce)

inbu

rban

kite

(Fig

3d

)to

poro

usag

greg

ates

ofan

cyli

te-(

Ce)

and

stro

ntia

nite

com

plet

ely

repl

acin

gbu

rban

kite

A

ncyl

ite-

(Ce)

usua

lly

aspi

nkto

red

anhe

dral

crys

tals

upto

4m

mbu

tal

soso

me

euhe

dral

crys

tals

and

zone

dst

ront

iani

tein

cavi

ties

2)

Por

ous

aggr

egat

esof

sync

hysi

te-(

Ce)

st

ront

iani

tean

dba

ryte

B

urba

nkit

ere

lics

seen

inst

ront

iani

tecr

ysta

lsan

dal

soin

sync

hysi

te-(

Ce)

and

bary

te

Fig

3c

Car

boce

rnai

teis

ofte

npa

rtly

repl

aced

bypo

rous

aggr

e-ga

tes

ofst

ront

iani

te

cord

y-li

te-(

Ce)

sy

nchy

site

-(C

e)an

dba

ryte

C

arbo

cern

aite

usua

lly

pres

erve

din

cent

ral

part

sof

the

form

ercr

ysta

ls

Stro

ntia

nite

usua

lly

colo

urle

ssan

hedr

alcr

ysta

lsbu

tal

soas

pris

mat

iczo

ned

crys

tals

upto

2m

m

Bar

yte

usua

lly

colo

urle

ss

anhe

dral

0

1shy

1m

mgr

ains

Edi

ngto

nite

and

harm

otom

esp

heru

liti

cag

greg

ates

onan

cyli

te-(

Ce)

orst

ront

iani

te

A N ZAITSEV ETAL

230

TA

BL

E3

(con

td)

CII

-2la

tem

anga

noan

anke

rite

-cal

cite

carb

onat

ite

with

sync

hysi

te-(

Ce)

Prim

ary

phas

es

Syn

taxi

alin

terg

row

ths

(Don

nay

and

Don

nay

1953

)of

sync

hysi

te-

(Ce)

par

isit

ean

dba

stna

site

-(C

e)(F

ig

4a)

Inte

rgro

wth

sar

eve

ryfi

nendash

1shy

20m m

wid

ean

d50

shy50

0m m

long

A

ssoc

iate

dw

ith

stro

ntia

nite

Syn

chys

ite-

(Ce)

whi

chis

not

inte

rgro

wn

isa

maj

orro

ck-f

orm

ing

min

eral

W

hite

yel

low

(usu

ally

wit

hca

lcit

e)or

red

(usu

ally

wit

hfe

rroa

nku

tnoh

orit

e)ta

bula

rcr

ysta

ls

01

shy3

m mdi

amet

er

Oft

enir

regu

lar

tora

diat

ing

agre

gate

s

Kuk

hare

nkoi

te-(

Ce)

as

late

-sta

ge0

01shy

1m

mpr

ism

atic

crys

tals

inti

nyca

viti

es

Oft

enas

stel

late

de

ndri

tic

orir

regu

lar

inte

rgro

wth

sup

to3

mm

diam

eter

R

arel

yas

anhe

dral

00

5shy

02

mm

grai

nsor

plat

y0

1shy

2m

mcr

ysta

lsA

ssoc

iate

dw

ith

cord

ylit

e-(C

e)

stro

ntia

nite

an

dra

rely

mck

elve

yite

-(Y

)

Stro

ntia

nite

usua

lly

occu

rsas

colo

urle

ss

subh

edra

lcr

ysta

lsup

to2

mm

diam

eter

CII

-3la

teca

rbon

atit

es-f

erro

anrh

odoc

hros

ite-m

anga

noan

anke

rite

with

sync

hysi

te-(

Ce)

orco

rdyl

ite-

(Ce)

Prim

ary

phas

es

Sync

hysi

te-(

Ce)

som

etim

espr

esen

tin

fine

synt

axia

lin

terg

row

ths

wit

hpa

risi

te-(

Ce)

C

ordy

lite

-(C

e) i

sa

typi

cal

min

eral

W

hite

orye

llow

tabu

lar

crys

tals

0

1shy

1m

man

dso

met

imes

upto

5m

m

eith

ersi

ngle

orin

aggr

egat

es

Mck

elve

yite

-(Y

)ew

aldi

te

and

don-

nayi

te-(

Y)

inca

viti

es

Yel

low

orw

hite

crys

tals

va

riou

sha

bits

from

tabu

lar

colu

mna

rto

barr

el-s

hape

dS

ome

crys

tals

are

hem

imor

phic

Stro

ntia

nite

pr

imar

yu

sual

lyco

lou

rles

ssu

bhed

ral

crys

tals

upto

2m

m

Kuk

hare

nkoi

te-(

Ce)

(See

abov

e)E

ding

toni

tean

dha

rmot

ome

are

com

mon

acce

ssor

ym

iner

als

Usu

ally

eu

hedr

alcr

ysta

ls

upto

2m

m

inca

viti

es

Alt

erat

ion

Vei

n-li

keag

greg

ates

ofsy

nchy

site

-(C

e)

stro

ntia

nite

ba

ryte

and

bast

nasi

te-(

Ce)

repl

ace

the

synt

axia

lin

terg

row

thin

som

ero

cks

Stro

ntia

nite

us

uall

yco

l-ou

rles

san

hedr

alcr

ysta

lsB

aryt

eus

uall

yco

lour

less

an

he-

dral

0

1shy

1m

mgr

ains

REE-SR-BA MINERALS

231

TA

BL

E3

(con

td)

CZ

III-

1ca

rbon

ate-

zeol

ite

vein

s-m

anga

noan

side

rite

-man

gano

anan

keri

te-n

atro

lite

Sync

hysi

te-(

Ce)

som

etim

espr

esen

tC

ordy

lite

-(C

e)is

aty

pica

lm

iner

al

Whi

teor

yell

owta

bula

rcr

ysta

ls

01

shy1

mm

and

som

etim

esup

to5

mm

ei

ther

sing

leor

inag

gre-

gate

s2

vari

etie

s(F

ig

4b)

Ceb

aite

-(C

e)

foun

din

cavi

ties

asye

llow

w

hite

orco

lour

less

crys

tals

upto

02

mm

D

endr

itic

st

ella

teor

irre

gula

rin

terg

row

ths

Co

mm

on

lyas

soci

ated

wit

hm

ckel

veyi

te-(

Ce)

co

rdyl

ite

and

stro

ntia

nite

Mck

elve

yite

-(Y

)ew

al-

dite

and

donn

ayit

e-(Y

)se

eab

ove

Edi

ngto

nite

and

har-

mot

ome

com

mon

ac-

ce

sso

rym

ine

rals

U

sual

ly

euhe

dral

crys

-ta

ls

upto

2m

m

inca

viti

es

Kuk

hare

nkoi

te-(

Ce)

(See

abov

e)St

ront

iani

tew

ith

cord

ylit

e-(C

e)

prim

ary

Bar

yte

ofte

nsh

ort

pris

mat

iccr

ysta

lsin

cavi

ties

CZ

III-

2ca

rbon

ate-

zeol

ite

vein

s-m

anga

noan

side

rite

-nor

dstr

andi

te-n

atro

lite

Co

rdyl

ite-

(Ce)

isa

lsquotyp

ical

rsquom

iner

al

Whi

teor

yell

owta

bula

rcr

ysta

ls

01

shy1

mm

and

som

e-ti

mes

upto

5m

m

eith

ersi

ngle

orin

aggr

egat

es

Mck

elve

yite

-(Y

)ew

aldi

tean

ddo

nnay

ite-

(Y)

Bar

ytoc

alci

te

euhe

dral

orsu

b-he

dral

1

shy2

mm

whi

tecr

ysta

lsin

cavi

ties

Id

enti

fica

tion

base

don

XR

Dan

dIR

spec

tra

Stro

ntia

nite

wit

hco

r-dy

lite

-(C

e)

prim

ary

Bar

yte

ofte

nsh

ort

pr

ism

atic

crys

tals

inca

viti

es

CZ

III-

3ca

rbon

ate-

zeol

ite

vein

s-na

trol

ite-

man

gano

ansi

deri

te-d

awso

nite

Mck

elve

yite

-(Y

)ew

aldi

tean

ddo

nnay

ite-

(Y)

Stro

ntia

nite

wit

hco

rdyl

ite-

(Ce)

pr

imar

yB

aryt

eof

ten

shor

tpr

ism

atic

crys

tals

inca

viti

es

A N ZAITSEV ETAL

232

exception (sample 633B79 5) has 6 65 wtBaO There is no zoning in Khibina burbankitecrystals and the compositions are also uniformwithin each rock sample

There are two morphological types of burban-kite large prismatic crystals and small drop-likeinclusions within calcite crystals and along theirboundaries (Fig 3a Table 3) Although theircompositions are the same (Table 4) the

difference in morphology suggests they mayhave formed by different processes Largeeuhedral prismatic crystals could have crystal-lized at an early stage of carbonatite formationand sometimes large burbankite crystals areobserved near the contact of veins that arecharacterized by a crustification texture (vein-filling) The drop-like burbankite inclusions incalcite probably did not form by exsolution of

TABLE 4 Chemical composition of burbankite at Khibina

Rock C II-1Sample 607277 633477 7 6334777 581013 633B79 5

large crystal drop-like inclusion large crystal large crystalmean (9) sd mean (4) sd mean (10) sd mean (9) sd

Na2O 12 45 11 93 0 13 11 80 0 27 1260 0 44 12 03 0 85CaO 12 60 11 94 0 53 12 57 0 54 1020 0 49 10 08 1 22SrO 19 60 24 74 0 31 24 57 0 38 1838 0 61 17 71 0 92BaO 0 78 1 76 0 12 1 86 0 04 2 52 0 49 6 65 0 47La2O3 5 20 5 65 0 14 5 11 0 25 7 05 0 30 4 77 0 26Ce2O3 9 91 7 15 0 16 6 97 0 28 1106 0 41 9 26 0 43Pr2O3 0 64 0 47 0 04 0 47 0 05 0 80 0 10 0 88 0 07Nd2O3 1 53 1 24 0 10 1 33 0 03 2 53 0 28 3 11 0 31Sm2O3 0 05 b d b d 0 31 0 11 0 39 0 12Gd2O3 b d b d b d b d 0 20 0 07ThO2 n d b d b d b d 0 16 0 10CO2 35 40 34 68 34 79 3421 33 38

Total 99 76 99 56 99 47 9966 98 62

Calculated to 5 (CO3)2shy groups

Na 2 508 2 442 2 408 2 615 2 558Ca 0 338 0 498 0 529 0 267 0 345A site total 2 846 2 941 2 937 2 882 2 903

Sr 1 181 1 514 1 499 1 141 1 126Ca 1 065 0 852 0 889 0 903 0 840La 0 199 0 220 0 198 0 278 0 193Ce 0 377 0 276 0 268 0 433 0 372Pr 0 024 0 018 0 018 0 031 0 035Nd 0 056 0 047 0 050 0 097 0 122Sm 0 003 0 011 0 015Gd 0 007Ba 0 032 0 073 0 077 0 106 0 286Th 0 004B site total 3 000 3 000 3 000 3 000 3 000C 5 021

Sample 607277 - wet chemical analysis other samples - electron microprobe analysessd - standard deviation - including MgO 0 02 K2O 0 02 MnO 007 FeO 0 42 SiO2 020 F 0 04 and H2O 0 85 all wt - including Mn 0 006 Fe 0 037 and Si 0 021b d - below detection limits Mg Mn Fe Y and F are below detection limits in the microprobe analyses CO2 inmicroprobe analyses calculated by stoichiometry n d ndash not determined

REE-SR-BA MINERALS

233

FIG 3 Backscattered electron images (BEI) of (a) large crystals and drop-like inclusions of burbankite (white) incalcite (black) (b) a contact print of a thin section containing a pseudomorph of synchysite-(Ce) strontianite andbaryte after burbankite The width of the burbankite pseudomorph is 9 mm C II-1 calcite carbonatite sample 603265 (c) zoned altered burbankite (grey and dark-grey) with ancylite-(Ce) veins (white) C II-1 calcite carbonatite

sample 633B79 5 (d) relics of burbankite (dark grey) in strontianite (grey) and synchysite-(Ce) (white)

A N ZAITSEV ETAL

234

burbankite from calcite rich in Na Sr and REE asmight be thought at first from Fig 3a and asproposed for a similar occurrence by Knudsen(1991) because the burbankite crystals areassociated with euhedral zoned apatites Theyare more likely to be the result of lsquocotecticrsquocrystallization of burbankite and calcite after theprecipitation of the apatite

Carbocernaite has been found in many Khibinacarbonatite samples (Table 3) It was describedoriginally as a primary mineral crystallized at alate stage of carbonatite formation at VuorijarviKola Peninsula (Bulakh et al 1961) Zdorik(1966) and Kapustin (1980) found that carbocer-naite in carbonatites from the Ozernyi andVuoriyarvi massifs occurs as a secondarymineral after burbankite The most unusualoccurrence of carbocernaite is the exsolutionlamellae and cotectic textures for carbocernaiteand calcite in Sarnu-Dandali carbonatitedescribed by Wall et al (1993) Carbocernaite isalso reported from carbonatite in the Si PanRange Vietnam (Bulakh and Izokh 1966)

Carbocernaite like burbankite is a doublecarbonate with a general formula AB(CO3)2 withNa and Ca in the A-site and Sr REE and Ba in theB-site There are few studies of the chemicalcomposition of carbocernaite Before the detailedinvestigation of Wall et al (1993) only a few wetchemical analyses were published (Bulakh et al 1961 Bulakh and Izokh 1966 Zdorik 1966Kapustin 1980) Although available data forcarbocernaite show some variation in thecontent of major elements there is less variationthan in burbankite The Na2O values range from243 to 612 wt the BaO from 095 to 596 theSrO from 558 to 2398 the CaO from 1593 to1927 and the SREE2O3 from 17 06 to 2631 allwt In general the compositional variations inburbankite and carbocernaite are similar butcarbocernaite contains less Na2O (commonlyabout 4 shy 5 wt ) compared with burbankite(commonly about 10 shy 12 wt ) This differencein sodium content makes it possible to identifycarbocernaite and burbankite on the basis ofelectron microprobe analyses

Selected average compositions of carbocernaitefrom Khibina are given in Table 5 These datashow that carbocernaite from the Khibinacarbonatites is a low Ba variety Khibinacarbocernaite like burbankite is not zoned

Harris (1972) reported high F (3 86 wt ) incarbocernaite from Sturgeon Narrows Canadaand proposed that F together with OH could be

additional anion group (FOH)2 in the mineralformula Our data show that the F content ofKhibina carbocernaite is near the electron micro-probe detection limit of about 0 1 wt and IRinvestigations show an absence of any absorptionband related to OH- group or H2O It is possiblethat the mineral described from the SturgeonNarrows is a different mineral species The lackof Na in Sturgeon Narrows carbocernaite alsosupports our conclusion

In the Khibina carbonatite samples burbankiteand carbocernaite do not occur together so it hasnot been possible to establish their relative agesHowever both burbankite and carbocernaite-containing carbonatites are cut by later C II-2and C II-3 carbonatites

TABLE 5 Chemical composition of carbocernaite atKhibina

Rock C II-1Sample 603165 603287

mean (12) sd mean (10) sd

Na2O 4 98 0 18 4 33 0 42CaO 11 94 0 42 1360 0 33SrO 22 33 0 76 2020 0 27BaO 0 37 0 13 0 56 0 07La2O3 9 27 0 61 1053 0 33Ce2O3 13 19 0 51 1419 0 30Pr2O3 0 97 0 09 0 94 0 08Nd2O3 2 34 0 25 2 56 0 19Sm2O3 0 14 0 05 0 32 0 04F 0 10 0 10 0 14 0 03CO2 32 79 3379shy O=F2 0 04 0 06

Total 98 36 10110

Calculated to 2 (CO3)2shy groups

Na 0 431 0 364Ca 0 571 0 632A site total 1 003 0 996

Sr 0 578 0 508La 0 153 0 168Ce 0 216 0 225Pr 0 016 0 015Nd 0 037 0 040Sm 0 002 0 005Ba 0 007 0 010B site total 1 008 0 971F 0 014 0 019

Mg Mn Fe Gd Y Th and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

235

Alteration of burbankite and carbocernaite

Burbankite in carbonatites is commonly replacedby ancylite-(Ce) strontianite and baryte (Somina1975 Kapustin 1980) and rarely by ancylite-(Ce)calkinsite lanthanite and baryte (Pecora and Kerr1953) Multi-stage alteration of burbankite fromthe Ozernyi carbonatites has been documented byZdorik (1966) where carbocernaite strontianitebastnasite-(Ce) calcite baryte allanite-(Ce)monazite-(Ce) and epidote have been identifiedas alteration products of burbankite

In the Khibina carbonatites burbankite andcarbocernaite are commonly replaced by variouscombinationsof ancylite-(Ce) strontianite synch-ysite-(Ce) baryte less commonly by cordylite-(Ce) and rarely by harmotome and edingtonite(Table 3) Even when burbankite is completelyreplaced evidence of its existence is preserved inthe form of hexagonal prismatic pseudomorphs(Fig 3b) and islands of relict burbankite (Fig 3cand d) Pseudomorphs of a similar form have beenmentioned from some other rare earth-richcarbonatites e g Gem Park Wigu HillKangankunde (Wall and Mariano 1996) but inthese cases there is no evidence of the precursormineral The presence of primary and replacedburbankite at Khibina is good evidence that thepseudomorphs reported from these other carbo-natites may well have originally been burbankite

Ancylite

Ancylite-(Ce) is a hydrous carbonate containingREE and Sr as major cations On the basis of astructural study of material from the Mont Saint-Hilaire massif its formula has been proposed asREEx(SrCa)2 shy x(CO3)2(OH)x (2 shy x)H2O with acation-anion substitution of Sr2+ + H2O gtREE3+ + OH shy (Dal Negro et al 1975)Although ancylite-(Ce) is a relatively commonmineral in carbonatites there are only a fewanalyses available (Kukharenko et al 1965Kapustin 1980 Knudsen 1991) and this is thefirst detailed investigation of its chemicalcomposition Selected average chemical composi-tions are given in Table 6 The composition ofancylite-(Ce) from Khibina is relatively uniformwith Ca Ba and Th present only as traces Theatomic proportion of Sr and REE in the formula isnear 11 with a small excess of REE An importantfinding is the presence of fluorine in ancylite-(Ce)The Khibina ancylite-(Ce) contains between 0 75and 250 wt of fluorine corresponding to

0 148shy 0 488 F per formula unit Since REE andSr are present in equal abundances it is suggestedthat F- substitutes for OH- Thus the mineral fromthe Khibina carbonatites can be classified as F-bearing ancylite-(Ce) Fluorine was also detectedin two ancylite-(Ce) samples from Qaqarssukcarbonatites at 0 37 and 058 wt respectively(Knudsen 1991)

Ca-REE fluocarbonates

Synchysite-(Ce)is common at Khibina bastnasite-(Ce) and parisite-(Ce) are also found but are rare(Table 3) The textures vary as described in Table3 and include syntaxial intergrowths (Fig 4a)Ca-REE fluocarbonates are present in numerouscarbonatites e g Mountain Pass (Olsen et al 1954) Gatineau (Hogarth et al 1985)Kizilcaoren (Hatzl 1992) Tundulu (Ngwenya1994) and are the most well-studied of thecarbonatite REE-minerals (e g Kapustin 1980Hogarth et al 1985 Andersen 1986 Wall andMariano 1996) Selected average microprobeanalyses of Khibina synchysite-(Ce) made onminerals from different mineral assemblages arepresented in Table 7 Synchysite-(Ce) is char-acterized by having little substitution of otherelements for Ca and REE Primary synchysite-(Ce) from syntaxial intergrowths secondarysynchysite-(Ce) from the alteration products ofburbankite carbocernaite and syntaxial inter-growths of synchysite-(Ce) with parisite-(Ce) allhave similar chemical compositions Sr Ba and Thare typical minor constituentsin all the synchysite-(Ce) and Fe is present in the red variety associatedwith manganoan ankerite or ferroan kutnohorite

Parisite-(Ce) and bastnasite-(Ce) (Table 8) arenear their theoretical compositions with onlyminor amounts of Sr and Ba substituting for Caand Th substituting for REE

Syntaxial intergrowths of Ca-REE fluocarbo-nates are considered to be evidence for theirprimary origin the intergrowth being related tochanges in the chemical composition of the hostfluid (Ni et al 1993)

Ba-REE fluocarbonates

Ba-REE fluocarbonates are extremely rare incarbonatites Huanghoite-(Ce) is the onlymember of the group previously described froman unnamed Siberian carbonatite (Kapustin 1973)and from Qaqarssuk carbonatites (Knudsen1991) However cordylite-(Ce) kukharenkoite-

A N ZAITSEV ETAL

236

(Ce) and cebaite-(Ce) have all been identified atKhibina (Table 3)

Cordylite-(Ce) is known only from Greenland(Flink 1901) Mont Saint-Hilaire Canada (Chenand Chao 1975) and Bayan Obo China (Zhangand Tao 1986) Its occurrence at Khibina is thefirst documented occurrence which is certainlyfrom carbonatites Kukharenkoite-(Ce) is a newBa-REE fluocarbonate mineral which has beenfound in the Khibina carbonatites and fromVuoriyavri Kola Peninsula Mont Saint-Hilaireand the Saint-Amable sill Quebec Canada(Zaitsev et al 1996) The occurrence of

cebaite-(Ce) at Khibina is only the seconddocumented occurrence The first was fromBayan Obo (Zhang and Tao 1986)

There are no data on the chemical compositionof cordylite-(Ce) from carbonatites and our reportis the first for this mineral (Table 9) There arethree distinct chemical compositions of cordylite-(Ce) from Khibina Cordylite-(Ce) with low Caand Sr (Table 9) occurs in manganoan siderite-manganoan ankerite-natrolite veins (CZ III-1)where it forms tabular crystals which areassociated with strontianite and sometimeskukharenkoite-(Ce) High Ca and Sr cordylite-

TABLE 6 Chemical composition of ancylite-(Ce) at Khibina

Rock C II-1Sample 633B795 646001 646451

mean (8) sd mean (21) sd mean (24) sd

SrO 2397 1 25 21 70 1 19 20 65 1 63CaO 1 35 0 40 2 09 0 51 1 93 0 59BaO 0 59 0 09 0 85 0 24 0 85 0 25FeO 0 19 0 35 b d 0 20 0 30La2O3 1308 1 18 15 56 0 83 16 53 1 17Ce2O3 2340 1 04 23 46 1 09 23 59 0 89Pr2O3 1 94 0 11 1 74 0 14 1 69 0 12Nd2O3 5 35 0 52 4 42 0 38 4 34 0 33Sm2O3 0 29 0 06 0 28 0 05 0 23 0 04Gd2O3 0 14 0 13 0 17 0 09 b dThO2 0 53 0 20 b d b dF 2 15 0 30 1 83 0 34 1 19 0 17CO2 2344 23 32 23 07shy O=F2 0 90 0 77 0 50

Total 9551 94 66 93 77

Calculated to 2 (CO3)2shy groups

La 0 300 0 357 0 381Ce 0 532 0 534 0 539Pr 0 044 0 040 0 039Nd 0 119 0 098 0 097Sm 0 006 0 006 0 005Gd 0 003 0 004Th 0 008

Total 1 012 1 038 1 061

Sr 0 864 0 783 0 748Ca 0 090 0 139 0 129Ba 0 014 0 021 0 021Fe 0 010 0 010

Total 0 979 0 943 0 909

F 0 422 0 360 0 235

Na Mg Mn Y and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

237

(Ce) (Table 9) is observed in the same samples asmantles on crystals of low Ca and Sr cordylite-(Ce) and as abundant laths in the surroundingnatrolite and manganoan ankerite (Fig 4b) It hasalso formed as a secondary mineral duringcarbocernaite alteration Cordylite-(Ce) withmoderate Ca and Sr (Table 9) occurs in ferroanrhodochrosite-manganoan ankerite carbonatites(C II-3) and is associated with strontianite

The atomic proportions of Na-Ca and REE-Srpairs show a negative correlation with a slopenear shy 1 and a plot of Na+REE vs Ca+Sr (Fig 5)shows a trend in composition from Sr-Ca-poor toSr-Ca-rich cordylite-(Ce) The slope of thiscorrelation suggests a 11 exchange of Na andREE for Ca and Sr with a substitution scheme ofNa+ + REE3+ Ca2+ + Sr2+ On the basis of theseobservations a general formula for cordylite-(Ce)can be expressed as (NaCa)Ba(REESr)2(CO3)4FOur X-ray and IR data are identical for eachcompositional variety and also identical to thoseof lsquobaiyuneboite-(Ce)rsquo (Fu and Su 1988) whichis now recognized to be cordylite-(Ce) (JZemann personal communication 1996)

Kukharenkoite-(Ce) occurs in Khibina C II-2and C II-3 carbonatites and in carbonate-zeoliteveins (Table 3) It was described as a new mineralby Zaitsev et al (1996) The composition of thekukharenkoite-(Ce) (Zaitsev et al 1996) deter-

FIG 4 (a) BEI of syntaxial intergrowths of synchysite-(Ce) (grey) parisite-(Ce) (grey) and bastnasite-(Ce) (white) CII-2 manganoan ankerite-calcite carbonatite sample 633A414 1 (b) BEI of large crystals of low Ca and Sr cordylite-(Ce) pale grey in centre) associated with laths of high Ca and Sr cordylite-(Ce) (dark grey) and kukharenkoite-(Ce)

(white) CZ III-1 manganoan siderite-manganoan ankerite shy natrolite vein sample 60775

FIG 5 Atomic proportions of Na+REE vs Ca+Sr forcordylite-(Ce)

A N ZAITSEV ETAL

238

mined from electron microprobe analysis is BaO4893 SrO 0 42 MnO 026 Na2O 0 08 CaO0 05 La2O3 6 16 Ce2O3 15 12 Pr2O3 149Nd2O3 4 08 ThO2 0 10 and F 320 wt Theatomic ratios of Ba REE and F are near 211requiring 3 (CO3)

2shy groups per formula unit(calculated CO2 21 73 wt ) and the idealf o r m u l a f o r k u k h a r e n k o i t e - ( C e ) i sBa2REE(CO3)3F

The chemical composition of cebaite-(Ce) fromKhibina was determined by 18 electron micro-

probe analyses (Table 10) Although analysistotals are less then 100 calculated atomic ratiosfor Ba REE and F are near 322 and closelyc o r r e s p o n d t o a n i d e a l f o r m u l a o fBa3REE2(CO3)5F2 Cebaite-(Ce) contains minorSrO (101shy 261 wt ) CaO (033shy 118 wt)and ThO2 (0 49shy 126 wt) in addition rela-tively high MnO (up to 0 83 wt ) and FeO (up to0 61 wt ) were observed in some analyses Allcebaite-(Ce) crystals are unzoned See Table 3 formineralogical details

TABLE 7 Chemical composition of synchysite-(Ce) at Khibina

Rock C II-2 C II-3 C II-1 C II-1 C II-1Sample 633A414 1 604413 633485 5 603265 603165

syntaxial intergrowths secondary after burbankite secondary aftercarbocernaite

mean (8) sd mean (6) sd mean (9) sd mean (15) sd mean (4) sd

CaO 17 47 0 38 16 89 0 62 1618 070 16 08 0 88 17 23 033FeO bd 0 35 0 49 b d b d bdSrO 024 0 12 0 43 0 18 0 87 066 0 59 0 28 056 021BaO 009 0 05 0 15 0 04 0 12 007 0 06 0 05 011 006La2O3 16 54 0 42 13 06 0 58 1798 087 20 34 0 86 13 63 073Ce2O3 26 19 0 85 27 21 0 79 2591 065 25 77 0 50 25 26 085Pr2O3 215 0 12 2 53 0 07 1 94 011 1 78 0 08 258 010Nd2O3 614 0 44 7 90 0 22 5 54 027 4 53 0 41 969 086Sm2O3 038 0 06 0 62 0 10 0 38 004 0 31 0 07 068 038Y2O3 bd b d b d b d 011 009ThO2 bd 0 38 0 21 0 15 009 b d 017 014F 549 0 18 5 69 0 21 5 83 023 5 61 0 23 578 011CO2 28 12 27 81 2718 27 59 28 11shy O=F2 231 2 40 2 46 2 36 243

Total 10049 100 62 9961 100 30 101 46

Calculated to 2 (CO3)2shy groups

Ca 0975 0 953 0 934 0 915 0962Sr 0007 0 013 0 027 0 018 0017Ba 0002 0 003 0 002 0 001 0002Fe 0 015

Total 0984 0 985 0 964 0 934 0981

La 0318 0 254 0 357 0 398 0262Ce 0499 0 524 0 511 0 501 0481Pr 0041 0 049 0 038 0 034 0049Nd 0114 0 149 0 107 0 086 0180Sm 0007 0 011 0 007 0 006 0012Y 0003Th 0 005 0 002 0002

Total 0979 0 991 1 022 1 025 0990F 0904 0 948 0 994 0 943 0953

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

239

Y-rich carbonates mckelveyite-(Y) ewaldite anddonnayite-(Y)

A detailed description of these minerals fromKhibina Vuoriyarvi and Sallanlatvi is given byVoloshin et al (1990 1992) This was the firsttime that they had been documented in carbona-tites Mckelveyite-(Y) is the best-studied of thegroup at Khibina (Table 3)

Chemical compositions of mckelveyite-(Y) andewaldite from Kola carbonatites are represented by

three electron microprobe analyses of mckelveyite-(Y) from Vuoriyarvi carbonatites one from theSallanlatvi carbonatite and two analyses ofewaldite from Vuoriyarvi (Voloshin et al 19901992) However even these limited data showcompositional variation and three groups havebeen identified Na-free mckelveyite-(Y) Y-freeLREE-enriched mckelveyite and Y-free ewaldite

Five separate crystals of mckelveyite-(Y) wereanalysed from Khibina (Table 11) and areuniform in chemical composition The formula

TABLE 8 Chemical composition of parisite-(Ce) and bastnasite-(Ce) at Khibina

Rock C II-2 C II-3 C II-2Sample 633A4141 604413 633A414 1Mineral parisite-(Ce) bastnasite-(Ce)

mean (2) mean (5) sd mean (6) sd

CaO 9 72 9 29 1 03 084 0 29SrO 0 56 0 79 0 18 085 0 34BaO 0 07 0 30 0 29 008 0 05FeO 0 05 0 38 0 28La2O3 1963 15 96 0 72 26 35 0 99Ce2O3 3172 32 28 0 45 37 41 0 54Pr2O3 2 30 2 87 0 14 250 0 13Nd2O3 6 83 8 74 0 22 660 0 48Sm2O3 0 45 0 60 0 02 036 0 07Y2O3 0 10 0 22 0 12 bdThO2 b d 0 24 0 10 bdF 7 02 6 79 0 17 811 0 22CO2 2433 24 54 20 67shy O=F2 2 95 2 86 342

Total 9982 100 13 100 35

Calculated to 3 (CO3)2shy groups Calculated to 1 (CO3)

2shy groupCa 0 941 0 892 0033Sr 0 029 0 041 0018Ba 0 002 0 011 0001Fe 0 004 0 029

Total 0 976 0 972

La 0 654 0 527 0357Ce 1 048 1 057 0503Pr 0 076 0 094 0033Nd 0 220 0 280 0087Sm 0 014 0 018 0005Y 0 005 0 010Th 0 005

Total 2 017 1 992 1037

F 2 004 1 923 0942

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

240

of mckelveyite-(Y) is still the subject of debate Inthe original description Milton et al (1965) gavethe formula as Na19Ba40Ca11Sr02REE15U03

(CO3)9 5H2O Later Chao et al (1978) suggestedan isomorphous relationship between mckel-veyite-(Y) and donnayite-(Y) and gave theformula of NaCaBa3Y(CO3)6 3H2O In a recentstudy of mckelveyite-(Y) and ewaldite Voloshinet al (1990 1992) showed a similarity betweenthese two minerals and suggested that they areprobably polymorphs The formula of ewalditewas determined as (CaNaREE )(BaSr )(CO3)2 nH2O where part of the H2O is zeolitic

Chemical data from the Khibina mckelveyite-(Y) were calculated on the basis of the IMAaccepted formula NaCaBa3Y(CO3)6 3H2O (Table

11) Our data and those of Voloshin et al (1990)show significant substitutions the main one beingBa2+ Sr2+ which is related to the mckelveyite-(Y)-donnayite-(Y) pair where these minerals are Baand Sr end-members respectively The assignationof REE to two different sites in the mckelveyite-(Y) formula is problematic It is based on formulabalance and the REE chondrite-normalizeddistribution which is discussed below in thesection on lsquoRare earth patternsrsquo

Strontianite baryte barytocalcite edingtonite andharmotome

Minerals rich in Ba and Sr but with no REE arerepresented in the Khibina carbonatites by

TABLE 9 Chemical composition of cordylite-(Ce) at Khibina

Rock CZ III-1 C II-3 CZ III-1 CZ III-1 C II-1Sample 60775 6032646 6032515 60775 6031650Variety low Ca and Sr moderate Ca and Sr high Ca and Sr

mean (15) sd mean (17) sd mean (15) sd mean (10) sd mean (17) sd

Na2O 412 0 12 3 66 0 24 3 67 0 12 2 60 0 15 256 0 16CaO 073 0 18 1 54 0 31 1 50 0 08 3 82 0 18 410 0 26SrO 058 0 23 2 48 0 57 2 09 0 31 6 03 0 43 590 0 50BaO 22 28 0 33 22 29 0 51 22 32 0 32 23 02 0 25 23 11 0 36La2O3 994 0 36 10 46 0 38 11 82 0 53 7 58 0 30 11 49 0 51Ce2O3 24 46 0 43 23 82 0 68 22 18 0 28 20 26 0 38 17 90 0 67Pr2O3 241 0 18 1 85 0 24 1 69 0 25 2 19 0 27 145 0 30Nd2O3 747 0 49 5 88 0 31 5 70 0 41 6 97 0 49 536 0 54ThO2 011 0 17 0 13 0 14 0 12 0 16 0 13 0 12 013 0 16F 262 0 10 2 97 0 28 2 95 0 33 2 60 0 08 285 0 31CO2 24 92 25 16 24 78 25 77 25 75shy O=F2 110 1 25 1 24 1 10 120

Total 98 55 98 98 97 57 99 88 99 40

Calculated for 4 (CO3)2shy groups

Na 0945 0 821 0 837 0 579 0567Ca 0093 0 191 0 189 0 470 0501

Total 1038 1 012 1 026 1 049 1068

Ba 1032 1 011 1 028 1 036 1033La 0434 0 446 0 513 0 321 0483Ce 1058 1 008 0 954 0 851 0747Pr 0104 0 078 0 072 0 092 0060Nd 0315 0 243 0 239 0 286 0218Sr 0040 0 167 0 142 0 402 0390Th 0003 0 003 0 003 0 003 0003

Total 1954 1 945 1 923 1 955 1901

F 0981 1 088 1 096 0 946 1029

Fe Mn and Sm are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

241

strontianite baryte barytocalcite edingtonite andharmotome (Table 3) The first two minerals arecommon in late-stage carbonatites e g MountainPass (Olsen et al 1954) Vuoriyarvi SeblyavrSallanlatvi (Kapustin 1980) Sarnu-Dandali (Wallet al 1993) and Kangankunde (Wall andMariano 1996)

Barytocalcite is extremely rare in carbonatitesand has been described only from Vuoriyarvi andan unnamed Siberian carbonatite (Kapustin 1980)and possibly Chipman Lake (Platt and Woolley1990)

Edingtonite and harmotome are bariumzeolites Their occurrence at Khibina is the first

TABLE 10 Chemical composition of cebaite-(Ce) at Khibina

Rock CZ III-1Sample 6031435Analysis 14 24 25 29 30 33 Mean (18) Sd

Na2O 0 09 0 10 0 08 0 11 0 13 0 10 0 10 0 03CaO 0 40 1 18 0 47 0 61 0 52 0 70 0 61 0 21MnO 0 07 0 47 0 12 0 73 0 83 0 13 0 16 0 24FeO 0 45 0 13 b d 0 14 0 61 b d 0 16 0 19SrO 1 40 1 27 1 45 1 25 1 28 1 31 1 43 0 36BaO 43 93 40 51 42 19 42 09 42 59 42 93 42 77 1 84La2O3 5 30 7 28 6 71 5 58 5 48 5 72 5 67 0 52Ce2O3 13 59 14 33 14 52 14 66 13 66 14 91 14 45 1 16Pr2O3 1 54 1 69 1 83 1 78 1 51 1 81 1 63 0 19Nd2O3 6 15 5 69 5 99 6 32 5 70 5 34 5 54 0 48Sm2O3 0 60 0 61 0 50 0 38 0 42 0 34 0 48 0 11Eu2O3 0 17 0 18 b d 0 24 b d b d 0 07 0 11Gd2O3 0 59 0 66 0 53 0 49 0 40 0 37 0 50 0 13ThO2 0 99 0 51 0 49 0 92 1 07 0 99 0 92 0 22F 4 24 4 10 4 15 3 78 3 99 3 61 3 76 0 21CO2 21 57 21 79 21 41 21 79 21 65 21 41 21 42shy O=F2 1 78 1 73 1 75 1 59 1 68 1 52 1 58

Total 99 31 98 77 98 78 99 29 98 15 98 15 98 10

Calculated for 5 (CO3)2shy groups

Na 0 031 0 032 0 025 0 038 0 042 0 034 0 032Ca 0 073 0 212 0 085 0 111 0 095 0 130 0 114Mn 0 010 0 066 0 018 0 105 0 119 0 018 0 023Fe 0 064 0 018 0 020 0 087 0 023Sr 0 137 0 124 0 143 0 123 0 127 0 132 0 144Ba 2 915 2 659 2 802 2 805 2 855 2 926 2 900

Total 3 230 3 111 3 072 3 201 3 325 3 240 3 236

La 0 331 0 450 0 419 0 350 0 346 0 367 0 362Ce 0 841 0 878 0 900 0 911 0 854 0 948 0 914Pr 0 095 0 103 0 113 0 110 0 094 0 115 0 102Nd 0 372 0 340 0 362 0 384 0 348 0 332 0 342Sm 0 035 0 035 0 029 0 022 0 024 0 021 0 029Eu 0 010 0 011 0 014 0 004Gd 0 033 0 036 0 030 0 028 0 023 0 021 0 029Th 0 038 0 019 0 019 0 036 0 042 0 039 0 036

Total 1 755 1 872 1 873 1 855 1 730 1 843 1 819

F 2 268 2 174 2 221 2 033 2 159 1 986 2 057

Y Dy Er Yb and Lu are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

242

TABLE 11 Chemical position of mckelveyite-(Y) at Khibina

Rock CZ IIISample 6031435Point 1 2 4 5 9 10 Mean (12) sd

Na2O 3 12 3 05 3 21 3 10 3 33 3 14 3 19 0 10CaO 4 56 4 34 4 32 4 34 4 20 4 72 4 43 0 38MnO 0 06 b d b d b d b d 0 06FeO b d b d 0 64 b d 0 07 0 11 0 18 0 26BaO 29 43 29 89 28 47 28 73 29 69 27 13 28 97 0 98SrO 9 16 9 56 9 29 10 41 8 25 12 42 9 56 1 26Y2O3 6 39 6 33 5 32 7 02 5 84 8 42 6 44 0 93La2O3 1 22 1 22 1 60 0 85 1 84 0 96 1 34 0 34Ce2O3 1 93 1 79 2 43 1 17 2 96 1 77 2 18 0 65Pr2O3 0 22 0 22 0 15 0 30 0 24 0 15 0 22 0 06Nd2O3 0 69 0 77 0 91 1 11 0 71 0 37 0 84 0 24Sm2O3 0 81 0 87 0 81 0 89 0 85 0 20 0 78 0 23Eu2O3 0 49 0 64 0 50 0 36 0 60 0 34 0 47 0 10Gd2O3 2 15 1 94 2 18 2 05 2 32 1 05 2 02 0 38Dy2O3 2 39 2 40 2 97 2 29 2 83 2 00 2 48 0 29Er2O3 1 03 1 09 1 28 0 87 0 68 1 03 0 94 0 19Yb2O3 0 44 0 44 0 56 0 59 0 25 0 61 0 47 0 12ThO2 b d 0 17 b d b d b d b dF 0 18 0 15 b d b d 0 17 0 16 0 14 0 09CO2 25 71 25 70 25 86 25 81 25 71 26 72 25 93H2O 10 52 10 51 10 58 10 56 10 52 10 93 10 61shy O=F2 0 07 0 06 0 07 0 07 0 06

Total 100 43 101 01 101 07 100 44 100 98 102 24 101 13

Calculated to 6 (CO3)2shy and 3H2O groups

Na 1 000 0 984 1 000 1 000 1 000 0 978 1 000Ca 0 735 0 757 0 561 0 778 0 565 0 785 0 676Na 0 009 0 040 0 006 0 075 0 023La 0 075 0 075 0 099 0 052 0 113 0 057 0 082Ce 0 118 0 109 0 148 0 071 0 181 0 104 0 132Pr 0 013 0 013 0 009 0 018 0 014 0 009 0 013Nd 0 041 0 046 0 054 0 067 0 042 0 021 0 050Mn 0 009 0 008 0 000Fe 0 089 0 010 0 015 0 025

Total 1 000 1 000 1 000 0 992 1 000 1 000 1 000

Ba 1 923 1 950 1 865 1 884 1 941 1 707 1 880Sr 0 885 0 922 0 900 1 009 0 798 1 156 0 917Ca 0 080 0 017 0 212 0 185 0 026 0 110

Total 2 888 2 890 2 977 2 893 2 924 2 889 2 907

Y 0 567 0 561 0 473 0 625 0 518 0 719 0 567Sm 0 047 0 050 0 047 0 051 0 049 0 011 0 045Eu 0 028 0 036 0 029 0 021 0 034 0 018 0 026Gd 0 119 0 107 0 121 0 114 0 128 0 056 0 111Dy 0 128 0 129 0 160 0 123 0 152 0 104 0 132Er 0 054 0 057 0 067 0 045 0 036 0 052 0 049Yb 0 023 0 022 0 028 0 030 0 013 0 030 0 024Th 0 007

Total 0 965 0 969 0 925 1 009 0 930 0 990 0 954

F 0 092 0 081 0 088 0 082 0 071

Lu is below detection limit CO2 and H2O calculated by stoichiometry

REE-SR-BA MINERALS

243

TA

BL

E12

C

hem

ical

com

posi

tion

ofst

ront

iani

teat

Khi

bina

Roc

kC

II-2

CII

-3C

ZII

I-1

CII

-1C

II-1

CII

-1S

ampl

e63

3A4

141

604

413

060

325

15

646

451

060

336

364

600

1pr

imar

yst

ront

iani

teas

soci

ated

wit

hse

cond

ary

stro

ntia

nite

(aft

erbu

rban

kite

)as

soci

ated

wit

hsy

nchy

site

-(C

e)

sync

hysi

te-(

Ce)

cord

ylit

e-(C

e)an

cyli

te-(

Ce)

sync

hysi

te-(

Ce)

ancy

lite

-(C

e)an

dba

ryte

pari

site

-(C

e)an

dan

dpa

risi

te-(

Ce)

and

bary

tean

dba

ryte

bast

nasi

te-(

Ce)

mea

n(1

0)sd

mea

n(6

)sd

mea

n(3

)m

ean

(25)

sdm

ean

(4)

sdm

ean

(6)

sdm

ean

(4)

sdm

ean

(8)

sdco

rem

antl

eri

m

Na 2

Ob

db

db

d0

140

05b

d0

210

050

100

04b

dC

aO3

250

563

230

443

073

461

003

370

331

580

373

720

325

970

20S

rO66

21

068

668

00

5166

62

635

71

2664

34

051

682

00

6063

95

100

625

80

78B

aO0

190

170

160

070

221

610

471

630

150

720

290

830

092

000

57L

a 2O

3b

db

d0

160

480

20b

d0

620

120

330

060

150

04C

e 2O

30

180

120

110

110

570

610

240

190

080

760

160

420

050

250

05C

O2

307

930

99

310

530

71

305

131

11

306

931

99

Tot

al10

063

101

2910

169

100

5810

004

103

2010

004

102

94

Cal

cula

ted

to1

(CO

3)2

shygr

oup

Na

000

60

010

000

5C

a0

083

008

20

077

008

80

087

004

00

095

014

6S

r0

913

091

50

911

087

90

895

093

10

885

083

1B

a0

002

000

10

002

001

50

015

000

70

008

001

8L

a0

001

000

40

005

000

30

001

Ce

000

20

001

000

50

005

000

20

007

000

40

002

Tot

al0

999

100

00

997

099

80

999

099

90

999

099

8

Mg

Mn

Fe

Pr

Nd

Sm

Y

T

han

dU

are

belo

wde

tect

ion

lim

its

CO

2ca

lcul

ated

byst

oich

iom

etry

A N ZAITSEV ETAL

244

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 6: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

TA

BL

E3

Min

eral

ogy

and

para

gene

sis

ofK

hibi

naR

EE

-Sr-

Ba

min

eral

s

BA

Aph

osco

rite

-bio

tite

-aeg

irin

e-ap

atite

No

prim

ary

rare

eart

hm

iner

als

CI

earl

yca

lcit

eca

rbon

atit

eN

opr

imar

yra

reea

rth

min

eral

s

CII

-1la

teca

lcit

eca

rbon

atit

ew

ithbu

rban

kite

orca

rboc

erna

ite

Prim

ary

phas

es

Bur

bank

ite

10shy

50

volu

me

yell

ow-b

row

nin

fres

hly

brok

enha

ndsp

ecim

ens

Usu

ally

larg

ehe

xago

nal

pris

mat

iccr

ysta

ls(5

shy50

mm

long

61

shy25

mm

diam

eter

)S

omet

imes

grow

infr

om

and

abou

tpe

rpen

dicu

lar

to

the

cont

act

ofth

eve

ins

Dis

trib

utio

nis

hete

roge

neou

sA

lso

asdr

op-l

ike

incl

usio

ns(3

0shy

200

m m)

inca

lcit

eas

soci

ated

wit

heu

hedr

alzo

ned

apat

ite

(Fig

3a

)

Car

boce

rnai

te10

-50

volu

me

NB

do

esno

toc

cur

wit

hbu

rban

kite

L

emon

yell

owin

hand

spec

imen

Is

omet

ric

grai

ns1

shy5

mm

diam

eter

indi

stin

ctcl

uste

rs

Alt

erat

ion

Eit

her

oftw

oal

tera

tion

asse

mbl

ages

can

com

plet

ely

pseu

dom

orph

burb

anki

te

pres

ervi

ngit

spr

ism

atic

he

xago

nal

crys

tal

form

(Fig

3b

)1)

Rep

lace

men

tass

embl

age

ofan

cyli

te-(

Ce)

str

onti

anit

ean

dle

ssof

ten

bary

tean

dra

rely

harm

otom

ean

ded

ingt

onit

eA

llst

ages

ofal

tera

tion

seen

fro

msi

ngle

fine

vein

s(5

shy20

m m)

ofan

cyli

te-(

Ce)

inbu

rban

kite

(Fig

3d

)to

poro

usag

greg

ates

ofan

cyli

te-(

Ce)

and

stro

ntia

nite

com

plet

ely

repl

acin

gbu

rban

kite

A

ncyl

ite-

(Ce)

usua

lly

aspi

nkto

red

anhe

dral

crys

tals

upto

4m

mbu

tal

soso

me

euhe

dral

crys

tals

and

zone

dst

ront

iani

tein

cavi

ties

2)

Por

ous

aggr

egat

esof

sync

hysi

te-(

Ce)

st

ront

iani

tean

dba

ryte

B

urba

nkit

ere

lics

seen

inst

ront

iani

tecr

ysta

lsan

dal

soin

sync

hysi

te-(

Ce)

and

bary

te

Fig

3c

Car

boce

rnai

teis

ofte

npa

rtly

repl

aced

bypo

rous

aggr

e-ga

tes

ofst

ront

iani

te

cord

y-li

te-(

Ce)

sy

nchy

site

-(C

e)an

dba

ryte

C

arbo

cern

aite

usua

lly

pres

erve

din

cent

ral

part

sof

the

form

ercr

ysta

ls

Stro

ntia

nite

usua

lly

colo

urle

ssan

hedr

alcr

ysta

lsbu

tal

soas

pris

mat

iczo

ned

crys

tals

upto

2m

m

Bar

yte

usua

lly

colo

urle

ss

anhe

dral

0

1shy

1m

mgr

ains

Edi

ngto

nite

and

harm

otom

esp

heru

liti

cag

greg

ates

onan

cyli

te-(

Ce)

orst

ront

iani

te

A N ZAITSEV ETAL

230

TA

BL

E3

(con

td)

CII

-2la

tem

anga

noan

anke

rite

-cal

cite

carb

onat

ite

with

sync

hysi

te-(

Ce)

Prim

ary

phas

es

Syn

taxi

alin

terg

row

ths

(Don

nay

and

Don

nay

1953

)of

sync

hysi

te-

(Ce)

par

isit

ean

dba

stna

site

-(C

e)(F

ig

4a)

Inte

rgro

wth

sar

eve

ryfi

nendash

1shy

20m m

wid

ean

d50

shy50

0m m

long

A

ssoc

iate

dw

ith

stro

ntia

nite

Syn

chys

ite-

(Ce)

whi

chis

not

inte

rgro

wn

isa

maj

orro

ck-f

orm

ing

min

eral

W

hite

yel

low

(usu

ally

wit

hca

lcit

e)or

red

(usu

ally

wit

hfe

rroa

nku

tnoh

orit

e)ta

bula

rcr

ysta

ls

01

shy3

m mdi

amet

er

Oft

enir

regu

lar

tora

diat

ing

agre

gate

s

Kuk

hare

nkoi

te-(

Ce)

as

late

-sta

ge0

01shy

1m

mpr

ism

atic

crys

tals

inti

nyca

viti

es

Oft

enas

stel

late

de

ndri

tic

orir

regu

lar

inte

rgro

wth

sup

to3

mm

diam

eter

R

arel

yas

anhe

dral

00

5shy

02

mm

grai

nsor

plat

y0

1shy

2m

mcr

ysta

lsA

ssoc

iate

dw

ith

cord

ylit

e-(C

e)

stro

ntia

nite

an

dra

rely

mck

elve

yite

-(Y

)

Stro

ntia

nite

usua

lly

occu

rsas

colo

urle

ss

subh

edra

lcr

ysta

lsup

to2

mm

diam

eter

CII

-3la

teca

rbon

atit

es-f

erro

anrh

odoc

hros

ite-m

anga

noan

anke

rite

with

sync

hysi

te-(

Ce)

orco

rdyl

ite-

(Ce)

Prim

ary

phas

es

Sync

hysi

te-(

Ce)

som

etim

espr

esen

tin

fine

synt

axia

lin

terg

row

ths

wit

hpa

risi

te-(

Ce)

C

ordy

lite

-(C

e) i

sa

typi

cal

min

eral

W

hite

orye

llow

tabu

lar

crys

tals

0

1shy

1m

man

dso

met

imes

upto

5m

m

eith

ersi

ngle

orin

aggr

egat

es

Mck

elve

yite

-(Y

)ew

aldi

te

and

don-

nayi

te-(

Y)

inca

viti

es

Yel

low

orw

hite

crys

tals

va

riou

sha

bits

from

tabu

lar

colu

mna

rto

barr

el-s

hape

dS

ome

crys

tals

are

hem

imor

phic

Stro

ntia

nite

pr

imar

yu

sual

lyco

lou

rles

ssu

bhed

ral

crys

tals

upto

2m

m

Kuk

hare

nkoi

te-(

Ce)

(See

abov

e)E

ding

toni

tean

dha

rmot

ome

are

com

mon

acce

ssor

ym

iner

als

Usu

ally

eu

hedr

alcr

ysta

ls

upto

2m

m

inca

viti

es

Alt

erat

ion

Vei

n-li

keag

greg

ates

ofsy

nchy

site

-(C

e)

stro

ntia

nite

ba

ryte

and

bast

nasi

te-(

Ce)

repl

ace

the

synt

axia

lin

terg

row

thin

som

ero

cks

Stro

ntia

nite

us

uall

yco

l-ou

rles

san

hedr

alcr

ysta

lsB

aryt

eus

uall

yco

lour

less

an

he-

dral

0

1shy

1m

mgr

ains

REE-SR-BA MINERALS

231

TA

BL

E3

(con

td)

CZ

III-

1ca

rbon

ate-

zeol

ite

vein

s-m

anga

noan

side

rite

-man

gano

anan

keri

te-n

atro

lite

Sync

hysi

te-(

Ce)

som

etim

espr

esen

tC

ordy

lite

-(C

e)is

aty

pica

lm

iner

al

Whi

teor

yell

owta

bula

rcr

ysta

ls

01

shy1

mm

and

som

etim

esup

to5

mm

ei

ther

sing

leor

inag

gre-

gate

s2

vari

etie

s(F

ig

4b)

Ceb

aite

-(C

e)

foun

din

cavi

ties

asye

llow

w

hite

orco

lour

less

crys

tals

upto

02

mm

D

endr

itic

st

ella

teor

irre

gula

rin

terg

row

ths

Co

mm

on

lyas

soci

ated

wit

hm

ckel

veyi

te-(

Ce)

co

rdyl

ite

and

stro

ntia

nite

Mck

elve

yite

-(Y

)ew

al-

dite

and

donn

ayit

e-(Y

)se

eab

ove

Edi

ngto

nite

and

har-

mot

ome

com

mon

ac-

ce

sso

rym

ine

rals

U

sual

ly

euhe

dral

crys

-ta

ls

upto

2m

m

inca

viti

es

Kuk

hare

nkoi

te-(

Ce)

(See

abov

e)St

ront

iani

tew

ith

cord

ylit

e-(C

e)

prim

ary

Bar

yte

ofte

nsh

ort

pris

mat

iccr

ysta

lsin

cavi

ties

CZ

III-

2ca

rbon

ate-

zeol

ite

vein

s-m

anga

noan

side

rite

-nor

dstr

andi

te-n

atro

lite

Co

rdyl

ite-

(Ce)

isa

lsquotyp

ical

rsquom

iner

al

Whi

teor

yell

owta

bula

rcr

ysta

ls

01

shy1

mm

and

som

e-ti

mes

upto

5m

m

eith

ersi

ngle

orin

aggr

egat

es

Mck

elve

yite

-(Y

)ew

aldi

tean

ddo

nnay

ite-

(Y)

Bar

ytoc

alci

te

euhe

dral

orsu

b-he

dral

1

shy2

mm

whi

tecr

ysta

lsin

cavi

ties

Id

enti

fica

tion

base

don

XR

Dan

dIR

spec

tra

Stro

ntia

nite

wit

hco

r-dy

lite

-(C

e)

prim

ary

Bar

yte

ofte

nsh

ort

pr

ism

atic

crys

tals

inca

viti

es

CZ

III-

3ca

rbon

ate-

zeol

ite

vein

s-na

trol

ite-

man

gano

ansi

deri

te-d

awso

nite

Mck

elve

yite

-(Y

)ew

aldi

tean

ddo

nnay

ite-

(Y)

Stro

ntia

nite

wit

hco

rdyl

ite-

(Ce)

pr

imar

yB

aryt

eof

ten

shor

tpr

ism

atic

crys

tals

inca

viti

es

A N ZAITSEV ETAL

232

exception (sample 633B79 5) has 6 65 wtBaO There is no zoning in Khibina burbankitecrystals and the compositions are also uniformwithin each rock sample

There are two morphological types of burban-kite large prismatic crystals and small drop-likeinclusions within calcite crystals and along theirboundaries (Fig 3a Table 3) Although theircompositions are the same (Table 4) the

difference in morphology suggests they mayhave formed by different processes Largeeuhedral prismatic crystals could have crystal-lized at an early stage of carbonatite formationand sometimes large burbankite crystals areobserved near the contact of veins that arecharacterized by a crustification texture (vein-filling) The drop-like burbankite inclusions incalcite probably did not form by exsolution of

TABLE 4 Chemical composition of burbankite at Khibina

Rock C II-1Sample 607277 633477 7 6334777 581013 633B79 5

large crystal drop-like inclusion large crystal large crystalmean (9) sd mean (4) sd mean (10) sd mean (9) sd

Na2O 12 45 11 93 0 13 11 80 0 27 1260 0 44 12 03 0 85CaO 12 60 11 94 0 53 12 57 0 54 1020 0 49 10 08 1 22SrO 19 60 24 74 0 31 24 57 0 38 1838 0 61 17 71 0 92BaO 0 78 1 76 0 12 1 86 0 04 2 52 0 49 6 65 0 47La2O3 5 20 5 65 0 14 5 11 0 25 7 05 0 30 4 77 0 26Ce2O3 9 91 7 15 0 16 6 97 0 28 1106 0 41 9 26 0 43Pr2O3 0 64 0 47 0 04 0 47 0 05 0 80 0 10 0 88 0 07Nd2O3 1 53 1 24 0 10 1 33 0 03 2 53 0 28 3 11 0 31Sm2O3 0 05 b d b d 0 31 0 11 0 39 0 12Gd2O3 b d b d b d b d 0 20 0 07ThO2 n d b d b d b d 0 16 0 10CO2 35 40 34 68 34 79 3421 33 38

Total 99 76 99 56 99 47 9966 98 62

Calculated to 5 (CO3)2shy groups

Na 2 508 2 442 2 408 2 615 2 558Ca 0 338 0 498 0 529 0 267 0 345A site total 2 846 2 941 2 937 2 882 2 903

Sr 1 181 1 514 1 499 1 141 1 126Ca 1 065 0 852 0 889 0 903 0 840La 0 199 0 220 0 198 0 278 0 193Ce 0 377 0 276 0 268 0 433 0 372Pr 0 024 0 018 0 018 0 031 0 035Nd 0 056 0 047 0 050 0 097 0 122Sm 0 003 0 011 0 015Gd 0 007Ba 0 032 0 073 0 077 0 106 0 286Th 0 004B site total 3 000 3 000 3 000 3 000 3 000C 5 021

Sample 607277 - wet chemical analysis other samples - electron microprobe analysessd - standard deviation - including MgO 0 02 K2O 0 02 MnO 007 FeO 0 42 SiO2 020 F 0 04 and H2O 0 85 all wt - including Mn 0 006 Fe 0 037 and Si 0 021b d - below detection limits Mg Mn Fe Y and F are below detection limits in the microprobe analyses CO2 inmicroprobe analyses calculated by stoichiometry n d ndash not determined

REE-SR-BA MINERALS

233

FIG 3 Backscattered electron images (BEI) of (a) large crystals and drop-like inclusions of burbankite (white) incalcite (black) (b) a contact print of a thin section containing a pseudomorph of synchysite-(Ce) strontianite andbaryte after burbankite The width of the burbankite pseudomorph is 9 mm C II-1 calcite carbonatite sample 603265 (c) zoned altered burbankite (grey and dark-grey) with ancylite-(Ce) veins (white) C II-1 calcite carbonatite

sample 633B79 5 (d) relics of burbankite (dark grey) in strontianite (grey) and synchysite-(Ce) (white)

A N ZAITSEV ETAL

234

burbankite from calcite rich in Na Sr and REE asmight be thought at first from Fig 3a and asproposed for a similar occurrence by Knudsen(1991) because the burbankite crystals areassociated with euhedral zoned apatites Theyare more likely to be the result of lsquocotecticrsquocrystallization of burbankite and calcite after theprecipitation of the apatite

Carbocernaite has been found in many Khibinacarbonatite samples (Table 3) It was describedoriginally as a primary mineral crystallized at alate stage of carbonatite formation at VuorijarviKola Peninsula (Bulakh et al 1961) Zdorik(1966) and Kapustin (1980) found that carbocer-naite in carbonatites from the Ozernyi andVuoriyarvi massifs occurs as a secondarymineral after burbankite The most unusualoccurrence of carbocernaite is the exsolutionlamellae and cotectic textures for carbocernaiteand calcite in Sarnu-Dandali carbonatitedescribed by Wall et al (1993) Carbocernaite isalso reported from carbonatite in the Si PanRange Vietnam (Bulakh and Izokh 1966)

Carbocernaite like burbankite is a doublecarbonate with a general formula AB(CO3)2 withNa and Ca in the A-site and Sr REE and Ba in theB-site There are few studies of the chemicalcomposition of carbocernaite Before the detailedinvestigation of Wall et al (1993) only a few wetchemical analyses were published (Bulakh et al 1961 Bulakh and Izokh 1966 Zdorik 1966Kapustin 1980) Although available data forcarbocernaite show some variation in thecontent of major elements there is less variationthan in burbankite The Na2O values range from243 to 612 wt the BaO from 095 to 596 theSrO from 558 to 2398 the CaO from 1593 to1927 and the SREE2O3 from 17 06 to 2631 allwt In general the compositional variations inburbankite and carbocernaite are similar butcarbocernaite contains less Na2O (commonlyabout 4 shy 5 wt ) compared with burbankite(commonly about 10 shy 12 wt ) This differencein sodium content makes it possible to identifycarbocernaite and burbankite on the basis ofelectron microprobe analyses

Selected average compositions of carbocernaitefrom Khibina are given in Table 5 These datashow that carbocernaite from the Khibinacarbonatites is a low Ba variety Khibinacarbocernaite like burbankite is not zoned

Harris (1972) reported high F (3 86 wt ) incarbocernaite from Sturgeon Narrows Canadaand proposed that F together with OH could be

additional anion group (FOH)2 in the mineralformula Our data show that the F content ofKhibina carbocernaite is near the electron micro-probe detection limit of about 0 1 wt and IRinvestigations show an absence of any absorptionband related to OH- group or H2O It is possiblethat the mineral described from the SturgeonNarrows is a different mineral species The lackof Na in Sturgeon Narrows carbocernaite alsosupports our conclusion

In the Khibina carbonatite samples burbankiteand carbocernaite do not occur together so it hasnot been possible to establish their relative agesHowever both burbankite and carbocernaite-containing carbonatites are cut by later C II-2and C II-3 carbonatites

TABLE 5 Chemical composition of carbocernaite atKhibina

Rock C II-1Sample 603165 603287

mean (12) sd mean (10) sd

Na2O 4 98 0 18 4 33 0 42CaO 11 94 0 42 1360 0 33SrO 22 33 0 76 2020 0 27BaO 0 37 0 13 0 56 0 07La2O3 9 27 0 61 1053 0 33Ce2O3 13 19 0 51 1419 0 30Pr2O3 0 97 0 09 0 94 0 08Nd2O3 2 34 0 25 2 56 0 19Sm2O3 0 14 0 05 0 32 0 04F 0 10 0 10 0 14 0 03CO2 32 79 3379shy O=F2 0 04 0 06

Total 98 36 10110

Calculated to 2 (CO3)2shy groups

Na 0 431 0 364Ca 0 571 0 632A site total 1 003 0 996

Sr 0 578 0 508La 0 153 0 168Ce 0 216 0 225Pr 0 016 0 015Nd 0 037 0 040Sm 0 002 0 005Ba 0 007 0 010B site total 1 008 0 971F 0 014 0 019

Mg Mn Fe Gd Y Th and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

235

Alteration of burbankite and carbocernaite

Burbankite in carbonatites is commonly replacedby ancylite-(Ce) strontianite and baryte (Somina1975 Kapustin 1980) and rarely by ancylite-(Ce)calkinsite lanthanite and baryte (Pecora and Kerr1953) Multi-stage alteration of burbankite fromthe Ozernyi carbonatites has been documented byZdorik (1966) where carbocernaite strontianitebastnasite-(Ce) calcite baryte allanite-(Ce)monazite-(Ce) and epidote have been identifiedas alteration products of burbankite

In the Khibina carbonatites burbankite andcarbocernaite are commonly replaced by variouscombinationsof ancylite-(Ce) strontianite synch-ysite-(Ce) baryte less commonly by cordylite-(Ce) and rarely by harmotome and edingtonite(Table 3) Even when burbankite is completelyreplaced evidence of its existence is preserved inthe form of hexagonal prismatic pseudomorphs(Fig 3b) and islands of relict burbankite (Fig 3cand d) Pseudomorphs of a similar form have beenmentioned from some other rare earth-richcarbonatites e g Gem Park Wigu HillKangankunde (Wall and Mariano 1996) but inthese cases there is no evidence of the precursormineral The presence of primary and replacedburbankite at Khibina is good evidence that thepseudomorphs reported from these other carbo-natites may well have originally been burbankite

Ancylite

Ancylite-(Ce) is a hydrous carbonate containingREE and Sr as major cations On the basis of astructural study of material from the Mont Saint-Hilaire massif its formula has been proposed asREEx(SrCa)2 shy x(CO3)2(OH)x (2 shy x)H2O with acation-anion substitution of Sr2+ + H2O gtREE3+ + OH shy (Dal Negro et al 1975)Although ancylite-(Ce) is a relatively commonmineral in carbonatites there are only a fewanalyses available (Kukharenko et al 1965Kapustin 1980 Knudsen 1991) and this is thefirst detailed investigation of its chemicalcomposition Selected average chemical composi-tions are given in Table 6 The composition ofancylite-(Ce) from Khibina is relatively uniformwith Ca Ba and Th present only as traces Theatomic proportion of Sr and REE in the formula isnear 11 with a small excess of REE An importantfinding is the presence of fluorine in ancylite-(Ce)The Khibina ancylite-(Ce) contains between 0 75and 250 wt of fluorine corresponding to

0 148shy 0 488 F per formula unit Since REE andSr are present in equal abundances it is suggestedthat F- substitutes for OH- Thus the mineral fromthe Khibina carbonatites can be classified as F-bearing ancylite-(Ce) Fluorine was also detectedin two ancylite-(Ce) samples from Qaqarssukcarbonatites at 0 37 and 058 wt respectively(Knudsen 1991)

Ca-REE fluocarbonates

Synchysite-(Ce)is common at Khibina bastnasite-(Ce) and parisite-(Ce) are also found but are rare(Table 3) The textures vary as described in Table3 and include syntaxial intergrowths (Fig 4a)Ca-REE fluocarbonates are present in numerouscarbonatites e g Mountain Pass (Olsen et al 1954) Gatineau (Hogarth et al 1985)Kizilcaoren (Hatzl 1992) Tundulu (Ngwenya1994) and are the most well-studied of thecarbonatite REE-minerals (e g Kapustin 1980Hogarth et al 1985 Andersen 1986 Wall andMariano 1996) Selected average microprobeanalyses of Khibina synchysite-(Ce) made onminerals from different mineral assemblages arepresented in Table 7 Synchysite-(Ce) is char-acterized by having little substitution of otherelements for Ca and REE Primary synchysite-(Ce) from syntaxial intergrowths secondarysynchysite-(Ce) from the alteration products ofburbankite carbocernaite and syntaxial inter-growths of synchysite-(Ce) with parisite-(Ce) allhave similar chemical compositions Sr Ba and Thare typical minor constituentsin all the synchysite-(Ce) and Fe is present in the red variety associatedwith manganoan ankerite or ferroan kutnohorite

Parisite-(Ce) and bastnasite-(Ce) (Table 8) arenear their theoretical compositions with onlyminor amounts of Sr and Ba substituting for Caand Th substituting for REE

Syntaxial intergrowths of Ca-REE fluocarbo-nates are considered to be evidence for theirprimary origin the intergrowth being related tochanges in the chemical composition of the hostfluid (Ni et al 1993)

Ba-REE fluocarbonates

Ba-REE fluocarbonates are extremely rare incarbonatites Huanghoite-(Ce) is the onlymember of the group previously described froman unnamed Siberian carbonatite (Kapustin 1973)and from Qaqarssuk carbonatites (Knudsen1991) However cordylite-(Ce) kukharenkoite-

A N ZAITSEV ETAL

236

(Ce) and cebaite-(Ce) have all been identified atKhibina (Table 3)

Cordylite-(Ce) is known only from Greenland(Flink 1901) Mont Saint-Hilaire Canada (Chenand Chao 1975) and Bayan Obo China (Zhangand Tao 1986) Its occurrence at Khibina is thefirst documented occurrence which is certainlyfrom carbonatites Kukharenkoite-(Ce) is a newBa-REE fluocarbonate mineral which has beenfound in the Khibina carbonatites and fromVuoriyavri Kola Peninsula Mont Saint-Hilaireand the Saint-Amable sill Quebec Canada(Zaitsev et al 1996) The occurrence of

cebaite-(Ce) at Khibina is only the seconddocumented occurrence The first was fromBayan Obo (Zhang and Tao 1986)

There are no data on the chemical compositionof cordylite-(Ce) from carbonatites and our reportis the first for this mineral (Table 9) There arethree distinct chemical compositions of cordylite-(Ce) from Khibina Cordylite-(Ce) with low Caand Sr (Table 9) occurs in manganoan siderite-manganoan ankerite-natrolite veins (CZ III-1)where it forms tabular crystals which areassociated with strontianite and sometimeskukharenkoite-(Ce) High Ca and Sr cordylite-

TABLE 6 Chemical composition of ancylite-(Ce) at Khibina

Rock C II-1Sample 633B795 646001 646451

mean (8) sd mean (21) sd mean (24) sd

SrO 2397 1 25 21 70 1 19 20 65 1 63CaO 1 35 0 40 2 09 0 51 1 93 0 59BaO 0 59 0 09 0 85 0 24 0 85 0 25FeO 0 19 0 35 b d 0 20 0 30La2O3 1308 1 18 15 56 0 83 16 53 1 17Ce2O3 2340 1 04 23 46 1 09 23 59 0 89Pr2O3 1 94 0 11 1 74 0 14 1 69 0 12Nd2O3 5 35 0 52 4 42 0 38 4 34 0 33Sm2O3 0 29 0 06 0 28 0 05 0 23 0 04Gd2O3 0 14 0 13 0 17 0 09 b dThO2 0 53 0 20 b d b dF 2 15 0 30 1 83 0 34 1 19 0 17CO2 2344 23 32 23 07shy O=F2 0 90 0 77 0 50

Total 9551 94 66 93 77

Calculated to 2 (CO3)2shy groups

La 0 300 0 357 0 381Ce 0 532 0 534 0 539Pr 0 044 0 040 0 039Nd 0 119 0 098 0 097Sm 0 006 0 006 0 005Gd 0 003 0 004Th 0 008

Total 1 012 1 038 1 061

Sr 0 864 0 783 0 748Ca 0 090 0 139 0 129Ba 0 014 0 021 0 021Fe 0 010 0 010

Total 0 979 0 943 0 909

F 0 422 0 360 0 235

Na Mg Mn Y and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

237

(Ce) (Table 9) is observed in the same samples asmantles on crystals of low Ca and Sr cordylite-(Ce) and as abundant laths in the surroundingnatrolite and manganoan ankerite (Fig 4b) It hasalso formed as a secondary mineral duringcarbocernaite alteration Cordylite-(Ce) withmoderate Ca and Sr (Table 9) occurs in ferroanrhodochrosite-manganoan ankerite carbonatites(C II-3) and is associated with strontianite

The atomic proportions of Na-Ca and REE-Srpairs show a negative correlation with a slopenear shy 1 and a plot of Na+REE vs Ca+Sr (Fig 5)shows a trend in composition from Sr-Ca-poor toSr-Ca-rich cordylite-(Ce) The slope of thiscorrelation suggests a 11 exchange of Na andREE for Ca and Sr with a substitution scheme ofNa+ + REE3+ Ca2+ + Sr2+ On the basis of theseobservations a general formula for cordylite-(Ce)can be expressed as (NaCa)Ba(REESr)2(CO3)4FOur X-ray and IR data are identical for eachcompositional variety and also identical to thoseof lsquobaiyuneboite-(Ce)rsquo (Fu and Su 1988) whichis now recognized to be cordylite-(Ce) (JZemann personal communication 1996)

Kukharenkoite-(Ce) occurs in Khibina C II-2and C II-3 carbonatites and in carbonate-zeoliteveins (Table 3) It was described as a new mineralby Zaitsev et al (1996) The composition of thekukharenkoite-(Ce) (Zaitsev et al 1996) deter-

FIG 4 (a) BEI of syntaxial intergrowths of synchysite-(Ce) (grey) parisite-(Ce) (grey) and bastnasite-(Ce) (white) CII-2 manganoan ankerite-calcite carbonatite sample 633A414 1 (b) BEI of large crystals of low Ca and Sr cordylite-(Ce) pale grey in centre) associated with laths of high Ca and Sr cordylite-(Ce) (dark grey) and kukharenkoite-(Ce)

(white) CZ III-1 manganoan siderite-manganoan ankerite shy natrolite vein sample 60775

FIG 5 Atomic proportions of Na+REE vs Ca+Sr forcordylite-(Ce)

A N ZAITSEV ETAL

238

mined from electron microprobe analysis is BaO4893 SrO 0 42 MnO 026 Na2O 0 08 CaO0 05 La2O3 6 16 Ce2O3 15 12 Pr2O3 149Nd2O3 4 08 ThO2 0 10 and F 320 wt Theatomic ratios of Ba REE and F are near 211requiring 3 (CO3)

2shy groups per formula unit(calculated CO2 21 73 wt ) and the idealf o r m u l a f o r k u k h a r e n k o i t e - ( C e ) i sBa2REE(CO3)3F

The chemical composition of cebaite-(Ce) fromKhibina was determined by 18 electron micro-

probe analyses (Table 10) Although analysistotals are less then 100 calculated atomic ratiosfor Ba REE and F are near 322 and closelyc o r r e s p o n d t o a n i d e a l f o r m u l a o fBa3REE2(CO3)5F2 Cebaite-(Ce) contains minorSrO (101shy 261 wt ) CaO (033shy 118 wt)and ThO2 (0 49shy 126 wt) in addition rela-tively high MnO (up to 0 83 wt ) and FeO (up to0 61 wt ) were observed in some analyses Allcebaite-(Ce) crystals are unzoned See Table 3 formineralogical details

TABLE 7 Chemical composition of synchysite-(Ce) at Khibina

Rock C II-2 C II-3 C II-1 C II-1 C II-1Sample 633A414 1 604413 633485 5 603265 603165

syntaxial intergrowths secondary after burbankite secondary aftercarbocernaite

mean (8) sd mean (6) sd mean (9) sd mean (15) sd mean (4) sd

CaO 17 47 0 38 16 89 0 62 1618 070 16 08 0 88 17 23 033FeO bd 0 35 0 49 b d b d bdSrO 024 0 12 0 43 0 18 0 87 066 0 59 0 28 056 021BaO 009 0 05 0 15 0 04 0 12 007 0 06 0 05 011 006La2O3 16 54 0 42 13 06 0 58 1798 087 20 34 0 86 13 63 073Ce2O3 26 19 0 85 27 21 0 79 2591 065 25 77 0 50 25 26 085Pr2O3 215 0 12 2 53 0 07 1 94 011 1 78 0 08 258 010Nd2O3 614 0 44 7 90 0 22 5 54 027 4 53 0 41 969 086Sm2O3 038 0 06 0 62 0 10 0 38 004 0 31 0 07 068 038Y2O3 bd b d b d b d 011 009ThO2 bd 0 38 0 21 0 15 009 b d 017 014F 549 0 18 5 69 0 21 5 83 023 5 61 0 23 578 011CO2 28 12 27 81 2718 27 59 28 11shy O=F2 231 2 40 2 46 2 36 243

Total 10049 100 62 9961 100 30 101 46

Calculated to 2 (CO3)2shy groups

Ca 0975 0 953 0 934 0 915 0962Sr 0007 0 013 0 027 0 018 0017Ba 0002 0 003 0 002 0 001 0002Fe 0 015

Total 0984 0 985 0 964 0 934 0981

La 0318 0 254 0 357 0 398 0262Ce 0499 0 524 0 511 0 501 0481Pr 0041 0 049 0 038 0 034 0049Nd 0114 0 149 0 107 0 086 0180Sm 0007 0 011 0 007 0 006 0012Y 0003Th 0 005 0 002 0002

Total 0979 0 991 1 022 1 025 0990F 0904 0 948 0 994 0 943 0953

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

239

Y-rich carbonates mckelveyite-(Y) ewaldite anddonnayite-(Y)

A detailed description of these minerals fromKhibina Vuoriyarvi and Sallanlatvi is given byVoloshin et al (1990 1992) This was the firsttime that they had been documented in carbona-tites Mckelveyite-(Y) is the best-studied of thegroup at Khibina (Table 3)

Chemical compositions of mckelveyite-(Y) andewaldite from Kola carbonatites are represented by

three electron microprobe analyses of mckelveyite-(Y) from Vuoriyarvi carbonatites one from theSallanlatvi carbonatite and two analyses ofewaldite from Vuoriyarvi (Voloshin et al 19901992) However even these limited data showcompositional variation and three groups havebeen identified Na-free mckelveyite-(Y) Y-freeLREE-enriched mckelveyite and Y-free ewaldite

Five separate crystals of mckelveyite-(Y) wereanalysed from Khibina (Table 11) and areuniform in chemical composition The formula

TABLE 8 Chemical composition of parisite-(Ce) and bastnasite-(Ce) at Khibina

Rock C II-2 C II-3 C II-2Sample 633A4141 604413 633A414 1Mineral parisite-(Ce) bastnasite-(Ce)

mean (2) mean (5) sd mean (6) sd

CaO 9 72 9 29 1 03 084 0 29SrO 0 56 0 79 0 18 085 0 34BaO 0 07 0 30 0 29 008 0 05FeO 0 05 0 38 0 28La2O3 1963 15 96 0 72 26 35 0 99Ce2O3 3172 32 28 0 45 37 41 0 54Pr2O3 2 30 2 87 0 14 250 0 13Nd2O3 6 83 8 74 0 22 660 0 48Sm2O3 0 45 0 60 0 02 036 0 07Y2O3 0 10 0 22 0 12 bdThO2 b d 0 24 0 10 bdF 7 02 6 79 0 17 811 0 22CO2 2433 24 54 20 67shy O=F2 2 95 2 86 342

Total 9982 100 13 100 35

Calculated to 3 (CO3)2shy groups Calculated to 1 (CO3)

2shy groupCa 0 941 0 892 0033Sr 0 029 0 041 0018Ba 0 002 0 011 0001Fe 0 004 0 029

Total 0 976 0 972

La 0 654 0 527 0357Ce 1 048 1 057 0503Pr 0 076 0 094 0033Nd 0 220 0 280 0087Sm 0 014 0 018 0005Y 0 005 0 010Th 0 005

Total 2 017 1 992 1037

F 2 004 1 923 0942

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

240

of mckelveyite-(Y) is still the subject of debate Inthe original description Milton et al (1965) gavethe formula as Na19Ba40Ca11Sr02REE15U03

(CO3)9 5H2O Later Chao et al (1978) suggestedan isomorphous relationship between mckel-veyite-(Y) and donnayite-(Y) and gave theformula of NaCaBa3Y(CO3)6 3H2O In a recentstudy of mckelveyite-(Y) and ewaldite Voloshinet al (1990 1992) showed a similarity betweenthese two minerals and suggested that they areprobably polymorphs The formula of ewalditewas determined as (CaNaREE )(BaSr )(CO3)2 nH2O where part of the H2O is zeolitic

Chemical data from the Khibina mckelveyite-(Y) were calculated on the basis of the IMAaccepted formula NaCaBa3Y(CO3)6 3H2O (Table

11) Our data and those of Voloshin et al (1990)show significant substitutions the main one beingBa2+ Sr2+ which is related to the mckelveyite-(Y)-donnayite-(Y) pair where these minerals are Baand Sr end-members respectively The assignationof REE to two different sites in the mckelveyite-(Y) formula is problematic It is based on formulabalance and the REE chondrite-normalizeddistribution which is discussed below in thesection on lsquoRare earth patternsrsquo

Strontianite baryte barytocalcite edingtonite andharmotome

Minerals rich in Ba and Sr but with no REE arerepresented in the Khibina carbonatites by

TABLE 9 Chemical composition of cordylite-(Ce) at Khibina

Rock CZ III-1 C II-3 CZ III-1 CZ III-1 C II-1Sample 60775 6032646 6032515 60775 6031650Variety low Ca and Sr moderate Ca and Sr high Ca and Sr

mean (15) sd mean (17) sd mean (15) sd mean (10) sd mean (17) sd

Na2O 412 0 12 3 66 0 24 3 67 0 12 2 60 0 15 256 0 16CaO 073 0 18 1 54 0 31 1 50 0 08 3 82 0 18 410 0 26SrO 058 0 23 2 48 0 57 2 09 0 31 6 03 0 43 590 0 50BaO 22 28 0 33 22 29 0 51 22 32 0 32 23 02 0 25 23 11 0 36La2O3 994 0 36 10 46 0 38 11 82 0 53 7 58 0 30 11 49 0 51Ce2O3 24 46 0 43 23 82 0 68 22 18 0 28 20 26 0 38 17 90 0 67Pr2O3 241 0 18 1 85 0 24 1 69 0 25 2 19 0 27 145 0 30Nd2O3 747 0 49 5 88 0 31 5 70 0 41 6 97 0 49 536 0 54ThO2 011 0 17 0 13 0 14 0 12 0 16 0 13 0 12 013 0 16F 262 0 10 2 97 0 28 2 95 0 33 2 60 0 08 285 0 31CO2 24 92 25 16 24 78 25 77 25 75shy O=F2 110 1 25 1 24 1 10 120

Total 98 55 98 98 97 57 99 88 99 40

Calculated for 4 (CO3)2shy groups

Na 0945 0 821 0 837 0 579 0567Ca 0093 0 191 0 189 0 470 0501

Total 1038 1 012 1 026 1 049 1068

Ba 1032 1 011 1 028 1 036 1033La 0434 0 446 0 513 0 321 0483Ce 1058 1 008 0 954 0 851 0747Pr 0104 0 078 0 072 0 092 0060Nd 0315 0 243 0 239 0 286 0218Sr 0040 0 167 0 142 0 402 0390Th 0003 0 003 0 003 0 003 0003

Total 1954 1 945 1 923 1 955 1901

F 0981 1 088 1 096 0 946 1029

Fe Mn and Sm are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

241

strontianite baryte barytocalcite edingtonite andharmotome (Table 3) The first two minerals arecommon in late-stage carbonatites e g MountainPass (Olsen et al 1954) Vuoriyarvi SeblyavrSallanlatvi (Kapustin 1980) Sarnu-Dandali (Wallet al 1993) and Kangankunde (Wall andMariano 1996)

Barytocalcite is extremely rare in carbonatitesand has been described only from Vuoriyarvi andan unnamed Siberian carbonatite (Kapustin 1980)and possibly Chipman Lake (Platt and Woolley1990)

Edingtonite and harmotome are bariumzeolites Their occurrence at Khibina is the first

TABLE 10 Chemical composition of cebaite-(Ce) at Khibina

Rock CZ III-1Sample 6031435Analysis 14 24 25 29 30 33 Mean (18) Sd

Na2O 0 09 0 10 0 08 0 11 0 13 0 10 0 10 0 03CaO 0 40 1 18 0 47 0 61 0 52 0 70 0 61 0 21MnO 0 07 0 47 0 12 0 73 0 83 0 13 0 16 0 24FeO 0 45 0 13 b d 0 14 0 61 b d 0 16 0 19SrO 1 40 1 27 1 45 1 25 1 28 1 31 1 43 0 36BaO 43 93 40 51 42 19 42 09 42 59 42 93 42 77 1 84La2O3 5 30 7 28 6 71 5 58 5 48 5 72 5 67 0 52Ce2O3 13 59 14 33 14 52 14 66 13 66 14 91 14 45 1 16Pr2O3 1 54 1 69 1 83 1 78 1 51 1 81 1 63 0 19Nd2O3 6 15 5 69 5 99 6 32 5 70 5 34 5 54 0 48Sm2O3 0 60 0 61 0 50 0 38 0 42 0 34 0 48 0 11Eu2O3 0 17 0 18 b d 0 24 b d b d 0 07 0 11Gd2O3 0 59 0 66 0 53 0 49 0 40 0 37 0 50 0 13ThO2 0 99 0 51 0 49 0 92 1 07 0 99 0 92 0 22F 4 24 4 10 4 15 3 78 3 99 3 61 3 76 0 21CO2 21 57 21 79 21 41 21 79 21 65 21 41 21 42shy O=F2 1 78 1 73 1 75 1 59 1 68 1 52 1 58

Total 99 31 98 77 98 78 99 29 98 15 98 15 98 10

Calculated for 5 (CO3)2shy groups

Na 0 031 0 032 0 025 0 038 0 042 0 034 0 032Ca 0 073 0 212 0 085 0 111 0 095 0 130 0 114Mn 0 010 0 066 0 018 0 105 0 119 0 018 0 023Fe 0 064 0 018 0 020 0 087 0 023Sr 0 137 0 124 0 143 0 123 0 127 0 132 0 144Ba 2 915 2 659 2 802 2 805 2 855 2 926 2 900

Total 3 230 3 111 3 072 3 201 3 325 3 240 3 236

La 0 331 0 450 0 419 0 350 0 346 0 367 0 362Ce 0 841 0 878 0 900 0 911 0 854 0 948 0 914Pr 0 095 0 103 0 113 0 110 0 094 0 115 0 102Nd 0 372 0 340 0 362 0 384 0 348 0 332 0 342Sm 0 035 0 035 0 029 0 022 0 024 0 021 0 029Eu 0 010 0 011 0 014 0 004Gd 0 033 0 036 0 030 0 028 0 023 0 021 0 029Th 0 038 0 019 0 019 0 036 0 042 0 039 0 036

Total 1 755 1 872 1 873 1 855 1 730 1 843 1 819

F 2 268 2 174 2 221 2 033 2 159 1 986 2 057

Y Dy Er Yb and Lu are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

242

TABLE 11 Chemical position of mckelveyite-(Y) at Khibina

Rock CZ IIISample 6031435Point 1 2 4 5 9 10 Mean (12) sd

Na2O 3 12 3 05 3 21 3 10 3 33 3 14 3 19 0 10CaO 4 56 4 34 4 32 4 34 4 20 4 72 4 43 0 38MnO 0 06 b d b d b d b d 0 06FeO b d b d 0 64 b d 0 07 0 11 0 18 0 26BaO 29 43 29 89 28 47 28 73 29 69 27 13 28 97 0 98SrO 9 16 9 56 9 29 10 41 8 25 12 42 9 56 1 26Y2O3 6 39 6 33 5 32 7 02 5 84 8 42 6 44 0 93La2O3 1 22 1 22 1 60 0 85 1 84 0 96 1 34 0 34Ce2O3 1 93 1 79 2 43 1 17 2 96 1 77 2 18 0 65Pr2O3 0 22 0 22 0 15 0 30 0 24 0 15 0 22 0 06Nd2O3 0 69 0 77 0 91 1 11 0 71 0 37 0 84 0 24Sm2O3 0 81 0 87 0 81 0 89 0 85 0 20 0 78 0 23Eu2O3 0 49 0 64 0 50 0 36 0 60 0 34 0 47 0 10Gd2O3 2 15 1 94 2 18 2 05 2 32 1 05 2 02 0 38Dy2O3 2 39 2 40 2 97 2 29 2 83 2 00 2 48 0 29Er2O3 1 03 1 09 1 28 0 87 0 68 1 03 0 94 0 19Yb2O3 0 44 0 44 0 56 0 59 0 25 0 61 0 47 0 12ThO2 b d 0 17 b d b d b d b dF 0 18 0 15 b d b d 0 17 0 16 0 14 0 09CO2 25 71 25 70 25 86 25 81 25 71 26 72 25 93H2O 10 52 10 51 10 58 10 56 10 52 10 93 10 61shy O=F2 0 07 0 06 0 07 0 07 0 06

Total 100 43 101 01 101 07 100 44 100 98 102 24 101 13

Calculated to 6 (CO3)2shy and 3H2O groups

Na 1 000 0 984 1 000 1 000 1 000 0 978 1 000Ca 0 735 0 757 0 561 0 778 0 565 0 785 0 676Na 0 009 0 040 0 006 0 075 0 023La 0 075 0 075 0 099 0 052 0 113 0 057 0 082Ce 0 118 0 109 0 148 0 071 0 181 0 104 0 132Pr 0 013 0 013 0 009 0 018 0 014 0 009 0 013Nd 0 041 0 046 0 054 0 067 0 042 0 021 0 050Mn 0 009 0 008 0 000Fe 0 089 0 010 0 015 0 025

Total 1 000 1 000 1 000 0 992 1 000 1 000 1 000

Ba 1 923 1 950 1 865 1 884 1 941 1 707 1 880Sr 0 885 0 922 0 900 1 009 0 798 1 156 0 917Ca 0 080 0 017 0 212 0 185 0 026 0 110

Total 2 888 2 890 2 977 2 893 2 924 2 889 2 907

Y 0 567 0 561 0 473 0 625 0 518 0 719 0 567Sm 0 047 0 050 0 047 0 051 0 049 0 011 0 045Eu 0 028 0 036 0 029 0 021 0 034 0 018 0 026Gd 0 119 0 107 0 121 0 114 0 128 0 056 0 111Dy 0 128 0 129 0 160 0 123 0 152 0 104 0 132Er 0 054 0 057 0 067 0 045 0 036 0 052 0 049Yb 0 023 0 022 0 028 0 030 0 013 0 030 0 024Th 0 007

Total 0 965 0 969 0 925 1 009 0 930 0 990 0 954

F 0 092 0 081 0 088 0 082 0 071

Lu is below detection limit CO2 and H2O calculated by stoichiometry

REE-SR-BA MINERALS

243

TA

BL

E12

C

hem

ical

com

posi

tion

ofst

ront

iani

teat

Khi

bina

Roc

kC

II-2

CII

-3C

ZII

I-1

CII

-1C

II-1

CII

-1S

ampl

e63

3A4

141

604

413

060

325

15

646

451

060

336

364

600

1pr

imar

yst

ront

iani

teas

soci

ated

wit

hse

cond

ary

stro

ntia

nite

(aft

erbu

rban

kite

)as

soci

ated

wit

hsy

nchy

site

-(C

e)

sync

hysi

te-(

Ce)

cord

ylit

e-(C

e)an

cyli

te-(

Ce)

sync

hysi

te-(

Ce)

ancy

lite

-(C

e)an

dba

ryte

pari

site

-(C

e)an

dan

dpa

risi

te-(

Ce)

and

bary

tean

dba

ryte

bast

nasi

te-(

Ce)

mea

n(1

0)sd

mea

n(6

)sd

mea

n(3

)m

ean

(25)

sdm

ean

(4)

sdm

ean

(6)

sdm

ean

(4)

sdm

ean

(8)

sdco

rem

antl

eri

m

Na 2

Ob

db

db

d0

140

05b

d0

210

050

100

04b

dC

aO3

250

563

230

443

073

461

003

370

331

580

373

720

325

970

20S

rO66

21

068

668

00

5166

62

635

71

2664

34

051

682

00

6063

95

100

625

80

78B

aO0

190

170

160

070

221

610

471

630

150

720

290

830

092

000

57L

a 2O

3b

db

d0

160

480

20b

d0

620

120

330

060

150

04C

e 2O

30

180

120

110

110

570

610

240

190

080

760

160

420

050

250

05C

O2

307

930

99

310

530

71

305

131

11

306

931

99

Tot

al10

063

101

2910

169

100

5810

004

103

2010

004

102

94

Cal

cula

ted

to1

(CO

3)2

shygr

oup

Na

000

60

010

000

5C

a0

083

008

20

077

008

80

087

004

00

095

014

6S

r0

913

091

50

911

087

90

895

093

10

885

083

1B

a0

002

000

10

002

001

50

015

000

70

008

001

8L

a0

001

000

40

005

000

30

001

Ce

000

20

001

000

50

005

000

20

007

000

40

002

Tot

al0

999

100

00

997

099

80

999

099

90

999

099

8

Mg

Mn

Fe

Pr

Nd

Sm

Y

T

han

dU

are

belo

wde

tect

ion

lim

its

CO

2ca

lcul

ated

byst

oich

iom

etry

A N ZAITSEV ETAL

244

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 7: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

TA

BL

E3

(con

td)

CII

-2la

tem

anga

noan

anke

rite

-cal

cite

carb

onat

ite

with

sync

hysi

te-(

Ce)

Prim

ary

phas

es

Syn

taxi

alin

terg

row

ths

(Don

nay

and

Don

nay

1953

)of

sync

hysi

te-

(Ce)

par

isit

ean

dba

stna

site

-(C

e)(F

ig

4a)

Inte

rgro

wth

sar

eve

ryfi

nendash

1shy

20m m

wid

ean

d50

shy50

0m m

long

A

ssoc

iate

dw

ith

stro

ntia

nite

Syn

chys

ite-

(Ce)

whi

chis

not

inte

rgro

wn

isa

maj

orro

ck-f

orm

ing

min

eral

W

hite

yel

low

(usu

ally

wit

hca

lcit

e)or

red

(usu

ally

wit

hfe

rroa

nku

tnoh

orit

e)ta

bula

rcr

ysta

ls

01

shy3

m mdi

amet

er

Oft

enir

regu

lar

tora

diat

ing

agre

gate

s

Kuk

hare

nkoi

te-(

Ce)

as

late

-sta

ge0

01shy

1m

mpr

ism

atic

crys

tals

inti

nyca

viti

es

Oft

enas

stel

late

de

ndri

tic

orir

regu

lar

inte

rgro

wth

sup

to3

mm

diam

eter

R

arel

yas

anhe

dral

00

5shy

02

mm

grai

nsor

plat

y0

1shy

2m

mcr

ysta

lsA

ssoc

iate

dw

ith

cord

ylit

e-(C

e)

stro

ntia

nite

an

dra

rely

mck

elve

yite

-(Y

)

Stro

ntia

nite

usua

lly

occu

rsas

colo

urle

ss

subh

edra

lcr

ysta

lsup

to2

mm

diam

eter

CII

-3la

teca

rbon

atit

es-f

erro

anrh

odoc

hros

ite-m

anga

noan

anke

rite

with

sync

hysi

te-(

Ce)

orco

rdyl

ite-

(Ce)

Prim

ary

phas

es

Sync

hysi

te-(

Ce)

som

etim

espr

esen

tin

fine

synt

axia

lin

terg

row

ths

wit

hpa

risi

te-(

Ce)

C

ordy

lite

-(C

e) i

sa

typi

cal

min

eral

W

hite

orye

llow

tabu

lar

crys

tals

0

1shy

1m

man

dso

met

imes

upto

5m

m

eith

ersi

ngle

orin

aggr

egat

es

Mck

elve

yite

-(Y

)ew

aldi

te

and

don-

nayi

te-(

Y)

inca

viti

es

Yel

low

orw

hite

crys

tals

va

riou

sha

bits

from

tabu

lar

colu

mna

rto

barr

el-s

hape

dS

ome

crys

tals

are

hem

imor

phic

Stro

ntia

nite

pr

imar

yu

sual

lyco

lou

rles

ssu

bhed

ral

crys

tals

upto

2m

m

Kuk

hare

nkoi

te-(

Ce)

(See

abov

e)E

ding

toni

tean

dha

rmot

ome

are

com

mon

acce

ssor

ym

iner

als

Usu

ally

eu

hedr

alcr

ysta

ls

upto

2m

m

inca

viti

es

Alt

erat

ion

Vei

n-li

keag

greg

ates

ofsy

nchy

site

-(C

e)

stro

ntia

nite

ba

ryte

and

bast

nasi

te-(

Ce)

repl

ace

the

synt

axia

lin

terg

row

thin

som

ero

cks

Stro

ntia

nite

us

uall

yco

l-ou

rles

san

hedr

alcr

ysta

lsB

aryt

eus

uall

yco

lour

less

an

he-

dral

0

1shy

1m

mgr

ains

REE-SR-BA MINERALS

231

TA

BL

E3

(con

td)

CZ

III-

1ca

rbon

ate-

zeol

ite

vein

s-m

anga

noan

side

rite

-man

gano

anan

keri

te-n

atro

lite

Sync

hysi

te-(

Ce)

som

etim

espr

esen

tC

ordy

lite

-(C

e)is

aty

pica

lm

iner

al

Whi

teor

yell

owta

bula

rcr

ysta

ls

01

shy1

mm

and

som

etim

esup

to5

mm

ei

ther

sing

leor

inag

gre-

gate

s2

vari

etie

s(F

ig

4b)

Ceb

aite

-(C

e)

foun

din

cavi

ties

asye

llow

w

hite

orco

lour

less

crys

tals

upto

02

mm

D

endr

itic

st

ella

teor

irre

gula

rin

terg

row

ths

Co

mm

on

lyas

soci

ated

wit

hm

ckel

veyi

te-(

Ce)

co

rdyl

ite

and

stro

ntia

nite

Mck

elve

yite

-(Y

)ew

al-

dite

and

donn

ayit

e-(Y

)se

eab

ove

Edi

ngto

nite

and

har-

mot

ome

com

mon

ac-

ce

sso

rym

ine

rals

U

sual

ly

euhe

dral

crys

-ta

ls

upto

2m

m

inca

viti

es

Kuk

hare

nkoi

te-(

Ce)

(See

abov

e)St

ront

iani

tew

ith

cord

ylit

e-(C

e)

prim

ary

Bar

yte

ofte

nsh

ort

pris

mat

iccr

ysta

lsin

cavi

ties

CZ

III-

2ca

rbon

ate-

zeol

ite

vein

s-m

anga

noan

side

rite

-nor

dstr

andi

te-n

atro

lite

Co

rdyl

ite-

(Ce)

isa

lsquotyp

ical

rsquom

iner

al

Whi

teor

yell

owta

bula

rcr

ysta

ls

01

shy1

mm

and

som

e-ti

mes

upto

5m

m

eith

ersi

ngle

orin

aggr

egat

es

Mck

elve

yite

-(Y

)ew

aldi

tean

ddo

nnay

ite-

(Y)

Bar

ytoc

alci

te

euhe

dral

orsu

b-he

dral

1

shy2

mm

whi

tecr

ysta

lsin

cavi

ties

Id

enti

fica

tion

base

don

XR

Dan

dIR

spec

tra

Stro

ntia

nite

wit

hco

r-dy

lite

-(C

e)

prim

ary

Bar

yte

ofte

nsh

ort

pr

ism

atic

crys

tals

inca

viti

es

CZ

III-

3ca

rbon

ate-

zeol

ite

vein

s-na

trol

ite-

man

gano

ansi

deri

te-d

awso

nite

Mck

elve

yite

-(Y

)ew

aldi

tean

ddo

nnay

ite-

(Y)

Stro

ntia

nite

wit

hco

rdyl

ite-

(Ce)

pr

imar

yB

aryt

eof

ten

shor

tpr

ism

atic

crys

tals

inca

viti

es

A N ZAITSEV ETAL

232

exception (sample 633B79 5) has 6 65 wtBaO There is no zoning in Khibina burbankitecrystals and the compositions are also uniformwithin each rock sample

There are two morphological types of burban-kite large prismatic crystals and small drop-likeinclusions within calcite crystals and along theirboundaries (Fig 3a Table 3) Although theircompositions are the same (Table 4) the

difference in morphology suggests they mayhave formed by different processes Largeeuhedral prismatic crystals could have crystal-lized at an early stage of carbonatite formationand sometimes large burbankite crystals areobserved near the contact of veins that arecharacterized by a crustification texture (vein-filling) The drop-like burbankite inclusions incalcite probably did not form by exsolution of

TABLE 4 Chemical composition of burbankite at Khibina

Rock C II-1Sample 607277 633477 7 6334777 581013 633B79 5

large crystal drop-like inclusion large crystal large crystalmean (9) sd mean (4) sd mean (10) sd mean (9) sd

Na2O 12 45 11 93 0 13 11 80 0 27 1260 0 44 12 03 0 85CaO 12 60 11 94 0 53 12 57 0 54 1020 0 49 10 08 1 22SrO 19 60 24 74 0 31 24 57 0 38 1838 0 61 17 71 0 92BaO 0 78 1 76 0 12 1 86 0 04 2 52 0 49 6 65 0 47La2O3 5 20 5 65 0 14 5 11 0 25 7 05 0 30 4 77 0 26Ce2O3 9 91 7 15 0 16 6 97 0 28 1106 0 41 9 26 0 43Pr2O3 0 64 0 47 0 04 0 47 0 05 0 80 0 10 0 88 0 07Nd2O3 1 53 1 24 0 10 1 33 0 03 2 53 0 28 3 11 0 31Sm2O3 0 05 b d b d 0 31 0 11 0 39 0 12Gd2O3 b d b d b d b d 0 20 0 07ThO2 n d b d b d b d 0 16 0 10CO2 35 40 34 68 34 79 3421 33 38

Total 99 76 99 56 99 47 9966 98 62

Calculated to 5 (CO3)2shy groups

Na 2 508 2 442 2 408 2 615 2 558Ca 0 338 0 498 0 529 0 267 0 345A site total 2 846 2 941 2 937 2 882 2 903

Sr 1 181 1 514 1 499 1 141 1 126Ca 1 065 0 852 0 889 0 903 0 840La 0 199 0 220 0 198 0 278 0 193Ce 0 377 0 276 0 268 0 433 0 372Pr 0 024 0 018 0 018 0 031 0 035Nd 0 056 0 047 0 050 0 097 0 122Sm 0 003 0 011 0 015Gd 0 007Ba 0 032 0 073 0 077 0 106 0 286Th 0 004B site total 3 000 3 000 3 000 3 000 3 000C 5 021

Sample 607277 - wet chemical analysis other samples - electron microprobe analysessd - standard deviation - including MgO 0 02 K2O 0 02 MnO 007 FeO 0 42 SiO2 020 F 0 04 and H2O 0 85 all wt - including Mn 0 006 Fe 0 037 and Si 0 021b d - below detection limits Mg Mn Fe Y and F are below detection limits in the microprobe analyses CO2 inmicroprobe analyses calculated by stoichiometry n d ndash not determined

REE-SR-BA MINERALS

233

FIG 3 Backscattered electron images (BEI) of (a) large crystals and drop-like inclusions of burbankite (white) incalcite (black) (b) a contact print of a thin section containing a pseudomorph of synchysite-(Ce) strontianite andbaryte after burbankite The width of the burbankite pseudomorph is 9 mm C II-1 calcite carbonatite sample 603265 (c) zoned altered burbankite (grey and dark-grey) with ancylite-(Ce) veins (white) C II-1 calcite carbonatite

sample 633B79 5 (d) relics of burbankite (dark grey) in strontianite (grey) and synchysite-(Ce) (white)

A N ZAITSEV ETAL

234

burbankite from calcite rich in Na Sr and REE asmight be thought at first from Fig 3a and asproposed for a similar occurrence by Knudsen(1991) because the burbankite crystals areassociated with euhedral zoned apatites Theyare more likely to be the result of lsquocotecticrsquocrystallization of burbankite and calcite after theprecipitation of the apatite

Carbocernaite has been found in many Khibinacarbonatite samples (Table 3) It was describedoriginally as a primary mineral crystallized at alate stage of carbonatite formation at VuorijarviKola Peninsula (Bulakh et al 1961) Zdorik(1966) and Kapustin (1980) found that carbocer-naite in carbonatites from the Ozernyi andVuoriyarvi massifs occurs as a secondarymineral after burbankite The most unusualoccurrence of carbocernaite is the exsolutionlamellae and cotectic textures for carbocernaiteand calcite in Sarnu-Dandali carbonatitedescribed by Wall et al (1993) Carbocernaite isalso reported from carbonatite in the Si PanRange Vietnam (Bulakh and Izokh 1966)

Carbocernaite like burbankite is a doublecarbonate with a general formula AB(CO3)2 withNa and Ca in the A-site and Sr REE and Ba in theB-site There are few studies of the chemicalcomposition of carbocernaite Before the detailedinvestigation of Wall et al (1993) only a few wetchemical analyses were published (Bulakh et al 1961 Bulakh and Izokh 1966 Zdorik 1966Kapustin 1980) Although available data forcarbocernaite show some variation in thecontent of major elements there is less variationthan in burbankite The Na2O values range from243 to 612 wt the BaO from 095 to 596 theSrO from 558 to 2398 the CaO from 1593 to1927 and the SREE2O3 from 17 06 to 2631 allwt In general the compositional variations inburbankite and carbocernaite are similar butcarbocernaite contains less Na2O (commonlyabout 4 shy 5 wt ) compared with burbankite(commonly about 10 shy 12 wt ) This differencein sodium content makes it possible to identifycarbocernaite and burbankite on the basis ofelectron microprobe analyses

Selected average compositions of carbocernaitefrom Khibina are given in Table 5 These datashow that carbocernaite from the Khibinacarbonatites is a low Ba variety Khibinacarbocernaite like burbankite is not zoned

Harris (1972) reported high F (3 86 wt ) incarbocernaite from Sturgeon Narrows Canadaand proposed that F together with OH could be

additional anion group (FOH)2 in the mineralformula Our data show that the F content ofKhibina carbocernaite is near the electron micro-probe detection limit of about 0 1 wt and IRinvestigations show an absence of any absorptionband related to OH- group or H2O It is possiblethat the mineral described from the SturgeonNarrows is a different mineral species The lackof Na in Sturgeon Narrows carbocernaite alsosupports our conclusion

In the Khibina carbonatite samples burbankiteand carbocernaite do not occur together so it hasnot been possible to establish their relative agesHowever both burbankite and carbocernaite-containing carbonatites are cut by later C II-2and C II-3 carbonatites

TABLE 5 Chemical composition of carbocernaite atKhibina

Rock C II-1Sample 603165 603287

mean (12) sd mean (10) sd

Na2O 4 98 0 18 4 33 0 42CaO 11 94 0 42 1360 0 33SrO 22 33 0 76 2020 0 27BaO 0 37 0 13 0 56 0 07La2O3 9 27 0 61 1053 0 33Ce2O3 13 19 0 51 1419 0 30Pr2O3 0 97 0 09 0 94 0 08Nd2O3 2 34 0 25 2 56 0 19Sm2O3 0 14 0 05 0 32 0 04F 0 10 0 10 0 14 0 03CO2 32 79 3379shy O=F2 0 04 0 06

Total 98 36 10110

Calculated to 2 (CO3)2shy groups

Na 0 431 0 364Ca 0 571 0 632A site total 1 003 0 996

Sr 0 578 0 508La 0 153 0 168Ce 0 216 0 225Pr 0 016 0 015Nd 0 037 0 040Sm 0 002 0 005Ba 0 007 0 010B site total 1 008 0 971F 0 014 0 019

Mg Mn Fe Gd Y Th and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

235

Alteration of burbankite and carbocernaite

Burbankite in carbonatites is commonly replacedby ancylite-(Ce) strontianite and baryte (Somina1975 Kapustin 1980) and rarely by ancylite-(Ce)calkinsite lanthanite and baryte (Pecora and Kerr1953) Multi-stage alteration of burbankite fromthe Ozernyi carbonatites has been documented byZdorik (1966) where carbocernaite strontianitebastnasite-(Ce) calcite baryte allanite-(Ce)monazite-(Ce) and epidote have been identifiedas alteration products of burbankite

In the Khibina carbonatites burbankite andcarbocernaite are commonly replaced by variouscombinationsof ancylite-(Ce) strontianite synch-ysite-(Ce) baryte less commonly by cordylite-(Ce) and rarely by harmotome and edingtonite(Table 3) Even when burbankite is completelyreplaced evidence of its existence is preserved inthe form of hexagonal prismatic pseudomorphs(Fig 3b) and islands of relict burbankite (Fig 3cand d) Pseudomorphs of a similar form have beenmentioned from some other rare earth-richcarbonatites e g Gem Park Wigu HillKangankunde (Wall and Mariano 1996) but inthese cases there is no evidence of the precursormineral The presence of primary and replacedburbankite at Khibina is good evidence that thepseudomorphs reported from these other carbo-natites may well have originally been burbankite

Ancylite

Ancylite-(Ce) is a hydrous carbonate containingREE and Sr as major cations On the basis of astructural study of material from the Mont Saint-Hilaire massif its formula has been proposed asREEx(SrCa)2 shy x(CO3)2(OH)x (2 shy x)H2O with acation-anion substitution of Sr2+ + H2O gtREE3+ + OH shy (Dal Negro et al 1975)Although ancylite-(Ce) is a relatively commonmineral in carbonatites there are only a fewanalyses available (Kukharenko et al 1965Kapustin 1980 Knudsen 1991) and this is thefirst detailed investigation of its chemicalcomposition Selected average chemical composi-tions are given in Table 6 The composition ofancylite-(Ce) from Khibina is relatively uniformwith Ca Ba and Th present only as traces Theatomic proportion of Sr and REE in the formula isnear 11 with a small excess of REE An importantfinding is the presence of fluorine in ancylite-(Ce)The Khibina ancylite-(Ce) contains between 0 75and 250 wt of fluorine corresponding to

0 148shy 0 488 F per formula unit Since REE andSr are present in equal abundances it is suggestedthat F- substitutes for OH- Thus the mineral fromthe Khibina carbonatites can be classified as F-bearing ancylite-(Ce) Fluorine was also detectedin two ancylite-(Ce) samples from Qaqarssukcarbonatites at 0 37 and 058 wt respectively(Knudsen 1991)

Ca-REE fluocarbonates

Synchysite-(Ce)is common at Khibina bastnasite-(Ce) and parisite-(Ce) are also found but are rare(Table 3) The textures vary as described in Table3 and include syntaxial intergrowths (Fig 4a)Ca-REE fluocarbonates are present in numerouscarbonatites e g Mountain Pass (Olsen et al 1954) Gatineau (Hogarth et al 1985)Kizilcaoren (Hatzl 1992) Tundulu (Ngwenya1994) and are the most well-studied of thecarbonatite REE-minerals (e g Kapustin 1980Hogarth et al 1985 Andersen 1986 Wall andMariano 1996) Selected average microprobeanalyses of Khibina synchysite-(Ce) made onminerals from different mineral assemblages arepresented in Table 7 Synchysite-(Ce) is char-acterized by having little substitution of otherelements for Ca and REE Primary synchysite-(Ce) from syntaxial intergrowths secondarysynchysite-(Ce) from the alteration products ofburbankite carbocernaite and syntaxial inter-growths of synchysite-(Ce) with parisite-(Ce) allhave similar chemical compositions Sr Ba and Thare typical minor constituentsin all the synchysite-(Ce) and Fe is present in the red variety associatedwith manganoan ankerite or ferroan kutnohorite

Parisite-(Ce) and bastnasite-(Ce) (Table 8) arenear their theoretical compositions with onlyminor amounts of Sr and Ba substituting for Caand Th substituting for REE

Syntaxial intergrowths of Ca-REE fluocarbo-nates are considered to be evidence for theirprimary origin the intergrowth being related tochanges in the chemical composition of the hostfluid (Ni et al 1993)

Ba-REE fluocarbonates

Ba-REE fluocarbonates are extremely rare incarbonatites Huanghoite-(Ce) is the onlymember of the group previously described froman unnamed Siberian carbonatite (Kapustin 1973)and from Qaqarssuk carbonatites (Knudsen1991) However cordylite-(Ce) kukharenkoite-

A N ZAITSEV ETAL

236

(Ce) and cebaite-(Ce) have all been identified atKhibina (Table 3)

Cordylite-(Ce) is known only from Greenland(Flink 1901) Mont Saint-Hilaire Canada (Chenand Chao 1975) and Bayan Obo China (Zhangand Tao 1986) Its occurrence at Khibina is thefirst documented occurrence which is certainlyfrom carbonatites Kukharenkoite-(Ce) is a newBa-REE fluocarbonate mineral which has beenfound in the Khibina carbonatites and fromVuoriyavri Kola Peninsula Mont Saint-Hilaireand the Saint-Amable sill Quebec Canada(Zaitsev et al 1996) The occurrence of

cebaite-(Ce) at Khibina is only the seconddocumented occurrence The first was fromBayan Obo (Zhang and Tao 1986)

There are no data on the chemical compositionof cordylite-(Ce) from carbonatites and our reportis the first for this mineral (Table 9) There arethree distinct chemical compositions of cordylite-(Ce) from Khibina Cordylite-(Ce) with low Caand Sr (Table 9) occurs in manganoan siderite-manganoan ankerite-natrolite veins (CZ III-1)where it forms tabular crystals which areassociated with strontianite and sometimeskukharenkoite-(Ce) High Ca and Sr cordylite-

TABLE 6 Chemical composition of ancylite-(Ce) at Khibina

Rock C II-1Sample 633B795 646001 646451

mean (8) sd mean (21) sd mean (24) sd

SrO 2397 1 25 21 70 1 19 20 65 1 63CaO 1 35 0 40 2 09 0 51 1 93 0 59BaO 0 59 0 09 0 85 0 24 0 85 0 25FeO 0 19 0 35 b d 0 20 0 30La2O3 1308 1 18 15 56 0 83 16 53 1 17Ce2O3 2340 1 04 23 46 1 09 23 59 0 89Pr2O3 1 94 0 11 1 74 0 14 1 69 0 12Nd2O3 5 35 0 52 4 42 0 38 4 34 0 33Sm2O3 0 29 0 06 0 28 0 05 0 23 0 04Gd2O3 0 14 0 13 0 17 0 09 b dThO2 0 53 0 20 b d b dF 2 15 0 30 1 83 0 34 1 19 0 17CO2 2344 23 32 23 07shy O=F2 0 90 0 77 0 50

Total 9551 94 66 93 77

Calculated to 2 (CO3)2shy groups

La 0 300 0 357 0 381Ce 0 532 0 534 0 539Pr 0 044 0 040 0 039Nd 0 119 0 098 0 097Sm 0 006 0 006 0 005Gd 0 003 0 004Th 0 008

Total 1 012 1 038 1 061

Sr 0 864 0 783 0 748Ca 0 090 0 139 0 129Ba 0 014 0 021 0 021Fe 0 010 0 010

Total 0 979 0 943 0 909

F 0 422 0 360 0 235

Na Mg Mn Y and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

237

(Ce) (Table 9) is observed in the same samples asmantles on crystals of low Ca and Sr cordylite-(Ce) and as abundant laths in the surroundingnatrolite and manganoan ankerite (Fig 4b) It hasalso formed as a secondary mineral duringcarbocernaite alteration Cordylite-(Ce) withmoderate Ca and Sr (Table 9) occurs in ferroanrhodochrosite-manganoan ankerite carbonatites(C II-3) and is associated with strontianite

The atomic proportions of Na-Ca and REE-Srpairs show a negative correlation with a slopenear shy 1 and a plot of Na+REE vs Ca+Sr (Fig 5)shows a trend in composition from Sr-Ca-poor toSr-Ca-rich cordylite-(Ce) The slope of thiscorrelation suggests a 11 exchange of Na andREE for Ca and Sr with a substitution scheme ofNa+ + REE3+ Ca2+ + Sr2+ On the basis of theseobservations a general formula for cordylite-(Ce)can be expressed as (NaCa)Ba(REESr)2(CO3)4FOur X-ray and IR data are identical for eachcompositional variety and also identical to thoseof lsquobaiyuneboite-(Ce)rsquo (Fu and Su 1988) whichis now recognized to be cordylite-(Ce) (JZemann personal communication 1996)

Kukharenkoite-(Ce) occurs in Khibina C II-2and C II-3 carbonatites and in carbonate-zeoliteveins (Table 3) It was described as a new mineralby Zaitsev et al (1996) The composition of thekukharenkoite-(Ce) (Zaitsev et al 1996) deter-

FIG 4 (a) BEI of syntaxial intergrowths of synchysite-(Ce) (grey) parisite-(Ce) (grey) and bastnasite-(Ce) (white) CII-2 manganoan ankerite-calcite carbonatite sample 633A414 1 (b) BEI of large crystals of low Ca and Sr cordylite-(Ce) pale grey in centre) associated with laths of high Ca and Sr cordylite-(Ce) (dark grey) and kukharenkoite-(Ce)

(white) CZ III-1 manganoan siderite-manganoan ankerite shy natrolite vein sample 60775

FIG 5 Atomic proportions of Na+REE vs Ca+Sr forcordylite-(Ce)

A N ZAITSEV ETAL

238

mined from electron microprobe analysis is BaO4893 SrO 0 42 MnO 026 Na2O 0 08 CaO0 05 La2O3 6 16 Ce2O3 15 12 Pr2O3 149Nd2O3 4 08 ThO2 0 10 and F 320 wt Theatomic ratios of Ba REE and F are near 211requiring 3 (CO3)

2shy groups per formula unit(calculated CO2 21 73 wt ) and the idealf o r m u l a f o r k u k h a r e n k o i t e - ( C e ) i sBa2REE(CO3)3F

The chemical composition of cebaite-(Ce) fromKhibina was determined by 18 electron micro-

probe analyses (Table 10) Although analysistotals are less then 100 calculated atomic ratiosfor Ba REE and F are near 322 and closelyc o r r e s p o n d t o a n i d e a l f o r m u l a o fBa3REE2(CO3)5F2 Cebaite-(Ce) contains minorSrO (101shy 261 wt ) CaO (033shy 118 wt)and ThO2 (0 49shy 126 wt) in addition rela-tively high MnO (up to 0 83 wt ) and FeO (up to0 61 wt ) were observed in some analyses Allcebaite-(Ce) crystals are unzoned See Table 3 formineralogical details

TABLE 7 Chemical composition of synchysite-(Ce) at Khibina

Rock C II-2 C II-3 C II-1 C II-1 C II-1Sample 633A414 1 604413 633485 5 603265 603165

syntaxial intergrowths secondary after burbankite secondary aftercarbocernaite

mean (8) sd mean (6) sd mean (9) sd mean (15) sd mean (4) sd

CaO 17 47 0 38 16 89 0 62 1618 070 16 08 0 88 17 23 033FeO bd 0 35 0 49 b d b d bdSrO 024 0 12 0 43 0 18 0 87 066 0 59 0 28 056 021BaO 009 0 05 0 15 0 04 0 12 007 0 06 0 05 011 006La2O3 16 54 0 42 13 06 0 58 1798 087 20 34 0 86 13 63 073Ce2O3 26 19 0 85 27 21 0 79 2591 065 25 77 0 50 25 26 085Pr2O3 215 0 12 2 53 0 07 1 94 011 1 78 0 08 258 010Nd2O3 614 0 44 7 90 0 22 5 54 027 4 53 0 41 969 086Sm2O3 038 0 06 0 62 0 10 0 38 004 0 31 0 07 068 038Y2O3 bd b d b d b d 011 009ThO2 bd 0 38 0 21 0 15 009 b d 017 014F 549 0 18 5 69 0 21 5 83 023 5 61 0 23 578 011CO2 28 12 27 81 2718 27 59 28 11shy O=F2 231 2 40 2 46 2 36 243

Total 10049 100 62 9961 100 30 101 46

Calculated to 2 (CO3)2shy groups

Ca 0975 0 953 0 934 0 915 0962Sr 0007 0 013 0 027 0 018 0017Ba 0002 0 003 0 002 0 001 0002Fe 0 015

Total 0984 0 985 0 964 0 934 0981

La 0318 0 254 0 357 0 398 0262Ce 0499 0 524 0 511 0 501 0481Pr 0041 0 049 0 038 0 034 0049Nd 0114 0 149 0 107 0 086 0180Sm 0007 0 011 0 007 0 006 0012Y 0003Th 0 005 0 002 0002

Total 0979 0 991 1 022 1 025 0990F 0904 0 948 0 994 0 943 0953

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

239

Y-rich carbonates mckelveyite-(Y) ewaldite anddonnayite-(Y)

A detailed description of these minerals fromKhibina Vuoriyarvi and Sallanlatvi is given byVoloshin et al (1990 1992) This was the firsttime that they had been documented in carbona-tites Mckelveyite-(Y) is the best-studied of thegroup at Khibina (Table 3)

Chemical compositions of mckelveyite-(Y) andewaldite from Kola carbonatites are represented by

three electron microprobe analyses of mckelveyite-(Y) from Vuoriyarvi carbonatites one from theSallanlatvi carbonatite and two analyses ofewaldite from Vuoriyarvi (Voloshin et al 19901992) However even these limited data showcompositional variation and three groups havebeen identified Na-free mckelveyite-(Y) Y-freeLREE-enriched mckelveyite and Y-free ewaldite

Five separate crystals of mckelveyite-(Y) wereanalysed from Khibina (Table 11) and areuniform in chemical composition The formula

TABLE 8 Chemical composition of parisite-(Ce) and bastnasite-(Ce) at Khibina

Rock C II-2 C II-3 C II-2Sample 633A4141 604413 633A414 1Mineral parisite-(Ce) bastnasite-(Ce)

mean (2) mean (5) sd mean (6) sd

CaO 9 72 9 29 1 03 084 0 29SrO 0 56 0 79 0 18 085 0 34BaO 0 07 0 30 0 29 008 0 05FeO 0 05 0 38 0 28La2O3 1963 15 96 0 72 26 35 0 99Ce2O3 3172 32 28 0 45 37 41 0 54Pr2O3 2 30 2 87 0 14 250 0 13Nd2O3 6 83 8 74 0 22 660 0 48Sm2O3 0 45 0 60 0 02 036 0 07Y2O3 0 10 0 22 0 12 bdThO2 b d 0 24 0 10 bdF 7 02 6 79 0 17 811 0 22CO2 2433 24 54 20 67shy O=F2 2 95 2 86 342

Total 9982 100 13 100 35

Calculated to 3 (CO3)2shy groups Calculated to 1 (CO3)

2shy groupCa 0 941 0 892 0033Sr 0 029 0 041 0018Ba 0 002 0 011 0001Fe 0 004 0 029

Total 0 976 0 972

La 0 654 0 527 0357Ce 1 048 1 057 0503Pr 0 076 0 094 0033Nd 0 220 0 280 0087Sm 0 014 0 018 0005Y 0 005 0 010Th 0 005

Total 2 017 1 992 1037

F 2 004 1 923 0942

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

240

of mckelveyite-(Y) is still the subject of debate Inthe original description Milton et al (1965) gavethe formula as Na19Ba40Ca11Sr02REE15U03

(CO3)9 5H2O Later Chao et al (1978) suggestedan isomorphous relationship between mckel-veyite-(Y) and donnayite-(Y) and gave theformula of NaCaBa3Y(CO3)6 3H2O In a recentstudy of mckelveyite-(Y) and ewaldite Voloshinet al (1990 1992) showed a similarity betweenthese two minerals and suggested that they areprobably polymorphs The formula of ewalditewas determined as (CaNaREE )(BaSr )(CO3)2 nH2O where part of the H2O is zeolitic

Chemical data from the Khibina mckelveyite-(Y) were calculated on the basis of the IMAaccepted formula NaCaBa3Y(CO3)6 3H2O (Table

11) Our data and those of Voloshin et al (1990)show significant substitutions the main one beingBa2+ Sr2+ which is related to the mckelveyite-(Y)-donnayite-(Y) pair where these minerals are Baand Sr end-members respectively The assignationof REE to two different sites in the mckelveyite-(Y) formula is problematic It is based on formulabalance and the REE chondrite-normalizeddistribution which is discussed below in thesection on lsquoRare earth patternsrsquo

Strontianite baryte barytocalcite edingtonite andharmotome

Minerals rich in Ba and Sr but with no REE arerepresented in the Khibina carbonatites by

TABLE 9 Chemical composition of cordylite-(Ce) at Khibina

Rock CZ III-1 C II-3 CZ III-1 CZ III-1 C II-1Sample 60775 6032646 6032515 60775 6031650Variety low Ca and Sr moderate Ca and Sr high Ca and Sr

mean (15) sd mean (17) sd mean (15) sd mean (10) sd mean (17) sd

Na2O 412 0 12 3 66 0 24 3 67 0 12 2 60 0 15 256 0 16CaO 073 0 18 1 54 0 31 1 50 0 08 3 82 0 18 410 0 26SrO 058 0 23 2 48 0 57 2 09 0 31 6 03 0 43 590 0 50BaO 22 28 0 33 22 29 0 51 22 32 0 32 23 02 0 25 23 11 0 36La2O3 994 0 36 10 46 0 38 11 82 0 53 7 58 0 30 11 49 0 51Ce2O3 24 46 0 43 23 82 0 68 22 18 0 28 20 26 0 38 17 90 0 67Pr2O3 241 0 18 1 85 0 24 1 69 0 25 2 19 0 27 145 0 30Nd2O3 747 0 49 5 88 0 31 5 70 0 41 6 97 0 49 536 0 54ThO2 011 0 17 0 13 0 14 0 12 0 16 0 13 0 12 013 0 16F 262 0 10 2 97 0 28 2 95 0 33 2 60 0 08 285 0 31CO2 24 92 25 16 24 78 25 77 25 75shy O=F2 110 1 25 1 24 1 10 120

Total 98 55 98 98 97 57 99 88 99 40

Calculated for 4 (CO3)2shy groups

Na 0945 0 821 0 837 0 579 0567Ca 0093 0 191 0 189 0 470 0501

Total 1038 1 012 1 026 1 049 1068

Ba 1032 1 011 1 028 1 036 1033La 0434 0 446 0 513 0 321 0483Ce 1058 1 008 0 954 0 851 0747Pr 0104 0 078 0 072 0 092 0060Nd 0315 0 243 0 239 0 286 0218Sr 0040 0 167 0 142 0 402 0390Th 0003 0 003 0 003 0 003 0003

Total 1954 1 945 1 923 1 955 1901

F 0981 1 088 1 096 0 946 1029

Fe Mn and Sm are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

241

strontianite baryte barytocalcite edingtonite andharmotome (Table 3) The first two minerals arecommon in late-stage carbonatites e g MountainPass (Olsen et al 1954) Vuoriyarvi SeblyavrSallanlatvi (Kapustin 1980) Sarnu-Dandali (Wallet al 1993) and Kangankunde (Wall andMariano 1996)

Barytocalcite is extremely rare in carbonatitesand has been described only from Vuoriyarvi andan unnamed Siberian carbonatite (Kapustin 1980)and possibly Chipman Lake (Platt and Woolley1990)

Edingtonite and harmotome are bariumzeolites Their occurrence at Khibina is the first

TABLE 10 Chemical composition of cebaite-(Ce) at Khibina

Rock CZ III-1Sample 6031435Analysis 14 24 25 29 30 33 Mean (18) Sd

Na2O 0 09 0 10 0 08 0 11 0 13 0 10 0 10 0 03CaO 0 40 1 18 0 47 0 61 0 52 0 70 0 61 0 21MnO 0 07 0 47 0 12 0 73 0 83 0 13 0 16 0 24FeO 0 45 0 13 b d 0 14 0 61 b d 0 16 0 19SrO 1 40 1 27 1 45 1 25 1 28 1 31 1 43 0 36BaO 43 93 40 51 42 19 42 09 42 59 42 93 42 77 1 84La2O3 5 30 7 28 6 71 5 58 5 48 5 72 5 67 0 52Ce2O3 13 59 14 33 14 52 14 66 13 66 14 91 14 45 1 16Pr2O3 1 54 1 69 1 83 1 78 1 51 1 81 1 63 0 19Nd2O3 6 15 5 69 5 99 6 32 5 70 5 34 5 54 0 48Sm2O3 0 60 0 61 0 50 0 38 0 42 0 34 0 48 0 11Eu2O3 0 17 0 18 b d 0 24 b d b d 0 07 0 11Gd2O3 0 59 0 66 0 53 0 49 0 40 0 37 0 50 0 13ThO2 0 99 0 51 0 49 0 92 1 07 0 99 0 92 0 22F 4 24 4 10 4 15 3 78 3 99 3 61 3 76 0 21CO2 21 57 21 79 21 41 21 79 21 65 21 41 21 42shy O=F2 1 78 1 73 1 75 1 59 1 68 1 52 1 58

Total 99 31 98 77 98 78 99 29 98 15 98 15 98 10

Calculated for 5 (CO3)2shy groups

Na 0 031 0 032 0 025 0 038 0 042 0 034 0 032Ca 0 073 0 212 0 085 0 111 0 095 0 130 0 114Mn 0 010 0 066 0 018 0 105 0 119 0 018 0 023Fe 0 064 0 018 0 020 0 087 0 023Sr 0 137 0 124 0 143 0 123 0 127 0 132 0 144Ba 2 915 2 659 2 802 2 805 2 855 2 926 2 900

Total 3 230 3 111 3 072 3 201 3 325 3 240 3 236

La 0 331 0 450 0 419 0 350 0 346 0 367 0 362Ce 0 841 0 878 0 900 0 911 0 854 0 948 0 914Pr 0 095 0 103 0 113 0 110 0 094 0 115 0 102Nd 0 372 0 340 0 362 0 384 0 348 0 332 0 342Sm 0 035 0 035 0 029 0 022 0 024 0 021 0 029Eu 0 010 0 011 0 014 0 004Gd 0 033 0 036 0 030 0 028 0 023 0 021 0 029Th 0 038 0 019 0 019 0 036 0 042 0 039 0 036

Total 1 755 1 872 1 873 1 855 1 730 1 843 1 819

F 2 268 2 174 2 221 2 033 2 159 1 986 2 057

Y Dy Er Yb and Lu are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

242

TABLE 11 Chemical position of mckelveyite-(Y) at Khibina

Rock CZ IIISample 6031435Point 1 2 4 5 9 10 Mean (12) sd

Na2O 3 12 3 05 3 21 3 10 3 33 3 14 3 19 0 10CaO 4 56 4 34 4 32 4 34 4 20 4 72 4 43 0 38MnO 0 06 b d b d b d b d 0 06FeO b d b d 0 64 b d 0 07 0 11 0 18 0 26BaO 29 43 29 89 28 47 28 73 29 69 27 13 28 97 0 98SrO 9 16 9 56 9 29 10 41 8 25 12 42 9 56 1 26Y2O3 6 39 6 33 5 32 7 02 5 84 8 42 6 44 0 93La2O3 1 22 1 22 1 60 0 85 1 84 0 96 1 34 0 34Ce2O3 1 93 1 79 2 43 1 17 2 96 1 77 2 18 0 65Pr2O3 0 22 0 22 0 15 0 30 0 24 0 15 0 22 0 06Nd2O3 0 69 0 77 0 91 1 11 0 71 0 37 0 84 0 24Sm2O3 0 81 0 87 0 81 0 89 0 85 0 20 0 78 0 23Eu2O3 0 49 0 64 0 50 0 36 0 60 0 34 0 47 0 10Gd2O3 2 15 1 94 2 18 2 05 2 32 1 05 2 02 0 38Dy2O3 2 39 2 40 2 97 2 29 2 83 2 00 2 48 0 29Er2O3 1 03 1 09 1 28 0 87 0 68 1 03 0 94 0 19Yb2O3 0 44 0 44 0 56 0 59 0 25 0 61 0 47 0 12ThO2 b d 0 17 b d b d b d b dF 0 18 0 15 b d b d 0 17 0 16 0 14 0 09CO2 25 71 25 70 25 86 25 81 25 71 26 72 25 93H2O 10 52 10 51 10 58 10 56 10 52 10 93 10 61shy O=F2 0 07 0 06 0 07 0 07 0 06

Total 100 43 101 01 101 07 100 44 100 98 102 24 101 13

Calculated to 6 (CO3)2shy and 3H2O groups

Na 1 000 0 984 1 000 1 000 1 000 0 978 1 000Ca 0 735 0 757 0 561 0 778 0 565 0 785 0 676Na 0 009 0 040 0 006 0 075 0 023La 0 075 0 075 0 099 0 052 0 113 0 057 0 082Ce 0 118 0 109 0 148 0 071 0 181 0 104 0 132Pr 0 013 0 013 0 009 0 018 0 014 0 009 0 013Nd 0 041 0 046 0 054 0 067 0 042 0 021 0 050Mn 0 009 0 008 0 000Fe 0 089 0 010 0 015 0 025

Total 1 000 1 000 1 000 0 992 1 000 1 000 1 000

Ba 1 923 1 950 1 865 1 884 1 941 1 707 1 880Sr 0 885 0 922 0 900 1 009 0 798 1 156 0 917Ca 0 080 0 017 0 212 0 185 0 026 0 110

Total 2 888 2 890 2 977 2 893 2 924 2 889 2 907

Y 0 567 0 561 0 473 0 625 0 518 0 719 0 567Sm 0 047 0 050 0 047 0 051 0 049 0 011 0 045Eu 0 028 0 036 0 029 0 021 0 034 0 018 0 026Gd 0 119 0 107 0 121 0 114 0 128 0 056 0 111Dy 0 128 0 129 0 160 0 123 0 152 0 104 0 132Er 0 054 0 057 0 067 0 045 0 036 0 052 0 049Yb 0 023 0 022 0 028 0 030 0 013 0 030 0 024Th 0 007

Total 0 965 0 969 0 925 1 009 0 930 0 990 0 954

F 0 092 0 081 0 088 0 082 0 071

Lu is below detection limit CO2 and H2O calculated by stoichiometry

REE-SR-BA MINERALS

243

TA

BL

E12

C

hem

ical

com

posi

tion

ofst

ront

iani

teat

Khi

bina

Roc

kC

II-2

CII

-3C

ZII

I-1

CII

-1C

II-1

CII

-1S

ampl

e63

3A4

141

604

413

060

325

15

646

451

060

336

364

600

1pr

imar

yst

ront

iani

teas

soci

ated

wit

hse

cond

ary

stro

ntia

nite

(aft

erbu

rban

kite

)as

soci

ated

wit

hsy

nchy

site

-(C

e)

sync

hysi

te-(

Ce)

cord

ylit

e-(C

e)an

cyli

te-(

Ce)

sync

hysi

te-(

Ce)

ancy

lite

-(C

e)an

dba

ryte

pari

site

-(C

e)an

dan

dpa

risi

te-(

Ce)

and

bary

tean

dba

ryte

bast

nasi

te-(

Ce)

mea

n(1

0)sd

mea

n(6

)sd

mea

n(3

)m

ean

(25)

sdm

ean

(4)

sdm

ean

(6)

sdm

ean

(4)

sdm

ean

(8)

sdco

rem

antl

eri

m

Na 2

Ob

db

db

d0

140

05b

d0

210

050

100

04b

dC

aO3

250

563

230

443

073

461

003

370

331

580

373

720

325

970

20S

rO66

21

068

668

00

5166

62

635

71

2664

34

051

682

00

6063

95

100

625

80

78B

aO0

190

170

160

070

221

610

471

630

150

720

290

830

092

000

57L

a 2O

3b

db

d0

160

480

20b

d0

620

120

330

060

150

04C

e 2O

30

180

120

110

110

570

610

240

190

080

760

160

420

050

250

05C

O2

307

930

99

310

530

71

305

131

11

306

931

99

Tot

al10

063

101

2910

169

100

5810

004

103

2010

004

102

94

Cal

cula

ted

to1

(CO

3)2

shygr

oup

Na

000

60

010

000

5C

a0

083

008

20

077

008

80

087

004

00

095

014

6S

r0

913

091

50

911

087

90

895

093

10

885

083

1B

a0

002

000

10

002

001

50

015

000

70

008

001

8L

a0

001

000

40

005

000

30

001

Ce

000

20

001

000

50

005

000

20

007

000

40

002

Tot

al0

999

100

00

997

099

80

999

099

90

999

099

8

Mg

Mn

Fe

Pr

Nd

Sm

Y

T

han

dU

are

belo

wde

tect

ion

lim

its

CO

2ca

lcul

ated

byst

oich

iom

etry

A N ZAITSEV ETAL

244

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 8: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

TA

BL

E3

(con

td)

CZ

III-

1ca

rbon

ate-

zeol

ite

vein

s-m

anga

noan

side

rite

-man

gano

anan

keri

te-n

atro

lite

Sync

hysi

te-(

Ce)

som

etim

espr

esen

tC

ordy

lite

-(C

e)is

aty

pica

lm

iner

al

Whi

teor

yell

owta

bula

rcr

ysta

ls

01

shy1

mm

and

som

etim

esup

to5

mm

ei

ther

sing

leor

inag

gre-

gate

s2

vari

etie

s(F

ig

4b)

Ceb

aite

-(C

e)

foun

din

cavi

ties

asye

llow

w

hite

orco

lour

less

crys

tals

upto

02

mm

D

endr

itic

st

ella

teor

irre

gula

rin

terg

row

ths

Co

mm

on

lyas

soci

ated

wit

hm

ckel

veyi

te-(

Ce)

co

rdyl

ite

and

stro

ntia

nite

Mck

elve

yite

-(Y

)ew

al-

dite

and

donn

ayit

e-(Y

)se

eab

ove

Edi

ngto

nite

and

har-

mot

ome

com

mon

ac-

ce

sso

rym

ine

rals

U

sual

ly

euhe

dral

crys

-ta

ls

upto

2m

m

inca

viti

es

Kuk

hare

nkoi

te-(

Ce)

(See

abov

e)St

ront

iani

tew

ith

cord

ylit

e-(C

e)

prim

ary

Bar

yte

ofte

nsh

ort

pris

mat

iccr

ysta

lsin

cavi

ties

CZ

III-

2ca

rbon

ate-

zeol

ite

vein

s-m

anga

noan

side

rite

-nor

dstr

andi

te-n

atro

lite

Co

rdyl

ite-

(Ce)

isa

lsquotyp

ical

rsquom

iner

al

Whi

teor

yell

owta

bula

rcr

ysta

ls

01

shy1

mm

and

som

e-ti

mes

upto

5m

m

eith

ersi

ngle

orin

aggr

egat

es

Mck

elve

yite

-(Y

)ew

aldi

tean

ddo

nnay

ite-

(Y)

Bar

ytoc

alci

te

euhe

dral

orsu

b-he

dral

1

shy2

mm

whi

tecr

ysta

lsin

cavi

ties

Id

enti

fica

tion

base

don

XR

Dan

dIR

spec

tra

Stro

ntia

nite

wit

hco

r-dy

lite

-(C

e)

prim

ary

Bar

yte

ofte

nsh

ort

pr

ism

atic

crys

tals

inca

viti

es

CZ

III-

3ca

rbon

ate-

zeol

ite

vein

s-na

trol

ite-

man

gano

ansi

deri

te-d

awso

nite

Mck

elve

yite

-(Y

)ew

aldi

tean

ddo

nnay

ite-

(Y)

Stro

ntia

nite

wit

hco

rdyl

ite-

(Ce)

pr

imar

yB

aryt

eof

ten

shor

tpr

ism

atic

crys

tals

inca

viti

es

A N ZAITSEV ETAL

232

exception (sample 633B79 5) has 6 65 wtBaO There is no zoning in Khibina burbankitecrystals and the compositions are also uniformwithin each rock sample

There are two morphological types of burban-kite large prismatic crystals and small drop-likeinclusions within calcite crystals and along theirboundaries (Fig 3a Table 3) Although theircompositions are the same (Table 4) the

difference in morphology suggests they mayhave formed by different processes Largeeuhedral prismatic crystals could have crystal-lized at an early stage of carbonatite formationand sometimes large burbankite crystals areobserved near the contact of veins that arecharacterized by a crustification texture (vein-filling) The drop-like burbankite inclusions incalcite probably did not form by exsolution of

TABLE 4 Chemical composition of burbankite at Khibina

Rock C II-1Sample 607277 633477 7 6334777 581013 633B79 5

large crystal drop-like inclusion large crystal large crystalmean (9) sd mean (4) sd mean (10) sd mean (9) sd

Na2O 12 45 11 93 0 13 11 80 0 27 1260 0 44 12 03 0 85CaO 12 60 11 94 0 53 12 57 0 54 1020 0 49 10 08 1 22SrO 19 60 24 74 0 31 24 57 0 38 1838 0 61 17 71 0 92BaO 0 78 1 76 0 12 1 86 0 04 2 52 0 49 6 65 0 47La2O3 5 20 5 65 0 14 5 11 0 25 7 05 0 30 4 77 0 26Ce2O3 9 91 7 15 0 16 6 97 0 28 1106 0 41 9 26 0 43Pr2O3 0 64 0 47 0 04 0 47 0 05 0 80 0 10 0 88 0 07Nd2O3 1 53 1 24 0 10 1 33 0 03 2 53 0 28 3 11 0 31Sm2O3 0 05 b d b d 0 31 0 11 0 39 0 12Gd2O3 b d b d b d b d 0 20 0 07ThO2 n d b d b d b d 0 16 0 10CO2 35 40 34 68 34 79 3421 33 38

Total 99 76 99 56 99 47 9966 98 62

Calculated to 5 (CO3)2shy groups

Na 2 508 2 442 2 408 2 615 2 558Ca 0 338 0 498 0 529 0 267 0 345A site total 2 846 2 941 2 937 2 882 2 903

Sr 1 181 1 514 1 499 1 141 1 126Ca 1 065 0 852 0 889 0 903 0 840La 0 199 0 220 0 198 0 278 0 193Ce 0 377 0 276 0 268 0 433 0 372Pr 0 024 0 018 0 018 0 031 0 035Nd 0 056 0 047 0 050 0 097 0 122Sm 0 003 0 011 0 015Gd 0 007Ba 0 032 0 073 0 077 0 106 0 286Th 0 004B site total 3 000 3 000 3 000 3 000 3 000C 5 021

Sample 607277 - wet chemical analysis other samples - electron microprobe analysessd - standard deviation - including MgO 0 02 K2O 0 02 MnO 007 FeO 0 42 SiO2 020 F 0 04 and H2O 0 85 all wt - including Mn 0 006 Fe 0 037 and Si 0 021b d - below detection limits Mg Mn Fe Y and F are below detection limits in the microprobe analyses CO2 inmicroprobe analyses calculated by stoichiometry n d ndash not determined

REE-SR-BA MINERALS

233

FIG 3 Backscattered electron images (BEI) of (a) large crystals and drop-like inclusions of burbankite (white) incalcite (black) (b) a contact print of a thin section containing a pseudomorph of synchysite-(Ce) strontianite andbaryte after burbankite The width of the burbankite pseudomorph is 9 mm C II-1 calcite carbonatite sample 603265 (c) zoned altered burbankite (grey and dark-grey) with ancylite-(Ce) veins (white) C II-1 calcite carbonatite

sample 633B79 5 (d) relics of burbankite (dark grey) in strontianite (grey) and synchysite-(Ce) (white)

A N ZAITSEV ETAL

234

burbankite from calcite rich in Na Sr and REE asmight be thought at first from Fig 3a and asproposed for a similar occurrence by Knudsen(1991) because the burbankite crystals areassociated with euhedral zoned apatites Theyare more likely to be the result of lsquocotecticrsquocrystallization of burbankite and calcite after theprecipitation of the apatite

Carbocernaite has been found in many Khibinacarbonatite samples (Table 3) It was describedoriginally as a primary mineral crystallized at alate stage of carbonatite formation at VuorijarviKola Peninsula (Bulakh et al 1961) Zdorik(1966) and Kapustin (1980) found that carbocer-naite in carbonatites from the Ozernyi andVuoriyarvi massifs occurs as a secondarymineral after burbankite The most unusualoccurrence of carbocernaite is the exsolutionlamellae and cotectic textures for carbocernaiteand calcite in Sarnu-Dandali carbonatitedescribed by Wall et al (1993) Carbocernaite isalso reported from carbonatite in the Si PanRange Vietnam (Bulakh and Izokh 1966)

Carbocernaite like burbankite is a doublecarbonate with a general formula AB(CO3)2 withNa and Ca in the A-site and Sr REE and Ba in theB-site There are few studies of the chemicalcomposition of carbocernaite Before the detailedinvestigation of Wall et al (1993) only a few wetchemical analyses were published (Bulakh et al 1961 Bulakh and Izokh 1966 Zdorik 1966Kapustin 1980) Although available data forcarbocernaite show some variation in thecontent of major elements there is less variationthan in burbankite The Na2O values range from243 to 612 wt the BaO from 095 to 596 theSrO from 558 to 2398 the CaO from 1593 to1927 and the SREE2O3 from 17 06 to 2631 allwt In general the compositional variations inburbankite and carbocernaite are similar butcarbocernaite contains less Na2O (commonlyabout 4 shy 5 wt ) compared with burbankite(commonly about 10 shy 12 wt ) This differencein sodium content makes it possible to identifycarbocernaite and burbankite on the basis ofelectron microprobe analyses

Selected average compositions of carbocernaitefrom Khibina are given in Table 5 These datashow that carbocernaite from the Khibinacarbonatites is a low Ba variety Khibinacarbocernaite like burbankite is not zoned

Harris (1972) reported high F (3 86 wt ) incarbocernaite from Sturgeon Narrows Canadaand proposed that F together with OH could be

additional anion group (FOH)2 in the mineralformula Our data show that the F content ofKhibina carbocernaite is near the electron micro-probe detection limit of about 0 1 wt and IRinvestigations show an absence of any absorptionband related to OH- group or H2O It is possiblethat the mineral described from the SturgeonNarrows is a different mineral species The lackof Na in Sturgeon Narrows carbocernaite alsosupports our conclusion

In the Khibina carbonatite samples burbankiteand carbocernaite do not occur together so it hasnot been possible to establish their relative agesHowever both burbankite and carbocernaite-containing carbonatites are cut by later C II-2and C II-3 carbonatites

TABLE 5 Chemical composition of carbocernaite atKhibina

Rock C II-1Sample 603165 603287

mean (12) sd mean (10) sd

Na2O 4 98 0 18 4 33 0 42CaO 11 94 0 42 1360 0 33SrO 22 33 0 76 2020 0 27BaO 0 37 0 13 0 56 0 07La2O3 9 27 0 61 1053 0 33Ce2O3 13 19 0 51 1419 0 30Pr2O3 0 97 0 09 0 94 0 08Nd2O3 2 34 0 25 2 56 0 19Sm2O3 0 14 0 05 0 32 0 04F 0 10 0 10 0 14 0 03CO2 32 79 3379shy O=F2 0 04 0 06

Total 98 36 10110

Calculated to 2 (CO3)2shy groups

Na 0 431 0 364Ca 0 571 0 632A site total 1 003 0 996

Sr 0 578 0 508La 0 153 0 168Ce 0 216 0 225Pr 0 016 0 015Nd 0 037 0 040Sm 0 002 0 005Ba 0 007 0 010B site total 1 008 0 971F 0 014 0 019

Mg Mn Fe Gd Y Th and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

235

Alteration of burbankite and carbocernaite

Burbankite in carbonatites is commonly replacedby ancylite-(Ce) strontianite and baryte (Somina1975 Kapustin 1980) and rarely by ancylite-(Ce)calkinsite lanthanite and baryte (Pecora and Kerr1953) Multi-stage alteration of burbankite fromthe Ozernyi carbonatites has been documented byZdorik (1966) where carbocernaite strontianitebastnasite-(Ce) calcite baryte allanite-(Ce)monazite-(Ce) and epidote have been identifiedas alteration products of burbankite

In the Khibina carbonatites burbankite andcarbocernaite are commonly replaced by variouscombinationsof ancylite-(Ce) strontianite synch-ysite-(Ce) baryte less commonly by cordylite-(Ce) and rarely by harmotome and edingtonite(Table 3) Even when burbankite is completelyreplaced evidence of its existence is preserved inthe form of hexagonal prismatic pseudomorphs(Fig 3b) and islands of relict burbankite (Fig 3cand d) Pseudomorphs of a similar form have beenmentioned from some other rare earth-richcarbonatites e g Gem Park Wigu HillKangankunde (Wall and Mariano 1996) but inthese cases there is no evidence of the precursormineral The presence of primary and replacedburbankite at Khibina is good evidence that thepseudomorphs reported from these other carbo-natites may well have originally been burbankite

Ancylite

Ancylite-(Ce) is a hydrous carbonate containingREE and Sr as major cations On the basis of astructural study of material from the Mont Saint-Hilaire massif its formula has been proposed asREEx(SrCa)2 shy x(CO3)2(OH)x (2 shy x)H2O with acation-anion substitution of Sr2+ + H2O gtREE3+ + OH shy (Dal Negro et al 1975)Although ancylite-(Ce) is a relatively commonmineral in carbonatites there are only a fewanalyses available (Kukharenko et al 1965Kapustin 1980 Knudsen 1991) and this is thefirst detailed investigation of its chemicalcomposition Selected average chemical composi-tions are given in Table 6 The composition ofancylite-(Ce) from Khibina is relatively uniformwith Ca Ba and Th present only as traces Theatomic proportion of Sr and REE in the formula isnear 11 with a small excess of REE An importantfinding is the presence of fluorine in ancylite-(Ce)The Khibina ancylite-(Ce) contains between 0 75and 250 wt of fluorine corresponding to

0 148shy 0 488 F per formula unit Since REE andSr are present in equal abundances it is suggestedthat F- substitutes for OH- Thus the mineral fromthe Khibina carbonatites can be classified as F-bearing ancylite-(Ce) Fluorine was also detectedin two ancylite-(Ce) samples from Qaqarssukcarbonatites at 0 37 and 058 wt respectively(Knudsen 1991)

Ca-REE fluocarbonates

Synchysite-(Ce)is common at Khibina bastnasite-(Ce) and parisite-(Ce) are also found but are rare(Table 3) The textures vary as described in Table3 and include syntaxial intergrowths (Fig 4a)Ca-REE fluocarbonates are present in numerouscarbonatites e g Mountain Pass (Olsen et al 1954) Gatineau (Hogarth et al 1985)Kizilcaoren (Hatzl 1992) Tundulu (Ngwenya1994) and are the most well-studied of thecarbonatite REE-minerals (e g Kapustin 1980Hogarth et al 1985 Andersen 1986 Wall andMariano 1996) Selected average microprobeanalyses of Khibina synchysite-(Ce) made onminerals from different mineral assemblages arepresented in Table 7 Synchysite-(Ce) is char-acterized by having little substitution of otherelements for Ca and REE Primary synchysite-(Ce) from syntaxial intergrowths secondarysynchysite-(Ce) from the alteration products ofburbankite carbocernaite and syntaxial inter-growths of synchysite-(Ce) with parisite-(Ce) allhave similar chemical compositions Sr Ba and Thare typical minor constituentsin all the synchysite-(Ce) and Fe is present in the red variety associatedwith manganoan ankerite or ferroan kutnohorite

Parisite-(Ce) and bastnasite-(Ce) (Table 8) arenear their theoretical compositions with onlyminor amounts of Sr and Ba substituting for Caand Th substituting for REE

Syntaxial intergrowths of Ca-REE fluocarbo-nates are considered to be evidence for theirprimary origin the intergrowth being related tochanges in the chemical composition of the hostfluid (Ni et al 1993)

Ba-REE fluocarbonates

Ba-REE fluocarbonates are extremely rare incarbonatites Huanghoite-(Ce) is the onlymember of the group previously described froman unnamed Siberian carbonatite (Kapustin 1973)and from Qaqarssuk carbonatites (Knudsen1991) However cordylite-(Ce) kukharenkoite-

A N ZAITSEV ETAL

236

(Ce) and cebaite-(Ce) have all been identified atKhibina (Table 3)

Cordylite-(Ce) is known only from Greenland(Flink 1901) Mont Saint-Hilaire Canada (Chenand Chao 1975) and Bayan Obo China (Zhangand Tao 1986) Its occurrence at Khibina is thefirst documented occurrence which is certainlyfrom carbonatites Kukharenkoite-(Ce) is a newBa-REE fluocarbonate mineral which has beenfound in the Khibina carbonatites and fromVuoriyavri Kola Peninsula Mont Saint-Hilaireand the Saint-Amable sill Quebec Canada(Zaitsev et al 1996) The occurrence of

cebaite-(Ce) at Khibina is only the seconddocumented occurrence The first was fromBayan Obo (Zhang and Tao 1986)

There are no data on the chemical compositionof cordylite-(Ce) from carbonatites and our reportis the first for this mineral (Table 9) There arethree distinct chemical compositions of cordylite-(Ce) from Khibina Cordylite-(Ce) with low Caand Sr (Table 9) occurs in manganoan siderite-manganoan ankerite-natrolite veins (CZ III-1)where it forms tabular crystals which areassociated with strontianite and sometimeskukharenkoite-(Ce) High Ca and Sr cordylite-

TABLE 6 Chemical composition of ancylite-(Ce) at Khibina

Rock C II-1Sample 633B795 646001 646451

mean (8) sd mean (21) sd mean (24) sd

SrO 2397 1 25 21 70 1 19 20 65 1 63CaO 1 35 0 40 2 09 0 51 1 93 0 59BaO 0 59 0 09 0 85 0 24 0 85 0 25FeO 0 19 0 35 b d 0 20 0 30La2O3 1308 1 18 15 56 0 83 16 53 1 17Ce2O3 2340 1 04 23 46 1 09 23 59 0 89Pr2O3 1 94 0 11 1 74 0 14 1 69 0 12Nd2O3 5 35 0 52 4 42 0 38 4 34 0 33Sm2O3 0 29 0 06 0 28 0 05 0 23 0 04Gd2O3 0 14 0 13 0 17 0 09 b dThO2 0 53 0 20 b d b dF 2 15 0 30 1 83 0 34 1 19 0 17CO2 2344 23 32 23 07shy O=F2 0 90 0 77 0 50

Total 9551 94 66 93 77

Calculated to 2 (CO3)2shy groups

La 0 300 0 357 0 381Ce 0 532 0 534 0 539Pr 0 044 0 040 0 039Nd 0 119 0 098 0 097Sm 0 006 0 006 0 005Gd 0 003 0 004Th 0 008

Total 1 012 1 038 1 061

Sr 0 864 0 783 0 748Ca 0 090 0 139 0 129Ba 0 014 0 021 0 021Fe 0 010 0 010

Total 0 979 0 943 0 909

F 0 422 0 360 0 235

Na Mg Mn Y and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

237

(Ce) (Table 9) is observed in the same samples asmantles on crystals of low Ca and Sr cordylite-(Ce) and as abundant laths in the surroundingnatrolite and manganoan ankerite (Fig 4b) It hasalso formed as a secondary mineral duringcarbocernaite alteration Cordylite-(Ce) withmoderate Ca and Sr (Table 9) occurs in ferroanrhodochrosite-manganoan ankerite carbonatites(C II-3) and is associated with strontianite

The atomic proportions of Na-Ca and REE-Srpairs show a negative correlation with a slopenear shy 1 and a plot of Na+REE vs Ca+Sr (Fig 5)shows a trend in composition from Sr-Ca-poor toSr-Ca-rich cordylite-(Ce) The slope of thiscorrelation suggests a 11 exchange of Na andREE for Ca and Sr with a substitution scheme ofNa+ + REE3+ Ca2+ + Sr2+ On the basis of theseobservations a general formula for cordylite-(Ce)can be expressed as (NaCa)Ba(REESr)2(CO3)4FOur X-ray and IR data are identical for eachcompositional variety and also identical to thoseof lsquobaiyuneboite-(Ce)rsquo (Fu and Su 1988) whichis now recognized to be cordylite-(Ce) (JZemann personal communication 1996)

Kukharenkoite-(Ce) occurs in Khibina C II-2and C II-3 carbonatites and in carbonate-zeoliteveins (Table 3) It was described as a new mineralby Zaitsev et al (1996) The composition of thekukharenkoite-(Ce) (Zaitsev et al 1996) deter-

FIG 4 (a) BEI of syntaxial intergrowths of synchysite-(Ce) (grey) parisite-(Ce) (grey) and bastnasite-(Ce) (white) CII-2 manganoan ankerite-calcite carbonatite sample 633A414 1 (b) BEI of large crystals of low Ca and Sr cordylite-(Ce) pale grey in centre) associated with laths of high Ca and Sr cordylite-(Ce) (dark grey) and kukharenkoite-(Ce)

(white) CZ III-1 manganoan siderite-manganoan ankerite shy natrolite vein sample 60775

FIG 5 Atomic proportions of Na+REE vs Ca+Sr forcordylite-(Ce)

A N ZAITSEV ETAL

238

mined from electron microprobe analysis is BaO4893 SrO 0 42 MnO 026 Na2O 0 08 CaO0 05 La2O3 6 16 Ce2O3 15 12 Pr2O3 149Nd2O3 4 08 ThO2 0 10 and F 320 wt Theatomic ratios of Ba REE and F are near 211requiring 3 (CO3)

2shy groups per formula unit(calculated CO2 21 73 wt ) and the idealf o r m u l a f o r k u k h a r e n k o i t e - ( C e ) i sBa2REE(CO3)3F

The chemical composition of cebaite-(Ce) fromKhibina was determined by 18 electron micro-

probe analyses (Table 10) Although analysistotals are less then 100 calculated atomic ratiosfor Ba REE and F are near 322 and closelyc o r r e s p o n d t o a n i d e a l f o r m u l a o fBa3REE2(CO3)5F2 Cebaite-(Ce) contains minorSrO (101shy 261 wt ) CaO (033shy 118 wt)and ThO2 (0 49shy 126 wt) in addition rela-tively high MnO (up to 0 83 wt ) and FeO (up to0 61 wt ) were observed in some analyses Allcebaite-(Ce) crystals are unzoned See Table 3 formineralogical details

TABLE 7 Chemical composition of synchysite-(Ce) at Khibina

Rock C II-2 C II-3 C II-1 C II-1 C II-1Sample 633A414 1 604413 633485 5 603265 603165

syntaxial intergrowths secondary after burbankite secondary aftercarbocernaite

mean (8) sd mean (6) sd mean (9) sd mean (15) sd mean (4) sd

CaO 17 47 0 38 16 89 0 62 1618 070 16 08 0 88 17 23 033FeO bd 0 35 0 49 b d b d bdSrO 024 0 12 0 43 0 18 0 87 066 0 59 0 28 056 021BaO 009 0 05 0 15 0 04 0 12 007 0 06 0 05 011 006La2O3 16 54 0 42 13 06 0 58 1798 087 20 34 0 86 13 63 073Ce2O3 26 19 0 85 27 21 0 79 2591 065 25 77 0 50 25 26 085Pr2O3 215 0 12 2 53 0 07 1 94 011 1 78 0 08 258 010Nd2O3 614 0 44 7 90 0 22 5 54 027 4 53 0 41 969 086Sm2O3 038 0 06 0 62 0 10 0 38 004 0 31 0 07 068 038Y2O3 bd b d b d b d 011 009ThO2 bd 0 38 0 21 0 15 009 b d 017 014F 549 0 18 5 69 0 21 5 83 023 5 61 0 23 578 011CO2 28 12 27 81 2718 27 59 28 11shy O=F2 231 2 40 2 46 2 36 243

Total 10049 100 62 9961 100 30 101 46

Calculated to 2 (CO3)2shy groups

Ca 0975 0 953 0 934 0 915 0962Sr 0007 0 013 0 027 0 018 0017Ba 0002 0 003 0 002 0 001 0002Fe 0 015

Total 0984 0 985 0 964 0 934 0981

La 0318 0 254 0 357 0 398 0262Ce 0499 0 524 0 511 0 501 0481Pr 0041 0 049 0 038 0 034 0049Nd 0114 0 149 0 107 0 086 0180Sm 0007 0 011 0 007 0 006 0012Y 0003Th 0 005 0 002 0002

Total 0979 0 991 1 022 1 025 0990F 0904 0 948 0 994 0 943 0953

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

239

Y-rich carbonates mckelveyite-(Y) ewaldite anddonnayite-(Y)

A detailed description of these minerals fromKhibina Vuoriyarvi and Sallanlatvi is given byVoloshin et al (1990 1992) This was the firsttime that they had been documented in carbona-tites Mckelveyite-(Y) is the best-studied of thegroup at Khibina (Table 3)

Chemical compositions of mckelveyite-(Y) andewaldite from Kola carbonatites are represented by

three electron microprobe analyses of mckelveyite-(Y) from Vuoriyarvi carbonatites one from theSallanlatvi carbonatite and two analyses ofewaldite from Vuoriyarvi (Voloshin et al 19901992) However even these limited data showcompositional variation and three groups havebeen identified Na-free mckelveyite-(Y) Y-freeLREE-enriched mckelveyite and Y-free ewaldite

Five separate crystals of mckelveyite-(Y) wereanalysed from Khibina (Table 11) and areuniform in chemical composition The formula

TABLE 8 Chemical composition of parisite-(Ce) and bastnasite-(Ce) at Khibina

Rock C II-2 C II-3 C II-2Sample 633A4141 604413 633A414 1Mineral parisite-(Ce) bastnasite-(Ce)

mean (2) mean (5) sd mean (6) sd

CaO 9 72 9 29 1 03 084 0 29SrO 0 56 0 79 0 18 085 0 34BaO 0 07 0 30 0 29 008 0 05FeO 0 05 0 38 0 28La2O3 1963 15 96 0 72 26 35 0 99Ce2O3 3172 32 28 0 45 37 41 0 54Pr2O3 2 30 2 87 0 14 250 0 13Nd2O3 6 83 8 74 0 22 660 0 48Sm2O3 0 45 0 60 0 02 036 0 07Y2O3 0 10 0 22 0 12 bdThO2 b d 0 24 0 10 bdF 7 02 6 79 0 17 811 0 22CO2 2433 24 54 20 67shy O=F2 2 95 2 86 342

Total 9982 100 13 100 35

Calculated to 3 (CO3)2shy groups Calculated to 1 (CO3)

2shy groupCa 0 941 0 892 0033Sr 0 029 0 041 0018Ba 0 002 0 011 0001Fe 0 004 0 029

Total 0 976 0 972

La 0 654 0 527 0357Ce 1 048 1 057 0503Pr 0 076 0 094 0033Nd 0 220 0 280 0087Sm 0 014 0 018 0005Y 0 005 0 010Th 0 005

Total 2 017 1 992 1037

F 2 004 1 923 0942

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

240

of mckelveyite-(Y) is still the subject of debate Inthe original description Milton et al (1965) gavethe formula as Na19Ba40Ca11Sr02REE15U03

(CO3)9 5H2O Later Chao et al (1978) suggestedan isomorphous relationship between mckel-veyite-(Y) and donnayite-(Y) and gave theformula of NaCaBa3Y(CO3)6 3H2O In a recentstudy of mckelveyite-(Y) and ewaldite Voloshinet al (1990 1992) showed a similarity betweenthese two minerals and suggested that they areprobably polymorphs The formula of ewalditewas determined as (CaNaREE )(BaSr )(CO3)2 nH2O where part of the H2O is zeolitic

Chemical data from the Khibina mckelveyite-(Y) were calculated on the basis of the IMAaccepted formula NaCaBa3Y(CO3)6 3H2O (Table

11) Our data and those of Voloshin et al (1990)show significant substitutions the main one beingBa2+ Sr2+ which is related to the mckelveyite-(Y)-donnayite-(Y) pair where these minerals are Baand Sr end-members respectively The assignationof REE to two different sites in the mckelveyite-(Y) formula is problematic It is based on formulabalance and the REE chondrite-normalizeddistribution which is discussed below in thesection on lsquoRare earth patternsrsquo

Strontianite baryte barytocalcite edingtonite andharmotome

Minerals rich in Ba and Sr but with no REE arerepresented in the Khibina carbonatites by

TABLE 9 Chemical composition of cordylite-(Ce) at Khibina

Rock CZ III-1 C II-3 CZ III-1 CZ III-1 C II-1Sample 60775 6032646 6032515 60775 6031650Variety low Ca and Sr moderate Ca and Sr high Ca and Sr

mean (15) sd mean (17) sd mean (15) sd mean (10) sd mean (17) sd

Na2O 412 0 12 3 66 0 24 3 67 0 12 2 60 0 15 256 0 16CaO 073 0 18 1 54 0 31 1 50 0 08 3 82 0 18 410 0 26SrO 058 0 23 2 48 0 57 2 09 0 31 6 03 0 43 590 0 50BaO 22 28 0 33 22 29 0 51 22 32 0 32 23 02 0 25 23 11 0 36La2O3 994 0 36 10 46 0 38 11 82 0 53 7 58 0 30 11 49 0 51Ce2O3 24 46 0 43 23 82 0 68 22 18 0 28 20 26 0 38 17 90 0 67Pr2O3 241 0 18 1 85 0 24 1 69 0 25 2 19 0 27 145 0 30Nd2O3 747 0 49 5 88 0 31 5 70 0 41 6 97 0 49 536 0 54ThO2 011 0 17 0 13 0 14 0 12 0 16 0 13 0 12 013 0 16F 262 0 10 2 97 0 28 2 95 0 33 2 60 0 08 285 0 31CO2 24 92 25 16 24 78 25 77 25 75shy O=F2 110 1 25 1 24 1 10 120

Total 98 55 98 98 97 57 99 88 99 40

Calculated for 4 (CO3)2shy groups

Na 0945 0 821 0 837 0 579 0567Ca 0093 0 191 0 189 0 470 0501

Total 1038 1 012 1 026 1 049 1068

Ba 1032 1 011 1 028 1 036 1033La 0434 0 446 0 513 0 321 0483Ce 1058 1 008 0 954 0 851 0747Pr 0104 0 078 0 072 0 092 0060Nd 0315 0 243 0 239 0 286 0218Sr 0040 0 167 0 142 0 402 0390Th 0003 0 003 0 003 0 003 0003

Total 1954 1 945 1 923 1 955 1901

F 0981 1 088 1 096 0 946 1029

Fe Mn and Sm are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

241

strontianite baryte barytocalcite edingtonite andharmotome (Table 3) The first two minerals arecommon in late-stage carbonatites e g MountainPass (Olsen et al 1954) Vuoriyarvi SeblyavrSallanlatvi (Kapustin 1980) Sarnu-Dandali (Wallet al 1993) and Kangankunde (Wall andMariano 1996)

Barytocalcite is extremely rare in carbonatitesand has been described only from Vuoriyarvi andan unnamed Siberian carbonatite (Kapustin 1980)and possibly Chipman Lake (Platt and Woolley1990)

Edingtonite and harmotome are bariumzeolites Their occurrence at Khibina is the first

TABLE 10 Chemical composition of cebaite-(Ce) at Khibina

Rock CZ III-1Sample 6031435Analysis 14 24 25 29 30 33 Mean (18) Sd

Na2O 0 09 0 10 0 08 0 11 0 13 0 10 0 10 0 03CaO 0 40 1 18 0 47 0 61 0 52 0 70 0 61 0 21MnO 0 07 0 47 0 12 0 73 0 83 0 13 0 16 0 24FeO 0 45 0 13 b d 0 14 0 61 b d 0 16 0 19SrO 1 40 1 27 1 45 1 25 1 28 1 31 1 43 0 36BaO 43 93 40 51 42 19 42 09 42 59 42 93 42 77 1 84La2O3 5 30 7 28 6 71 5 58 5 48 5 72 5 67 0 52Ce2O3 13 59 14 33 14 52 14 66 13 66 14 91 14 45 1 16Pr2O3 1 54 1 69 1 83 1 78 1 51 1 81 1 63 0 19Nd2O3 6 15 5 69 5 99 6 32 5 70 5 34 5 54 0 48Sm2O3 0 60 0 61 0 50 0 38 0 42 0 34 0 48 0 11Eu2O3 0 17 0 18 b d 0 24 b d b d 0 07 0 11Gd2O3 0 59 0 66 0 53 0 49 0 40 0 37 0 50 0 13ThO2 0 99 0 51 0 49 0 92 1 07 0 99 0 92 0 22F 4 24 4 10 4 15 3 78 3 99 3 61 3 76 0 21CO2 21 57 21 79 21 41 21 79 21 65 21 41 21 42shy O=F2 1 78 1 73 1 75 1 59 1 68 1 52 1 58

Total 99 31 98 77 98 78 99 29 98 15 98 15 98 10

Calculated for 5 (CO3)2shy groups

Na 0 031 0 032 0 025 0 038 0 042 0 034 0 032Ca 0 073 0 212 0 085 0 111 0 095 0 130 0 114Mn 0 010 0 066 0 018 0 105 0 119 0 018 0 023Fe 0 064 0 018 0 020 0 087 0 023Sr 0 137 0 124 0 143 0 123 0 127 0 132 0 144Ba 2 915 2 659 2 802 2 805 2 855 2 926 2 900

Total 3 230 3 111 3 072 3 201 3 325 3 240 3 236

La 0 331 0 450 0 419 0 350 0 346 0 367 0 362Ce 0 841 0 878 0 900 0 911 0 854 0 948 0 914Pr 0 095 0 103 0 113 0 110 0 094 0 115 0 102Nd 0 372 0 340 0 362 0 384 0 348 0 332 0 342Sm 0 035 0 035 0 029 0 022 0 024 0 021 0 029Eu 0 010 0 011 0 014 0 004Gd 0 033 0 036 0 030 0 028 0 023 0 021 0 029Th 0 038 0 019 0 019 0 036 0 042 0 039 0 036

Total 1 755 1 872 1 873 1 855 1 730 1 843 1 819

F 2 268 2 174 2 221 2 033 2 159 1 986 2 057

Y Dy Er Yb and Lu are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

242

TABLE 11 Chemical position of mckelveyite-(Y) at Khibina

Rock CZ IIISample 6031435Point 1 2 4 5 9 10 Mean (12) sd

Na2O 3 12 3 05 3 21 3 10 3 33 3 14 3 19 0 10CaO 4 56 4 34 4 32 4 34 4 20 4 72 4 43 0 38MnO 0 06 b d b d b d b d 0 06FeO b d b d 0 64 b d 0 07 0 11 0 18 0 26BaO 29 43 29 89 28 47 28 73 29 69 27 13 28 97 0 98SrO 9 16 9 56 9 29 10 41 8 25 12 42 9 56 1 26Y2O3 6 39 6 33 5 32 7 02 5 84 8 42 6 44 0 93La2O3 1 22 1 22 1 60 0 85 1 84 0 96 1 34 0 34Ce2O3 1 93 1 79 2 43 1 17 2 96 1 77 2 18 0 65Pr2O3 0 22 0 22 0 15 0 30 0 24 0 15 0 22 0 06Nd2O3 0 69 0 77 0 91 1 11 0 71 0 37 0 84 0 24Sm2O3 0 81 0 87 0 81 0 89 0 85 0 20 0 78 0 23Eu2O3 0 49 0 64 0 50 0 36 0 60 0 34 0 47 0 10Gd2O3 2 15 1 94 2 18 2 05 2 32 1 05 2 02 0 38Dy2O3 2 39 2 40 2 97 2 29 2 83 2 00 2 48 0 29Er2O3 1 03 1 09 1 28 0 87 0 68 1 03 0 94 0 19Yb2O3 0 44 0 44 0 56 0 59 0 25 0 61 0 47 0 12ThO2 b d 0 17 b d b d b d b dF 0 18 0 15 b d b d 0 17 0 16 0 14 0 09CO2 25 71 25 70 25 86 25 81 25 71 26 72 25 93H2O 10 52 10 51 10 58 10 56 10 52 10 93 10 61shy O=F2 0 07 0 06 0 07 0 07 0 06

Total 100 43 101 01 101 07 100 44 100 98 102 24 101 13

Calculated to 6 (CO3)2shy and 3H2O groups

Na 1 000 0 984 1 000 1 000 1 000 0 978 1 000Ca 0 735 0 757 0 561 0 778 0 565 0 785 0 676Na 0 009 0 040 0 006 0 075 0 023La 0 075 0 075 0 099 0 052 0 113 0 057 0 082Ce 0 118 0 109 0 148 0 071 0 181 0 104 0 132Pr 0 013 0 013 0 009 0 018 0 014 0 009 0 013Nd 0 041 0 046 0 054 0 067 0 042 0 021 0 050Mn 0 009 0 008 0 000Fe 0 089 0 010 0 015 0 025

Total 1 000 1 000 1 000 0 992 1 000 1 000 1 000

Ba 1 923 1 950 1 865 1 884 1 941 1 707 1 880Sr 0 885 0 922 0 900 1 009 0 798 1 156 0 917Ca 0 080 0 017 0 212 0 185 0 026 0 110

Total 2 888 2 890 2 977 2 893 2 924 2 889 2 907

Y 0 567 0 561 0 473 0 625 0 518 0 719 0 567Sm 0 047 0 050 0 047 0 051 0 049 0 011 0 045Eu 0 028 0 036 0 029 0 021 0 034 0 018 0 026Gd 0 119 0 107 0 121 0 114 0 128 0 056 0 111Dy 0 128 0 129 0 160 0 123 0 152 0 104 0 132Er 0 054 0 057 0 067 0 045 0 036 0 052 0 049Yb 0 023 0 022 0 028 0 030 0 013 0 030 0 024Th 0 007

Total 0 965 0 969 0 925 1 009 0 930 0 990 0 954

F 0 092 0 081 0 088 0 082 0 071

Lu is below detection limit CO2 and H2O calculated by stoichiometry

REE-SR-BA MINERALS

243

TA

BL

E12

C

hem

ical

com

posi

tion

ofst

ront

iani

teat

Khi

bina

Roc

kC

II-2

CII

-3C

ZII

I-1

CII

-1C

II-1

CII

-1S

ampl

e63

3A4

141

604

413

060

325

15

646

451

060

336

364

600

1pr

imar

yst

ront

iani

teas

soci

ated

wit

hse

cond

ary

stro

ntia

nite

(aft

erbu

rban

kite

)as

soci

ated

wit

hsy

nchy

site

-(C

e)

sync

hysi

te-(

Ce)

cord

ylit

e-(C

e)an

cyli

te-(

Ce)

sync

hysi

te-(

Ce)

ancy

lite

-(C

e)an

dba

ryte

pari

site

-(C

e)an

dan

dpa

risi

te-(

Ce)

and

bary

tean

dba

ryte

bast

nasi

te-(

Ce)

mea

n(1

0)sd

mea

n(6

)sd

mea

n(3

)m

ean

(25)

sdm

ean

(4)

sdm

ean

(6)

sdm

ean

(4)

sdm

ean

(8)

sdco

rem

antl

eri

m

Na 2

Ob

db

db

d0

140

05b

d0

210

050

100

04b

dC

aO3

250

563

230

443

073

461

003

370

331

580

373

720

325

970

20S

rO66

21

068

668

00

5166

62

635

71

2664

34

051

682

00

6063

95

100

625

80

78B

aO0

190

170

160

070

221

610

471

630

150

720

290

830

092

000

57L

a 2O

3b

db

d0

160

480

20b

d0

620

120

330

060

150

04C

e 2O

30

180

120

110

110

570

610

240

190

080

760

160

420

050

250

05C

O2

307

930

99

310

530

71

305

131

11

306

931

99

Tot

al10

063

101

2910

169

100

5810

004

103

2010

004

102

94

Cal

cula

ted

to1

(CO

3)2

shygr

oup

Na

000

60

010

000

5C

a0

083

008

20

077

008

80

087

004

00

095

014

6S

r0

913

091

50

911

087

90

895

093

10

885

083

1B

a0

002

000

10

002

001

50

015

000

70

008

001

8L

a0

001

000

40

005

000

30

001

Ce

000

20

001

000

50

005

000

20

007

000

40

002

Tot

al0

999

100

00

997

099

80

999

099

90

999

099

8

Mg

Mn

Fe

Pr

Nd

Sm

Y

T

han

dU

are

belo

wde

tect

ion

lim

its

CO

2ca

lcul

ated

byst

oich

iom

etry

A N ZAITSEV ETAL

244

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 9: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

exception (sample 633B79 5) has 6 65 wtBaO There is no zoning in Khibina burbankitecrystals and the compositions are also uniformwithin each rock sample

There are two morphological types of burban-kite large prismatic crystals and small drop-likeinclusions within calcite crystals and along theirboundaries (Fig 3a Table 3) Although theircompositions are the same (Table 4) the

difference in morphology suggests they mayhave formed by different processes Largeeuhedral prismatic crystals could have crystal-lized at an early stage of carbonatite formationand sometimes large burbankite crystals areobserved near the contact of veins that arecharacterized by a crustification texture (vein-filling) The drop-like burbankite inclusions incalcite probably did not form by exsolution of

TABLE 4 Chemical composition of burbankite at Khibina

Rock C II-1Sample 607277 633477 7 6334777 581013 633B79 5

large crystal drop-like inclusion large crystal large crystalmean (9) sd mean (4) sd mean (10) sd mean (9) sd

Na2O 12 45 11 93 0 13 11 80 0 27 1260 0 44 12 03 0 85CaO 12 60 11 94 0 53 12 57 0 54 1020 0 49 10 08 1 22SrO 19 60 24 74 0 31 24 57 0 38 1838 0 61 17 71 0 92BaO 0 78 1 76 0 12 1 86 0 04 2 52 0 49 6 65 0 47La2O3 5 20 5 65 0 14 5 11 0 25 7 05 0 30 4 77 0 26Ce2O3 9 91 7 15 0 16 6 97 0 28 1106 0 41 9 26 0 43Pr2O3 0 64 0 47 0 04 0 47 0 05 0 80 0 10 0 88 0 07Nd2O3 1 53 1 24 0 10 1 33 0 03 2 53 0 28 3 11 0 31Sm2O3 0 05 b d b d 0 31 0 11 0 39 0 12Gd2O3 b d b d b d b d 0 20 0 07ThO2 n d b d b d b d 0 16 0 10CO2 35 40 34 68 34 79 3421 33 38

Total 99 76 99 56 99 47 9966 98 62

Calculated to 5 (CO3)2shy groups

Na 2 508 2 442 2 408 2 615 2 558Ca 0 338 0 498 0 529 0 267 0 345A site total 2 846 2 941 2 937 2 882 2 903

Sr 1 181 1 514 1 499 1 141 1 126Ca 1 065 0 852 0 889 0 903 0 840La 0 199 0 220 0 198 0 278 0 193Ce 0 377 0 276 0 268 0 433 0 372Pr 0 024 0 018 0 018 0 031 0 035Nd 0 056 0 047 0 050 0 097 0 122Sm 0 003 0 011 0 015Gd 0 007Ba 0 032 0 073 0 077 0 106 0 286Th 0 004B site total 3 000 3 000 3 000 3 000 3 000C 5 021

Sample 607277 - wet chemical analysis other samples - electron microprobe analysessd - standard deviation - including MgO 0 02 K2O 0 02 MnO 007 FeO 0 42 SiO2 020 F 0 04 and H2O 0 85 all wt - including Mn 0 006 Fe 0 037 and Si 0 021b d - below detection limits Mg Mn Fe Y and F are below detection limits in the microprobe analyses CO2 inmicroprobe analyses calculated by stoichiometry n d ndash not determined

REE-SR-BA MINERALS

233

FIG 3 Backscattered electron images (BEI) of (a) large crystals and drop-like inclusions of burbankite (white) incalcite (black) (b) a contact print of a thin section containing a pseudomorph of synchysite-(Ce) strontianite andbaryte after burbankite The width of the burbankite pseudomorph is 9 mm C II-1 calcite carbonatite sample 603265 (c) zoned altered burbankite (grey and dark-grey) with ancylite-(Ce) veins (white) C II-1 calcite carbonatite

sample 633B79 5 (d) relics of burbankite (dark grey) in strontianite (grey) and synchysite-(Ce) (white)

A N ZAITSEV ETAL

234

burbankite from calcite rich in Na Sr and REE asmight be thought at first from Fig 3a and asproposed for a similar occurrence by Knudsen(1991) because the burbankite crystals areassociated with euhedral zoned apatites Theyare more likely to be the result of lsquocotecticrsquocrystallization of burbankite and calcite after theprecipitation of the apatite

Carbocernaite has been found in many Khibinacarbonatite samples (Table 3) It was describedoriginally as a primary mineral crystallized at alate stage of carbonatite formation at VuorijarviKola Peninsula (Bulakh et al 1961) Zdorik(1966) and Kapustin (1980) found that carbocer-naite in carbonatites from the Ozernyi andVuoriyarvi massifs occurs as a secondarymineral after burbankite The most unusualoccurrence of carbocernaite is the exsolutionlamellae and cotectic textures for carbocernaiteand calcite in Sarnu-Dandali carbonatitedescribed by Wall et al (1993) Carbocernaite isalso reported from carbonatite in the Si PanRange Vietnam (Bulakh and Izokh 1966)

Carbocernaite like burbankite is a doublecarbonate with a general formula AB(CO3)2 withNa and Ca in the A-site and Sr REE and Ba in theB-site There are few studies of the chemicalcomposition of carbocernaite Before the detailedinvestigation of Wall et al (1993) only a few wetchemical analyses were published (Bulakh et al 1961 Bulakh and Izokh 1966 Zdorik 1966Kapustin 1980) Although available data forcarbocernaite show some variation in thecontent of major elements there is less variationthan in burbankite The Na2O values range from243 to 612 wt the BaO from 095 to 596 theSrO from 558 to 2398 the CaO from 1593 to1927 and the SREE2O3 from 17 06 to 2631 allwt In general the compositional variations inburbankite and carbocernaite are similar butcarbocernaite contains less Na2O (commonlyabout 4 shy 5 wt ) compared with burbankite(commonly about 10 shy 12 wt ) This differencein sodium content makes it possible to identifycarbocernaite and burbankite on the basis ofelectron microprobe analyses

Selected average compositions of carbocernaitefrom Khibina are given in Table 5 These datashow that carbocernaite from the Khibinacarbonatites is a low Ba variety Khibinacarbocernaite like burbankite is not zoned

Harris (1972) reported high F (3 86 wt ) incarbocernaite from Sturgeon Narrows Canadaand proposed that F together with OH could be

additional anion group (FOH)2 in the mineralformula Our data show that the F content ofKhibina carbocernaite is near the electron micro-probe detection limit of about 0 1 wt and IRinvestigations show an absence of any absorptionband related to OH- group or H2O It is possiblethat the mineral described from the SturgeonNarrows is a different mineral species The lackof Na in Sturgeon Narrows carbocernaite alsosupports our conclusion

In the Khibina carbonatite samples burbankiteand carbocernaite do not occur together so it hasnot been possible to establish their relative agesHowever both burbankite and carbocernaite-containing carbonatites are cut by later C II-2and C II-3 carbonatites

TABLE 5 Chemical composition of carbocernaite atKhibina

Rock C II-1Sample 603165 603287

mean (12) sd mean (10) sd

Na2O 4 98 0 18 4 33 0 42CaO 11 94 0 42 1360 0 33SrO 22 33 0 76 2020 0 27BaO 0 37 0 13 0 56 0 07La2O3 9 27 0 61 1053 0 33Ce2O3 13 19 0 51 1419 0 30Pr2O3 0 97 0 09 0 94 0 08Nd2O3 2 34 0 25 2 56 0 19Sm2O3 0 14 0 05 0 32 0 04F 0 10 0 10 0 14 0 03CO2 32 79 3379shy O=F2 0 04 0 06

Total 98 36 10110

Calculated to 2 (CO3)2shy groups

Na 0 431 0 364Ca 0 571 0 632A site total 1 003 0 996

Sr 0 578 0 508La 0 153 0 168Ce 0 216 0 225Pr 0 016 0 015Nd 0 037 0 040Sm 0 002 0 005Ba 0 007 0 010B site total 1 008 0 971F 0 014 0 019

Mg Mn Fe Gd Y Th and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

235

Alteration of burbankite and carbocernaite

Burbankite in carbonatites is commonly replacedby ancylite-(Ce) strontianite and baryte (Somina1975 Kapustin 1980) and rarely by ancylite-(Ce)calkinsite lanthanite and baryte (Pecora and Kerr1953) Multi-stage alteration of burbankite fromthe Ozernyi carbonatites has been documented byZdorik (1966) where carbocernaite strontianitebastnasite-(Ce) calcite baryte allanite-(Ce)monazite-(Ce) and epidote have been identifiedas alteration products of burbankite

In the Khibina carbonatites burbankite andcarbocernaite are commonly replaced by variouscombinationsof ancylite-(Ce) strontianite synch-ysite-(Ce) baryte less commonly by cordylite-(Ce) and rarely by harmotome and edingtonite(Table 3) Even when burbankite is completelyreplaced evidence of its existence is preserved inthe form of hexagonal prismatic pseudomorphs(Fig 3b) and islands of relict burbankite (Fig 3cand d) Pseudomorphs of a similar form have beenmentioned from some other rare earth-richcarbonatites e g Gem Park Wigu HillKangankunde (Wall and Mariano 1996) but inthese cases there is no evidence of the precursormineral The presence of primary and replacedburbankite at Khibina is good evidence that thepseudomorphs reported from these other carbo-natites may well have originally been burbankite

Ancylite

Ancylite-(Ce) is a hydrous carbonate containingREE and Sr as major cations On the basis of astructural study of material from the Mont Saint-Hilaire massif its formula has been proposed asREEx(SrCa)2 shy x(CO3)2(OH)x (2 shy x)H2O with acation-anion substitution of Sr2+ + H2O gtREE3+ + OH shy (Dal Negro et al 1975)Although ancylite-(Ce) is a relatively commonmineral in carbonatites there are only a fewanalyses available (Kukharenko et al 1965Kapustin 1980 Knudsen 1991) and this is thefirst detailed investigation of its chemicalcomposition Selected average chemical composi-tions are given in Table 6 The composition ofancylite-(Ce) from Khibina is relatively uniformwith Ca Ba and Th present only as traces Theatomic proportion of Sr and REE in the formula isnear 11 with a small excess of REE An importantfinding is the presence of fluorine in ancylite-(Ce)The Khibina ancylite-(Ce) contains between 0 75and 250 wt of fluorine corresponding to

0 148shy 0 488 F per formula unit Since REE andSr are present in equal abundances it is suggestedthat F- substitutes for OH- Thus the mineral fromthe Khibina carbonatites can be classified as F-bearing ancylite-(Ce) Fluorine was also detectedin two ancylite-(Ce) samples from Qaqarssukcarbonatites at 0 37 and 058 wt respectively(Knudsen 1991)

Ca-REE fluocarbonates

Synchysite-(Ce)is common at Khibina bastnasite-(Ce) and parisite-(Ce) are also found but are rare(Table 3) The textures vary as described in Table3 and include syntaxial intergrowths (Fig 4a)Ca-REE fluocarbonates are present in numerouscarbonatites e g Mountain Pass (Olsen et al 1954) Gatineau (Hogarth et al 1985)Kizilcaoren (Hatzl 1992) Tundulu (Ngwenya1994) and are the most well-studied of thecarbonatite REE-minerals (e g Kapustin 1980Hogarth et al 1985 Andersen 1986 Wall andMariano 1996) Selected average microprobeanalyses of Khibina synchysite-(Ce) made onminerals from different mineral assemblages arepresented in Table 7 Synchysite-(Ce) is char-acterized by having little substitution of otherelements for Ca and REE Primary synchysite-(Ce) from syntaxial intergrowths secondarysynchysite-(Ce) from the alteration products ofburbankite carbocernaite and syntaxial inter-growths of synchysite-(Ce) with parisite-(Ce) allhave similar chemical compositions Sr Ba and Thare typical minor constituentsin all the synchysite-(Ce) and Fe is present in the red variety associatedwith manganoan ankerite or ferroan kutnohorite

Parisite-(Ce) and bastnasite-(Ce) (Table 8) arenear their theoretical compositions with onlyminor amounts of Sr and Ba substituting for Caand Th substituting for REE

Syntaxial intergrowths of Ca-REE fluocarbo-nates are considered to be evidence for theirprimary origin the intergrowth being related tochanges in the chemical composition of the hostfluid (Ni et al 1993)

Ba-REE fluocarbonates

Ba-REE fluocarbonates are extremely rare incarbonatites Huanghoite-(Ce) is the onlymember of the group previously described froman unnamed Siberian carbonatite (Kapustin 1973)and from Qaqarssuk carbonatites (Knudsen1991) However cordylite-(Ce) kukharenkoite-

A N ZAITSEV ETAL

236

(Ce) and cebaite-(Ce) have all been identified atKhibina (Table 3)

Cordylite-(Ce) is known only from Greenland(Flink 1901) Mont Saint-Hilaire Canada (Chenand Chao 1975) and Bayan Obo China (Zhangand Tao 1986) Its occurrence at Khibina is thefirst documented occurrence which is certainlyfrom carbonatites Kukharenkoite-(Ce) is a newBa-REE fluocarbonate mineral which has beenfound in the Khibina carbonatites and fromVuoriyavri Kola Peninsula Mont Saint-Hilaireand the Saint-Amable sill Quebec Canada(Zaitsev et al 1996) The occurrence of

cebaite-(Ce) at Khibina is only the seconddocumented occurrence The first was fromBayan Obo (Zhang and Tao 1986)

There are no data on the chemical compositionof cordylite-(Ce) from carbonatites and our reportis the first for this mineral (Table 9) There arethree distinct chemical compositions of cordylite-(Ce) from Khibina Cordylite-(Ce) with low Caand Sr (Table 9) occurs in manganoan siderite-manganoan ankerite-natrolite veins (CZ III-1)where it forms tabular crystals which areassociated with strontianite and sometimeskukharenkoite-(Ce) High Ca and Sr cordylite-

TABLE 6 Chemical composition of ancylite-(Ce) at Khibina

Rock C II-1Sample 633B795 646001 646451

mean (8) sd mean (21) sd mean (24) sd

SrO 2397 1 25 21 70 1 19 20 65 1 63CaO 1 35 0 40 2 09 0 51 1 93 0 59BaO 0 59 0 09 0 85 0 24 0 85 0 25FeO 0 19 0 35 b d 0 20 0 30La2O3 1308 1 18 15 56 0 83 16 53 1 17Ce2O3 2340 1 04 23 46 1 09 23 59 0 89Pr2O3 1 94 0 11 1 74 0 14 1 69 0 12Nd2O3 5 35 0 52 4 42 0 38 4 34 0 33Sm2O3 0 29 0 06 0 28 0 05 0 23 0 04Gd2O3 0 14 0 13 0 17 0 09 b dThO2 0 53 0 20 b d b dF 2 15 0 30 1 83 0 34 1 19 0 17CO2 2344 23 32 23 07shy O=F2 0 90 0 77 0 50

Total 9551 94 66 93 77

Calculated to 2 (CO3)2shy groups

La 0 300 0 357 0 381Ce 0 532 0 534 0 539Pr 0 044 0 040 0 039Nd 0 119 0 098 0 097Sm 0 006 0 006 0 005Gd 0 003 0 004Th 0 008

Total 1 012 1 038 1 061

Sr 0 864 0 783 0 748Ca 0 090 0 139 0 129Ba 0 014 0 021 0 021Fe 0 010 0 010

Total 0 979 0 943 0 909

F 0 422 0 360 0 235

Na Mg Mn Y and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

237

(Ce) (Table 9) is observed in the same samples asmantles on crystals of low Ca and Sr cordylite-(Ce) and as abundant laths in the surroundingnatrolite and manganoan ankerite (Fig 4b) It hasalso formed as a secondary mineral duringcarbocernaite alteration Cordylite-(Ce) withmoderate Ca and Sr (Table 9) occurs in ferroanrhodochrosite-manganoan ankerite carbonatites(C II-3) and is associated with strontianite

The atomic proportions of Na-Ca and REE-Srpairs show a negative correlation with a slopenear shy 1 and a plot of Na+REE vs Ca+Sr (Fig 5)shows a trend in composition from Sr-Ca-poor toSr-Ca-rich cordylite-(Ce) The slope of thiscorrelation suggests a 11 exchange of Na andREE for Ca and Sr with a substitution scheme ofNa+ + REE3+ Ca2+ + Sr2+ On the basis of theseobservations a general formula for cordylite-(Ce)can be expressed as (NaCa)Ba(REESr)2(CO3)4FOur X-ray and IR data are identical for eachcompositional variety and also identical to thoseof lsquobaiyuneboite-(Ce)rsquo (Fu and Su 1988) whichis now recognized to be cordylite-(Ce) (JZemann personal communication 1996)

Kukharenkoite-(Ce) occurs in Khibina C II-2and C II-3 carbonatites and in carbonate-zeoliteveins (Table 3) It was described as a new mineralby Zaitsev et al (1996) The composition of thekukharenkoite-(Ce) (Zaitsev et al 1996) deter-

FIG 4 (a) BEI of syntaxial intergrowths of synchysite-(Ce) (grey) parisite-(Ce) (grey) and bastnasite-(Ce) (white) CII-2 manganoan ankerite-calcite carbonatite sample 633A414 1 (b) BEI of large crystals of low Ca and Sr cordylite-(Ce) pale grey in centre) associated with laths of high Ca and Sr cordylite-(Ce) (dark grey) and kukharenkoite-(Ce)

(white) CZ III-1 manganoan siderite-manganoan ankerite shy natrolite vein sample 60775

FIG 5 Atomic proportions of Na+REE vs Ca+Sr forcordylite-(Ce)

A N ZAITSEV ETAL

238

mined from electron microprobe analysis is BaO4893 SrO 0 42 MnO 026 Na2O 0 08 CaO0 05 La2O3 6 16 Ce2O3 15 12 Pr2O3 149Nd2O3 4 08 ThO2 0 10 and F 320 wt Theatomic ratios of Ba REE and F are near 211requiring 3 (CO3)

2shy groups per formula unit(calculated CO2 21 73 wt ) and the idealf o r m u l a f o r k u k h a r e n k o i t e - ( C e ) i sBa2REE(CO3)3F

The chemical composition of cebaite-(Ce) fromKhibina was determined by 18 electron micro-

probe analyses (Table 10) Although analysistotals are less then 100 calculated atomic ratiosfor Ba REE and F are near 322 and closelyc o r r e s p o n d t o a n i d e a l f o r m u l a o fBa3REE2(CO3)5F2 Cebaite-(Ce) contains minorSrO (101shy 261 wt ) CaO (033shy 118 wt)and ThO2 (0 49shy 126 wt) in addition rela-tively high MnO (up to 0 83 wt ) and FeO (up to0 61 wt ) were observed in some analyses Allcebaite-(Ce) crystals are unzoned See Table 3 formineralogical details

TABLE 7 Chemical composition of synchysite-(Ce) at Khibina

Rock C II-2 C II-3 C II-1 C II-1 C II-1Sample 633A414 1 604413 633485 5 603265 603165

syntaxial intergrowths secondary after burbankite secondary aftercarbocernaite

mean (8) sd mean (6) sd mean (9) sd mean (15) sd mean (4) sd

CaO 17 47 0 38 16 89 0 62 1618 070 16 08 0 88 17 23 033FeO bd 0 35 0 49 b d b d bdSrO 024 0 12 0 43 0 18 0 87 066 0 59 0 28 056 021BaO 009 0 05 0 15 0 04 0 12 007 0 06 0 05 011 006La2O3 16 54 0 42 13 06 0 58 1798 087 20 34 0 86 13 63 073Ce2O3 26 19 0 85 27 21 0 79 2591 065 25 77 0 50 25 26 085Pr2O3 215 0 12 2 53 0 07 1 94 011 1 78 0 08 258 010Nd2O3 614 0 44 7 90 0 22 5 54 027 4 53 0 41 969 086Sm2O3 038 0 06 0 62 0 10 0 38 004 0 31 0 07 068 038Y2O3 bd b d b d b d 011 009ThO2 bd 0 38 0 21 0 15 009 b d 017 014F 549 0 18 5 69 0 21 5 83 023 5 61 0 23 578 011CO2 28 12 27 81 2718 27 59 28 11shy O=F2 231 2 40 2 46 2 36 243

Total 10049 100 62 9961 100 30 101 46

Calculated to 2 (CO3)2shy groups

Ca 0975 0 953 0 934 0 915 0962Sr 0007 0 013 0 027 0 018 0017Ba 0002 0 003 0 002 0 001 0002Fe 0 015

Total 0984 0 985 0 964 0 934 0981

La 0318 0 254 0 357 0 398 0262Ce 0499 0 524 0 511 0 501 0481Pr 0041 0 049 0 038 0 034 0049Nd 0114 0 149 0 107 0 086 0180Sm 0007 0 011 0 007 0 006 0012Y 0003Th 0 005 0 002 0002

Total 0979 0 991 1 022 1 025 0990F 0904 0 948 0 994 0 943 0953

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

239

Y-rich carbonates mckelveyite-(Y) ewaldite anddonnayite-(Y)

A detailed description of these minerals fromKhibina Vuoriyarvi and Sallanlatvi is given byVoloshin et al (1990 1992) This was the firsttime that they had been documented in carbona-tites Mckelveyite-(Y) is the best-studied of thegroup at Khibina (Table 3)

Chemical compositions of mckelveyite-(Y) andewaldite from Kola carbonatites are represented by

three electron microprobe analyses of mckelveyite-(Y) from Vuoriyarvi carbonatites one from theSallanlatvi carbonatite and two analyses ofewaldite from Vuoriyarvi (Voloshin et al 19901992) However even these limited data showcompositional variation and three groups havebeen identified Na-free mckelveyite-(Y) Y-freeLREE-enriched mckelveyite and Y-free ewaldite

Five separate crystals of mckelveyite-(Y) wereanalysed from Khibina (Table 11) and areuniform in chemical composition The formula

TABLE 8 Chemical composition of parisite-(Ce) and bastnasite-(Ce) at Khibina

Rock C II-2 C II-3 C II-2Sample 633A4141 604413 633A414 1Mineral parisite-(Ce) bastnasite-(Ce)

mean (2) mean (5) sd mean (6) sd

CaO 9 72 9 29 1 03 084 0 29SrO 0 56 0 79 0 18 085 0 34BaO 0 07 0 30 0 29 008 0 05FeO 0 05 0 38 0 28La2O3 1963 15 96 0 72 26 35 0 99Ce2O3 3172 32 28 0 45 37 41 0 54Pr2O3 2 30 2 87 0 14 250 0 13Nd2O3 6 83 8 74 0 22 660 0 48Sm2O3 0 45 0 60 0 02 036 0 07Y2O3 0 10 0 22 0 12 bdThO2 b d 0 24 0 10 bdF 7 02 6 79 0 17 811 0 22CO2 2433 24 54 20 67shy O=F2 2 95 2 86 342

Total 9982 100 13 100 35

Calculated to 3 (CO3)2shy groups Calculated to 1 (CO3)

2shy groupCa 0 941 0 892 0033Sr 0 029 0 041 0018Ba 0 002 0 011 0001Fe 0 004 0 029

Total 0 976 0 972

La 0 654 0 527 0357Ce 1 048 1 057 0503Pr 0 076 0 094 0033Nd 0 220 0 280 0087Sm 0 014 0 018 0005Y 0 005 0 010Th 0 005

Total 2 017 1 992 1037

F 2 004 1 923 0942

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

240

of mckelveyite-(Y) is still the subject of debate Inthe original description Milton et al (1965) gavethe formula as Na19Ba40Ca11Sr02REE15U03

(CO3)9 5H2O Later Chao et al (1978) suggestedan isomorphous relationship between mckel-veyite-(Y) and donnayite-(Y) and gave theformula of NaCaBa3Y(CO3)6 3H2O In a recentstudy of mckelveyite-(Y) and ewaldite Voloshinet al (1990 1992) showed a similarity betweenthese two minerals and suggested that they areprobably polymorphs The formula of ewalditewas determined as (CaNaREE )(BaSr )(CO3)2 nH2O where part of the H2O is zeolitic

Chemical data from the Khibina mckelveyite-(Y) were calculated on the basis of the IMAaccepted formula NaCaBa3Y(CO3)6 3H2O (Table

11) Our data and those of Voloshin et al (1990)show significant substitutions the main one beingBa2+ Sr2+ which is related to the mckelveyite-(Y)-donnayite-(Y) pair where these minerals are Baand Sr end-members respectively The assignationof REE to two different sites in the mckelveyite-(Y) formula is problematic It is based on formulabalance and the REE chondrite-normalizeddistribution which is discussed below in thesection on lsquoRare earth patternsrsquo

Strontianite baryte barytocalcite edingtonite andharmotome

Minerals rich in Ba and Sr but with no REE arerepresented in the Khibina carbonatites by

TABLE 9 Chemical composition of cordylite-(Ce) at Khibina

Rock CZ III-1 C II-3 CZ III-1 CZ III-1 C II-1Sample 60775 6032646 6032515 60775 6031650Variety low Ca and Sr moderate Ca and Sr high Ca and Sr

mean (15) sd mean (17) sd mean (15) sd mean (10) sd mean (17) sd

Na2O 412 0 12 3 66 0 24 3 67 0 12 2 60 0 15 256 0 16CaO 073 0 18 1 54 0 31 1 50 0 08 3 82 0 18 410 0 26SrO 058 0 23 2 48 0 57 2 09 0 31 6 03 0 43 590 0 50BaO 22 28 0 33 22 29 0 51 22 32 0 32 23 02 0 25 23 11 0 36La2O3 994 0 36 10 46 0 38 11 82 0 53 7 58 0 30 11 49 0 51Ce2O3 24 46 0 43 23 82 0 68 22 18 0 28 20 26 0 38 17 90 0 67Pr2O3 241 0 18 1 85 0 24 1 69 0 25 2 19 0 27 145 0 30Nd2O3 747 0 49 5 88 0 31 5 70 0 41 6 97 0 49 536 0 54ThO2 011 0 17 0 13 0 14 0 12 0 16 0 13 0 12 013 0 16F 262 0 10 2 97 0 28 2 95 0 33 2 60 0 08 285 0 31CO2 24 92 25 16 24 78 25 77 25 75shy O=F2 110 1 25 1 24 1 10 120

Total 98 55 98 98 97 57 99 88 99 40

Calculated for 4 (CO3)2shy groups

Na 0945 0 821 0 837 0 579 0567Ca 0093 0 191 0 189 0 470 0501

Total 1038 1 012 1 026 1 049 1068

Ba 1032 1 011 1 028 1 036 1033La 0434 0 446 0 513 0 321 0483Ce 1058 1 008 0 954 0 851 0747Pr 0104 0 078 0 072 0 092 0060Nd 0315 0 243 0 239 0 286 0218Sr 0040 0 167 0 142 0 402 0390Th 0003 0 003 0 003 0 003 0003

Total 1954 1 945 1 923 1 955 1901

F 0981 1 088 1 096 0 946 1029

Fe Mn and Sm are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

241

strontianite baryte barytocalcite edingtonite andharmotome (Table 3) The first two minerals arecommon in late-stage carbonatites e g MountainPass (Olsen et al 1954) Vuoriyarvi SeblyavrSallanlatvi (Kapustin 1980) Sarnu-Dandali (Wallet al 1993) and Kangankunde (Wall andMariano 1996)

Barytocalcite is extremely rare in carbonatitesand has been described only from Vuoriyarvi andan unnamed Siberian carbonatite (Kapustin 1980)and possibly Chipman Lake (Platt and Woolley1990)

Edingtonite and harmotome are bariumzeolites Their occurrence at Khibina is the first

TABLE 10 Chemical composition of cebaite-(Ce) at Khibina

Rock CZ III-1Sample 6031435Analysis 14 24 25 29 30 33 Mean (18) Sd

Na2O 0 09 0 10 0 08 0 11 0 13 0 10 0 10 0 03CaO 0 40 1 18 0 47 0 61 0 52 0 70 0 61 0 21MnO 0 07 0 47 0 12 0 73 0 83 0 13 0 16 0 24FeO 0 45 0 13 b d 0 14 0 61 b d 0 16 0 19SrO 1 40 1 27 1 45 1 25 1 28 1 31 1 43 0 36BaO 43 93 40 51 42 19 42 09 42 59 42 93 42 77 1 84La2O3 5 30 7 28 6 71 5 58 5 48 5 72 5 67 0 52Ce2O3 13 59 14 33 14 52 14 66 13 66 14 91 14 45 1 16Pr2O3 1 54 1 69 1 83 1 78 1 51 1 81 1 63 0 19Nd2O3 6 15 5 69 5 99 6 32 5 70 5 34 5 54 0 48Sm2O3 0 60 0 61 0 50 0 38 0 42 0 34 0 48 0 11Eu2O3 0 17 0 18 b d 0 24 b d b d 0 07 0 11Gd2O3 0 59 0 66 0 53 0 49 0 40 0 37 0 50 0 13ThO2 0 99 0 51 0 49 0 92 1 07 0 99 0 92 0 22F 4 24 4 10 4 15 3 78 3 99 3 61 3 76 0 21CO2 21 57 21 79 21 41 21 79 21 65 21 41 21 42shy O=F2 1 78 1 73 1 75 1 59 1 68 1 52 1 58

Total 99 31 98 77 98 78 99 29 98 15 98 15 98 10

Calculated for 5 (CO3)2shy groups

Na 0 031 0 032 0 025 0 038 0 042 0 034 0 032Ca 0 073 0 212 0 085 0 111 0 095 0 130 0 114Mn 0 010 0 066 0 018 0 105 0 119 0 018 0 023Fe 0 064 0 018 0 020 0 087 0 023Sr 0 137 0 124 0 143 0 123 0 127 0 132 0 144Ba 2 915 2 659 2 802 2 805 2 855 2 926 2 900

Total 3 230 3 111 3 072 3 201 3 325 3 240 3 236

La 0 331 0 450 0 419 0 350 0 346 0 367 0 362Ce 0 841 0 878 0 900 0 911 0 854 0 948 0 914Pr 0 095 0 103 0 113 0 110 0 094 0 115 0 102Nd 0 372 0 340 0 362 0 384 0 348 0 332 0 342Sm 0 035 0 035 0 029 0 022 0 024 0 021 0 029Eu 0 010 0 011 0 014 0 004Gd 0 033 0 036 0 030 0 028 0 023 0 021 0 029Th 0 038 0 019 0 019 0 036 0 042 0 039 0 036

Total 1 755 1 872 1 873 1 855 1 730 1 843 1 819

F 2 268 2 174 2 221 2 033 2 159 1 986 2 057

Y Dy Er Yb and Lu are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

242

TABLE 11 Chemical position of mckelveyite-(Y) at Khibina

Rock CZ IIISample 6031435Point 1 2 4 5 9 10 Mean (12) sd

Na2O 3 12 3 05 3 21 3 10 3 33 3 14 3 19 0 10CaO 4 56 4 34 4 32 4 34 4 20 4 72 4 43 0 38MnO 0 06 b d b d b d b d 0 06FeO b d b d 0 64 b d 0 07 0 11 0 18 0 26BaO 29 43 29 89 28 47 28 73 29 69 27 13 28 97 0 98SrO 9 16 9 56 9 29 10 41 8 25 12 42 9 56 1 26Y2O3 6 39 6 33 5 32 7 02 5 84 8 42 6 44 0 93La2O3 1 22 1 22 1 60 0 85 1 84 0 96 1 34 0 34Ce2O3 1 93 1 79 2 43 1 17 2 96 1 77 2 18 0 65Pr2O3 0 22 0 22 0 15 0 30 0 24 0 15 0 22 0 06Nd2O3 0 69 0 77 0 91 1 11 0 71 0 37 0 84 0 24Sm2O3 0 81 0 87 0 81 0 89 0 85 0 20 0 78 0 23Eu2O3 0 49 0 64 0 50 0 36 0 60 0 34 0 47 0 10Gd2O3 2 15 1 94 2 18 2 05 2 32 1 05 2 02 0 38Dy2O3 2 39 2 40 2 97 2 29 2 83 2 00 2 48 0 29Er2O3 1 03 1 09 1 28 0 87 0 68 1 03 0 94 0 19Yb2O3 0 44 0 44 0 56 0 59 0 25 0 61 0 47 0 12ThO2 b d 0 17 b d b d b d b dF 0 18 0 15 b d b d 0 17 0 16 0 14 0 09CO2 25 71 25 70 25 86 25 81 25 71 26 72 25 93H2O 10 52 10 51 10 58 10 56 10 52 10 93 10 61shy O=F2 0 07 0 06 0 07 0 07 0 06

Total 100 43 101 01 101 07 100 44 100 98 102 24 101 13

Calculated to 6 (CO3)2shy and 3H2O groups

Na 1 000 0 984 1 000 1 000 1 000 0 978 1 000Ca 0 735 0 757 0 561 0 778 0 565 0 785 0 676Na 0 009 0 040 0 006 0 075 0 023La 0 075 0 075 0 099 0 052 0 113 0 057 0 082Ce 0 118 0 109 0 148 0 071 0 181 0 104 0 132Pr 0 013 0 013 0 009 0 018 0 014 0 009 0 013Nd 0 041 0 046 0 054 0 067 0 042 0 021 0 050Mn 0 009 0 008 0 000Fe 0 089 0 010 0 015 0 025

Total 1 000 1 000 1 000 0 992 1 000 1 000 1 000

Ba 1 923 1 950 1 865 1 884 1 941 1 707 1 880Sr 0 885 0 922 0 900 1 009 0 798 1 156 0 917Ca 0 080 0 017 0 212 0 185 0 026 0 110

Total 2 888 2 890 2 977 2 893 2 924 2 889 2 907

Y 0 567 0 561 0 473 0 625 0 518 0 719 0 567Sm 0 047 0 050 0 047 0 051 0 049 0 011 0 045Eu 0 028 0 036 0 029 0 021 0 034 0 018 0 026Gd 0 119 0 107 0 121 0 114 0 128 0 056 0 111Dy 0 128 0 129 0 160 0 123 0 152 0 104 0 132Er 0 054 0 057 0 067 0 045 0 036 0 052 0 049Yb 0 023 0 022 0 028 0 030 0 013 0 030 0 024Th 0 007

Total 0 965 0 969 0 925 1 009 0 930 0 990 0 954

F 0 092 0 081 0 088 0 082 0 071

Lu is below detection limit CO2 and H2O calculated by stoichiometry

REE-SR-BA MINERALS

243

TA

BL

E12

C

hem

ical

com

posi

tion

ofst

ront

iani

teat

Khi

bina

Roc

kC

II-2

CII

-3C

ZII

I-1

CII

-1C

II-1

CII

-1S

ampl

e63

3A4

141

604

413

060

325

15

646

451

060

336

364

600

1pr

imar

yst

ront

iani

teas

soci

ated

wit

hse

cond

ary

stro

ntia

nite

(aft

erbu

rban

kite

)as

soci

ated

wit

hsy

nchy

site

-(C

e)

sync

hysi

te-(

Ce)

cord

ylit

e-(C

e)an

cyli

te-(

Ce)

sync

hysi

te-(

Ce)

ancy

lite

-(C

e)an

dba

ryte

pari

site

-(C

e)an

dan

dpa

risi

te-(

Ce)

and

bary

tean

dba

ryte

bast

nasi

te-(

Ce)

mea

n(1

0)sd

mea

n(6

)sd

mea

n(3

)m

ean

(25)

sdm

ean

(4)

sdm

ean

(6)

sdm

ean

(4)

sdm

ean

(8)

sdco

rem

antl

eri

m

Na 2

Ob

db

db

d0

140

05b

d0

210

050

100

04b

dC

aO3

250

563

230

443

073

461

003

370

331

580

373

720

325

970

20S

rO66

21

068

668

00

5166

62

635

71

2664

34

051

682

00

6063

95

100

625

80

78B

aO0

190

170

160

070

221

610

471

630

150

720

290

830

092

000

57L

a 2O

3b

db

d0

160

480

20b

d0

620

120

330

060

150

04C

e 2O

30

180

120

110

110

570

610

240

190

080

760

160

420

050

250

05C

O2

307

930

99

310

530

71

305

131

11

306

931

99

Tot

al10

063

101

2910

169

100

5810

004

103

2010

004

102

94

Cal

cula

ted

to1

(CO

3)2

shygr

oup

Na

000

60

010

000

5C

a0

083

008

20

077

008

80

087

004

00

095

014

6S

r0

913

091

50

911

087

90

895

093

10

885

083

1B

a0

002

000

10

002

001

50

015

000

70

008

001

8L

a0

001

000

40

005

000

30

001

Ce

000

20

001

000

50

005

000

20

007

000

40

002

Tot

al0

999

100

00

997

099

80

999

099

90

999

099

8

Mg

Mn

Fe

Pr

Nd

Sm

Y

T

han

dU

are

belo

wde

tect

ion

lim

its

CO

2ca

lcul

ated

byst

oich

iom

etry

A N ZAITSEV ETAL

244

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 10: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

FIG 3 Backscattered electron images (BEI) of (a) large crystals and drop-like inclusions of burbankite (white) incalcite (black) (b) a contact print of a thin section containing a pseudomorph of synchysite-(Ce) strontianite andbaryte after burbankite The width of the burbankite pseudomorph is 9 mm C II-1 calcite carbonatite sample 603265 (c) zoned altered burbankite (grey and dark-grey) with ancylite-(Ce) veins (white) C II-1 calcite carbonatite

sample 633B79 5 (d) relics of burbankite (dark grey) in strontianite (grey) and synchysite-(Ce) (white)

A N ZAITSEV ETAL

234

burbankite from calcite rich in Na Sr and REE asmight be thought at first from Fig 3a and asproposed for a similar occurrence by Knudsen(1991) because the burbankite crystals areassociated with euhedral zoned apatites Theyare more likely to be the result of lsquocotecticrsquocrystallization of burbankite and calcite after theprecipitation of the apatite

Carbocernaite has been found in many Khibinacarbonatite samples (Table 3) It was describedoriginally as a primary mineral crystallized at alate stage of carbonatite formation at VuorijarviKola Peninsula (Bulakh et al 1961) Zdorik(1966) and Kapustin (1980) found that carbocer-naite in carbonatites from the Ozernyi andVuoriyarvi massifs occurs as a secondarymineral after burbankite The most unusualoccurrence of carbocernaite is the exsolutionlamellae and cotectic textures for carbocernaiteand calcite in Sarnu-Dandali carbonatitedescribed by Wall et al (1993) Carbocernaite isalso reported from carbonatite in the Si PanRange Vietnam (Bulakh and Izokh 1966)

Carbocernaite like burbankite is a doublecarbonate with a general formula AB(CO3)2 withNa and Ca in the A-site and Sr REE and Ba in theB-site There are few studies of the chemicalcomposition of carbocernaite Before the detailedinvestigation of Wall et al (1993) only a few wetchemical analyses were published (Bulakh et al 1961 Bulakh and Izokh 1966 Zdorik 1966Kapustin 1980) Although available data forcarbocernaite show some variation in thecontent of major elements there is less variationthan in burbankite The Na2O values range from243 to 612 wt the BaO from 095 to 596 theSrO from 558 to 2398 the CaO from 1593 to1927 and the SREE2O3 from 17 06 to 2631 allwt In general the compositional variations inburbankite and carbocernaite are similar butcarbocernaite contains less Na2O (commonlyabout 4 shy 5 wt ) compared with burbankite(commonly about 10 shy 12 wt ) This differencein sodium content makes it possible to identifycarbocernaite and burbankite on the basis ofelectron microprobe analyses

Selected average compositions of carbocernaitefrom Khibina are given in Table 5 These datashow that carbocernaite from the Khibinacarbonatites is a low Ba variety Khibinacarbocernaite like burbankite is not zoned

Harris (1972) reported high F (3 86 wt ) incarbocernaite from Sturgeon Narrows Canadaand proposed that F together with OH could be

additional anion group (FOH)2 in the mineralformula Our data show that the F content ofKhibina carbocernaite is near the electron micro-probe detection limit of about 0 1 wt and IRinvestigations show an absence of any absorptionband related to OH- group or H2O It is possiblethat the mineral described from the SturgeonNarrows is a different mineral species The lackof Na in Sturgeon Narrows carbocernaite alsosupports our conclusion

In the Khibina carbonatite samples burbankiteand carbocernaite do not occur together so it hasnot been possible to establish their relative agesHowever both burbankite and carbocernaite-containing carbonatites are cut by later C II-2and C II-3 carbonatites

TABLE 5 Chemical composition of carbocernaite atKhibina

Rock C II-1Sample 603165 603287

mean (12) sd mean (10) sd

Na2O 4 98 0 18 4 33 0 42CaO 11 94 0 42 1360 0 33SrO 22 33 0 76 2020 0 27BaO 0 37 0 13 0 56 0 07La2O3 9 27 0 61 1053 0 33Ce2O3 13 19 0 51 1419 0 30Pr2O3 0 97 0 09 0 94 0 08Nd2O3 2 34 0 25 2 56 0 19Sm2O3 0 14 0 05 0 32 0 04F 0 10 0 10 0 14 0 03CO2 32 79 3379shy O=F2 0 04 0 06

Total 98 36 10110

Calculated to 2 (CO3)2shy groups

Na 0 431 0 364Ca 0 571 0 632A site total 1 003 0 996

Sr 0 578 0 508La 0 153 0 168Ce 0 216 0 225Pr 0 016 0 015Nd 0 037 0 040Sm 0 002 0 005Ba 0 007 0 010B site total 1 008 0 971F 0 014 0 019

Mg Mn Fe Gd Y Th and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

235

Alteration of burbankite and carbocernaite

Burbankite in carbonatites is commonly replacedby ancylite-(Ce) strontianite and baryte (Somina1975 Kapustin 1980) and rarely by ancylite-(Ce)calkinsite lanthanite and baryte (Pecora and Kerr1953) Multi-stage alteration of burbankite fromthe Ozernyi carbonatites has been documented byZdorik (1966) where carbocernaite strontianitebastnasite-(Ce) calcite baryte allanite-(Ce)monazite-(Ce) and epidote have been identifiedas alteration products of burbankite

In the Khibina carbonatites burbankite andcarbocernaite are commonly replaced by variouscombinationsof ancylite-(Ce) strontianite synch-ysite-(Ce) baryte less commonly by cordylite-(Ce) and rarely by harmotome and edingtonite(Table 3) Even when burbankite is completelyreplaced evidence of its existence is preserved inthe form of hexagonal prismatic pseudomorphs(Fig 3b) and islands of relict burbankite (Fig 3cand d) Pseudomorphs of a similar form have beenmentioned from some other rare earth-richcarbonatites e g Gem Park Wigu HillKangankunde (Wall and Mariano 1996) but inthese cases there is no evidence of the precursormineral The presence of primary and replacedburbankite at Khibina is good evidence that thepseudomorphs reported from these other carbo-natites may well have originally been burbankite

Ancylite

Ancylite-(Ce) is a hydrous carbonate containingREE and Sr as major cations On the basis of astructural study of material from the Mont Saint-Hilaire massif its formula has been proposed asREEx(SrCa)2 shy x(CO3)2(OH)x (2 shy x)H2O with acation-anion substitution of Sr2+ + H2O gtREE3+ + OH shy (Dal Negro et al 1975)Although ancylite-(Ce) is a relatively commonmineral in carbonatites there are only a fewanalyses available (Kukharenko et al 1965Kapustin 1980 Knudsen 1991) and this is thefirst detailed investigation of its chemicalcomposition Selected average chemical composi-tions are given in Table 6 The composition ofancylite-(Ce) from Khibina is relatively uniformwith Ca Ba and Th present only as traces Theatomic proportion of Sr and REE in the formula isnear 11 with a small excess of REE An importantfinding is the presence of fluorine in ancylite-(Ce)The Khibina ancylite-(Ce) contains between 0 75and 250 wt of fluorine corresponding to

0 148shy 0 488 F per formula unit Since REE andSr are present in equal abundances it is suggestedthat F- substitutes for OH- Thus the mineral fromthe Khibina carbonatites can be classified as F-bearing ancylite-(Ce) Fluorine was also detectedin two ancylite-(Ce) samples from Qaqarssukcarbonatites at 0 37 and 058 wt respectively(Knudsen 1991)

Ca-REE fluocarbonates

Synchysite-(Ce)is common at Khibina bastnasite-(Ce) and parisite-(Ce) are also found but are rare(Table 3) The textures vary as described in Table3 and include syntaxial intergrowths (Fig 4a)Ca-REE fluocarbonates are present in numerouscarbonatites e g Mountain Pass (Olsen et al 1954) Gatineau (Hogarth et al 1985)Kizilcaoren (Hatzl 1992) Tundulu (Ngwenya1994) and are the most well-studied of thecarbonatite REE-minerals (e g Kapustin 1980Hogarth et al 1985 Andersen 1986 Wall andMariano 1996) Selected average microprobeanalyses of Khibina synchysite-(Ce) made onminerals from different mineral assemblages arepresented in Table 7 Synchysite-(Ce) is char-acterized by having little substitution of otherelements for Ca and REE Primary synchysite-(Ce) from syntaxial intergrowths secondarysynchysite-(Ce) from the alteration products ofburbankite carbocernaite and syntaxial inter-growths of synchysite-(Ce) with parisite-(Ce) allhave similar chemical compositions Sr Ba and Thare typical minor constituentsin all the synchysite-(Ce) and Fe is present in the red variety associatedwith manganoan ankerite or ferroan kutnohorite

Parisite-(Ce) and bastnasite-(Ce) (Table 8) arenear their theoretical compositions with onlyminor amounts of Sr and Ba substituting for Caand Th substituting for REE

Syntaxial intergrowths of Ca-REE fluocarbo-nates are considered to be evidence for theirprimary origin the intergrowth being related tochanges in the chemical composition of the hostfluid (Ni et al 1993)

Ba-REE fluocarbonates

Ba-REE fluocarbonates are extremely rare incarbonatites Huanghoite-(Ce) is the onlymember of the group previously described froman unnamed Siberian carbonatite (Kapustin 1973)and from Qaqarssuk carbonatites (Knudsen1991) However cordylite-(Ce) kukharenkoite-

A N ZAITSEV ETAL

236

(Ce) and cebaite-(Ce) have all been identified atKhibina (Table 3)

Cordylite-(Ce) is known only from Greenland(Flink 1901) Mont Saint-Hilaire Canada (Chenand Chao 1975) and Bayan Obo China (Zhangand Tao 1986) Its occurrence at Khibina is thefirst documented occurrence which is certainlyfrom carbonatites Kukharenkoite-(Ce) is a newBa-REE fluocarbonate mineral which has beenfound in the Khibina carbonatites and fromVuoriyavri Kola Peninsula Mont Saint-Hilaireand the Saint-Amable sill Quebec Canada(Zaitsev et al 1996) The occurrence of

cebaite-(Ce) at Khibina is only the seconddocumented occurrence The first was fromBayan Obo (Zhang and Tao 1986)

There are no data on the chemical compositionof cordylite-(Ce) from carbonatites and our reportis the first for this mineral (Table 9) There arethree distinct chemical compositions of cordylite-(Ce) from Khibina Cordylite-(Ce) with low Caand Sr (Table 9) occurs in manganoan siderite-manganoan ankerite-natrolite veins (CZ III-1)where it forms tabular crystals which areassociated with strontianite and sometimeskukharenkoite-(Ce) High Ca and Sr cordylite-

TABLE 6 Chemical composition of ancylite-(Ce) at Khibina

Rock C II-1Sample 633B795 646001 646451

mean (8) sd mean (21) sd mean (24) sd

SrO 2397 1 25 21 70 1 19 20 65 1 63CaO 1 35 0 40 2 09 0 51 1 93 0 59BaO 0 59 0 09 0 85 0 24 0 85 0 25FeO 0 19 0 35 b d 0 20 0 30La2O3 1308 1 18 15 56 0 83 16 53 1 17Ce2O3 2340 1 04 23 46 1 09 23 59 0 89Pr2O3 1 94 0 11 1 74 0 14 1 69 0 12Nd2O3 5 35 0 52 4 42 0 38 4 34 0 33Sm2O3 0 29 0 06 0 28 0 05 0 23 0 04Gd2O3 0 14 0 13 0 17 0 09 b dThO2 0 53 0 20 b d b dF 2 15 0 30 1 83 0 34 1 19 0 17CO2 2344 23 32 23 07shy O=F2 0 90 0 77 0 50

Total 9551 94 66 93 77

Calculated to 2 (CO3)2shy groups

La 0 300 0 357 0 381Ce 0 532 0 534 0 539Pr 0 044 0 040 0 039Nd 0 119 0 098 0 097Sm 0 006 0 006 0 005Gd 0 003 0 004Th 0 008

Total 1 012 1 038 1 061

Sr 0 864 0 783 0 748Ca 0 090 0 139 0 129Ba 0 014 0 021 0 021Fe 0 010 0 010

Total 0 979 0 943 0 909

F 0 422 0 360 0 235

Na Mg Mn Y and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

237

(Ce) (Table 9) is observed in the same samples asmantles on crystals of low Ca and Sr cordylite-(Ce) and as abundant laths in the surroundingnatrolite and manganoan ankerite (Fig 4b) It hasalso formed as a secondary mineral duringcarbocernaite alteration Cordylite-(Ce) withmoderate Ca and Sr (Table 9) occurs in ferroanrhodochrosite-manganoan ankerite carbonatites(C II-3) and is associated with strontianite

The atomic proportions of Na-Ca and REE-Srpairs show a negative correlation with a slopenear shy 1 and a plot of Na+REE vs Ca+Sr (Fig 5)shows a trend in composition from Sr-Ca-poor toSr-Ca-rich cordylite-(Ce) The slope of thiscorrelation suggests a 11 exchange of Na andREE for Ca and Sr with a substitution scheme ofNa+ + REE3+ Ca2+ + Sr2+ On the basis of theseobservations a general formula for cordylite-(Ce)can be expressed as (NaCa)Ba(REESr)2(CO3)4FOur X-ray and IR data are identical for eachcompositional variety and also identical to thoseof lsquobaiyuneboite-(Ce)rsquo (Fu and Su 1988) whichis now recognized to be cordylite-(Ce) (JZemann personal communication 1996)

Kukharenkoite-(Ce) occurs in Khibina C II-2and C II-3 carbonatites and in carbonate-zeoliteveins (Table 3) It was described as a new mineralby Zaitsev et al (1996) The composition of thekukharenkoite-(Ce) (Zaitsev et al 1996) deter-

FIG 4 (a) BEI of syntaxial intergrowths of synchysite-(Ce) (grey) parisite-(Ce) (grey) and bastnasite-(Ce) (white) CII-2 manganoan ankerite-calcite carbonatite sample 633A414 1 (b) BEI of large crystals of low Ca and Sr cordylite-(Ce) pale grey in centre) associated with laths of high Ca and Sr cordylite-(Ce) (dark grey) and kukharenkoite-(Ce)

(white) CZ III-1 manganoan siderite-manganoan ankerite shy natrolite vein sample 60775

FIG 5 Atomic proportions of Na+REE vs Ca+Sr forcordylite-(Ce)

A N ZAITSEV ETAL

238

mined from electron microprobe analysis is BaO4893 SrO 0 42 MnO 026 Na2O 0 08 CaO0 05 La2O3 6 16 Ce2O3 15 12 Pr2O3 149Nd2O3 4 08 ThO2 0 10 and F 320 wt Theatomic ratios of Ba REE and F are near 211requiring 3 (CO3)

2shy groups per formula unit(calculated CO2 21 73 wt ) and the idealf o r m u l a f o r k u k h a r e n k o i t e - ( C e ) i sBa2REE(CO3)3F

The chemical composition of cebaite-(Ce) fromKhibina was determined by 18 electron micro-

probe analyses (Table 10) Although analysistotals are less then 100 calculated atomic ratiosfor Ba REE and F are near 322 and closelyc o r r e s p o n d t o a n i d e a l f o r m u l a o fBa3REE2(CO3)5F2 Cebaite-(Ce) contains minorSrO (101shy 261 wt ) CaO (033shy 118 wt)and ThO2 (0 49shy 126 wt) in addition rela-tively high MnO (up to 0 83 wt ) and FeO (up to0 61 wt ) were observed in some analyses Allcebaite-(Ce) crystals are unzoned See Table 3 formineralogical details

TABLE 7 Chemical composition of synchysite-(Ce) at Khibina

Rock C II-2 C II-3 C II-1 C II-1 C II-1Sample 633A414 1 604413 633485 5 603265 603165

syntaxial intergrowths secondary after burbankite secondary aftercarbocernaite

mean (8) sd mean (6) sd mean (9) sd mean (15) sd mean (4) sd

CaO 17 47 0 38 16 89 0 62 1618 070 16 08 0 88 17 23 033FeO bd 0 35 0 49 b d b d bdSrO 024 0 12 0 43 0 18 0 87 066 0 59 0 28 056 021BaO 009 0 05 0 15 0 04 0 12 007 0 06 0 05 011 006La2O3 16 54 0 42 13 06 0 58 1798 087 20 34 0 86 13 63 073Ce2O3 26 19 0 85 27 21 0 79 2591 065 25 77 0 50 25 26 085Pr2O3 215 0 12 2 53 0 07 1 94 011 1 78 0 08 258 010Nd2O3 614 0 44 7 90 0 22 5 54 027 4 53 0 41 969 086Sm2O3 038 0 06 0 62 0 10 0 38 004 0 31 0 07 068 038Y2O3 bd b d b d b d 011 009ThO2 bd 0 38 0 21 0 15 009 b d 017 014F 549 0 18 5 69 0 21 5 83 023 5 61 0 23 578 011CO2 28 12 27 81 2718 27 59 28 11shy O=F2 231 2 40 2 46 2 36 243

Total 10049 100 62 9961 100 30 101 46

Calculated to 2 (CO3)2shy groups

Ca 0975 0 953 0 934 0 915 0962Sr 0007 0 013 0 027 0 018 0017Ba 0002 0 003 0 002 0 001 0002Fe 0 015

Total 0984 0 985 0 964 0 934 0981

La 0318 0 254 0 357 0 398 0262Ce 0499 0 524 0 511 0 501 0481Pr 0041 0 049 0 038 0 034 0049Nd 0114 0 149 0 107 0 086 0180Sm 0007 0 011 0 007 0 006 0012Y 0003Th 0 005 0 002 0002

Total 0979 0 991 1 022 1 025 0990F 0904 0 948 0 994 0 943 0953

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

239

Y-rich carbonates mckelveyite-(Y) ewaldite anddonnayite-(Y)

A detailed description of these minerals fromKhibina Vuoriyarvi and Sallanlatvi is given byVoloshin et al (1990 1992) This was the firsttime that they had been documented in carbona-tites Mckelveyite-(Y) is the best-studied of thegroup at Khibina (Table 3)

Chemical compositions of mckelveyite-(Y) andewaldite from Kola carbonatites are represented by

three electron microprobe analyses of mckelveyite-(Y) from Vuoriyarvi carbonatites one from theSallanlatvi carbonatite and two analyses ofewaldite from Vuoriyarvi (Voloshin et al 19901992) However even these limited data showcompositional variation and three groups havebeen identified Na-free mckelveyite-(Y) Y-freeLREE-enriched mckelveyite and Y-free ewaldite

Five separate crystals of mckelveyite-(Y) wereanalysed from Khibina (Table 11) and areuniform in chemical composition The formula

TABLE 8 Chemical composition of parisite-(Ce) and bastnasite-(Ce) at Khibina

Rock C II-2 C II-3 C II-2Sample 633A4141 604413 633A414 1Mineral parisite-(Ce) bastnasite-(Ce)

mean (2) mean (5) sd mean (6) sd

CaO 9 72 9 29 1 03 084 0 29SrO 0 56 0 79 0 18 085 0 34BaO 0 07 0 30 0 29 008 0 05FeO 0 05 0 38 0 28La2O3 1963 15 96 0 72 26 35 0 99Ce2O3 3172 32 28 0 45 37 41 0 54Pr2O3 2 30 2 87 0 14 250 0 13Nd2O3 6 83 8 74 0 22 660 0 48Sm2O3 0 45 0 60 0 02 036 0 07Y2O3 0 10 0 22 0 12 bdThO2 b d 0 24 0 10 bdF 7 02 6 79 0 17 811 0 22CO2 2433 24 54 20 67shy O=F2 2 95 2 86 342

Total 9982 100 13 100 35

Calculated to 3 (CO3)2shy groups Calculated to 1 (CO3)

2shy groupCa 0 941 0 892 0033Sr 0 029 0 041 0018Ba 0 002 0 011 0001Fe 0 004 0 029

Total 0 976 0 972

La 0 654 0 527 0357Ce 1 048 1 057 0503Pr 0 076 0 094 0033Nd 0 220 0 280 0087Sm 0 014 0 018 0005Y 0 005 0 010Th 0 005

Total 2 017 1 992 1037

F 2 004 1 923 0942

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

240

of mckelveyite-(Y) is still the subject of debate Inthe original description Milton et al (1965) gavethe formula as Na19Ba40Ca11Sr02REE15U03

(CO3)9 5H2O Later Chao et al (1978) suggestedan isomorphous relationship between mckel-veyite-(Y) and donnayite-(Y) and gave theformula of NaCaBa3Y(CO3)6 3H2O In a recentstudy of mckelveyite-(Y) and ewaldite Voloshinet al (1990 1992) showed a similarity betweenthese two minerals and suggested that they areprobably polymorphs The formula of ewalditewas determined as (CaNaREE )(BaSr )(CO3)2 nH2O where part of the H2O is zeolitic

Chemical data from the Khibina mckelveyite-(Y) were calculated on the basis of the IMAaccepted formula NaCaBa3Y(CO3)6 3H2O (Table

11) Our data and those of Voloshin et al (1990)show significant substitutions the main one beingBa2+ Sr2+ which is related to the mckelveyite-(Y)-donnayite-(Y) pair where these minerals are Baand Sr end-members respectively The assignationof REE to two different sites in the mckelveyite-(Y) formula is problematic It is based on formulabalance and the REE chondrite-normalizeddistribution which is discussed below in thesection on lsquoRare earth patternsrsquo

Strontianite baryte barytocalcite edingtonite andharmotome

Minerals rich in Ba and Sr but with no REE arerepresented in the Khibina carbonatites by

TABLE 9 Chemical composition of cordylite-(Ce) at Khibina

Rock CZ III-1 C II-3 CZ III-1 CZ III-1 C II-1Sample 60775 6032646 6032515 60775 6031650Variety low Ca and Sr moderate Ca and Sr high Ca and Sr

mean (15) sd mean (17) sd mean (15) sd mean (10) sd mean (17) sd

Na2O 412 0 12 3 66 0 24 3 67 0 12 2 60 0 15 256 0 16CaO 073 0 18 1 54 0 31 1 50 0 08 3 82 0 18 410 0 26SrO 058 0 23 2 48 0 57 2 09 0 31 6 03 0 43 590 0 50BaO 22 28 0 33 22 29 0 51 22 32 0 32 23 02 0 25 23 11 0 36La2O3 994 0 36 10 46 0 38 11 82 0 53 7 58 0 30 11 49 0 51Ce2O3 24 46 0 43 23 82 0 68 22 18 0 28 20 26 0 38 17 90 0 67Pr2O3 241 0 18 1 85 0 24 1 69 0 25 2 19 0 27 145 0 30Nd2O3 747 0 49 5 88 0 31 5 70 0 41 6 97 0 49 536 0 54ThO2 011 0 17 0 13 0 14 0 12 0 16 0 13 0 12 013 0 16F 262 0 10 2 97 0 28 2 95 0 33 2 60 0 08 285 0 31CO2 24 92 25 16 24 78 25 77 25 75shy O=F2 110 1 25 1 24 1 10 120

Total 98 55 98 98 97 57 99 88 99 40

Calculated for 4 (CO3)2shy groups

Na 0945 0 821 0 837 0 579 0567Ca 0093 0 191 0 189 0 470 0501

Total 1038 1 012 1 026 1 049 1068

Ba 1032 1 011 1 028 1 036 1033La 0434 0 446 0 513 0 321 0483Ce 1058 1 008 0 954 0 851 0747Pr 0104 0 078 0 072 0 092 0060Nd 0315 0 243 0 239 0 286 0218Sr 0040 0 167 0 142 0 402 0390Th 0003 0 003 0 003 0 003 0003

Total 1954 1 945 1 923 1 955 1901

F 0981 1 088 1 096 0 946 1029

Fe Mn and Sm are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

241

strontianite baryte barytocalcite edingtonite andharmotome (Table 3) The first two minerals arecommon in late-stage carbonatites e g MountainPass (Olsen et al 1954) Vuoriyarvi SeblyavrSallanlatvi (Kapustin 1980) Sarnu-Dandali (Wallet al 1993) and Kangankunde (Wall andMariano 1996)

Barytocalcite is extremely rare in carbonatitesand has been described only from Vuoriyarvi andan unnamed Siberian carbonatite (Kapustin 1980)and possibly Chipman Lake (Platt and Woolley1990)

Edingtonite and harmotome are bariumzeolites Their occurrence at Khibina is the first

TABLE 10 Chemical composition of cebaite-(Ce) at Khibina

Rock CZ III-1Sample 6031435Analysis 14 24 25 29 30 33 Mean (18) Sd

Na2O 0 09 0 10 0 08 0 11 0 13 0 10 0 10 0 03CaO 0 40 1 18 0 47 0 61 0 52 0 70 0 61 0 21MnO 0 07 0 47 0 12 0 73 0 83 0 13 0 16 0 24FeO 0 45 0 13 b d 0 14 0 61 b d 0 16 0 19SrO 1 40 1 27 1 45 1 25 1 28 1 31 1 43 0 36BaO 43 93 40 51 42 19 42 09 42 59 42 93 42 77 1 84La2O3 5 30 7 28 6 71 5 58 5 48 5 72 5 67 0 52Ce2O3 13 59 14 33 14 52 14 66 13 66 14 91 14 45 1 16Pr2O3 1 54 1 69 1 83 1 78 1 51 1 81 1 63 0 19Nd2O3 6 15 5 69 5 99 6 32 5 70 5 34 5 54 0 48Sm2O3 0 60 0 61 0 50 0 38 0 42 0 34 0 48 0 11Eu2O3 0 17 0 18 b d 0 24 b d b d 0 07 0 11Gd2O3 0 59 0 66 0 53 0 49 0 40 0 37 0 50 0 13ThO2 0 99 0 51 0 49 0 92 1 07 0 99 0 92 0 22F 4 24 4 10 4 15 3 78 3 99 3 61 3 76 0 21CO2 21 57 21 79 21 41 21 79 21 65 21 41 21 42shy O=F2 1 78 1 73 1 75 1 59 1 68 1 52 1 58

Total 99 31 98 77 98 78 99 29 98 15 98 15 98 10

Calculated for 5 (CO3)2shy groups

Na 0 031 0 032 0 025 0 038 0 042 0 034 0 032Ca 0 073 0 212 0 085 0 111 0 095 0 130 0 114Mn 0 010 0 066 0 018 0 105 0 119 0 018 0 023Fe 0 064 0 018 0 020 0 087 0 023Sr 0 137 0 124 0 143 0 123 0 127 0 132 0 144Ba 2 915 2 659 2 802 2 805 2 855 2 926 2 900

Total 3 230 3 111 3 072 3 201 3 325 3 240 3 236

La 0 331 0 450 0 419 0 350 0 346 0 367 0 362Ce 0 841 0 878 0 900 0 911 0 854 0 948 0 914Pr 0 095 0 103 0 113 0 110 0 094 0 115 0 102Nd 0 372 0 340 0 362 0 384 0 348 0 332 0 342Sm 0 035 0 035 0 029 0 022 0 024 0 021 0 029Eu 0 010 0 011 0 014 0 004Gd 0 033 0 036 0 030 0 028 0 023 0 021 0 029Th 0 038 0 019 0 019 0 036 0 042 0 039 0 036

Total 1 755 1 872 1 873 1 855 1 730 1 843 1 819

F 2 268 2 174 2 221 2 033 2 159 1 986 2 057

Y Dy Er Yb and Lu are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

242

TABLE 11 Chemical position of mckelveyite-(Y) at Khibina

Rock CZ IIISample 6031435Point 1 2 4 5 9 10 Mean (12) sd

Na2O 3 12 3 05 3 21 3 10 3 33 3 14 3 19 0 10CaO 4 56 4 34 4 32 4 34 4 20 4 72 4 43 0 38MnO 0 06 b d b d b d b d 0 06FeO b d b d 0 64 b d 0 07 0 11 0 18 0 26BaO 29 43 29 89 28 47 28 73 29 69 27 13 28 97 0 98SrO 9 16 9 56 9 29 10 41 8 25 12 42 9 56 1 26Y2O3 6 39 6 33 5 32 7 02 5 84 8 42 6 44 0 93La2O3 1 22 1 22 1 60 0 85 1 84 0 96 1 34 0 34Ce2O3 1 93 1 79 2 43 1 17 2 96 1 77 2 18 0 65Pr2O3 0 22 0 22 0 15 0 30 0 24 0 15 0 22 0 06Nd2O3 0 69 0 77 0 91 1 11 0 71 0 37 0 84 0 24Sm2O3 0 81 0 87 0 81 0 89 0 85 0 20 0 78 0 23Eu2O3 0 49 0 64 0 50 0 36 0 60 0 34 0 47 0 10Gd2O3 2 15 1 94 2 18 2 05 2 32 1 05 2 02 0 38Dy2O3 2 39 2 40 2 97 2 29 2 83 2 00 2 48 0 29Er2O3 1 03 1 09 1 28 0 87 0 68 1 03 0 94 0 19Yb2O3 0 44 0 44 0 56 0 59 0 25 0 61 0 47 0 12ThO2 b d 0 17 b d b d b d b dF 0 18 0 15 b d b d 0 17 0 16 0 14 0 09CO2 25 71 25 70 25 86 25 81 25 71 26 72 25 93H2O 10 52 10 51 10 58 10 56 10 52 10 93 10 61shy O=F2 0 07 0 06 0 07 0 07 0 06

Total 100 43 101 01 101 07 100 44 100 98 102 24 101 13

Calculated to 6 (CO3)2shy and 3H2O groups

Na 1 000 0 984 1 000 1 000 1 000 0 978 1 000Ca 0 735 0 757 0 561 0 778 0 565 0 785 0 676Na 0 009 0 040 0 006 0 075 0 023La 0 075 0 075 0 099 0 052 0 113 0 057 0 082Ce 0 118 0 109 0 148 0 071 0 181 0 104 0 132Pr 0 013 0 013 0 009 0 018 0 014 0 009 0 013Nd 0 041 0 046 0 054 0 067 0 042 0 021 0 050Mn 0 009 0 008 0 000Fe 0 089 0 010 0 015 0 025

Total 1 000 1 000 1 000 0 992 1 000 1 000 1 000

Ba 1 923 1 950 1 865 1 884 1 941 1 707 1 880Sr 0 885 0 922 0 900 1 009 0 798 1 156 0 917Ca 0 080 0 017 0 212 0 185 0 026 0 110

Total 2 888 2 890 2 977 2 893 2 924 2 889 2 907

Y 0 567 0 561 0 473 0 625 0 518 0 719 0 567Sm 0 047 0 050 0 047 0 051 0 049 0 011 0 045Eu 0 028 0 036 0 029 0 021 0 034 0 018 0 026Gd 0 119 0 107 0 121 0 114 0 128 0 056 0 111Dy 0 128 0 129 0 160 0 123 0 152 0 104 0 132Er 0 054 0 057 0 067 0 045 0 036 0 052 0 049Yb 0 023 0 022 0 028 0 030 0 013 0 030 0 024Th 0 007

Total 0 965 0 969 0 925 1 009 0 930 0 990 0 954

F 0 092 0 081 0 088 0 082 0 071

Lu is below detection limit CO2 and H2O calculated by stoichiometry

REE-SR-BA MINERALS

243

TA

BL

E12

C

hem

ical

com

posi

tion

ofst

ront

iani

teat

Khi

bina

Roc

kC

II-2

CII

-3C

ZII

I-1

CII

-1C

II-1

CII

-1S

ampl

e63

3A4

141

604

413

060

325

15

646

451

060

336

364

600

1pr

imar

yst

ront

iani

teas

soci

ated

wit

hse

cond

ary

stro

ntia

nite

(aft

erbu

rban

kite

)as

soci

ated

wit

hsy

nchy

site

-(C

e)

sync

hysi

te-(

Ce)

cord

ylit

e-(C

e)an

cyli

te-(

Ce)

sync

hysi

te-(

Ce)

ancy

lite

-(C

e)an

dba

ryte

pari

site

-(C

e)an

dan

dpa

risi

te-(

Ce)

and

bary

tean

dba

ryte

bast

nasi

te-(

Ce)

mea

n(1

0)sd

mea

n(6

)sd

mea

n(3

)m

ean

(25)

sdm

ean

(4)

sdm

ean

(6)

sdm

ean

(4)

sdm

ean

(8)

sdco

rem

antl

eri

m

Na 2

Ob

db

db

d0

140

05b

d0

210

050

100

04b

dC

aO3

250

563

230

443

073

461

003

370

331

580

373

720

325

970

20S

rO66

21

068

668

00

5166

62

635

71

2664

34

051

682

00

6063

95

100

625

80

78B

aO0

190

170

160

070

221

610

471

630

150

720

290

830

092

000

57L

a 2O

3b

db

d0

160

480

20b

d0

620

120

330

060

150

04C

e 2O

30

180

120

110

110

570

610

240

190

080

760

160

420

050

250

05C

O2

307

930

99

310

530

71

305

131

11

306

931

99

Tot

al10

063

101

2910

169

100

5810

004

103

2010

004

102

94

Cal

cula

ted

to1

(CO

3)2

shygr

oup

Na

000

60

010

000

5C

a0

083

008

20

077

008

80

087

004

00

095

014

6S

r0

913

091

50

911

087

90

895

093

10

885

083

1B

a0

002

000

10

002

001

50

015

000

70

008

001

8L

a0

001

000

40

005

000

30

001

Ce

000

20

001

000

50

005

000

20

007

000

40

002

Tot

al0

999

100

00

997

099

80

999

099

90

999

099

8

Mg

Mn

Fe

Pr

Nd

Sm

Y

T

han

dU

are

belo

wde

tect

ion

lim

its

CO

2ca

lcul

ated

byst

oich

iom

etry

A N ZAITSEV ETAL

244

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 11: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

burbankite from calcite rich in Na Sr and REE asmight be thought at first from Fig 3a and asproposed for a similar occurrence by Knudsen(1991) because the burbankite crystals areassociated with euhedral zoned apatites Theyare more likely to be the result of lsquocotecticrsquocrystallization of burbankite and calcite after theprecipitation of the apatite

Carbocernaite has been found in many Khibinacarbonatite samples (Table 3) It was describedoriginally as a primary mineral crystallized at alate stage of carbonatite formation at VuorijarviKola Peninsula (Bulakh et al 1961) Zdorik(1966) and Kapustin (1980) found that carbocer-naite in carbonatites from the Ozernyi andVuoriyarvi massifs occurs as a secondarymineral after burbankite The most unusualoccurrence of carbocernaite is the exsolutionlamellae and cotectic textures for carbocernaiteand calcite in Sarnu-Dandali carbonatitedescribed by Wall et al (1993) Carbocernaite isalso reported from carbonatite in the Si PanRange Vietnam (Bulakh and Izokh 1966)

Carbocernaite like burbankite is a doublecarbonate with a general formula AB(CO3)2 withNa and Ca in the A-site and Sr REE and Ba in theB-site There are few studies of the chemicalcomposition of carbocernaite Before the detailedinvestigation of Wall et al (1993) only a few wetchemical analyses were published (Bulakh et al 1961 Bulakh and Izokh 1966 Zdorik 1966Kapustin 1980) Although available data forcarbocernaite show some variation in thecontent of major elements there is less variationthan in burbankite The Na2O values range from243 to 612 wt the BaO from 095 to 596 theSrO from 558 to 2398 the CaO from 1593 to1927 and the SREE2O3 from 17 06 to 2631 allwt In general the compositional variations inburbankite and carbocernaite are similar butcarbocernaite contains less Na2O (commonlyabout 4 shy 5 wt ) compared with burbankite(commonly about 10 shy 12 wt ) This differencein sodium content makes it possible to identifycarbocernaite and burbankite on the basis ofelectron microprobe analyses

Selected average compositions of carbocernaitefrom Khibina are given in Table 5 These datashow that carbocernaite from the Khibinacarbonatites is a low Ba variety Khibinacarbocernaite like burbankite is not zoned

Harris (1972) reported high F (3 86 wt ) incarbocernaite from Sturgeon Narrows Canadaand proposed that F together with OH could be

additional anion group (FOH)2 in the mineralformula Our data show that the F content ofKhibina carbocernaite is near the electron micro-probe detection limit of about 0 1 wt and IRinvestigations show an absence of any absorptionband related to OH- group or H2O It is possiblethat the mineral described from the SturgeonNarrows is a different mineral species The lackof Na in Sturgeon Narrows carbocernaite alsosupports our conclusion

In the Khibina carbonatite samples burbankiteand carbocernaite do not occur together so it hasnot been possible to establish their relative agesHowever both burbankite and carbocernaite-containing carbonatites are cut by later C II-2and C II-3 carbonatites

TABLE 5 Chemical composition of carbocernaite atKhibina

Rock C II-1Sample 603165 603287

mean (12) sd mean (10) sd

Na2O 4 98 0 18 4 33 0 42CaO 11 94 0 42 1360 0 33SrO 22 33 0 76 2020 0 27BaO 0 37 0 13 0 56 0 07La2O3 9 27 0 61 1053 0 33Ce2O3 13 19 0 51 1419 0 30Pr2O3 0 97 0 09 0 94 0 08Nd2O3 2 34 0 25 2 56 0 19Sm2O3 0 14 0 05 0 32 0 04F 0 10 0 10 0 14 0 03CO2 32 79 3379shy O=F2 0 04 0 06

Total 98 36 10110

Calculated to 2 (CO3)2shy groups

Na 0 431 0 364Ca 0 571 0 632A site total 1 003 0 996

Sr 0 578 0 508La 0 153 0 168Ce 0 216 0 225Pr 0 016 0 015Nd 0 037 0 040Sm 0 002 0 005Ba 0 007 0 010B site total 1 008 0 971F 0 014 0 019

Mg Mn Fe Gd Y Th and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

235

Alteration of burbankite and carbocernaite

Burbankite in carbonatites is commonly replacedby ancylite-(Ce) strontianite and baryte (Somina1975 Kapustin 1980) and rarely by ancylite-(Ce)calkinsite lanthanite and baryte (Pecora and Kerr1953) Multi-stage alteration of burbankite fromthe Ozernyi carbonatites has been documented byZdorik (1966) where carbocernaite strontianitebastnasite-(Ce) calcite baryte allanite-(Ce)monazite-(Ce) and epidote have been identifiedas alteration products of burbankite

In the Khibina carbonatites burbankite andcarbocernaite are commonly replaced by variouscombinationsof ancylite-(Ce) strontianite synch-ysite-(Ce) baryte less commonly by cordylite-(Ce) and rarely by harmotome and edingtonite(Table 3) Even when burbankite is completelyreplaced evidence of its existence is preserved inthe form of hexagonal prismatic pseudomorphs(Fig 3b) and islands of relict burbankite (Fig 3cand d) Pseudomorphs of a similar form have beenmentioned from some other rare earth-richcarbonatites e g Gem Park Wigu HillKangankunde (Wall and Mariano 1996) but inthese cases there is no evidence of the precursormineral The presence of primary and replacedburbankite at Khibina is good evidence that thepseudomorphs reported from these other carbo-natites may well have originally been burbankite

Ancylite

Ancylite-(Ce) is a hydrous carbonate containingREE and Sr as major cations On the basis of astructural study of material from the Mont Saint-Hilaire massif its formula has been proposed asREEx(SrCa)2 shy x(CO3)2(OH)x (2 shy x)H2O with acation-anion substitution of Sr2+ + H2O gtREE3+ + OH shy (Dal Negro et al 1975)Although ancylite-(Ce) is a relatively commonmineral in carbonatites there are only a fewanalyses available (Kukharenko et al 1965Kapustin 1980 Knudsen 1991) and this is thefirst detailed investigation of its chemicalcomposition Selected average chemical composi-tions are given in Table 6 The composition ofancylite-(Ce) from Khibina is relatively uniformwith Ca Ba and Th present only as traces Theatomic proportion of Sr and REE in the formula isnear 11 with a small excess of REE An importantfinding is the presence of fluorine in ancylite-(Ce)The Khibina ancylite-(Ce) contains between 0 75and 250 wt of fluorine corresponding to

0 148shy 0 488 F per formula unit Since REE andSr are present in equal abundances it is suggestedthat F- substitutes for OH- Thus the mineral fromthe Khibina carbonatites can be classified as F-bearing ancylite-(Ce) Fluorine was also detectedin two ancylite-(Ce) samples from Qaqarssukcarbonatites at 0 37 and 058 wt respectively(Knudsen 1991)

Ca-REE fluocarbonates

Synchysite-(Ce)is common at Khibina bastnasite-(Ce) and parisite-(Ce) are also found but are rare(Table 3) The textures vary as described in Table3 and include syntaxial intergrowths (Fig 4a)Ca-REE fluocarbonates are present in numerouscarbonatites e g Mountain Pass (Olsen et al 1954) Gatineau (Hogarth et al 1985)Kizilcaoren (Hatzl 1992) Tundulu (Ngwenya1994) and are the most well-studied of thecarbonatite REE-minerals (e g Kapustin 1980Hogarth et al 1985 Andersen 1986 Wall andMariano 1996) Selected average microprobeanalyses of Khibina synchysite-(Ce) made onminerals from different mineral assemblages arepresented in Table 7 Synchysite-(Ce) is char-acterized by having little substitution of otherelements for Ca and REE Primary synchysite-(Ce) from syntaxial intergrowths secondarysynchysite-(Ce) from the alteration products ofburbankite carbocernaite and syntaxial inter-growths of synchysite-(Ce) with parisite-(Ce) allhave similar chemical compositions Sr Ba and Thare typical minor constituentsin all the synchysite-(Ce) and Fe is present in the red variety associatedwith manganoan ankerite or ferroan kutnohorite

Parisite-(Ce) and bastnasite-(Ce) (Table 8) arenear their theoretical compositions with onlyminor amounts of Sr and Ba substituting for Caand Th substituting for REE

Syntaxial intergrowths of Ca-REE fluocarbo-nates are considered to be evidence for theirprimary origin the intergrowth being related tochanges in the chemical composition of the hostfluid (Ni et al 1993)

Ba-REE fluocarbonates

Ba-REE fluocarbonates are extremely rare incarbonatites Huanghoite-(Ce) is the onlymember of the group previously described froman unnamed Siberian carbonatite (Kapustin 1973)and from Qaqarssuk carbonatites (Knudsen1991) However cordylite-(Ce) kukharenkoite-

A N ZAITSEV ETAL

236

(Ce) and cebaite-(Ce) have all been identified atKhibina (Table 3)

Cordylite-(Ce) is known only from Greenland(Flink 1901) Mont Saint-Hilaire Canada (Chenand Chao 1975) and Bayan Obo China (Zhangand Tao 1986) Its occurrence at Khibina is thefirst documented occurrence which is certainlyfrom carbonatites Kukharenkoite-(Ce) is a newBa-REE fluocarbonate mineral which has beenfound in the Khibina carbonatites and fromVuoriyavri Kola Peninsula Mont Saint-Hilaireand the Saint-Amable sill Quebec Canada(Zaitsev et al 1996) The occurrence of

cebaite-(Ce) at Khibina is only the seconddocumented occurrence The first was fromBayan Obo (Zhang and Tao 1986)

There are no data on the chemical compositionof cordylite-(Ce) from carbonatites and our reportis the first for this mineral (Table 9) There arethree distinct chemical compositions of cordylite-(Ce) from Khibina Cordylite-(Ce) with low Caand Sr (Table 9) occurs in manganoan siderite-manganoan ankerite-natrolite veins (CZ III-1)where it forms tabular crystals which areassociated with strontianite and sometimeskukharenkoite-(Ce) High Ca and Sr cordylite-

TABLE 6 Chemical composition of ancylite-(Ce) at Khibina

Rock C II-1Sample 633B795 646001 646451

mean (8) sd mean (21) sd mean (24) sd

SrO 2397 1 25 21 70 1 19 20 65 1 63CaO 1 35 0 40 2 09 0 51 1 93 0 59BaO 0 59 0 09 0 85 0 24 0 85 0 25FeO 0 19 0 35 b d 0 20 0 30La2O3 1308 1 18 15 56 0 83 16 53 1 17Ce2O3 2340 1 04 23 46 1 09 23 59 0 89Pr2O3 1 94 0 11 1 74 0 14 1 69 0 12Nd2O3 5 35 0 52 4 42 0 38 4 34 0 33Sm2O3 0 29 0 06 0 28 0 05 0 23 0 04Gd2O3 0 14 0 13 0 17 0 09 b dThO2 0 53 0 20 b d b dF 2 15 0 30 1 83 0 34 1 19 0 17CO2 2344 23 32 23 07shy O=F2 0 90 0 77 0 50

Total 9551 94 66 93 77

Calculated to 2 (CO3)2shy groups

La 0 300 0 357 0 381Ce 0 532 0 534 0 539Pr 0 044 0 040 0 039Nd 0 119 0 098 0 097Sm 0 006 0 006 0 005Gd 0 003 0 004Th 0 008

Total 1 012 1 038 1 061

Sr 0 864 0 783 0 748Ca 0 090 0 139 0 129Ba 0 014 0 021 0 021Fe 0 010 0 010

Total 0 979 0 943 0 909

F 0 422 0 360 0 235

Na Mg Mn Y and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

237

(Ce) (Table 9) is observed in the same samples asmantles on crystals of low Ca and Sr cordylite-(Ce) and as abundant laths in the surroundingnatrolite and manganoan ankerite (Fig 4b) It hasalso formed as a secondary mineral duringcarbocernaite alteration Cordylite-(Ce) withmoderate Ca and Sr (Table 9) occurs in ferroanrhodochrosite-manganoan ankerite carbonatites(C II-3) and is associated with strontianite

The atomic proportions of Na-Ca and REE-Srpairs show a negative correlation with a slopenear shy 1 and a plot of Na+REE vs Ca+Sr (Fig 5)shows a trend in composition from Sr-Ca-poor toSr-Ca-rich cordylite-(Ce) The slope of thiscorrelation suggests a 11 exchange of Na andREE for Ca and Sr with a substitution scheme ofNa+ + REE3+ Ca2+ + Sr2+ On the basis of theseobservations a general formula for cordylite-(Ce)can be expressed as (NaCa)Ba(REESr)2(CO3)4FOur X-ray and IR data are identical for eachcompositional variety and also identical to thoseof lsquobaiyuneboite-(Ce)rsquo (Fu and Su 1988) whichis now recognized to be cordylite-(Ce) (JZemann personal communication 1996)

Kukharenkoite-(Ce) occurs in Khibina C II-2and C II-3 carbonatites and in carbonate-zeoliteveins (Table 3) It was described as a new mineralby Zaitsev et al (1996) The composition of thekukharenkoite-(Ce) (Zaitsev et al 1996) deter-

FIG 4 (a) BEI of syntaxial intergrowths of synchysite-(Ce) (grey) parisite-(Ce) (grey) and bastnasite-(Ce) (white) CII-2 manganoan ankerite-calcite carbonatite sample 633A414 1 (b) BEI of large crystals of low Ca and Sr cordylite-(Ce) pale grey in centre) associated with laths of high Ca and Sr cordylite-(Ce) (dark grey) and kukharenkoite-(Ce)

(white) CZ III-1 manganoan siderite-manganoan ankerite shy natrolite vein sample 60775

FIG 5 Atomic proportions of Na+REE vs Ca+Sr forcordylite-(Ce)

A N ZAITSEV ETAL

238

mined from electron microprobe analysis is BaO4893 SrO 0 42 MnO 026 Na2O 0 08 CaO0 05 La2O3 6 16 Ce2O3 15 12 Pr2O3 149Nd2O3 4 08 ThO2 0 10 and F 320 wt Theatomic ratios of Ba REE and F are near 211requiring 3 (CO3)

2shy groups per formula unit(calculated CO2 21 73 wt ) and the idealf o r m u l a f o r k u k h a r e n k o i t e - ( C e ) i sBa2REE(CO3)3F

The chemical composition of cebaite-(Ce) fromKhibina was determined by 18 electron micro-

probe analyses (Table 10) Although analysistotals are less then 100 calculated atomic ratiosfor Ba REE and F are near 322 and closelyc o r r e s p o n d t o a n i d e a l f o r m u l a o fBa3REE2(CO3)5F2 Cebaite-(Ce) contains minorSrO (101shy 261 wt ) CaO (033shy 118 wt)and ThO2 (0 49shy 126 wt) in addition rela-tively high MnO (up to 0 83 wt ) and FeO (up to0 61 wt ) were observed in some analyses Allcebaite-(Ce) crystals are unzoned See Table 3 formineralogical details

TABLE 7 Chemical composition of synchysite-(Ce) at Khibina

Rock C II-2 C II-3 C II-1 C II-1 C II-1Sample 633A414 1 604413 633485 5 603265 603165

syntaxial intergrowths secondary after burbankite secondary aftercarbocernaite

mean (8) sd mean (6) sd mean (9) sd mean (15) sd mean (4) sd

CaO 17 47 0 38 16 89 0 62 1618 070 16 08 0 88 17 23 033FeO bd 0 35 0 49 b d b d bdSrO 024 0 12 0 43 0 18 0 87 066 0 59 0 28 056 021BaO 009 0 05 0 15 0 04 0 12 007 0 06 0 05 011 006La2O3 16 54 0 42 13 06 0 58 1798 087 20 34 0 86 13 63 073Ce2O3 26 19 0 85 27 21 0 79 2591 065 25 77 0 50 25 26 085Pr2O3 215 0 12 2 53 0 07 1 94 011 1 78 0 08 258 010Nd2O3 614 0 44 7 90 0 22 5 54 027 4 53 0 41 969 086Sm2O3 038 0 06 0 62 0 10 0 38 004 0 31 0 07 068 038Y2O3 bd b d b d b d 011 009ThO2 bd 0 38 0 21 0 15 009 b d 017 014F 549 0 18 5 69 0 21 5 83 023 5 61 0 23 578 011CO2 28 12 27 81 2718 27 59 28 11shy O=F2 231 2 40 2 46 2 36 243

Total 10049 100 62 9961 100 30 101 46

Calculated to 2 (CO3)2shy groups

Ca 0975 0 953 0 934 0 915 0962Sr 0007 0 013 0 027 0 018 0017Ba 0002 0 003 0 002 0 001 0002Fe 0 015

Total 0984 0 985 0 964 0 934 0981

La 0318 0 254 0 357 0 398 0262Ce 0499 0 524 0 511 0 501 0481Pr 0041 0 049 0 038 0 034 0049Nd 0114 0 149 0 107 0 086 0180Sm 0007 0 011 0 007 0 006 0012Y 0003Th 0 005 0 002 0002

Total 0979 0 991 1 022 1 025 0990F 0904 0 948 0 994 0 943 0953

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

239

Y-rich carbonates mckelveyite-(Y) ewaldite anddonnayite-(Y)

A detailed description of these minerals fromKhibina Vuoriyarvi and Sallanlatvi is given byVoloshin et al (1990 1992) This was the firsttime that they had been documented in carbona-tites Mckelveyite-(Y) is the best-studied of thegroup at Khibina (Table 3)

Chemical compositions of mckelveyite-(Y) andewaldite from Kola carbonatites are represented by

three electron microprobe analyses of mckelveyite-(Y) from Vuoriyarvi carbonatites one from theSallanlatvi carbonatite and two analyses ofewaldite from Vuoriyarvi (Voloshin et al 19901992) However even these limited data showcompositional variation and three groups havebeen identified Na-free mckelveyite-(Y) Y-freeLREE-enriched mckelveyite and Y-free ewaldite

Five separate crystals of mckelveyite-(Y) wereanalysed from Khibina (Table 11) and areuniform in chemical composition The formula

TABLE 8 Chemical composition of parisite-(Ce) and bastnasite-(Ce) at Khibina

Rock C II-2 C II-3 C II-2Sample 633A4141 604413 633A414 1Mineral parisite-(Ce) bastnasite-(Ce)

mean (2) mean (5) sd mean (6) sd

CaO 9 72 9 29 1 03 084 0 29SrO 0 56 0 79 0 18 085 0 34BaO 0 07 0 30 0 29 008 0 05FeO 0 05 0 38 0 28La2O3 1963 15 96 0 72 26 35 0 99Ce2O3 3172 32 28 0 45 37 41 0 54Pr2O3 2 30 2 87 0 14 250 0 13Nd2O3 6 83 8 74 0 22 660 0 48Sm2O3 0 45 0 60 0 02 036 0 07Y2O3 0 10 0 22 0 12 bdThO2 b d 0 24 0 10 bdF 7 02 6 79 0 17 811 0 22CO2 2433 24 54 20 67shy O=F2 2 95 2 86 342

Total 9982 100 13 100 35

Calculated to 3 (CO3)2shy groups Calculated to 1 (CO3)

2shy groupCa 0 941 0 892 0033Sr 0 029 0 041 0018Ba 0 002 0 011 0001Fe 0 004 0 029

Total 0 976 0 972

La 0 654 0 527 0357Ce 1 048 1 057 0503Pr 0 076 0 094 0033Nd 0 220 0 280 0087Sm 0 014 0 018 0005Y 0 005 0 010Th 0 005

Total 2 017 1 992 1037

F 2 004 1 923 0942

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

240

of mckelveyite-(Y) is still the subject of debate Inthe original description Milton et al (1965) gavethe formula as Na19Ba40Ca11Sr02REE15U03

(CO3)9 5H2O Later Chao et al (1978) suggestedan isomorphous relationship between mckel-veyite-(Y) and donnayite-(Y) and gave theformula of NaCaBa3Y(CO3)6 3H2O In a recentstudy of mckelveyite-(Y) and ewaldite Voloshinet al (1990 1992) showed a similarity betweenthese two minerals and suggested that they areprobably polymorphs The formula of ewalditewas determined as (CaNaREE )(BaSr )(CO3)2 nH2O where part of the H2O is zeolitic

Chemical data from the Khibina mckelveyite-(Y) were calculated on the basis of the IMAaccepted formula NaCaBa3Y(CO3)6 3H2O (Table

11) Our data and those of Voloshin et al (1990)show significant substitutions the main one beingBa2+ Sr2+ which is related to the mckelveyite-(Y)-donnayite-(Y) pair where these minerals are Baand Sr end-members respectively The assignationof REE to two different sites in the mckelveyite-(Y) formula is problematic It is based on formulabalance and the REE chondrite-normalizeddistribution which is discussed below in thesection on lsquoRare earth patternsrsquo

Strontianite baryte barytocalcite edingtonite andharmotome

Minerals rich in Ba and Sr but with no REE arerepresented in the Khibina carbonatites by

TABLE 9 Chemical composition of cordylite-(Ce) at Khibina

Rock CZ III-1 C II-3 CZ III-1 CZ III-1 C II-1Sample 60775 6032646 6032515 60775 6031650Variety low Ca and Sr moderate Ca and Sr high Ca and Sr

mean (15) sd mean (17) sd mean (15) sd mean (10) sd mean (17) sd

Na2O 412 0 12 3 66 0 24 3 67 0 12 2 60 0 15 256 0 16CaO 073 0 18 1 54 0 31 1 50 0 08 3 82 0 18 410 0 26SrO 058 0 23 2 48 0 57 2 09 0 31 6 03 0 43 590 0 50BaO 22 28 0 33 22 29 0 51 22 32 0 32 23 02 0 25 23 11 0 36La2O3 994 0 36 10 46 0 38 11 82 0 53 7 58 0 30 11 49 0 51Ce2O3 24 46 0 43 23 82 0 68 22 18 0 28 20 26 0 38 17 90 0 67Pr2O3 241 0 18 1 85 0 24 1 69 0 25 2 19 0 27 145 0 30Nd2O3 747 0 49 5 88 0 31 5 70 0 41 6 97 0 49 536 0 54ThO2 011 0 17 0 13 0 14 0 12 0 16 0 13 0 12 013 0 16F 262 0 10 2 97 0 28 2 95 0 33 2 60 0 08 285 0 31CO2 24 92 25 16 24 78 25 77 25 75shy O=F2 110 1 25 1 24 1 10 120

Total 98 55 98 98 97 57 99 88 99 40

Calculated for 4 (CO3)2shy groups

Na 0945 0 821 0 837 0 579 0567Ca 0093 0 191 0 189 0 470 0501

Total 1038 1 012 1 026 1 049 1068

Ba 1032 1 011 1 028 1 036 1033La 0434 0 446 0 513 0 321 0483Ce 1058 1 008 0 954 0 851 0747Pr 0104 0 078 0 072 0 092 0060Nd 0315 0 243 0 239 0 286 0218Sr 0040 0 167 0 142 0 402 0390Th 0003 0 003 0 003 0 003 0003

Total 1954 1 945 1 923 1 955 1901

F 0981 1 088 1 096 0 946 1029

Fe Mn and Sm are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

241

strontianite baryte barytocalcite edingtonite andharmotome (Table 3) The first two minerals arecommon in late-stage carbonatites e g MountainPass (Olsen et al 1954) Vuoriyarvi SeblyavrSallanlatvi (Kapustin 1980) Sarnu-Dandali (Wallet al 1993) and Kangankunde (Wall andMariano 1996)

Barytocalcite is extremely rare in carbonatitesand has been described only from Vuoriyarvi andan unnamed Siberian carbonatite (Kapustin 1980)and possibly Chipman Lake (Platt and Woolley1990)

Edingtonite and harmotome are bariumzeolites Their occurrence at Khibina is the first

TABLE 10 Chemical composition of cebaite-(Ce) at Khibina

Rock CZ III-1Sample 6031435Analysis 14 24 25 29 30 33 Mean (18) Sd

Na2O 0 09 0 10 0 08 0 11 0 13 0 10 0 10 0 03CaO 0 40 1 18 0 47 0 61 0 52 0 70 0 61 0 21MnO 0 07 0 47 0 12 0 73 0 83 0 13 0 16 0 24FeO 0 45 0 13 b d 0 14 0 61 b d 0 16 0 19SrO 1 40 1 27 1 45 1 25 1 28 1 31 1 43 0 36BaO 43 93 40 51 42 19 42 09 42 59 42 93 42 77 1 84La2O3 5 30 7 28 6 71 5 58 5 48 5 72 5 67 0 52Ce2O3 13 59 14 33 14 52 14 66 13 66 14 91 14 45 1 16Pr2O3 1 54 1 69 1 83 1 78 1 51 1 81 1 63 0 19Nd2O3 6 15 5 69 5 99 6 32 5 70 5 34 5 54 0 48Sm2O3 0 60 0 61 0 50 0 38 0 42 0 34 0 48 0 11Eu2O3 0 17 0 18 b d 0 24 b d b d 0 07 0 11Gd2O3 0 59 0 66 0 53 0 49 0 40 0 37 0 50 0 13ThO2 0 99 0 51 0 49 0 92 1 07 0 99 0 92 0 22F 4 24 4 10 4 15 3 78 3 99 3 61 3 76 0 21CO2 21 57 21 79 21 41 21 79 21 65 21 41 21 42shy O=F2 1 78 1 73 1 75 1 59 1 68 1 52 1 58

Total 99 31 98 77 98 78 99 29 98 15 98 15 98 10

Calculated for 5 (CO3)2shy groups

Na 0 031 0 032 0 025 0 038 0 042 0 034 0 032Ca 0 073 0 212 0 085 0 111 0 095 0 130 0 114Mn 0 010 0 066 0 018 0 105 0 119 0 018 0 023Fe 0 064 0 018 0 020 0 087 0 023Sr 0 137 0 124 0 143 0 123 0 127 0 132 0 144Ba 2 915 2 659 2 802 2 805 2 855 2 926 2 900

Total 3 230 3 111 3 072 3 201 3 325 3 240 3 236

La 0 331 0 450 0 419 0 350 0 346 0 367 0 362Ce 0 841 0 878 0 900 0 911 0 854 0 948 0 914Pr 0 095 0 103 0 113 0 110 0 094 0 115 0 102Nd 0 372 0 340 0 362 0 384 0 348 0 332 0 342Sm 0 035 0 035 0 029 0 022 0 024 0 021 0 029Eu 0 010 0 011 0 014 0 004Gd 0 033 0 036 0 030 0 028 0 023 0 021 0 029Th 0 038 0 019 0 019 0 036 0 042 0 039 0 036

Total 1 755 1 872 1 873 1 855 1 730 1 843 1 819

F 2 268 2 174 2 221 2 033 2 159 1 986 2 057

Y Dy Er Yb and Lu are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

242

TABLE 11 Chemical position of mckelveyite-(Y) at Khibina

Rock CZ IIISample 6031435Point 1 2 4 5 9 10 Mean (12) sd

Na2O 3 12 3 05 3 21 3 10 3 33 3 14 3 19 0 10CaO 4 56 4 34 4 32 4 34 4 20 4 72 4 43 0 38MnO 0 06 b d b d b d b d 0 06FeO b d b d 0 64 b d 0 07 0 11 0 18 0 26BaO 29 43 29 89 28 47 28 73 29 69 27 13 28 97 0 98SrO 9 16 9 56 9 29 10 41 8 25 12 42 9 56 1 26Y2O3 6 39 6 33 5 32 7 02 5 84 8 42 6 44 0 93La2O3 1 22 1 22 1 60 0 85 1 84 0 96 1 34 0 34Ce2O3 1 93 1 79 2 43 1 17 2 96 1 77 2 18 0 65Pr2O3 0 22 0 22 0 15 0 30 0 24 0 15 0 22 0 06Nd2O3 0 69 0 77 0 91 1 11 0 71 0 37 0 84 0 24Sm2O3 0 81 0 87 0 81 0 89 0 85 0 20 0 78 0 23Eu2O3 0 49 0 64 0 50 0 36 0 60 0 34 0 47 0 10Gd2O3 2 15 1 94 2 18 2 05 2 32 1 05 2 02 0 38Dy2O3 2 39 2 40 2 97 2 29 2 83 2 00 2 48 0 29Er2O3 1 03 1 09 1 28 0 87 0 68 1 03 0 94 0 19Yb2O3 0 44 0 44 0 56 0 59 0 25 0 61 0 47 0 12ThO2 b d 0 17 b d b d b d b dF 0 18 0 15 b d b d 0 17 0 16 0 14 0 09CO2 25 71 25 70 25 86 25 81 25 71 26 72 25 93H2O 10 52 10 51 10 58 10 56 10 52 10 93 10 61shy O=F2 0 07 0 06 0 07 0 07 0 06

Total 100 43 101 01 101 07 100 44 100 98 102 24 101 13

Calculated to 6 (CO3)2shy and 3H2O groups

Na 1 000 0 984 1 000 1 000 1 000 0 978 1 000Ca 0 735 0 757 0 561 0 778 0 565 0 785 0 676Na 0 009 0 040 0 006 0 075 0 023La 0 075 0 075 0 099 0 052 0 113 0 057 0 082Ce 0 118 0 109 0 148 0 071 0 181 0 104 0 132Pr 0 013 0 013 0 009 0 018 0 014 0 009 0 013Nd 0 041 0 046 0 054 0 067 0 042 0 021 0 050Mn 0 009 0 008 0 000Fe 0 089 0 010 0 015 0 025

Total 1 000 1 000 1 000 0 992 1 000 1 000 1 000

Ba 1 923 1 950 1 865 1 884 1 941 1 707 1 880Sr 0 885 0 922 0 900 1 009 0 798 1 156 0 917Ca 0 080 0 017 0 212 0 185 0 026 0 110

Total 2 888 2 890 2 977 2 893 2 924 2 889 2 907

Y 0 567 0 561 0 473 0 625 0 518 0 719 0 567Sm 0 047 0 050 0 047 0 051 0 049 0 011 0 045Eu 0 028 0 036 0 029 0 021 0 034 0 018 0 026Gd 0 119 0 107 0 121 0 114 0 128 0 056 0 111Dy 0 128 0 129 0 160 0 123 0 152 0 104 0 132Er 0 054 0 057 0 067 0 045 0 036 0 052 0 049Yb 0 023 0 022 0 028 0 030 0 013 0 030 0 024Th 0 007

Total 0 965 0 969 0 925 1 009 0 930 0 990 0 954

F 0 092 0 081 0 088 0 082 0 071

Lu is below detection limit CO2 and H2O calculated by stoichiometry

REE-SR-BA MINERALS

243

TA

BL

E12

C

hem

ical

com

posi

tion

ofst

ront

iani

teat

Khi

bina

Roc

kC

II-2

CII

-3C

ZII

I-1

CII

-1C

II-1

CII

-1S

ampl

e63

3A4

141

604

413

060

325

15

646

451

060

336

364

600

1pr

imar

yst

ront

iani

teas

soci

ated

wit

hse

cond

ary

stro

ntia

nite

(aft

erbu

rban

kite

)as

soci

ated

wit

hsy

nchy

site

-(C

e)

sync

hysi

te-(

Ce)

cord

ylit

e-(C

e)an

cyli

te-(

Ce)

sync

hysi

te-(

Ce)

ancy

lite

-(C

e)an

dba

ryte

pari

site

-(C

e)an

dan

dpa

risi

te-(

Ce)

and

bary

tean

dba

ryte

bast

nasi

te-(

Ce)

mea

n(1

0)sd

mea

n(6

)sd

mea

n(3

)m

ean

(25)

sdm

ean

(4)

sdm

ean

(6)

sdm

ean

(4)

sdm

ean

(8)

sdco

rem

antl

eri

m

Na 2

Ob

db

db

d0

140

05b

d0

210

050

100

04b

dC

aO3

250

563

230

443

073

461

003

370

331

580

373

720

325

970

20S

rO66

21

068

668

00

5166

62

635

71

2664

34

051

682

00

6063

95

100

625

80

78B

aO0

190

170

160

070

221

610

471

630

150

720

290

830

092

000

57L

a 2O

3b

db

d0

160

480

20b

d0

620

120

330

060

150

04C

e 2O

30

180

120

110

110

570

610

240

190

080

760

160

420

050

250

05C

O2

307

930

99

310

530

71

305

131

11

306

931

99

Tot

al10

063

101

2910

169

100

5810

004

103

2010

004

102

94

Cal

cula

ted

to1

(CO

3)2

shygr

oup

Na

000

60

010

000

5C

a0

083

008

20

077

008

80

087

004

00

095

014

6S

r0

913

091

50

911

087

90

895

093

10

885

083

1B

a0

002

000

10

002

001

50

015

000

70

008

001

8L

a0

001

000

40

005

000

30

001

Ce

000

20

001

000

50

005

000

20

007

000

40

002

Tot

al0

999

100

00

997

099

80

999

099

90

999

099

8

Mg

Mn

Fe

Pr

Nd

Sm

Y

T

han

dU

are

belo

wde

tect

ion

lim

its

CO

2ca

lcul

ated

byst

oich

iom

etry

A N ZAITSEV ETAL

244

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 12: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

Alteration of burbankite and carbocernaite

Burbankite in carbonatites is commonly replacedby ancylite-(Ce) strontianite and baryte (Somina1975 Kapustin 1980) and rarely by ancylite-(Ce)calkinsite lanthanite and baryte (Pecora and Kerr1953) Multi-stage alteration of burbankite fromthe Ozernyi carbonatites has been documented byZdorik (1966) where carbocernaite strontianitebastnasite-(Ce) calcite baryte allanite-(Ce)monazite-(Ce) and epidote have been identifiedas alteration products of burbankite

In the Khibina carbonatites burbankite andcarbocernaite are commonly replaced by variouscombinationsof ancylite-(Ce) strontianite synch-ysite-(Ce) baryte less commonly by cordylite-(Ce) and rarely by harmotome and edingtonite(Table 3) Even when burbankite is completelyreplaced evidence of its existence is preserved inthe form of hexagonal prismatic pseudomorphs(Fig 3b) and islands of relict burbankite (Fig 3cand d) Pseudomorphs of a similar form have beenmentioned from some other rare earth-richcarbonatites e g Gem Park Wigu HillKangankunde (Wall and Mariano 1996) but inthese cases there is no evidence of the precursormineral The presence of primary and replacedburbankite at Khibina is good evidence that thepseudomorphs reported from these other carbo-natites may well have originally been burbankite

Ancylite

Ancylite-(Ce) is a hydrous carbonate containingREE and Sr as major cations On the basis of astructural study of material from the Mont Saint-Hilaire massif its formula has been proposed asREEx(SrCa)2 shy x(CO3)2(OH)x (2 shy x)H2O with acation-anion substitution of Sr2+ + H2O gtREE3+ + OH shy (Dal Negro et al 1975)Although ancylite-(Ce) is a relatively commonmineral in carbonatites there are only a fewanalyses available (Kukharenko et al 1965Kapustin 1980 Knudsen 1991) and this is thefirst detailed investigation of its chemicalcomposition Selected average chemical composi-tions are given in Table 6 The composition ofancylite-(Ce) from Khibina is relatively uniformwith Ca Ba and Th present only as traces Theatomic proportion of Sr and REE in the formula isnear 11 with a small excess of REE An importantfinding is the presence of fluorine in ancylite-(Ce)The Khibina ancylite-(Ce) contains between 0 75and 250 wt of fluorine corresponding to

0 148shy 0 488 F per formula unit Since REE andSr are present in equal abundances it is suggestedthat F- substitutes for OH- Thus the mineral fromthe Khibina carbonatites can be classified as F-bearing ancylite-(Ce) Fluorine was also detectedin two ancylite-(Ce) samples from Qaqarssukcarbonatites at 0 37 and 058 wt respectively(Knudsen 1991)

Ca-REE fluocarbonates

Synchysite-(Ce)is common at Khibina bastnasite-(Ce) and parisite-(Ce) are also found but are rare(Table 3) The textures vary as described in Table3 and include syntaxial intergrowths (Fig 4a)Ca-REE fluocarbonates are present in numerouscarbonatites e g Mountain Pass (Olsen et al 1954) Gatineau (Hogarth et al 1985)Kizilcaoren (Hatzl 1992) Tundulu (Ngwenya1994) and are the most well-studied of thecarbonatite REE-minerals (e g Kapustin 1980Hogarth et al 1985 Andersen 1986 Wall andMariano 1996) Selected average microprobeanalyses of Khibina synchysite-(Ce) made onminerals from different mineral assemblages arepresented in Table 7 Synchysite-(Ce) is char-acterized by having little substitution of otherelements for Ca and REE Primary synchysite-(Ce) from syntaxial intergrowths secondarysynchysite-(Ce) from the alteration products ofburbankite carbocernaite and syntaxial inter-growths of synchysite-(Ce) with parisite-(Ce) allhave similar chemical compositions Sr Ba and Thare typical minor constituentsin all the synchysite-(Ce) and Fe is present in the red variety associatedwith manganoan ankerite or ferroan kutnohorite

Parisite-(Ce) and bastnasite-(Ce) (Table 8) arenear their theoretical compositions with onlyminor amounts of Sr and Ba substituting for Caand Th substituting for REE

Syntaxial intergrowths of Ca-REE fluocarbo-nates are considered to be evidence for theirprimary origin the intergrowth being related tochanges in the chemical composition of the hostfluid (Ni et al 1993)

Ba-REE fluocarbonates

Ba-REE fluocarbonates are extremely rare incarbonatites Huanghoite-(Ce) is the onlymember of the group previously described froman unnamed Siberian carbonatite (Kapustin 1973)and from Qaqarssuk carbonatites (Knudsen1991) However cordylite-(Ce) kukharenkoite-

A N ZAITSEV ETAL

236

(Ce) and cebaite-(Ce) have all been identified atKhibina (Table 3)

Cordylite-(Ce) is known only from Greenland(Flink 1901) Mont Saint-Hilaire Canada (Chenand Chao 1975) and Bayan Obo China (Zhangand Tao 1986) Its occurrence at Khibina is thefirst documented occurrence which is certainlyfrom carbonatites Kukharenkoite-(Ce) is a newBa-REE fluocarbonate mineral which has beenfound in the Khibina carbonatites and fromVuoriyavri Kola Peninsula Mont Saint-Hilaireand the Saint-Amable sill Quebec Canada(Zaitsev et al 1996) The occurrence of

cebaite-(Ce) at Khibina is only the seconddocumented occurrence The first was fromBayan Obo (Zhang and Tao 1986)

There are no data on the chemical compositionof cordylite-(Ce) from carbonatites and our reportis the first for this mineral (Table 9) There arethree distinct chemical compositions of cordylite-(Ce) from Khibina Cordylite-(Ce) with low Caand Sr (Table 9) occurs in manganoan siderite-manganoan ankerite-natrolite veins (CZ III-1)where it forms tabular crystals which areassociated with strontianite and sometimeskukharenkoite-(Ce) High Ca and Sr cordylite-

TABLE 6 Chemical composition of ancylite-(Ce) at Khibina

Rock C II-1Sample 633B795 646001 646451

mean (8) sd mean (21) sd mean (24) sd

SrO 2397 1 25 21 70 1 19 20 65 1 63CaO 1 35 0 40 2 09 0 51 1 93 0 59BaO 0 59 0 09 0 85 0 24 0 85 0 25FeO 0 19 0 35 b d 0 20 0 30La2O3 1308 1 18 15 56 0 83 16 53 1 17Ce2O3 2340 1 04 23 46 1 09 23 59 0 89Pr2O3 1 94 0 11 1 74 0 14 1 69 0 12Nd2O3 5 35 0 52 4 42 0 38 4 34 0 33Sm2O3 0 29 0 06 0 28 0 05 0 23 0 04Gd2O3 0 14 0 13 0 17 0 09 b dThO2 0 53 0 20 b d b dF 2 15 0 30 1 83 0 34 1 19 0 17CO2 2344 23 32 23 07shy O=F2 0 90 0 77 0 50

Total 9551 94 66 93 77

Calculated to 2 (CO3)2shy groups

La 0 300 0 357 0 381Ce 0 532 0 534 0 539Pr 0 044 0 040 0 039Nd 0 119 0 098 0 097Sm 0 006 0 006 0 005Gd 0 003 0 004Th 0 008

Total 1 012 1 038 1 061

Sr 0 864 0 783 0 748Ca 0 090 0 139 0 129Ba 0 014 0 021 0 021Fe 0 010 0 010

Total 0 979 0 943 0 909

F 0 422 0 360 0 235

Na Mg Mn Y and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

237

(Ce) (Table 9) is observed in the same samples asmantles on crystals of low Ca and Sr cordylite-(Ce) and as abundant laths in the surroundingnatrolite and manganoan ankerite (Fig 4b) It hasalso formed as a secondary mineral duringcarbocernaite alteration Cordylite-(Ce) withmoderate Ca and Sr (Table 9) occurs in ferroanrhodochrosite-manganoan ankerite carbonatites(C II-3) and is associated with strontianite

The atomic proportions of Na-Ca and REE-Srpairs show a negative correlation with a slopenear shy 1 and a plot of Na+REE vs Ca+Sr (Fig 5)shows a trend in composition from Sr-Ca-poor toSr-Ca-rich cordylite-(Ce) The slope of thiscorrelation suggests a 11 exchange of Na andREE for Ca and Sr with a substitution scheme ofNa+ + REE3+ Ca2+ + Sr2+ On the basis of theseobservations a general formula for cordylite-(Ce)can be expressed as (NaCa)Ba(REESr)2(CO3)4FOur X-ray and IR data are identical for eachcompositional variety and also identical to thoseof lsquobaiyuneboite-(Ce)rsquo (Fu and Su 1988) whichis now recognized to be cordylite-(Ce) (JZemann personal communication 1996)

Kukharenkoite-(Ce) occurs in Khibina C II-2and C II-3 carbonatites and in carbonate-zeoliteveins (Table 3) It was described as a new mineralby Zaitsev et al (1996) The composition of thekukharenkoite-(Ce) (Zaitsev et al 1996) deter-

FIG 4 (a) BEI of syntaxial intergrowths of synchysite-(Ce) (grey) parisite-(Ce) (grey) and bastnasite-(Ce) (white) CII-2 manganoan ankerite-calcite carbonatite sample 633A414 1 (b) BEI of large crystals of low Ca and Sr cordylite-(Ce) pale grey in centre) associated with laths of high Ca and Sr cordylite-(Ce) (dark grey) and kukharenkoite-(Ce)

(white) CZ III-1 manganoan siderite-manganoan ankerite shy natrolite vein sample 60775

FIG 5 Atomic proportions of Na+REE vs Ca+Sr forcordylite-(Ce)

A N ZAITSEV ETAL

238

mined from electron microprobe analysis is BaO4893 SrO 0 42 MnO 026 Na2O 0 08 CaO0 05 La2O3 6 16 Ce2O3 15 12 Pr2O3 149Nd2O3 4 08 ThO2 0 10 and F 320 wt Theatomic ratios of Ba REE and F are near 211requiring 3 (CO3)

2shy groups per formula unit(calculated CO2 21 73 wt ) and the idealf o r m u l a f o r k u k h a r e n k o i t e - ( C e ) i sBa2REE(CO3)3F

The chemical composition of cebaite-(Ce) fromKhibina was determined by 18 electron micro-

probe analyses (Table 10) Although analysistotals are less then 100 calculated atomic ratiosfor Ba REE and F are near 322 and closelyc o r r e s p o n d t o a n i d e a l f o r m u l a o fBa3REE2(CO3)5F2 Cebaite-(Ce) contains minorSrO (101shy 261 wt ) CaO (033shy 118 wt)and ThO2 (0 49shy 126 wt) in addition rela-tively high MnO (up to 0 83 wt ) and FeO (up to0 61 wt ) were observed in some analyses Allcebaite-(Ce) crystals are unzoned See Table 3 formineralogical details

TABLE 7 Chemical composition of synchysite-(Ce) at Khibina

Rock C II-2 C II-3 C II-1 C II-1 C II-1Sample 633A414 1 604413 633485 5 603265 603165

syntaxial intergrowths secondary after burbankite secondary aftercarbocernaite

mean (8) sd mean (6) sd mean (9) sd mean (15) sd mean (4) sd

CaO 17 47 0 38 16 89 0 62 1618 070 16 08 0 88 17 23 033FeO bd 0 35 0 49 b d b d bdSrO 024 0 12 0 43 0 18 0 87 066 0 59 0 28 056 021BaO 009 0 05 0 15 0 04 0 12 007 0 06 0 05 011 006La2O3 16 54 0 42 13 06 0 58 1798 087 20 34 0 86 13 63 073Ce2O3 26 19 0 85 27 21 0 79 2591 065 25 77 0 50 25 26 085Pr2O3 215 0 12 2 53 0 07 1 94 011 1 78 0 08 258 010Nd2O3 614 0 44 7 90 0 22 5 54 027 4 53 0 41 969 086Sm2O3 038 0 06 0 62 0 10 0 38 004 0 31 0 07 068 038Y2O3 bd b d b d b d 011 009ThO2 bd 0 38 0 21 0 15 009 b d 017 014F 549 0 18 5 69 0 21 5 83 023 5 61 0 23 578 011CO2 28 12 27 81 2718 27 59 28 11shy O=F2 231 2 40 2 46 2 36 243

Total 10049 100 62 9961 100 30 101 46

Calculated to 2 (CO3)2shy groups

Ca 0975 0 953 0 934 0 915 0962Sr 0007 0 013 0 027 0 018 0017Ba 0002 0 003 0 002 0 001 0002Fe 0 015

Total 0984 0 985 0 964 0 934 0981

La 0318 0 254 0 357 0 398 0262Ce 0499 0 524 0 511 0 501 0481Pr 0041 0 049 0 038 0 034 0049Nd 0114 0 149 0 107 0 086 0180Sm 0007 0 011 0 007 0 006 0012Y 0003Th 0 005 0 002 0002

Total 0979 0 991 1 022 1 025 0990F 0904 0 948 0 994 0 943 0953

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

239

Y-rich carbonates mckelveyite-(Y) ewaldite anddonnayite-(Y)

A detailed description of these minerals fromKhibina Vuoriyarvi and Sallanlatvi is given byVoloshin et al (1990 1992) This was the firsttime that they had been documented in carbona-tites Mckelveyite-(Y) is the best-studied of thegroup at Khibina (Table 3)

Chemical compositions of mckelveyite-(Y) andewaldite from Kola carbonatites are represented by

three electron microprobe analyses of mckelveyite-(Y) from Vuoriyarvi carbonatites one from theSallanlatvi carbonatite and two analyses ofewaldite from Vuoriyarvi (Voloshin et al 19901992) However even these limited data showcompositional variation and three groups havebeen identified Na-free mckelveyite-(Y) Y-freeLREE-enriched mckelveyite and Y-free ewaldite

Five separate crystals of mckelveyite-(Y) wereanalysed from Khibina (Table 11) and areuniform in chemical composition The formula

TABLE 8 Chemical composition of parisite-(Ce) and bastnasite-(Ce) at Khibina

Rock C II-2 C II-3 C II-2Sample 633A4141 604413 633A414 1Mineral parisite-(Ce) bastnasite-(Ce)

mean (2) mean (5) sd mean (6) sd

CaO 9 72 9 29 1 03 084 0 29SrO 0 56 0 79 0 18 085 0 34BaO 0 07 0 30 0 29 008 0 05FeO 0 05 0 38 0 28La2O3 1963 15 96 0 72 26 35 0 99Ce2O3 3172 32 28 0 45 37 41 0 54Pr2O3 2 30 2 87 0 14 250 0 13Nd2O3 6 83 8 74 0 22 660 0 48Sm2O3 0 45 0 60 0 02 036 0 07Y2O3 0 10 0 22 0 12 bdThO2 b d 0 24 0 10 bdF 7 02 6 79 0 17 811 0 22CO2 2433 24 54 20 67shy O=F2 2 95 2 86 342

Total 9982 100 13 100 35

Calculated to 3 (CO3)2shy groups Calculated to 1 (CO3)

2shy groupCa 0 941 0 892 0033Sr 0 029 0 041 0018Ba 0 002 0 011 0001Fe 0 004 0 029

Total 0 976 0 972

La 0 654 0 527 0357Ce 1 048 1 057 0503Pr 0 076 0 094 0033Nd 0 220 0 280 0087Sm 0 014 0 018 0005Y 0 005 0 010Th 0 005

Total 2 017 1 992 1037

F 2 004 1 923 0942

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

240

of mckelveyite-(Y) is still the subject of debate Inthe original description Milton et al (1965) gavethe formula as Na19Ba40Ca11Sr02REE15U03

(CO3)9 5H2O Later Chao et al (1978) suggestedan isomorphous relationship between mckel-veyite-(Y) and donnayite-(Y) and gave theformula of NaCaBa3Y(CO3)6 3H2O In a recentstudy of mckelveyite-(Y) and ewaldite Voloshinet al (1990 1992) showed a similarity betweenthese two minerals and suggested that they areprobably polymorphs The formula of ewalditewas determined as (CaNaREE )(BaSr )(CO3)2 nH2O where part of the H2O is zeolitic

Chemical data from the Khibina mckelveyite-(Y) were calculated on the basis of the IMAaccepted formula NaCaBa3Y(CO3)6 3H2O (Table

11) Our data and those of Voloshin et al (1990)show significant substitutions the main one beingBa2+ Sr2+ which is related to the mckelveyite-(Y)-donnayite-(Y) pair where these minerals are Baand Sr end-members respectively The assignationof REE to two different sites in the mckelveyite-(Y) formula is problematic It is based on formulabalance and the REE chondrite-normalizeddistribution which is discussed below in thesection on lsquoRare earth patternsrsquo

Strontianite baryte barytocalcite edingtonite andharmotome

Minerals rich in Ba and Sr but with no REE arerepresented in the Khibina carbonatites by

TABLE 9 Chemical composition of cordylite-(Ce) at Khibina

Rock CZ III-1 C II-3 CZ III-1 CZ III-1 C II-1Sample 60775 6032646 6032515 60775 6031650Variety low Ca and Sr moderate Ca and Sr high Ca and Sr

mean (15) sd mean (17) sd mean (15) sd mean (10) sd mean (17) sd

Na2O 412 0 12 3 66 0 24 3 67 0 12 2 60 0 15 256 0 16CaO 073 0 18 1 54 0 31 1 50 0 08 3 82 0 18 410 0 26SrO 058 0 23 2 48 0 57 2 09 0 31 6 03 0 43 590 0 50BaO 22 28 0 33 22 29 0 51 22 32 0 32 23 02 0 25 23 11 0 36La2O3 994 0 36 10 46 0 38 11 82 0 53 7 58 0 30 11 49 0 51Ce2O3 24 46 0 43 23 82 0 68 22 18 0 28 20 26 0 38 17 90 0 67Pr2O3 241 0 18 1 85 0 24 1 69 0 25 2 19 0 27 145 0 30Nd2O3 747 0 49 5 88 0 31 5 70 0 41 6 97 0 49 536 0 54ThO2 011 0 17 0 13 0 14 0 12 0 16 0 13 0 12 013 0 16F 262 0 10 2 97 0 28 2 95 0 33 2 60 0 08 285 0 31CO2 24 92 25 16 24 78 25 77 25 75shy O=F2 110 1 25 1 24 1 10 120

Total 98 55 98 98 97 57 99 88 99 40

Calculated for 4 (CO3)2shy groups

Na 0945 0 821 0 837 0 579 0567Ca 0093 0 191 0 189 0 470 0501

Total 1038 1 012 1 026 1 049 1068

Ba 1032 1 011 1 028 1 036 1033La 0434 0 446 0 513 0 321 0483Ce 1058 1 008 0 954 0 851 0747Pr 0104 0 078 0 072 0 092 0060Nd 0315 0 243 0 239 0 286 0218Sr 0040 0 167 0 142 0 402 0390Th 0003 0 003 0 003 0 003 0003

Total 1954 1 945 1 923 1 955 1901

F 0981 1 088 1 096 0 946 1029

Fe Mn and Sm are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

241

strontianite baryte barytocalcite edingtonite andharmotome (Table 3) The first two minerals arecommon in late-stage carbonatites e g MountainPass (Olsen et al 1954) Vuoriyarvi SeblyavrSallanlatvi (Kapustin 1980) Sarnu-Dandali (Wallet al 1993) and Kangankunde (Wall andMariano 1996)

Barytocalcite is extremely rare in carbonatitesand has been described only from Vuoriyarvi andan unnamed Siberian carbonatite (Kapustin 1980)and possibly Chipman Lake (Platt and Woolley1990)

Edingtonite and harmotome are bariumzeolites Their occurrence at Khibina is the first

TABLE 10 Chemical composition of cebaite-(Ce) at Khibina

Rock CZ III-1Sample 6031435Analysis 14 24 25 29 30 33 Mean (18) Sd

Na2O 0 09 0 10 0 08 0 11 0 13 0 10 0 10 0 03CaO 0 40 1 18 0 47 0 61 0 52 0 70 0 61 0 21MnO 0 07 0 47 0 12 0 73 0 83 0 13 0 16 0 24FeO 0 45 0 13 b d 0 14 0 61 b d 0 16 0 19SrO 1 40 1 27 1 45 1 25 1 28 1 31 1 43 0 36BaO 43 93 40 51 42 19 42 09 42 59 42 93 42 77 1 84La2O3 5 30 7 28 6 71 5 58 5 48 5 72 5 67 0 52Ce2O3 13 59 14 33 14 52 14 66 13 66 14 91 14 45 1 16Pr2O3 1 54 1 69 1 83 1 78 1 51 1 81 1 63 0 19Nd2O3 6 15 5 69 5 99 6 32 5 70 5 34 5 54 0 48Sm2O3 0 60 0 61 0 50 0 38 0 42 0 34 0 48 0 11Eu2O3 0 17 0 18 b d 0 24 b d b d 0 07 0 11Gd2O3 0 59 0 66 0 53 0 49 0 40 0 37 0 50 0 13ThO2 0 99 0 51 0 49 0 92 1 07 0 99 0 92 0 22F 4 24 4 10 4 15 3 78 3 99 3 61 3 76 0 21CO2 21 57 21 79 21 41 21 79 21 65 21 41 21 42shy O=F2 1 78 1 73 1 75 1 59 1 68 1 52 1 58

Total 99 31 98 77 98 78 99 29 98 15 98 15 98 10

Calculated for 5 (CO3)2shy groups

Na 0 031 0 032 0 025 0 038 0 042 0 034 0 032Ca 0 073 0 212 0 085 0 111 0 095 0 130 0 114Mn 0 010 0 066 0 018 0 105 0 119 0 018 0 023Fe 0 064 0 018 0 020 0 087 0 023Sr 0 137 0 124 0 143 0 123 0 127 0 132 0 144Ba 2 915 2 659 2 802 2 805 2 855 2 926 2 900

Total 3 230 3 111 3 072 3 201 3 325 3 240 3 236

La 0 331 0 450 0 419 0 350 0 346 0 367 0 362Ce 0 841 0 878 0 900 0 911 0 854 0 948 0 914Pr 0 095 0 103 0 113 0 110 0 094 0 115 0 102Nd 0 372 0 340 0 362 0 384 0 348 0 332 0 342Sm 0 035 0 035 0 029 0 022 0 024 0 021 0 029Eu 0 010 0 011 0 014 0 004Gd 0 033 0 036 0 030 0 028 0 023 0 021 0 029Th 0 038 0 019 0 019 0 036 0 042 0 039 0 036

Total 1 755 1 872 1 873 1 855 1 730 1 843 1 819

F 2 268 2 174 2 221 2 033 2 159 1 986 2 057

Y Dy Er Yb and Lu are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

242

TABLE 11 Chemical position of mckelveyite-(Y) at Khibina

Rock CZ IIISample 6031435Point 1 2 4 5 9 10 Mean (12) sd

Na2O 3 12 3 05 3 21 3 10 3 33 3 14 3 19 0 10CaO 4 56 4 34 4 32 4 34 4 20 4 72 4 43 0 38MnO 0 06 b d b d b d b d 0 06FeO b d b d 0 64 b d 0 07 0 11 0 18 0 26BaO 29 43 29 89 28 47 28 73 29 69 27 13 28 97 0 98SrO 9 16 9 56 9 29 10 41 8 25 12 42 9 56 1 26Y2O3 6 39 6 33 5 32 7 02 5 84 8 42 6 44 0 93La2O3 1 22 1 22 1 60 0 85 1 84 0 96 1 34 0 34Ce2O3 1 93 1 79 2 43 1 17 2 96 1 77 2 18 0 65Pr2O3 0 22 0 22 0 15 0 30 0 24 0 15 0 22 0 06Nd2O3 0 69 0 77 0 91 1 11 0 71 0 37 0 84 0 24Sm2O3 0 81 0 87 0 81 0 89 0 85 0 20 0 78 0 23Eu2O3 0 49 0 64 0 50 0 36 0 60 0 34 0 47 0 10Gd2O3 2 15 1 94 2 18 2 05 2 32 1 05 2 02 0 38Dy2O3 2 39 2 40 2 97 2 29 2 83 2 00 2 48 0 29Er2O3 1 03 1 09 1 28 0 87 0 68 1 03 0 94 0 19Yb2O3 0 44 0 44 0 56 0 59 0 25 0 61 0 47 0 12ThO2 b d 0 17 b d b d b d b dF 0 18 0 15 b d b d 0 17 0 16 0 14 0 09CO2 25 71 25 70 25 86 25 81 25 71 26 72 25 93H2O 10 52 10 51 10 58 10 56 10 52 10 93 10 61shy O=F2 0 07 0 06 0 07 0 07 0 06

Total 100 43 101 01 101 07 100 44 100 98 102 24 101 13

Calculated to 6 (CO3)2shy and 3H2O groups

Na 1 000 0 984 1 000 1 000 1 000 0 978 1 000Ca 0 735 0 757 0 561 0 778 0 565 0 785 0 676Na 0 009 0 040 0 006 0 075 0 023La 0 075 0 075 0 099 0 052 0 113 0 057 0 082Ce 0 118 0 109 0 148 0 071 0 181 0 104 0 132Pr 0 013 0 013 0 009 0 018 0 014 0 009 0 013Nd 0 041 0 046 0 054 0 067 0 042 0 021 0 050Mn 0 009 0 008 0 000Fe 0 089 0 010 0 015 0 025

Total 1 000 1 000 1 000 0 992 1 000 1 000 1 000

Ba 1 923 1 950 1 865 1 884 1 941 1 707 1 880Sr 0 885 0 922 0 900 1 009 0 798 1 156 0 917Ca 0 080 0 017 0 212 0 185 0 026 0 110

Total 2 888 2 890 2 977 2 893 2 924 2 889 2 907

Y 0 567 0 561 0 473 0 625 0 518 0 719 0 567Sm 0 047 0 050 0 047 0 051 0 049 0 011 0 045Eu 0 028 0 036 0 029 0 021 0 034 0 018 0 026Gd 0 119 0 107 0 121 0 114 0 128 0 056 0 111Dy 0 128 0 129 0 160 0 123 0 152 0 104 0 132Er 0 054 0 057 0 067 0 045 0 036 0 052 0 049Yb 0 023 0 022 0 028 0 030 0 013 0 030 0 024Th 0 007

Total 0 965 0 969 0 925 1 009 0 930 0 990 0 954

F 0 092 0 081 0 088 0 082 0 071

Lu is below detection limit CO2 and H2O calculated by stoichiometry

REE-SR-BA MINERALS

243

TA

BL

E12

C

hem

ical

com

posi

tion

ofst

ront

iani

teat

Khi

bina

Roc

kC

II-2

CII

-3C

ZII

I-1

CII

-1C

II-1

CII

-1S

ampl

e63

3A4

141

604

413

060

325

15

646

451

060

336

364

600

1pr

imar

yst

ront

iani

teas

soci

ated

wit

hse

cond

ary

stro

ntia

nite

(aft

erbu

rban

kite

)as

soci

ated

wit

hsy

nchy

site

-(C

e)

sync

hysi

te-(

Ce)

cord

ylit

e-(C

e)an

cyli

te-(

Ce)

sync

hysi

te-(

Ce)

ancy

lite

-(C

e)an

dba

ryte

pari

site

-(C

e)an

dan

dpa

risi

te-(

Ce)

and

bary

tean

dba

ryte

bast

nasi

te-(

Ce)

mea

n(1

0)sd

mea

n(6

)sd

mea

n(3

)m

ean

(25)

sdm

ean

(4)

sdm

ean

(6)

sdm

ean

(4)

sdm

ean

(8)

sdco

rem

antl

eri

m

Na 2

Ob

db

db

d0

140

05b

d0

210

050

100

04b

dC

aO3

250

563

230

443

073

461

003

370

331

580

373

720

325

970

20S

rO66

21

068

668

00

5166

62

635

71

2664

34

051

682

00

6063

95

100

625

80

78B

aO0

190

170

160

070

221

610

471

630

150

720

290

830

092

000

57L

a 2O

3b

db

d0

160

480

20b

d0

620

120

330

060

150

04C

e 2O

30

180

120

110

110

570

610

240

190

080

760

160

420

050

250

05C

O2

307

930

99

310

530

71

305

131

11

306

931

99

Tot

al10

063

101

2910

169

100

5810

004

103

2010

004

102

94

Cal

cula

ted

to1

(CO

3)2

shygr

oup

Na

000

60

010

000

5C

a0

083

008

20

077

008

80

087

004

00

095

014

6S

r0

913

091

50

911

087

90

895

093

10

885

083

1B

a0

002

000

10

002

001

50

015

000

70

008

001

8L

a0

001

000

40

005

000

30

001

Ce

000

20

001

000

50

005

000

20

007

000

40

002

Tot

al0

999

100

00

997

099

80

999

099

90

999

099

8

Mg

Mn

Fe

Pr

Nd

Sm

Y

T

han

dU

are

belo

wde

tect

ion

lim

its

CO

2ca

lcul

ated

byst

oich

iom

etry

A N ZAITSEV ETAL

244

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 13: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

(Ce) and cebaite-(Ce) have all been identified atKhibina (Table 3)

Cordylite-(Ce) is known only from Greenland(Flink 1901) Mont Saint-Hilaire Canada (Chenand Chao 1975) and Bayan Obo China (Zhangand Tao 1986) Its occurrence at Khibina is thefirst documented occurrence which is certainlyfrom carbonatites Kukharenkoite-(Ce) is a newBa-REE fluocarbonate mineral which has beenfound in the Khibina carbonatites and fromVuoriyavri Kola Peninsula Mont Saint-Hilaireand the Saint-Amable sill Quebec Canada(Zaitsev et al 1996) The occurrence of

cebaite-(Ce) at Khibina is only the seconddocumented occurrence The first was fromBayan Obo (Zhang and Tao 1986)

There are no data on the chemical compositionof cordylite-(Ce) from carbonatites and our reportis the first for this mineral (Table 9) There arethree distinct chemical compositions of cordylite-(Ce) from Khibina Cordylite-(Ce) with low Caand Sr (Table 9) occurs in manganoan siderite-manganoan ankerite-natrolite veins (CZ III-1)where it forms tabular crystals which areassociated with strontianite and sometimeskukharenkoite-(Ce) High Ca and Sr cordylite-

TABLE 6 Chemical composition of ancylite-(Ce) at Khibina

Rock C II-1Sample 633B795 646001 646451

mean (8) sd mean (21) sd mean (24) sd

SrO 2397 1 25 21 70 1 19 20 65 1 63CaO 1 35 0 40 2 09 0 51 1 93 0 59BaO 0 59 0 09 0 85 0 24 0 85 0 25FeO 0 19 0 35 b d 0 20 0 30La2O3 1308 1 18 15 56 0 83 16 53 1 17Ce2O3 2340 1 04 23 46 1 09 23 59 0 89Pr2O3 1 94 0 11 1 74 0 14 1 69 0 12Nd2O3 5 35 0 52 4 42 0 38 4 34 0 33Sm2O3 0 29 0 06 0 28 0 05 0 23 0 04Gd2O3 0 14 0 13 0 17 0 09 b dThO2 0 53 0 20 b d b dF 2 15 0 30 1 83 0 34 1 19 0 17CO2 2344 23 32 23 07shy O=F2 0 90 0 77 0 50

Total 9551 94 66 93 77

Calculated to 2 (CO3)2shy groups

La 0 300 0 357 0 381Ce 0 532 0 534 0 539Pr 0 044 0 040 0 039Nd 0 119 0 098 0 097Sm 0 006 0 006 0 005Gd 0 003 0 004Th 0 008

Total 1 012 1 038 1 061

Sr 0 864 0 783 0 748Ca 0 090 0 139 0 129Ba 0 014 0 021 0 021Fe 0 010 0 010

Total 0 979 0 943 0 909

F 0 422 0 360 0 235

Na Mg Mn Y and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

237

(Ce) (Table 9) is observed in the same samples asmantles on crystals of low Ca and Sr cordylite-(Ce) and as abundant laths in the surroundingnatrolite and manganoan ankerite (Fig 4b) It hasalso formed as a secondary mineral duringcarbocernaite alteration Cordylite-(Ce) withmoderate Ca and Sr (Table 9) occurs in ferroanrhodochrosite-manganoan ankerite carbonatites(C II-3) and is associated with strontianite

The atomic proportions of Na-Ca and REE-Srpairs show a negative correlation with a slopenear shy 1 and a plot of Na+REE vs Ca+Sr (Fig 5)shows a trend in composition from Sr-Ca-poor toSr-Ca-rich cordylite-(Ce) The slope of thiscorrelation suggests a 11 exchange of Na andREE for Ca and Sr with a substitution scheme ofNa+ + REE3+ Ca2+ + Sr2+ On the basis of theseobservations a general formula for cordylite-(Ce)can be expressed as (NaCa)Ba(REESr)2(CO3)4FOur X-ray and IR data are identical for eachcompositional variety and also identical to thoseof lsquobaiyuneboite-(Ce)rsquo (Fu and Su 1988) whichis now recognized to be cordylite-(Ce) (JZemann personal communication 1996)

Kukharenkoite-(Ce) occurs in Khibina C II-2and C II-3 carbonatites and in carbonate-zeoliteveins (Table 3) It was described as a new mineralby Zaitsev et al (1996) The composition of thekukharenkoite-(Ce) (Zaitsev et al 1996) deter-

FIG 4 (a) BEI of syntaxial intergrowths of synchysite-(Ce) (grey) parisite-(Ce) (grey) and bastnasite-(Ce) (white) CII-2 manganoan ankerite-calcite carbonatite sample 633A414 1 (b) BEI of large crystals of low Ca and Sr cordylite-(Ce) pale grey in centre) associated with laths of high Ca and Sr cordylite-(Ce) (dark grey) and kukharenkoite-(Ce)

(white) CZ III-1 manganoan siderite-manganoan ankerite shy natrolite vein sample 60775

FIG 5 Atomic proportions of Na+REE vs Ca+Sr forcordylite-(Ce)

A N ZAITSEV ETAL

238

mined from electron microprobe analysis is BaO4893 SrO 0 42 MnO 026 Na2O 0 08 CaO0 05 La2O3 6 16 Ce2O3 15 12 Pr2O3 149Nd2O3 4 08 ThO2 0 10 and F 320 wt Theatomic ratios of Ba REE and F are near 211requiring 3 (CO3)

2shy groups per formula unit(calculated CO2 21 73 wt ) and the idealf o r m u l a f o r k u k h a r e n k o i t e - ( C e ) i sBa2REE(CO3)3F

The chemical composition of cebaite-(Ce) fromKhibina was determined by 18 electron micro-

probe analyses (Table 10) Although analysistotals are less then 100 calculated atomic ratiosfor Ba REE and F are near 322 and closelyc o r r e s p o n d t o a n i d e a l f o r m u l a o fBa3REE2(CO3)5F2 Cebaite-(Ce) contains minorSrO (101shy 261 wt ) CaO (033shy 118 wt)and ThO2 (0 49shy 126 wt) in addition rela-tively high MnO (up to 0 83 wt ) and FeO (up to0 61 wt ) were observed in some analyses Allcebaite-(Ce) crystals are unzoned See Table 3 formineralogical details

TABLE 7 Chemical composition of synchysite-(Ce) at Khibina

Rock C II-2 C II-3 C II-1 C II-1 C II-1Sample 633A414 1 604413 633485 5 603265 603165

syntaxial intergrowths secondary after burbankite secondary aftercarbocernaite

mean (8) sd mean (6) sd mean (9) sd mean (15) sd mean (4) sd

CaO 17 47 0 38 16 89 0 62 1618 070 16 08 0 88 17 23 033FeO bd 0 35 0 49 b d b d bdSrO 024 0 12 0 43 0 18 0 87 066 0 59 0 28 056 021BaO 009 0 05 0 15 0 04 0 12 007 0 06 0 05 011 006La2O3 16 54 0 42 13 06 0 58 1798 087 20 34 0 86 13 63 073Ce2O3 26 19 0 85 27 21 0 79 2591 065 25 77 0 50 25 26 085Pr2O3 215 0 12 2 53 0 07 1 94 011 1 78 0 08 258 010Nd2O3 614 0 44 7 90 0 22 5 54 027 4 53 0 41 969 086Sm2O3 038 0 06 0 62 0 10 0 38 004 0 31 0 07 068 038Y2O3 bd b d b d b d 011 009ThO2 bd 0 38 0 21 0 15 009 b d 017 014F 549 0 18 5 69 0 21 5 83 023 5 61 0 23 578 011CO2 28 12 27 81 2718 27 59 28 11shy O=F2 231 2 40 2 46 2 36 243

Total 10049 100 62 9961 100 30 101 46

Calculated to 2 (CO3)2shy groups

Ca 0975 0 953 0 934 0 915 0962Sr 0007 0 013 0 027 0 018 0017Ba 0002 0 003 0 002 0 001 0002Fe 0 015

Total 0984 0 985 0 964 0 934 0981

La 0318 0 254 0 357 0 398 0262Ce 0499 0 524 0 511 0 501 0481Pr 0041 0 049 0 038 0 034 0049Nd 0114 0 149 0 107 0 086 0180Sm 0007 0 011 0 007 0 006 0012Y 0003Th 0 005 0 002 0002

Total 0979 0 991 1 022 1 025 0990F 0904 0 948 0 994 0 943 0953

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

239

Y-rich carbonates mckelveyite-(Y) ewaldite anddonnayite-(Y)

A detailed description of these minerals fromKhibina Vuoriyarvi and Sallanlatvi is given byVoloshin et al (1990 1992) This was the firsttime that they had been documented in carbona-tites Mckelveyite-(Y) is the best-studied of thegroup at Khibina (Table 3)

Chemical compositions of mckelveyite-(Y) andewaldite from Kola carbonatites are represented by

three electron microprobe analyses of mckelveyite-(Y) from Vuoriyarvi carbonatites one from theSallanlatvi carbonatite and two analyses ofewaldite from Vuoriyarvi (Voloshin et al 19901992) However even these limited data showcompositional variation and three groups havebeen identified Na-free mckelveyite-(Y) Y-freeLREE-enriched mckelveyite and Y-free ewaldite

Five separate crystals of mckelveyite-(Y) wereanalysed from Khibina (Table 11) and areuniform in chemical composition The formula

TABLE 8 Chemical composition of parisite-(Ce) and bastnasite-(Ce) at Khibina

Rock C II-2 C II-3 C II-2Sample 633A4141 604413 633A414 1Mineral parisite-(Ce) bastnasite-(Ce)

mean (2) mean (5) sd mean (6) sd

CaO 9 72 9 29 1 03 084 0 29SrO 0 56 0 79 0 18 085 0 34BaO 0 07 0 30 0 29 008 0 05FeO 0 05 0 38 0 28La2O3 1963 15 96 0 72 26 35 0 99Ce2O3 3172 32 28 0 45 37 41 0 54Pr2O3 2 30 2 87 0 14 250 0 13Nd2O3 6 83 8 74 0 22 660 0 48Sm2O3 0 45 0 60 0 02 036 0 07Y2O3 0 10 0 22 0 12 bdThO2 b d 0 24 0 10 bdF 7 02 6 79 0 17 811 0 22CO2 2433 24 54 20 67shy O=F2 2 95 2 86 342

Total 9982 100 13 100 35

Calculated to 3 (CO3)2shy groups Calculated to 1 (CO3)

2shy groupCa 0 941 0 892 0033Sr 0 029 0 041 0018Ba 0 002 0 011 0001Fe 0 004 0 029

Total 0 976 0 972

La 0 654 0 527 0357Ce 1 048 1 057 0503Pr 0 076 0 094 0033Nd 0 220 0 280 0087Sm 0 014 0 018 0005Y 0 005 0 010Th 0 005

Total 2 017 1 992 1037

F 2 004 1 923 0942

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

240

of mckelveyite-(Y) is still the subject of debate Inthe original description Milton et al (1965) gavethe formula as Na19Ba40Ca11Sr02REE15U03

(CO3)9 5H2O Later Chao et al (1978) suggestedan isomorphous relationship between mckel-veyite-(Y) and donnayite-(Y) and gave theformula of NaCaBa3Y(CO3)6 3H2O In a recentstudy of mckelveyite-(Y) and ewaldite Voloshinet al (1990 1992) showed a similarity betweenthese two minerals and suggested that they areprobably polymorphs The formula of ewalditewas determined as (CaNaREE )(BaSr )(CO3)2 nH2O where part of the H2O is zeolitic

Chemical data from the Khibina mckelveyite-(Y) were calculated on the basis of the IMAaccepted formula NaCaBa3Y(CO3)6 3H2O (Table

11) Our data and those of Voloshin et al (1990)show significant substitutions the main one beingBa2+ Sr2+ which is related to the mckelveyite-(Y)-donnayite-(Y) pair where these minerals are Baand Sr end-members respectively The assignationof REE to two different sites in the mckelveyite-(Y) formula is problematic It is based on formulabalance and the REE chondrite-normalizeddistribution which is discussed below in thesection on lsquoRare earth patternsrsquo

Strontianite baryte barytocalcite edingtonite andharmotome

Minerals rich in Ba and Sr but with no REE arerepresented in the Khibina carbonatites by

TABLE 9 Chemical composition of cordylite-(Ce) at Khibina

Rock CZ III-1 C II-3 CZ III-1 CZ III-1 C II-1Sample 60775 6032646 6032515 60775 6031650Variety low Ca and Sr moderate Ca and Sr high Ca and Sr

mean (15) sd mean (17) sd mean (15) sd mean (10) sd mean (17) sd

Na2O 412 0 12 3 66 0 24 3 67 0 12 2 60 0 15 256 0 16CaO 073 0 18 1 54 0 31 1 50 0 08 3 82 0 18 410 0 26SrO 058 0 23 2 48 0 57 2 09 0 31 6 03 0 43 590 0 50BaO 22 28 0 33 22 29 0 51 22 32 0 32 23 02 0 25 23 11 0 36La2O3 994 0 36 10 46 0 38 11 82 0 53 7 58 0 30 11 49 0 51Ce2O3 24 46 0 43 23 82 0 68 22 18 0 28 20 26 0 38 17 90 0 67Pr2O3 241 0 18 1 85 0 24 1 69 0 25 2 19 0 27 145 0 30Nd2O3 747 0 49 5 88 0 31 5 70 0 41 6 97 0 49 536 0 54ThO2 011 0 17 0 13 0 14 0 12 0 16 0 13 0 12 013 0 16F 262 0 10 2 97 0 28 2 95 0 33 2 60 0 08 285 0 31CO2 24 92 25 16 24 78 25 77 25 75shy O=F2 110 1 25 1 24 1 10 120

Total 98 55 98 98 97 57 99 88 99 40

Calculated for 4 (CO3)2shy groups

Na 0945 0 821 0 837 0 579 0567Ca 0093 0 191 0 189 0 470 0501

Total 1038 1 012 1 026 1 049 1068

Ba 1032 1 011 1 028 1 036 1033La 0434 0 446 0 513 0 321 0483Ce 1058 1 008 0 954 0 851 0747Pr 0104 0 078 0 072 0 092 0060Nd 0315 0 243 0 239 0 286 0218Sr 0040 0 167 0 142 0 402 0390Th 0003 0 003 0 003 0 003 0003

Total 1954 1 945 1 923 1 955 1901

F 0981 1 088 1 096 0 946 1029

Fe Mn and Sm are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

241

strontianite baryte barytocalcite edingtonite andharmotome (Table 3) The first two minerals arecommon in late-stage carbonatites e g MountainPass (Olsen et al 1954) Vuoriyarvi SeblyavrSallanlatvi (Kapustin 1980) Sarnu-Dandali (Wallet al 1993) and Kangankunde (Wall andMariano 1996)

Barytocalcite is extremely rare in carbonatitesand has been described only from Vuoriyarvi andan unnamed Siberian carbonatite (Kapustin 1980)and possibly Chipman Lake (Platt and Woolley1990)

Edingtonite and harmotome are bariumzeolites Their occurrence at Khibina is the first

TABLE 10 Chemical composition of cebaite-(Ce) at Khibina

Rock CZ III-1Sample 6031435Analysis 14 24 25 29 30 33 Mean (18) Sd

Na2O 0 09 0 10 0 08 0 11 0 13 0 10 0 10 0 03CaO 0 40 1 18 0 47 0 61 0 52 0 70 0 61 0 21MnO 0 07 0 47 0 12 0 73 0 83 0 13 0 16 0 24FeO 0 45 0 13 b d 0 14 0 61 b d 0 16 0 19SrO 1 40 1 27 1 45 1 25 1 28 1 31 1 43 0 36BaO 43 93 40 51 42 19 42 09 42 59 42 93 42 77 1 84La2O3 5 30 7 28 6 71 5 58 5 48 5 72 5 67 0 52Ce2O3 13 59 14 33 14 52 14 66 13 66 14 91 14 45 1 16Pr2O3 1 54 1 69 1 83 1 78 1 51 1 81 1 63 0 19Nd2O3 6 15 5 69 5 99 6 32 5 70 5 34 5 54 0 48Sm2O3 0 60 0 61 0 50 0 38 0 42 0 34 0 48 0 11Eu2O3 0 17 0 18 b d 0 24 b d b d 0 07 0 11Gd2O3 0 59 0 66 0 53 0 49 0 40 0 37 0 50 0 13ThO2 0 99 0 51 0 49 0 92 1 07 0 99 0 92 0 22F 4 24 4 10 4 15 3 78 3 99 3 61 3 76 0 21CO2 21 57 21 79 21 41 21 79 21 65 21 41 21 42shy O=F2 1 78 1 73 1 75 1 59 1 68 1 52 1 58

Total 99 31 98 77 98 78 99 29 98 15 98 15 98 10

Calculated for 5 (CO3)2shy groups

Na 0 031 0 032 0 025 0 038 0 042 0 034 0 032Ca 0 073 0 212 0 085 0 111 0 095 0 130 0 114Mn 0 010 0 066 0 018 0 105 0 119 0 018 0 023Fe 0 064 0 018 0 020 0 087 0 023Sr 0 137 0 124 0 143 0 123 0 127 0 132 0 144Ba 2 915 2 659 2 802 2 805 2 855 2 926 2 900

Total 3 230 3 111 3 072 3 201 3 325 3 240 3 236

La 0 331 0 450 0 419 0 350 0 346 0 367 0 362Ce 0 841 0 878 0 900 0 911 0 854 0 948 0 914Pr 0 095 0 103 0 113 0 110 0 094 0 115 0 102Nd 0 372 0 340 0 362 0 384 0 348 0 332 0 342Sm 0 035 0 035 0 029 0 022 0 024 0 021 0 029Eu 0 010 0 011 0 014 0 004Gd 0 033 0 036 0 030 0 028 0 023 0 021 0 029Th 0 038 0 019 0 019 0 036 0 042 0 039 0 036

Total 1 755 1 872 1 873 1 855 1 730 1 843 1 819

F 2 268 2 174 2 221 2 033 2 159 1 986 2 057

Y Dy Er Yb and Lu are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

242

TABLE 11 Chemical position of mckelveyite-(Y) at Khibina

Rock CZ IIISample 6031435Point 1 2 4 5 9 10 Mean (12) sd

Na2O 3 12 3 05 3 21 3 10 3 33 3 14 3 19 0 10CaO 4 56 4 34 4 32 4 34 4 20 4 72 4 43 0 38MnO 0 06 b d b d b d b d 0 06FeO b d b d 0 64 b d 0 07 0 11 0 18 0 26BaO 29 43 29 89 28 47 28 73 29 69 27 13 28 97 0 98SrO 9 16 9 56 9 29 10 41 8 25 12 42 9 56 1 26Y2O3 6 39 6 33 5 32 7 02 5 84 8 42 6 44 0 93La2O3 1 22 1 22 1 60 0 85 1 84 0 96 1 34 0 34Ce2O3 1 93 1 79 2 43 1 17 2 96 1 77 2 18 0 65Pr2O3 0 22 0 22 0 15 0 30 0 24 0 15 0 22 0 06Nd2O3 0 69 0 77 0 91 1 11 0 71 0 37 0 84 0 24Sm2O3 0 81 0 87 0 81 0 89 0 85 0 20 0 78 0 23Eu2O3 0 49 0 64 0 50 0 36 0 60 0 34 0 47 0 10Gd2O3 2 15 1 94 2 18 2 05 2 32 1 05 2 02 0 38Dy2O3 2 39 2 40 2 97 2 29 2 83 2 00 2 48 0 29Er2O3 1 03 1 09 1 28 0 87 0 68 1 03 0 94 0 19Yb2O3 0 44 0 44 0 56 0 59 0 25 0 61 0 47 0 12ThO2 b d 0 17 b d b d b d b dF 0 18 0 15 b d b d 0 17 0 16 0 14 0 09CO2 25 71 25 70 25 86 25 81 25 71 26 72 25 93H2O 10 52 10 51 10 58 10 56 10 52 10 93 10 61shy O=F2 0 07 0 06 0 07 0 07 0 06

Total 100 43 101 01 101 07 100 44 100 98 102 24 101 13

Calculated to 6 (CO3)2shy and 3H2O groups

Na 1 000 0 984 1 000 1 000 1 000 0 978 1 000Ca 0 735 0 757 0 561 0 778 0 565 0 785 0 676Na 0 009 0 040 0 006 0 075 0 023La 0 075 0 075 0 099 0 052 0 113 0 057 0 082Ce 0 118 0 109 0 148 0 071 0 181 0 104 0 132Pr 0 013 0 013 0 009 0 018 0 014 0 009 0 013Nd 0 041 0 046 0 054 0 067 0 042 0 021 0 050Mn 0 009 0 008 0 000Fe 0 089 0 010 0 015 0 025

Total 1 000 1 000 1 000 0 992 1 000 1 000 1 000

Ba 1 923 1 950 1 865 1 884 1 941 1 707 1 880Sr 0 885 0 922 0 900 1 009 0 798 1 156 0 917Ca 0 080 0 017 0 212 0 185 0 026 0 110

Total 2 888 2 890 2 977 2 893 2 924 2 889 2 907

Y 0 567 0 561 0 473 0 625 0 518 0 719 0 567Sm 0 047 0 050 0 047 0 051 0 049 0 011 0 045Eu 0 028 0 036 0 029 0 021 0 034 0 018 0 026Gd 0 119 0 107 0 121 0 114 0 128 0 056 0 111Dy 0 128 0 129 0 160 0 123 0 152 0 104 0 132Er 0 054 0 057 0 067 0 045 0 036 0 052 0 049Yb 0 023 0 022 0 028 0 030 0 013 0 030 0 024Th 0 007

Total 0 965 0 969 0 925 1 009 0 930 0 990 0 954

F 0 092 0 081 0 088 0 082 0 071

Lu is below detection limit CO2 and H2O calculated by stoichiometry

REE-SR-BA MINERALS

243

TA

BL

E12

C

hem

ical

com

posi

tion

ofst

ront

iani

teat

Khi

bina

Roc

kC

II-2

CII

-3C

ZII

I-1

CII

-1C

II-1

CII

-1S

ampl

e63

3A4

141

604

413

060

325

15

646

451

060

336

364

600

1pr

imar

yst

ront

iani

teas

soci

ated

wit

hse

cond

ary

stro

ntia

nite

(aft

erbu

rban

kite

)as

soci

ated

wit

hsy

nchy

site

-(C

e)

sync

hysi

te-(

Ce)

cord

ylit

e-(C

e)an

cyli

te-(

Ce)

sync

hysi

te-(

Ce)

ancy

lite

-(C

e)an

dba

ryte

pari

site

-(C

e)an

dan

dpa

risi

te-(

Ce)

and

bary

tean

dba

ryte

bast

nasi

te-(

Ce)

mea

n(1

0)sd

mea

n(6

)sd

mea

n(3

)m

ean

(25)

sdm

ean

(4)

sdm

ean

(6)

sdm

ean

(4)

sdm

ean

(8)

sdco

rem

antl

eri

m

Na 2

Ob

db

db

d0

140

05b

d0

210

050

100

04b

dC

aO3

250

563

230

443

073

461

003

370

331

580

373

720

325

970

20S

rO66

21

068

668

00

5166

62

635

71

2664

34

051

682

00

6063

95

100

625

80

78B

aO0

190

170

160

070

221

610

471

630

150

720

290

830

092

000

57L

a 2O

3b

db

d0

160

480

20b

d0

620

120

330

060

150

04C

e 2O

30

180

120

110

110

570

610

240

190

080

760

160

420

050

250

05C

O2

307

930

99

310

530

71

305

131

11

306

931

99

Tot

al10

063

101

2910

169

100

5810

004

103

2010

004

102

94

Cal

cula

ted

to1

(CO

3)2

shygr

oup

Na

000

60

010

000

5C

a0

083

008

20

077

008

80

087

004

00

095

014

6S

r0

913

091

50

911

087

90

895

093

10

885

083

1B

a0

002

000

10

002

001

50

015

000

70

008

001

8L

a0

001

000

40

005

000

30

001

Ce

000

20

001

000

50

005

000

20

007

000

40

002

Tot

al0

999

100

00

997

099

80

999

099

90

999

099

8

Mg

Mn

Fe

Pr

Nd

Sm

Y

T

han

dU

are

belo

wde

tect

ion

lim

its

CO

2ca

lcul

ated

byst

oich

iom

etry

A N ZAITSEV ETAL

244

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 14: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

(Ce) (Table 9) is observed in the same samples asmantles on crystals of low Ca and Sr cordylite-(Ce) and as abundant laths in the surroundingnatrolite and manganoan ankerite (Fig 4b) It hasalso formed as a secondary mineral duringcarbocernaite alteration Cordylite-(Ce) withmoderate Ca and Sr (Table 9) occurs in ferroanrhodochrosite-manganoan ankerite carbonatites(C II-3) and is associated with strontianite

The atomic proportions of Na-Ca and REE-Srpairs show a negative correlation with a slopenear shy 1 and a plot of Na+REE vs Ca+Sr (Fig 5)shows a trend in composition from Sr-Ca-poor toSr-Ca-rich cordylite-(Ce) The slope of thiscorrelation suggests a 11 exchange of Na andREE for Ca and Sr with a substitution scheme ofNa+ + REE3+ Ca2+ + Sr2+ On the basis of theseobservations a general formula for cordylite-(Ce)can be expressed as (NaCa)Ba(REESr)2(CO3)4FOur X-ray and IR data are identical for eachcompositional variety and also identical to thoseof lsquobaiyuneboite-(Ce)rsquo (Fu and Su 1988) whichis now recognized to be cordylite-(Ce) (JZemann personal communication 1996)

Kukharenkoite-(Ce) occurs in Khibina C II-2and C II-3 carbonatites and in carbonate-zeoliteveins (Table 3) It was described as a new mineralby Zaitsev et al (1996) The composition of thekukharenkoite-(Ce) (Zaitsev et al 1996) deter-

FIG 4 (a) BEI of syntaxial intergrowths of synchysite-(Ce) (grey) parisite-(Ce) (grey) and bastnasite-(Ce) (white) CII-2 manganoan ankerite-calcite carbonatite sample 633A414 1 (b) BEI of large crystals of low Ca and Sr cordylite-(Ce) pale grey in centre) associated with laths of high Ca and Sr cordylite-(Ce) (dark grey) and kukharenkoite-(Ce)

(white) CZ III-1 manganoan siderite-manganoan ankerite shy natrolite vein sample 60775

FIG 5 Atomic proportions of Na+REE vs Ca+Sr forcordylite-(Ce)

A N ZAITSEV ETAL

238

mined from electron microprobe analysis is BaO4893 SrO 0 42 MnO 026 Na2O 0 08 CaO0 05 La2O3 6 16 Ce2O3 15 12 Pr2O3 149Nd2O3 4 08 ThO2 0 10 and F 320 wt Theatomic ratios of Ba REE and F are near 211requiring 3 (CO3)

2shy groups per formula unit(calculated CO2 21 73 wt ) and the idealf o r m u l a f o r k u k h a r e n k o i t e - ( C e ) i sBa2REE(CO3)3F

The chemical composition of cebaite-(Ce) fromKhibina was determined by 18 electron micro-

probe analyses (Table 10) Although analysistotals are less then 100 calculated atomic ratiosfor Ba REE and F are near 322 and closelyc o r r e s p o n d t o a n i d e a l f o r m u l a o fBa3REE2(CO3)5F2 Cebaite-(Ce) contains minorSrO (101shy 261 wt ) CaO (033shy 118 wt)and ThO2 (0 49shy 126 wt) in addition rela-tively high MnO (up to 0 83 wt ) and FeO (up to0 61 wt ) were observed in some analyses Allcebaite-(Ce) crystals are unzoned See Table 3 formineralogical details

TABLE 7 Chemical composition of synchysite-(Ce) at Khibina

Rock C II-2 C II-3 C II-1 C II-1 C II-1Sample 633A414 1 604413 633485 5 603265 603165

syntaxial intergrowths secondary after burbankite secondary aftercarbocernaite

mean (8) sd mean (6) sd mean (9) sd mean (15) sd mean (4) sd

CaO 17 47 0 38 16 89 0 62 1618 070 16 08 0 88 17 23 033FeO bd 0 35 0 49 b d b d bdSrO 024 0 12 0 43 0 18 0 87 066 0 59 0 28 056 021BaO 009 0 05 0 15 0 04 0 12 007 0 06 0 05 011 006La2O3 16 54 0 42 13 06 0 58 1798 087 20 34 0 86 13 63 073Ce2O3 26 19 0 85 27 21 0 79 2591 065 25 77 0 50 25 26 085Pr2O3 215 0 12 2 53 0 07 1 94 011 1 78 0 08 258 010Nd2O3 614 0 44 7 90 0 22 5 54 027 4 53 0 41 969 086Sm2O3 038 0 06 0 62 0 10 0 38 004 0 31 0 07 068 038Y2O3 bd b d b d b d 011 009ThO2 bd 0 38 0 21 0 15 009 b d 017 014F 549 0 18 5 69 0 21 5 83 023 5 61 0 23 578 011CO2 28 12 27 81 2718 27 59 28 11shy O=F2 231 2 40 2 46 2 36 243

Total 10049 100 62 9961 100 30 101 46

Calculated to 2 (CO3)2shy groups

Ca 0975 0 953 0 934 0 915 0962Sr 0007 0 013 0 027 0 018 0017Ba 0002 0 003 0 002 0 001 0002Fe 0 015

Total 0984 0 985 0 964 0 934 0981

La 0318 0 254 0 357 0 398 0262Ce 0499 0 524 0 511 0 501 0481Pr 0041 0 049 0 038 0 034 0049Nd 0114 0 149 0 107 0 086 0180Sm 0007 0 011 0 007 0 006 0012Y 0003Th 0 005 0 002 0002

Total 0979 0 991 1 022 1 025 0990F 0904 0 948 0 994 0 943 0953

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

239

Y-rich carbonates mckelveyite-(Y) ewaldite anddonnayite-(Y)

A detailed description of these minerals fromKhibina Vuoriyarvi and Sallanlatvi is given byVoloshin et al (1990 1992) This was the firsttime that they had been documented in carbona-tites Mckelveyite-(Y) is the best-studied of thegroup at Khibina (Table 3)

Chemical compositions of mckelveyite-(Y) andewaldite from Kola carbonatites are represented by

three electron microprobe analyses of mckelveyite-(Y) from Vuoriyarvi carbonatites one from theSallanlatvi carbonatite and two analyses ofewaldite from Vuoriyarvi (Voloshin et al 19901992) However even these limited data showcompositional variation and three groups havebeen identified Na-free mckelveyite-(Y) Y-freeLREE-enriched mckelveyite and Y-free ewaldite

Five separate crystals of mckelveyite-(Y) wereanalysed from Khibina (Table 11) and areuniform in chemical composition The formula

TABLE 8 Chemical composition of parisite-(Ce) and bastnasite-(Ce) at Khibina

Rock C II-2 C II-3 C II-2Sample 633A4141 604413 633A414 1Mineral parisite-(Ce) bastnasite-(Ce)

mean (2) mean (5) sd mean (6) sd

CaO 9 72 9 29 1 03 084 0 29SrO 0 56 0 79 0 18 085 0 34BaO 0 07 0 30 0 29 008 0 05FeO 0 05 0 38 0 28La2O3 1963 15 96 0 72 26 35 0 99Ce2O3 3172 32 28 0 45 37 41 0 54Pr2O3 2 30 2 87 0 14 250 0 13Nd2O3 6 83 8 74 0 22 660 0 48Sm2O3 0 45 0 60 0 02 036 0 07Y2O3 0 10 0 22 0 12 bdThO2 b d 0 24 0 10 bdF 7 02 6 79 0 17 811 0 22CO2 2433 24 54 20 67shy O=F2 2 95 2 86 342

Total 9982 100 13 100 35

Calculated to 3 (CO3)2shy groups Calculated to 1 (CO3)

2shy groupCa 0 941 0 892 0033Sr 0 029 0 041 0018Ba 0 002 0 011 0001Fe 0 004 0 029

Total 0 976 0 972

La 0 654 0 527 0357Ce 1 048 1 057 0503Pr 0 076 0 094 0033Nd 0 220 0 280 0087Sm 0 014 0 018 0005Y 0 005 0 010Th 0 005

Total 2 017 1 992 1037

F 2 004 1 923 0942

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

240

of mckelveyite-(Y) is still the subject of debate Inthe original description Milton et al (1965) gavethe formula as Na19Ba40Ca11Sr02REE15U03

(CO3)9 5H2O Later Chao et al (1978) suggestedan isomorphous relationship between mckel-veyite-(Y) and donnayite-(Y) and gave theformula of NaCaBa3Y(CO3)6 3H2O In a recentstudy of mckelveyite-(Y) and ewaldite Voloshinet al (1990 1992) showed a similarity betweenthese two minerals and suggested that they areprobably polymorphs The formula of ewalditewas determined as (CaNaREE )(BaSr )(CO3)2 nH2O where part of the H2O is zeolitic

Chemical data from the Khibina mckelveyite-(Y) were calculated on the basis of the IMAaccepted formula NaCaBa3Y(CO3)6 3H2O (Table

11) Our data and those of Voloshin et al (1990)show significant substitutions the main one beingBa2+ Sr2+ which is related to the mckelveyite-(Y)-donnayite-(Y) pair where these minerals are Baand Sr end-members respectively The assignationof REE to two different sites in the mckelveyite-(Y) formula is problematic It is based on formulabalance and the REE chondrite-normalizeddistribution which is discussed below in thesection on lsquoRare earth patternsrsquo

Strontianite baryte barytocalcite edingtonite andharmotome

Minerals rich in Ba and Sr but with no REE arerepresented in the Khibina carbonatites by

TABLE 9 Chemical composition of cordylite-(Ce) at Khibina

Rock CZ III-1 C II-3 CZ III-1 CZ III-1 C II-1Sample 60775 6032646 6032515 60775 6031650Variety low Ca and Sr moderate Ca and Sr high Ca and Sr

mean (15) sd mean (17) sd mean (15) sd mean (10) sd mean (17) sd

Na2O 412 0 12 3 66 0 24 3 67 0 12 2 60 0 15 256 0 16CaO 073 0 18 1 54 0 31 1 50 0 08 3 82 0 18 410 0 26SrO 058 0 23 2 48 0 57 2 09 0 31 6 03 0 43 590 0 50BaO 22 28 0 33 22 29 0 51 22 32 0 32 23 02 0 25 23 11 0 36La2O3 994 0 36 10 46 0 38 11 82 0 53 7 58 0 30 11 49 0 51Ce2O3 24 46 0 43 23 82 0 68 22 18 0 28 20 26 0 38 17 90 0 67Pr2O3 241 0 18 1 85 0 24 1 69 0 25 2 19 0 27 145 0 30Nd2O3 747 0 49 5 88 0 31 5 70 0 41 6 97 0 49 536 0 54ThO2 011 0 17 0 13 0 14 0 12 0 16 0 13 0 12 013 0 16F 262 0 10 2 97 0 28 2 95 0 33 2 60 0 08 285 0 31CO2 24 92 25 16 24 78 25 77 25 75shy O=F2 110 1 25 1 24 1 10 120

Total 98 55 98 98 97 57 99 88 99 40

Calculated for 4 (CO3)2shy groups

Na 0945 0 821 0 837 0 579 0567Ca 0093 0 191 0 189 0 470 0501

Total 1038 1 012 1 026 1 049 1068

Ba 1032 1 011 1 028 1 036 1033La 0434 0 446 0 513 0 321 0483Ce 1058 1 008 0 954 0 851 0747Pr 0104 0 078 0 072 0 092 0060Nd 0315 0 243 0 239 0 286 0218Sr 0040 0 167 0 142 0 402 0390Th 0003 0 003 0 003 0 003 0003

Total 1954 1 945 1 923 1 955 1901

F 0981 1 088 1 096 0 946 1029

Fe Mn and Sm are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

241

strontianite baryte barytocalcite edingtonite andharmotome (Table 3) The first two minerals arecommon in late-stage carbonatites e g MountainPass (Olsen et al 1954) Vuoriyarvi SeblyavrSallanlatvi (Kapustin 1980) Sarnu-Dandali (Wallet al 1993) and Kangankunde (Wall andMariano 1996)

Barytocalcite is extremely rare in carbonatitesand has been described only from Vuoriyarvi andan unnamed Siberian carbonatite (Kapustin 1980)and possibly Chipman Lake (Platt and Woolley1990)

Edingtonite and harmotome are bariumzeolites Their occurrence at Khibina is the first

TABLE 10 Chemical composition of cebaite-(Ce) at Khibina

Rock CZ III-1Sample 6031435Analysis 14 24 25 29 30 33 Mean (18) Sd

Na2O 0 09 0 10 0 08 0 11 0 13 0 10 0 10 0 03CaO 0 40 1 18 0 47 0 61 0 52 0 70 0 61 0 21MnO 0 07 0 47 0 12 0 73 0 83 0 13 0 16 0 24FeO 0 45 0 13 b d 0 14 0 61 b d 0 16 0 19SrO 1 40 1 27 1 45 1 25 1 28 1 31 1 43 0 36BaO 43 93 40 51 42 19 42 09 42 59 42 93 42 77 1 84La2O3 5 30 7 28 6 71 5 58 5 48 5 72 5 67 0 52Ce2O3 13 59 14 33 14 52 14 66 13 66 14 91 14 45 1 16Pr2O3 1 54 1 69 1 83 1 78 1 51 1 81 1 63 0 19Nd2O3 6 15 5 69 5 99 6 32 5 70 5 34 5 54 0 48Sm2O3 0 60 0 61 0 50 0 38 0 42 0 34 0 48 0 11Eu2O3 0 17 0 18 b d 0 24 b d b d 0 07 0 11Gd2O3 0 59 0 66 0 53 0 49 0 40 0 37 0 50 0 13ThO2 0 99 0 51 0 49 0 92 1 07 0 99 0 92 0 22F 4 24 4 10 4 15 3 78 3 99 3 61 3 76 0 21CO2 21 57 21 79 21 41 21 79 21 65 21 41 21 42shy O=F2 1 78 1 73 1 75 1 59 1 68 1 52 1 58

Total 99 31 98 77 98 78 99 29 98 15 98 15 98 10

Calculated for 5 (CO3)2shy groups

Na 0 031 0 032 0 025 0 038 0 042 0 034 0 032Ca 0 073 0 212 0 085 0 111 0 095 0 130 0 114Mn 0 010 0 066 0 018 0 105 0 119 0 018 0 023Fe 0 064 0 018 0 020 0 087 0 023Sr 0 137 0 124 0 143 0 123 0 127 0 132 0 144Ba 2 915 2 659 2 802 2 805 2 855 2 926 2 900

Total 3 230 3 111 3 072 3 201 3 325 3 240 3 236

La 0 331 0 450 0 419 0 350 0 346 0 367 0 362Ce 0 841 0 878 0 900 0 911 0 854 0 948 0 914Pr 0 095 0 103 0 113 0 110 0 094 0 115 0 102Nd 0 372 0 340 0 362 0 384 0 348 0 332 0 342Sm 0 035 0 035 0 029 0 022 0 024 0 021 0 029Eu 0 010 0 011 0 014 0 004Gd 0 033 0 036 0 030 0 028 0 023 0 021 0 029Th 0 038 0 019 0 019 0 036 0 042 0 039 0 036

Total 1 755 1 872 1 873 1 855 1 730 1 843 1 819

F 2 268 2 174 2 221 2 033 2 159 1 986 2 057

Y Dy Er Yb and Lu are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

242

TABLE 11 Chemical position of mckelveyite-(Y) at Khibina

Rock CZ IIISample 6031435Point 1 2 4 5 9 10 Mean (12) sd

Na2O 3 12 3 05 3 21 3 10 3 33 3 14 3 19 0 10CaO 4 56 4 34 4 32 4 34 4 20 4 72 4 43 0 38MnO 0 06 b d b d b d b d 0 06FeO b d b d 0 64 b d 0 07 0 11 0 18 0 26BaO 29 43 29 89 28 47 28 73 29 69 27 13 28 97 0 98SrO 9 16 9 56 9 29 10 41 8 25 12 42 9 56 1 26Y2O3 6 39 6 33 5 32 7 02 5 84 8 42 6 44 0 93La2O3 1 22 1 22 1 60 0 85 1 84 0 96 1 34 0 34Ce2O3 1 93 1 79 2 43 1 17 2 96 1 77 2 18 0 65Pr2O3 0 22 0 22 0 15 0 30 0 24 0 15 0 22 0 06Nd2O3 0 69 0 77 0 91 1 11 0 71 0 37 0 84 0 24Sm2O3 0 81 0 87 0 81 0 89 0 85 0 20 0 78 0 23Eu2O3 0 49 0 64 0 50 0 36 0 60 0 34 0 47 0 10Gd2O3 2 15 1 94 2 18 2 05 2 32 1 05 2 02 0 38Dy2O3 2 39 2 40 2 97 2 29 2 83 2 00 2 48 0 29Er2O3 1 03 1 09 1 28 0 87 0 68 1 03 0 94 0 19Yb2O3 0 44 0 44 0 56 0 59 0 25 0 61 0 47 0 12ThO2 b d 0 17 b d b d b d b dF 0 18 0 15 b d b d 0 17 0 16 0 14 0 09CO2 25 71 25 70 25 86 25 81 25 71 26 72 25 93H2O 10 52 10 51 10 58 10 56 10 52 10 93 10 61shy O=F2 0 07 0 06 0 07 0 07 0 06

Total 100 43 101 01 101 07 100 44 100 98 102 24 101 13

Calculated to 6 (CO3)2shy and 3H2O groups

Na 1 000 0 984 1 000 1 000 1 000 0 978 1 000Ca 0 735 0 757 0 561 0 778 0 565 0 785 0 676Na 0 009 0 040 0 006 0 075 0 023La 0 075 0 075 0 099 0 052 0 113 0 057 0 082Ce 0 118 0 109 0 148 0 071 0 181 0 104 0 132Pr 0 013 0 013 0 009 0 018 0 014 0 009 0 013Nd 0 041 0 046 0 054 0 067 0 042 0 021 0 050Mn 0 009 0 008 0 000Fe 0 089 0 010 0 015 0 025

Total 1 000 1 000 1 000 0 992 1 000 1 000 1 000

Ba 1 923 1 950 1 865 1 884 1 941 1 707 1 880Sr 0 885 0 922 0 900 1 009 0 798 1 156 0 917Ca 0 080 0 017 0 212 0 185 0 026 0 110

Total 2 888 2 890 2 977 2 893 2 924 2 889 2 907

Y 0 567 0 561 0 473 0 625 0 518 0 719 0 567Sm 0 047 0 050 0 047 0 051 0 049 0 011 0 045Eu 0 028 0 036 0 029 0 021 0 034 0 018 0 026Gd 0 119 0 107 0 121 0 114 0 128 0 056 0 111Dy 0 128 0 129 0 160 0 123 0 152 0 104 0 132Er 0 054 0 057 0 067 0 045 0 036 0 052 0 049Yb 0 023 0 022 0 028 0 030 0 013 0 030 0 024Th 0 007

Total 0 965 0 969 0 925 1 009 0 930 0 990 0 954

F 0 092 0 081 0 088 0 082 0 071

Lu is below detection limit CO2 and H2O calculated by stoichiometry

REE-SR-BA MINERALS

243

TA

BL

E12

C

hem

ical

com

posi

tion

ofst

ront

iani

teat

Khi

bina

Roc

kC

II-2

CII

-3C

ZII

I-1

CII

-1C

II-1

CII

-1S

ampl

e63

3A4

141

604

413

060

325

15

646

451

060

336

364

600

1pr

imar

yst

ront

iani

teas

soci

ated

wit

hse

cond

ary

stro

ntia

nite

(aft

erbu

rban

kite

)as

soci

ated

wit

hsy

nchy

site

-(C

e)

sync

hysi

te-(

Ce)

cord

ylit

e-(C

e)an

cyli

te-(

Ce)

sync

hysi

te-(

Ce)

ancy

lite

-(C

e)an

dba

ryte

pari

site

-(C

e)an

dan

dpa

risi

te-(

Ce)

and

bary

tean

dba

ryte

bast

nasi

te-(

Ce)

mea

n(1

0)sd

mea

n(6

)sd

mea

n(3

)m

ean

(25)

sdm

ean

(4)

sdm

ean

(6)

sdm

ean

(4)

sdm

ean

(8)

sdco

rem

antl

eri

m

Na 2

Ob

db

db

d0

140

05b

d0

210

050

100

04b

dC

aO3

250

563

230

443

073

461

003

370

331

580

373

720

325

970

20S

rO66

21

068

668

00

5166

62

635

71

2664

34

051

682

00

6063

95

100

625

80

78B

aO0

190

170

160

070

221

610

471

630

150

720

290

830

092

000

57L

a 2O

3b

db

d0

160

480

20b

d0

620

120

330

060

150

04C

e 2O

30

180

120

110

110

570

610

240

190

080

760

160

420

050

250

05C

O2

307

930

99

310

530

71

305

131

11

306

931

99

Tot

al10

063

101

2910

169

100

5810

004

103

2010

004

102

94

Cal

cula

ted

to1

(CO

3)2

shygr

oup

Na

000

60

010

000

5C

a0

083

008

20

077

008

80

087

004

00

095

014

6S

r0

913

091

50

911

087

90

895

093

10

885

083

1B

a0

002

000

10

002

001

50

015

000

70

008

001

8L

a0

001

000

40

005

000

30

001

Ce

000

20

001

000

50

005

000

20

007

000

40

002

Tot

al0

999

100

00

997

099

80

999

099

90

999

099

8

Mg

Mn

Fe

Pr

Nd

Sm

Y

T

han

dU

are

belo

wde

tect

ion

lim

its

CO

2ca

lcul

ated

byst

oich

iom

etry

A N ZAITSEV ETAL

244

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 15: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

mined from electron microprobe analysis is BaO4893 SrO 0 42 MnO 026 Na2O 0 08 CaO0 05 La2O3 6 16 Ce2O3 15 12 Pr2O3 149Nd2O3 4 08 ThO2 0 10 and F 320 wt Theatomic ratios of Ba REE and F are near 211requiring 3 (CO3)

2shy groups per formula unit(calculated CO2 21 73 wt ) and the idealf o r m u l a f o r k u k h a r e n k o i t e - ( C e ) i sBa2REE(CO3)3F

The chemical composition of cebaite-(Ce) fromKhibina was determined by 18 electron micro-

probe analyses (Table 10) Although analysistotals are less then 100 calculated atomic ratiosfor Ba REE and F are near 322 and closelyc o r r e s p o n d t o a n i d e a l f o r m u l a o fBa3REE2(CO3)5F2 Cebaite-(Ce) contains minorSrO (101shy 261 wt ) CaO (033shy 118 wt)and ThO2 (0 49shy 126 wt) in addition rela-tively high MnO (up to 0 83 wt ) and FeO (up to0 61 wt ) were observed in some analyses Allcebaite-(Ce) crystals are unzoned See Table 3 formineralogical details

TABLE 7 Chemical composition of synchysite-(Ce) at Khibina

Rock C II-2 C II-3 C II-1 C II-1 C II-1Sample 633A414 1 604413 633485 5 603265 603165

syntaxial intergrowths secondary after burbankite secondary aftercarbocernaite

mean (8) sd mean (6) sd mean (9) sd mean (15) sd mean (4) sd

CaO 17 47 0 38 16 89 0 62 1618 070 16 08 0 88 17 23 033FeO bd 0 35 0 49 b d b d bdSrO 024 0 12 0 43 0 18 0 87 066 0 59 0 28 056 021BaO 009 0 05 0 15 0 04 0 12 007 0 06 0 05 011 006La2O3 16 54 0 42 13 06 0 58 1798 087 20 34 0 86 13 63 073Ce2O3 26 19 0 85 27 21 0 79 2591 065 25 77 0 50 25 26 085Pr2O3 215 0 12 2 53 0 07 1 94 011 1 78 0 08 258 010Nd2O3 614 0 44 7 90 0 22 5 54 027 4 53 0 41 969 086Sm2O3 038 0 06 0 62 0 10 0 38 004 0 31 0 07 068 038Y2O3 bd b d b d b d 011 009ThO2 bd 0 38 0 21 0 15 009 b d 017 014F 549 0 18 5 69 0 21 5 83 023 5 61 0 23 578 011CO2 28 12 27 81 2718 27 59 28 11shy O=F2 231 2 40 2 46 2 36 243

Total 10049 100 62 9961 100 30 101 46

Calculated to 2 (CO3)2shy groups

Ca 0975 0 953 0 934 0 915 0962Sr 0007 0 013 0 027 0 018 0017Ba 0002 0 003 0 002 0 001 0002Fe 0 015

Total 0984 0 985 0 964 0 934 0981

La 0318 0 254 0 357 0 398 0262Ce 0499 0 524 0 511 0 501 0481Pr 0041 0 049 0 038 0 034 0049Nd 0114 0 149 0 107 0 086 0180Sm 0007 0 011 0 007 0 006 0012Y 0003Th 0 005 0 002 0002

Total 0979 0 991 1 022 1 025 0990F 0904 0 948 0 994 0 943 0953

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

239

Y-rich carbonates mckelveyite-(Y) ewaldite anddonnayite-(Y)

A detailed description of these minerals fromKhibina Vuoriyarvi and Sallanlatvi is given byVoloshin et al (1990 1992) This was the firsttime that they had been documented in carbona-tites Mckelveyite-(Y) is the best-studied of thegroup at Khibina (Table 3)

Chemical compositions of mckelveyite-(Y) andewaldite from Kola carbonatites are represented by

three electron microprobe analyses of mckelveyite-(Y) from Vuoriyarvi carbonatites one from theSallanlatvi carbonatite and two analyses ofewaldite from Vuoriyarvi (Voloshin et al 19901992) However even these limited data showcompositional variation and three groups havebeen identified Na-free mckelveyite-(Y) Y-freeLREE-enriched mckelveyite and Y-free ewaldite

Five separate crystals of mckelveyite-(Y) wereanalysed from Khibina (Table 11) and areuniform in chemical composition The formula

TABLE 8 Chemical composition of parisite-(Ce) and bastnasite-(Ce) at Khibina

Rock C II-2 C II-3 C II-2Sample 633A4141 604413 633A414 1Mineral parisite-(Ce) bastnasite-(Ce)

mean (2) mean (5) sd mean (6) sd

CaO 9 72 9 29 1 03 084 0 29SrO 0 56 0 79 0 18 085 0 34BaO 0 07 0 30 0 29 008 0 05FeO 0 05 0 38 0 28La2O3 1963 15 96 0 72 26 35 0 99Ce2O3 3172 32 28 0 45 37 41 0 54Pr2O3 2 30 2 87 0 14 250 0 13Nd2O3 6 83 8 74 0 22 660 0 48Sm2O3 0 45 0 60 0 02 036 0 07Y2O3 0 10 0 22 0 12 bdThO2 b d 0 24 0 10 bdF 7 02 6 79 0 17 811 0 22CO2 2433 24 54 20 67shy O=F2 2 95 2 86 342

Total 9982 100 13 100 35

Calculated to 3 (CO3)2shy groups Calculated to 1 (CO3)

2shy groupCa 0 941 0 892 0033Sr 0 029 0 041 0018Ba 0 002 0 011 0001Fe 0 004 0 029

Total 0 976 0 972

La 0 654 0 527 0357Ce 1 048 1 057 0503Pr 0 076 0 094 0033Nd 0 220 0 280 0087Sm 0 014 0 018 0005Y 0 005 0 010Th 0 005

Total 2 017 1 992 1037

F 2 004 1 923 0942

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

240

of mckelveyite-(Y) is still the subject of debate Inthe original description Milton et al (1965) gavethe formula as Na19Ba40Ca11Sr02REE15U03

(CO3)9 5H2O Later Chao et al (1978) suggestedan isomorphous relationship between mckel-veyite-(Y) and donnayite-(Y) and gave theformula of NaCaBa3Y(CO3)6 3H2O In a recentstudy of mckelveyite-(Y) and ewaldite Voloshinet al (1990 1992) showed a similarity betweenthese two minerals and suggested that they areprobably polymorphs The formula of ewalditewas determined as (CaNaREE )(BaSr )(CO3)2 nH2O where part of the H2O is zeolitic

Chemical data from the Khibina mckelveyite-(Y) were calculated on the basis of the IMAaccepted formula NaCaBa3Y(CO3)6 3H2O (Table

11) Our data and those of Voloshin et al (1990)show significant substitutions the main one beingBa2+ Sr2+ which is related to the mckelveyite-(Y)-donnayite-(Y) pair where these minerals are Baand Sr end-members respectively The assignationof REE to two different sites in the mckelveyite-(Y) formula is problematic It is based on formulabalance and the REE chondrite-normalizeddistribution which is discussed below in thesection on lsquoRare earth patternsrsquo

Strontianite baryte barytocalcite edingtonite andharmotome

Minerals rich in Ba and Sr but with no REE arerepresented in the Khibina carbonatites by

TABLE 9 Chemical composition of cordylite-(Ce) at Khibina

Rock CZ III-1 C II-3 CZ III-1 CZ III-1 C II-1Sample 60775 6032646 6032515 60775 6031650Variety low Ca and Sr moderate Ca and Sr high Ca and Sr

mean (15) sd mean (17) sd mean (15) sd mean (10) sd mean (17) sd

Na2O 412 0 12 3 66 0 24 3 67 0 12 2 60 0 15 256 0 16CaO 073 0 18 1 54 0 31 1 50 0 08 3 82 0 18 410 0 26SrO 058 0 23 2 48 0 57 2 09 0 31 6 03 0 43 590 0 50BaO 22 28 0 33 22 29 0 51 22 32 0 32 23 02 0 25 23 11 0 36La2O3 994 0 36 10 46 0 38 11 82 0 53 7 58 0 30 11 49 0 51Ce2O3 24 46 0 43 23 82 0 68 22 18 0 28 20 26 0 38 17 90 0 67Pr2O3 241 0 18 1 85 0 24 1 69 0 25 2 19 0 27 145 0 30Nd2O3 747 0 49 5 88 0 31 5 70 0 41 6 97 0 49 536 0 54ThO2 011 0 17 0 13 0 14 0 12 0 16 0 13 0 12 013 0 16F 262 0 10 2 97 0 28 2 95 0 33 2 60 0 08 285 0 31CO2 24 92 25 16 24 78 25 77 25 75shy O=F2 110 1 25 1 24 1 10 120

Total 98 55 98 98 97 57 99 88 99 40

Calculated for 4 (CO3)2shy groups

Na 0945 0 821 0 837 0 579 0567Ca 0093 0 191 0 189 0 470 0501

Total 1038 1 012 1 026 1 049 1068

Ba 1032 1 011 1 028 1 036 1033La 0434 0 446 0 513 0 321 0483Ce 1058 1 008 0 954 0 851 0747Pr 0104 0 078 0 072 0 092 0060Nd 0315 0 243 0 239 0 286 0218Sr 0040 0 167 0 142 0 402 0390Th 0003 0 003 0 003 0 003 0003

Total 1954 1 945 1 923 1 955 1901

F 0981 1 088 1 096 0 946 1029

Fe Mn and Sm are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

241

strontianite baryte barytocalcite edingtonite andharmotome (Table 3) The first two minerals arecommon in late-stage carbonatites e g MountainPass (Olsen et al 1954) Vuoriyarvi SeblyavrSallanlatvi (Kapustin 1980) Sarnu-Dandali (Wallet al 1993) and Kangankunde (Wall andMariano 1996)

Barytocalcite is extremely rare in carbonatitesand has been described only from Vuoriyarvi andan unnamed Siberian carbonatite (Kapustin 1980)and possibly Chipman Lake (Platt and Woolley1990)

Edingtonite and harmotome are bariumzeolites Their occurrence at Khibina is the first

TABLE 10 Chemical composition of cebaite-(Ce) at Khibina

Rock CZ III-1Sample 6031435Analysis 14 24 25 29 30 33 Mean (18) Sd

Na2O 0 09 0 10 0 08 0 11 0 13 0 10 0 10 0 03CaO 0 40 1 18 0 47 0 61 0 52 0 70 0 61 0 21MnO 0 07 0 47 0 12 0 73 0 83 0 13 0 16 0 24FeO 0 45 0 13 b d 0 14 0 61 b d 0 16 0 19SrO 1 40 1 27 1 45 1 25 1 28 1 31 1 43 0 36BaO 43 93 40 51 42 19 42 09 42 59 42 93 42 77 1 84La2O3 5 30 7 28 6 71 5 58 5 48 5 72 5 67 0 52Ce2O3 13 59 14 33 14 52 14 66 13 66 14 91 14 45 1 16Pr2O3 1 54 1 69 1 83 1 78 1 51 1 81 1 63 0 19Nd2O3 6 15 5 69 5 99 6 32 5 70 5 34 5 54 0 48Sm2O3 0 60 0 61 0 50 0 38 0 42 0 34 0 48 0 11Eu2O3 0 17 0 18 b d 0 24 b d b d 0 07 0 11Gd2O3 0 59 0 66 0 53 0 49 0 40 0 37 0 50 0 13ThO2 0 99 0 51 0 49 0 92 1 07 0 99 0 92 0 22F 4 24 4 10 4 15 3 78 3 99 3 61 3 76 0 21CO2 21 57 21 79 21 41 21 79 21 65 21 41 21 42shy O=F2 1 78 1 73 1 75 1 59 1 68 1 52 1 58

Total 99 31 98 77 98 78 99 29 98 15 98 15 98 10

Calculated for 5 (CO3)2shy groups

Na 0 031 0 032 0 025 0 038 0 042 0 034 0 032Ca 0 073 0 212 0 085 0 111 0 095 0 130 0 114Mn 0 010 0 066 0 018 0 105 0 119 0 018 0 023Fe 0 064 0 018 0 020 0 087 0 023Sr 0 137 0 124 0 143 0 123 0 127 0 132 0 144Ba 2 915 2 659 2 802 2 805 2 855 2 926 2 900

Total 3 230 3 111 3 072 3 201 3 325 3 240 3 236

La 0 331 0 450 0 419 0 350 0 346 0 367 0 362Ce 0 841 0 878 0 900 0 911 0 854 0 948 0 914Pr 0 095 0 103 0 113 0 110 0 094 0 115 0 102Nd 0 372 0 340 0 362 0 384 0 348 0 332 0 342Sm 0 035 0 035 0 029 0 022 0 024 0 021 0 029Eu 0 010 0 011 0 014 0 004Gd 0 033 0 036 0 030 0 028 0 023 0 021 0 029Th 0 038 0 019 0 019 0 036 0 042 0 039 0 036

Total 1 755 1 872 1 873 1 855 1 730 1 843 1 819

F 2 268 2 174 2 221 2 033 2 159 1 986 2 057

Y Dy Er Yb and Lu are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

242

TABLE 11 Chemical position of mckelveyite-(Y) at Khibina

Rock CZ IIISample 6031435Point 1 2 4 5 9 10 Mean (12) sd

Na2O 3 12 3 05 3 21 3 10 3 33 3 14 3 19 0 10CaO 4 56 4 34 4 32 4 34 4 20 4 72 4 43 0 38MnO 0 06 b d b d b d b d 0 06FeO b d b d 0 64 b d 0 07 0 11 0 18 0 26BaO 29 43 29 89 28 47 28 73 29 69 27 13 28 97 0 98SrO 9 16 9 56 9 29 10 41 8 25 12 42 9 56 1 26Y2O3 6 39 6 33 5 32 7 02 5 84 8 42 6 44 0 93La2O3 1 22 1 22 1 60 0 85 1 84 0 96 1 34 0 34Ce2O3 1 93 1 79 2 43 1 17 2 96 1 77 2 18 0 65Pr2O3 0 22 0 22 0 15 0 30 0 24 0 15 0 22 0 06Nd2O3 0 69 0 77 0 91 1 11 0 71 0 37 0 84 0 24Sm2O3 0 81 0 87 0 81 0 89 0 85 0 20 0 78 0 23Eu2O3 0 49 0 64 0 50 0 36 0 60 0 34 0 47 0 10Gd2O3 2 15 1 94 2 18 2 05 2 32 1 05 2 02 0 38Dy2O3 2 39 2 40 2 97 2 29 2 83 2 00 2 48 0 29Er2O3 1 03 1 09 1 28 0 87 0 68 1 03 0 94 0 19Yb2O3 0 44 0 44 0 56 0 59 0 25 0 61 0 47 0 12ThO2 b d 0 17 b d b d b d b dF 0 18 0 15 b d b d 0 17 0 16 0 14 0 09CO2 25 71 25 70 25 86 25 81 25 71 26 72 25 93H2O 10 52 10 51 10 58 10 56 10 52 10 93 10 61shy O=F2 0 07 0 06 0 07 0 07 0 06

Total 100 43 101 01 101 07 100 44 100 98 102 24 101 13

Calculated to 6 (CO3)2shy and 3H2O groups

Na 1 000 0 984 1 000 1 000 1 000 0 978 1 000Ca 0 735 0 757 0 561 0 778 0 565 0 785 0 676Na 0 009 0 040 0 006 0 075 0 023La 0 075 0 075 0 099 0 052 0 113 0 057 0 082Ce 0 118 0 109 0 148 0 071 0 181 0 104 0 132Pr 0 013 0 013 0 009 0 018 0 014 0 009 0 013Nd 0 041 0 046 0 054 0 067 0 042 0 021 0 050Mn 0 009 0 008 0 000Fe 0 089 0 010 0 015 0 025

Total 1 000 1 000 1 000 0 992 1 000 1 000 1 000

Ba 1 923 1 950 1 865 1 884 1 941 1 707 1 880Sr 0 885 0 922 0 900 1 009 0 798 1 156 0 917Ca 0 080 0 017 0 212 0 185 0 026 0 110

Total 2 888 2 890 2 977 2 893 2 924 2 889 2 907

Y 0 567 0 561 0 473 0 625 0 518 0 719 0 567Sm 0 047 0 050 0 047 0 051 0 049 0 011 0 045Eu 0 028 0 036 0 029 0 021 0 034 0 018 0 026Gd 0 119 0 107 0 121 0 114 0 128 0 056 0 111Dy 0 128 0 129 0 160 0 123 0 152 0 104 0 132Er 0 054 0 057 0 067 0 045 0 036 0 052 0 049Yb 0 023 0 022 0 028 0 030 0 013 0 030 0 024Th 0 007

Total 0 965 0 969 0 925 1 009 0 930 0 990 0 954

F 0 092 0 081 0 088 0 082 0 071

Lu is below detection limit CO2 and H2O calculated by stoichiometry

REE-SR-BA MINERALS

243

TA

BL

E12

C

hem

ical

com

posi

tion

ofst

ront

iani

teat

Khi

bina

Roc

kC

II-2

CII

-3C

ZII

I-1

CII

-1C

II-1

CII

-1S

ampl

e63

3A4

141

604

413

060

325

15

646

451

060

336

364

600

1pr

imar

yst

ront

iani

teas

soci

ated

wit

hse

cond

ary

stro

ntia

nite

(aft

erbu

rban

kite

)as

soci

ated

wit

hsy

nchy

site

-(C

e)

sync

hysi

te-(

Ce)

cord

ylit

e-(C

e)an

cyli

te-(

Ce)

sync

hysi

te-(

Ce)

ancy

lite

-(C

e)an

dba

ryte

pari

site

-(C

e)an

dan

dpa

risi

te-(

Ce)

and

bary

tean

dba

ryte

bast

nasi

te-(

Ce)

mea

n(1

0)sd

mea

n(6

)sd

mea

n(3

)m

ean

(25)

sdm

ean

(4)

sdm

ean

(6)

sdm

ean

(4)

sdm

ean

(8)

sdco

rem

antl

eri

m

Na 2

Ob

db

db

d0

140

05b

d0

210

050

100

04b

dC

aO3

250

563

230

443

073

461

003

370

331

580

373

720

325

970

20S

rO66

21

068

668

00

5166

62

635

71

2664

34

051

682

00

6063

95

100

625

80

78B

aO0

190

170

160

070

221

610

471

630

150

720

290

830

092

000

57L

a 2O

3b

db

d0

160

480

20b

d0

620

120

330

060

150

04C

e 2O

30

180

120

110

110

570

610

240

190

080

760

160

420

050

250

05C

O2

307

930

99

310

530

71

305

131

11

306

931

99

Tot

al10

063

101

2910

169

100

5810

004

103

2010

004

102

94

Cal

cula

ted

to1

(CO

3)2

shygr

oup

Na

000

60

010

000

5C

a0

083

008

20

077

008

80

087

004

00

095

014

6S

r0

913

091

50

911

087

90

895

093

10

885

083

1B

a0

002

000

10

002

001

50

015

000

70

008

001

8L

a0

001

000

40

005

000

30

001

Ce

000

20

001

000

50

005

000

20

007

000

40

002

Tot

al0

999

100

00

997

099

80

999

099

90

999

099

8

Mg

Mn

Fe

Pr

Nd

Sm

Y

T

han

dU

are

belo

wde

tect

ion

lim

its

CO

2ca

lcul

ated

byst

oich

iom

etry

A N ZAITSEV ETAL

244

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 16: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

Y-rich carbonates mckelveyite-(Y) ewaldite anddonnayite-(Y)

A detailed description of these minerals fromKhibina Vuoriyarvi and Sallanlatvi is given byVoloshin et al (1990 1992) This was the firsttime that they had been documented in carbona-tites Mckelveyite-(Y) is the best-studied of thegroup at Khibina (Table 3)

Chemical compositions of mckelveyite-(Y) andewaldite from Kola carbonatites are represented by

three electron microprobe analyses of mckelveyite-(Y) from Vuoriyarvi carbonatites one from theSallanlatvi carbonatite and two analyses ofewaldite from Vuoriyarvi (Voloshin et al 19901992) However even these limited data showcompositional variation and three groups havebeen identified Na-free mckelveyite-(Y) Y-freeLREE-enriched mckelveyite and Y-free ewaldite

Five separate crystals of mckelveyite-(Y) wereanalysed from Khibina (Table 11) and areuniform in chemical composition The formula

TABLE 8 Chemical composition of parisite-(Ce) and bastnasite-(Ce) at Khibina

Rock C II-2 C II-3 C II-2Sample 633A4141 604413 633A414 1Mineral parisite-(Ce) bastnasite-(Ce)

mean (2) mean (5) sd mean (6) sd

CaO 9 72 9 29 1 03 084 0 29SrO 0 56 0 79 0 18 085 0 34BaO 0 07 0 30 0 29 008 0 05FeO 0 05 0 38 0 28La2O3 1963 15 96 0 72 26 35 0 99Ce2O3 3172 32 28 0 45 37 41 0 54Pr2O3 2 30 2 87 0 14 250 0 13Nd2O3 6 83 8 74 0 22 660 0 48Sm2O3 0 45 0 60 0 02 036 0 07Y2O3 0 10 0 22 0 12 bdThO2 b d 0 24 0 10 bdF 7 02 6 79 0 17 811 0 22CO2 2433 24 54 20 67shy O=F2 2 95 2 86 342

Total 9982 100 13 100 35

Calculated to 3 (CO3)2shy groups Calculated to 1 (CO3)

2shy groupCa 0 941 0 892 0033Sr 0 029 0 041 0018Ba 0 002 0 011 0001Fe 0 004 0 029

Total 0 976 0 972

La 0 654 0 527 0357Ce 1 048 1 057 0503Pr 0 076 0 094 0033Nd 0 220 0 280 0087Sm 0 014 0 018 0005Y 0 005 0 010Th 0 005

Total 2 017 1 992 1037

F 2 004 1 923 0942

Na Mg Mn and U are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

240

of mckelveyite-(Y) is still the subject of debate Inthe original description Milton et al (1965) gavethe formula as Na19Ba40Ca11Sr02REE15U03

(CO3)9 5H2O Later Chao et al (1978) suggestedan isomorphous relationship between mckel-veyite-(Y) and donnayite-(Y) and gave theformula of NaCaBa3Y(CO3)6 3H2O In a recentstudy of mckelveyite-(Y) and ewaldite Voloshinet al (1990 1992) showed a similarity betweenthese two minerals and suggested that they areprobably polymorphs The formula of ewalditewas determined as (CaNaREE )(BaSr )(CO3)2 nH2O where part of the H2O is zeolitic

Chemical data from the Khibina mckelveyite-(Y) were calculated on the basis of the IMAaccepted formula NaCaBa3Y(CO3)6 3H2O (Table

11) Our data and those of Voloshin et al (1990)show significant substitutions the main one beingBa2+ Sr2+ which is related to the mckelveyite-(Y)-donnayite-(Y) pair where these minerals are Baand Sr end-members respectively The assignationof REE to two different sites in the mckelveyite-(Y) formula is problematic It is based on formulabalance and the REE chondrite-normalizeddistribution which is discussed below in thesection on lsquoRare earth patternsrsquo

Strontianite baryte barytocalcite edingtonite andharmotome

Minerals rich in Ba and Sr but with no REE arerepresented in the Khibina carbonatites by

TABLE 9 Chemical composition of cordylite-(Ce) at Khibina

Rock CZ III-1 C II-3 CZ III-1 CZ III-1 C II-1Sample 60775 6032646 6032515 60775 6031650Variety low Ca and Sr moderate Ca and Sr high Ca and Sr

mean (15) sd mean (17) sd mean (15) sd mean (10) sd mean (17) sd

Na2O 412 0 12 3 66 0 24 3 67 0 12 2 60 0 15 256 0 16CaO 073 0 18 1 54 0 31 1 50 0 08 3 82 0 18 410 0 26SrO 058 0 23 2 48 0 57 2 09 0 31 6 03 0 43 590 0 50BaO 22 28 0 33 22 29 0 51 22 32 0 32 23 02 0 25 23 11 0 36La2O3 994 0 36 10 46 0 38 11 82 0 53 7 58 0 30 11 49 0 51Ce2O3 24 46 0 43 23 82 0 68 22 18 0 28 20 26 0 38 17 90 0 67Pr2O3 241 0 18 1 85 0 24 1 69 0 25 2 19 0 27 145 0 30Nd2O3 747 0 49 5 88 0 31 5 70 0 41 6 97 0 49 536 0 54ThO2 011 0 17 0 13 0 14 0 12 0 16 0 13 0 12 013 0 16F 262 0 10 2 97 0 28 2 95 0 33 2 60 0 08 285 0 31CO2 24 92 25 16 24 78 25 77 25 75shy O=F2 110 1 25 1 24 1 10 120

Total 98 55 98 98 97 57 99 88 99 40

Calculated for 4 (CO3)2shy groups

Na 0945 0 821 0 837 0 579 0567Ca 0093 0 191 0 189 0 470 0501

Total 1038 1 012 1 026 1 049 1068

Ba 1032 1 011 1 028 1 036 1033La 0434 0 446 0 513 0 321 0483Ce 1058 1 008 0 954 0 851 0747Pr 0104 0 078 0 072 0 092 0060Nd 0315 0 243 0 239 0 286 0218Sr 0040 0 167 0 142 0 402 0390Th 0003 0 003 0 003 0 003 0003

Total 1954 1 945 1 923 1 955 1901

F 0981 1 088 1 096 0 946 1029

Fe Mn and Sm are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

241

strontianite baryte barytocalcite edingtonite andharmotome (Table 3) The first two minerals arecommon in late-stage carbonatites e g MountainPass (Olsen et al 1954) Vuoriyarvi SeblyavrSallanlatvi (Kapustin 1980) Sarnu-Dandali (Wallet al 1993) and Kangankunde (Wall andMariano 1996)

Barytocalcite is extremely rare in carbonatitesand has been described only from Vuoriyarvi andan unnamed Siberian carbonatite (Kapustin 1980)and possibly Chipman Lake (Platt and Woolley1990)

Edingtonite and harmotome are bariumzeolites Their occurrence at Khibina is the first

TABLE 10 Chemical composition of cebaite-(Ce) at Khibina

Rock CZ III-1Sample 6031435Analysis 14 24 25 29 30 33 Mean (18) Sd

Na2O 0 09 0 10 0 08 0 11 0 13 0 10 0 10 0 03CaO 0 40 1 18 0 47 0 61 0 52 0 70 0 61 0 21MnO 0 07 0 47 0 12 0 73 0 83 0 13 0 16 0 24FeO 0 45 0 13 b d 0 14 0 61 b d 0 16 0 19SrO 1 40 1 27 1 45 1 25 1 28 1 31 1 43 0 36BaO 43 93 40 51 42 19 42 09 42 59 42 93 42 77 1 84La2O3 5 30 7 28 6 71 5 58 5 48 5 72 5 67 0 52Ce2O3 13 59 14 33 14 52 14 66 13 66 14 91 14 45 1 16Pr2O3 1 54 1 69 1 83 1 78 1 51 1 81 1 63 0 19Nd2O3 6 15 5 69 5 99 6 32 5 70 5 34 5 54 0 48Sm2O3 0 60 0 61 0 50 0 38 0 42 0 34 0 48 0 11Eu2O3 0 17 0 18 b d 0 24 b d b d 0 07 0 11Gd2O3 0 59 0 66 0 53 0 49 0 40 0 37 0 50 0 13ThO2 0 99 0 51 0 49 0 92 1 07 0 99 0 92 0 22F 4 24 4 10 4 15 3 78 3 99 3 61 3 76 0 21CO2 21 57 21 79 21 41 21 79 21 65 21 41 21 42shy O=F2 1 78 1 73 1 75 1 59 1 68 1 52 1 58

Total 99 31 98 77 98 78 99 29 98 15 98 15 98 10

Calculated for 5 (CO3)2shy groups

Na 0 031 0 032 0 025 0 038 0 042 0 034 0 032Ca 0 073 0 212 0 085 0 111 0 095 0 130 0 114Mn 0 010 0 066 0 018 0 105 0 119 0 018 0 023Fe 0 064 0 018 0 020 0 087 0 023Sr 0 137 0 124 0 143 0 123 0 127 0 132 0 144Ba 2 915 2 659 2 802 2 805 2 855 2 926 2 900

Total 3 230 3 111 3 072 3 201 3 325 3 240 3 236

La 0 331 0 450 0 419 0 350 0 346 0 367 0 362Ce 0 841 0 878 0 900 0 911 0 854 0 948 0 914Pr 0 095 0 103 0 113 0 110 0 094 0 115 0 102Nd 0 372 0 340 0 362 0 384 0 348 0 332 0 342Sm 0 035 0 035 0 029 0 022 0 024 0 021 0 029Eu 0 010 0 011 0 014 0 004Gd 0 033 0 036 0 030 0 028 0 023 0 021 0 029Th 0 038 0 019 0 019 0 036 0 042 0 039 0 036

Total 1 755 1 872 1 873 1 855 1 730 1 843 1 819

F 2 268 2 174 2 221 2 033 2 159 1 986 2 057

Y Dy Er Yb and Lu are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

242

TABLE 11 Chemical position of mckelveyite-(Y) at Khibina

Rock CZ IIISample 6031435Point 1 2 4 5 9 10 Mean (12) sd

Na2O 3 12 3 05 3 21 3 10 3 33 3 14 3 19 0 10CaO 4 56 4 34 4 32 4 34 4 20 4 72 4 43 0 38MnO 0 06 b d b d b d b d 0 06FeO b d b d 0 64 b d 0 07 0 11 0 18 0 26BaO 29 43 29 89 28 47 28 73 29 69 27 13 28 97 0 98SrO 9 16 9 56 9 29 10 41 8 25 12 42 9 56 1 26Y2O3 6 39 6 33 5 32 7 02 5 84 8 42 6 44 0 93La2O3 1 22 1 22 1 60 0 85 1 84 0 96 1 34 0 34Ce2O3 1 93 1 79 2 43 1 17 2 96 1 77 2 18 0 65Pr2O3 0 22 0 22 0 15 0 30 0 24 0 15 0 22 0 06Nd2O3 0 69 0 77 0 91 1 11 0 71 0 37 0 84 0 24Sm2O3 0 81 0 87 0 81 0 89 0 85 0 20 0 78 0 23Eu2O3 0 49 0 64 0 50 0 36 0 60 0 34 0 47 0 10Gd2O3 2 15 1 94 2 18 2 05 2 32 1 05 2 02 0 38Dy2O3 2 39 2 40 2 97 2 29 2 83 2 00 2 48 0 29Er2O3 1 03 1 09 1 28 0 87 0 68 1 03 0 94 0 19Yb2O3 0 44 0 44 0 56 0 59 0 25 0 61 0 47 0 12ThO2 b d 0 17 b d b d b d b dF 0 18 0 15 b d b d 0 17 0 16 0 14 0 09CO2 25 71 25 70 25 86 25 81 25 71 26 72 25 93H2O 10 52 10 51 10 58 10 56 10 52 10 93 10 61shy O=F2 0 07 0 06 0 07 0 07 0 06

Total 100 43 101 01 101 07 100 44 100 98 102 24 101 13

Calculated to 6 (CO3)2shy and 3H2O groups

Na 1 000 0 984 1 000 1 000 1 000 0 978 1 000Ca 0 735 0 757 0 561 0 778 0 565 0 785 0 676Na 0 009 0 040 0 006 0 075 0 023La 0 075 0 075 0 099 0 052 0 113 0 057 0 082Ce 0 118 0 109 0 148 0 071 0 181 0 104 0 132Pr 0 013 0 013 0 009 0 018 0 014 0 009 0 013Nd 0 041 0 046 0 054 0 067 0 042 0 021 0 050Mn 0 009 0 008 0 000Fe 0 089 0 010 0 015 0 025

Total 1 000 1 000 1 000 0 992 1 000 1 000 1 000

Ba 1 923 1 950 1 865 1 884 1 941 1 707 1 880Sr 0 885 0 922 0 900 1 009 0 798 1 156 0 917Ca 0 080 0 017 0 212 0 185 0 026 0 110

Total 2 888 2 890 2 977 2 893 2 924 2 889 2 907

Y 0 567 0 561 0 473 0 625 0 518 0 719 0 567Sm 0 047 0 050 0 047 0 051 0 049 0 011 0 045Eu 0 028 0 036 0 029 0 021 0 034 0 018 0 026Gd 0 119 0 107 0 121 0 114 0 128 0 056 0 111Dy 0 128 0 129 0 160 0 123 0 152 0 104 0 132Er 0 054 0 057 0 067 0 045 0 036 0 052 0 049Yb 0 023 0 022 0 028 0 030 0 013 0 030 0 024Th 0 007

Total 0 965 0 969 0 925 1 009 0 930 0 990 0 954

F 0 092 0 081 0 088 0 082 0 071

Lu is below detection limit CO2 and H2O calculated by stoichiometry

REE-SR-BA MINERALS

243

TA

BL

E12

C

hem

ical

com

posi

tion

ofst

ront

iani

teat

Khi

bina

Roc

kC

II-2

CII

-3C

ZII

I-1

CII

-1C

II-1

CII

-1S

ampl

e63

3A4

141

604

413

060

325

15

646

451

060

336

364

600

1pr

imar

yst

ront

iani

teas

soci

ated

wit

hse

cond

ary

stro

ntia

nite

(aft

erbu

rban

kite

)as

soci

ated

wit

hsy

nchy

site

-(C

e)

sync

hysi

te-(

Ce)

cord

ylit

e-(C

e)an

cyli

te-(

Ce)

sync

hysi

te-(

Ce)

ancy

lite

-(C

e)an

dba

ryte

pari

site

-(C

e)an

dan

dpa

risi

te-(

Ce)

and

bary

tean

dba

ryte

bast

nasi

te-(

Ce)

mea

n(1

0)sd

mea

n(6

)sd

mea

n(3

)m

ean

(25)

sdm

ean

(4)

sdm

ean

(6)

sdm

ean

(4)

sdm

ean

(8)

sdco

rem

antl

eri

m

Na 2

Ob

db

db

d0

140

05b

d0

210

050

100

04b

dC

aO3

250

563

230

443

073

461

003

370

331

580

373

720

325

970

20S

rO66

21

068

668

00

5166

62

635

71

2664

34

051

682

00

6063

95

100

625

80

78B

aO0

190

170

160

070

221

610

471

630

150

720

290

830

092

000

57L

a 2O

3b

db

d0

160

480

20b

d0

620

120

330

060

150

04C

e 2O

30

180

120

110

110

570

610

240

190

080

760

160

420

050

250

05C

O2

307

930

99

310

530

71

305

131

11

306

931

99

Tot

al10

063

101

2910

169

100

5810

004

103

2010

004

102

94

Cal

cula

ted

to1

(CO

3)2

shygr

oup

Na

000

60

010

000

5C

a0

083

008

20

077

008

80

087

004

00

095

014

6S

r0

913

091

50

911

087

90

895

093

10

885

083

1B

a0

002

000

10

002

001

50

015

000

70

008

001

8L

a0

001

000

40

005

000

30

001

Ce

000

20

001

000

50

005

000

20

007

000

40

002

Tot

al0

999

100

00

997

099

80

999

099

90

999

099

8

Mg

Mn

Fe

Pr

Nd

Sm

Y

T

han

dU

are

belo

wde

tect

ion

lim

its

CO

2ca

lcul

ated

byst

oich

iom

etry

A N ZAITSEV ETAL

244

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 17: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

of mckelveyite-(Y) is still the subject of debate Inthe original description Milton et al (1965) gavethe formula as Na19Ba40Ca11Sr02REE15U03

(CO3)9 5H2O Later Chao et al (1978) suggestedan isomorphous relationship between mckel-veyite-(Y) and donnayite-(Y) and gave theformula of NaCaBa3Y(CO3)6 3H2O In a recentstudy of mckelveyite-(Y) and ewaldite Voloshinet al (1990 1992) showed a similarity betweenthese two minerals and suggested that they areprobably polymorphs The formula of ewalditewas determined as (CaNaREE )(BaSr )(CO3)2 nH2O where part of the H2O is zeolitic

Chemical data from the Khibina mckelveyite-(Y) were calculated on the basis of the IMAaccepted formula NaCaBa3Y(CO3)6 3H2O (Table

11) Our data and those of Voloshin et al (1990)show significant substitutions the main one beingBa2+ Sr2+ which is related to the mckelveyite-(Y)-donnayite-(Y) pair where these minerals are Baand Sr end-members respectively The assignationof REE to two different sites in the mckelveyite-(Y) formula is problematic It is based on formulabalance and the REE chondrite-normalizeddistribution which is discussed below in thesection on lsquoRare earth patternsrsquo

Strontianite baryte barytocalcite edingtonite andharmotome

Minerals rich in Ba and Sr but with no REE arerepresented in the Khibina carbonatites by

TABLE 9 Chemical composition of cordylite-(Ce) at Khibina

Rock CZ III-1 C II-3 CZ III-1 CZ III-1 C II-1Sample 60775 6032646 6032515 60775 6031650Variety low Ca and Sr moderate Ca and Sr high Ca and Sr

mean (15) sd mean (17) sd mean (15) sd mean (10) sd mean (17) sd

Na2O 412 0 12 3 66 0 24 3 67 0 12 2 60 0 15 256 0 16CaO 073 0 18 1 54 0 31 1 50 0 08 3 82 0 18 410 0 26SrO 058 0 23 2 48 0 57 2 09 0 31 6 03 0 43 590 0 50BaO 22 28 0 33 22 29 0 51 22 32 0 32 23 02 0 25 23 11 0 36La2O3 994 0 36 10 46 0 38 11 82 0 53 7 58 0 30 11 49 0 51Ce2O3 24 46 0 43 23 82 0 68 22 18 0 28 20 26 0 38 17 90 0 67Pr2O3 241 0 18 1 85 0 24 1 69 0 25 2 19 0 27 145 0 30Nd2O3 747 0 49 5 88 0 31 5 70 0 41 6 97 0 49 536 0 54ThO2 011 0 17 0 13 0 14 0 12 0 16 0 13 0 12 013 0 16F 262 0 10 2 97 0 28 2 95 0 33 2 60 0 08 285 0 31CO2 24 92 25 16 24 78 25 77 25 75shy O=F2 110 1 25 1 24 1 10 120

Total 98 55 98 98 97 57 99 88 99 40

Calculated for 4 (CO3)2shy groups

Na 0945 0 821 0 837 0 579 0567Ca 0093 0 191 0 189 0 470 0501

Total 1038 1 012 1 026 1 049 1068

Ba 1032 1 011 1 028 1 036 1033La 0434 0 446 0 513 0 321 0483Ce 1058 1 008 0 954 0 851 0747Pr 0104 0 078 0 072 0 092 0060Nd 0315 0 243 0 239 0 286 0218Sr 0040 0 167 0 142 0 402 0390Th 0003 0 003 0 003 0 003 0003

Total 1954 1 945 1 923 1 955 1901

F 0981 1 088 1 096 0 946 1029

Fe Mn and Sm are below detection limitsCO2 calculated by stoichiometry

REE-SR-BA MINERALS

241

strontianite baryte barytocalcite edingtonite andharmotome (Table 3) The first two minerals arecommon in late-stage carbonatites e g MountainPass (Olsen et al 1954) Vuoriyarvi SeblyavrSallanlatvi (Kapustin 1980) Sarnu-Dandali (Wallet al 1993) and Kangankunde (Wall andMariano 1996)

Barytocalcite is extremely rare in carbonatitesand has been described only from Vuoriyarvi andan unnamed Siberian carbonatite (Kapustin 1980)and possibly Chipman Lake (Platt and Woolley1990)

Edingtonite and harmotome are bariumzeolites Their occurrence at Khibina is the first

TABLE 10 Chemical composition of cebaite-(Ce) at Khibina

Rock CZ III-1Sample 6031435Analysis 14 24 25 29 30 33 Mean (18) Sd

Na2O 0 09 0 10 0 08 0 11 0 13 0 10 0 10 0 03CaO 0 40 1 18 0 47 0 61 0 52 0 70 0 61 0 21MnO 0 07 0 47 0 12 0 73 0 83 0 13 0 16 0 24FeO 0 45 0 13 b d 0 14 0 61 b d 0 16 0 19SrO 1 40 1 27 1 45 1 25 1 28 1 31 1 43 0 36BaO 43 93 40 51 42 19 42 09 42 59 42 93 42 77 1 84La2O3 5 30 7 28 6 71 5 58 5 48 5 72 5 67 0 52Ce2O3 13 59 14 33 14 52 14 66 13 66 14 91 14 45 1 16Pr2O3 1 54 1 69 1 83 1 78 1 51 1 81 1 63 0 19Nd2O3 6 15 5 69 5 99 6 32 5 70 5 34 5 54 0 48Sm2O3 0 60 0 61 0 50 0 38 0 42 0 34 0 48 0 11Eu2O3 0 17 0 18 b d 0 24 b d b d 0 07 0 11Gd2O3 0 59 0 66 0 53 0 49 0 40 0 37 0 50 0 13ThO2 0 99 0 51 0 49 0 92 1 07 0 99 0 92 0 22F 4 24 4 10 4 15 3 78 3 99 3 61 3 76 0 21CO2 21 57 21 79 21 41 21 79 21 65 21 41 21 42shy O=F2 1 78 1 73 1 75 1 59 1 68 1 52 1 58

Total 99 31 98 77 98 78 99 29 98 15 98 15 98 10

Calculated for 5 (CO3)2shy groups

Na 0 031 0 032 0 025 0 038 0 042 0 034 0 032Ca 0 073 0 212 0 085 0 111 0 095 0 130 0 114Mn 0 010 0 066 0 018 0 105 0 119 0 018 0 023Fe 0 064 0 018 0 020 0 087 0 023Sr 0 137 0 124 0 143 0 123 0 127 0 132 0 144Ba 2 915 2 659 2 802 2 805 2 855 2 926 2 900

Total 3 230 3 111 3 072 3 201 3 325 3 240 3 236

La 0 331 0 450 0 419 0 350 0 346 0 367 0 362Ce 0 841 0 878 0 900 0 911 0 854 0 948 0 914Pr 0 095 0 103 0 113 0 110 0 094 0 115 0 102Nd 0 372 0 340 0 362 0 384 0 348 0 332 0 342Sm 0 035 0 035 0 029 0 022 0 024 0 021 0 029Eu 0 010 0 011 0 014 0 004Gd 0 033 0 036 0 030 0 028 0 023 0 021 0 029Th 0 038 0 019 0 019 0 036 0 042 0 039 0 036

Total 1 755 1 872 1 873 1 855 1 730 1 843 1 819

F 2 268 2 174 2 221 2 033 2 159 1 986 2 057

Y Dy Er Yb and Lu are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

242

TABLE 11 Chemical position of mckelveyite-(Y) at Khibina

Rock CZ IIISample 6031435Point 1 2 4 5 9 10 Mean (12) sd

Na2O 3 12 3 05 3 21 3 10 3 33 3 14 3 19 0 10CaO 4 56 4 34 4 32 4 34 4 20 4 72 4 43 0 38MnO 0 06 b d b d b d b d 0 06FeO b d b d 0 64 b d 0 07 0 11 0 18 0 26BaO 29 43 29 89 28 47 28 73 29 69 27 13 28 97 0 98SrO 9 16 9 56 9 29 10 41 8 25 12 42 9 56 1 26Y2O3 6 39 6 33 5 32 7 02 5 84 8 42 6 44 0 93La2O3 1 22 1 22 1 60 0 85 1 84 0 96 1 34 0 34Ce2O3 1 93 1 79 2 43 1 17 2 96 1 77 2 18 0 65Pr2O3 0 22 0 22 0 15 0 30 0 24 0 15 0 22 0 06Nd2O3 0 69 0 77 0 91 1 11 0 71 0 37 0 84 0 24Sm2O3 0 81 0 87 0 81 0 89 0 85 0 20 0 78 0 23Eu2O3 0 49 0 64 0 50 0 36 0 60 0 34 0 47 0 10Gd2O3 2 15 1 94 2 18 2 05 2 32 1 05 2 02 0 38Dy2O3 2 39 2 40 2 97 2 29 2 83 2 00 2 48 0 29Er2O3 1 03 1 09 1 28 0 87 0 68 1 03 0 94 0 19Yb2O3 0 44 0 44 0 56 0 59 0 25 0 61 0 47 0 12ThO2 b d 0 17 b d b d b d b dF 0 18 0 15 b d b d 0 17 0 16 0 14 0 09CO2 25 71 25 70 25 86 25 81 25 71 26 72 25 93H2O 10 52 10 51 10 58 10 56 10 52 10 93 10 61shy O=F2 0 07 0 06 0 07 0 07 0 06

Total 100 43 101 01 101 07 100 44 100 98 102 24 101 13

Calculated to 6 (CO3)2shy and 3H2O groups

Na 1 000 0 984 1 000 1 000 1 000 0 978 1 000Ca 0 735 0 757 0 561 0 778 0 565 0 785 0 676Na 0 009 0 040 0 006 0 075 0 023La 0 075 0 075 0 099 0 052 0 113 0 057 0 082Ce 0 118 0 109 0 148 0 071 0 181 0 104 0 132Pr 0 013 0 013 0 009 0 018 0 014 0 009 0 013Nd 0 041 0 046 0 054 0 067 0 042 0 021 0 050Mn 0 009 0 008 0 000Fe 0 089 0 010 0 015 0 025

Total 1 000 1 000 1 000 0 992 1 000 1 000 1 000

Ba 1 923 1 950 1 865 1 884 1 941 1 707 1 880Sr 0 885 0 922 0 900 1 009 0 798 1 156 0 917Ca 0 080 0 017 0 212 0 185 0 026 0 110

Total 2 888 2 890 2 977 2 893 2 924 2 889 2 907

Y 0 567 0 561 0 473 0 625 0 518 0 719 0 567Sm 0 047 0 050 0 047 0 051 0 049 0 011 0 045Eu 0 028 0 036 0 029 0 021 0 034 0 018 0 026Gd 0 119 0 107 0 121 0 114 0 128 0 056 0 111Dy 0 128 0 129 0 160 0 123 0 152 0 104 0 132Er 0 054 0 057 0 067 0 045 0 036 0 052 0 049Yb 0 023 0 022 0 028 0 030 0 013 0 030 0 024Th 0 007

Total 0 965 0 969 0 925 1 009 0 930 0 990 0 954

F 0 092 0 081 0 088 0 082 0 071

Lu is below detection limit CO2 and H2O calculated by stoichiometry

REE-SR-BA MINERALS

243

TA

BL

E12

C

hem

ical

com

posi

tion

ofst

ront

iani

teat

Khi

bina

Roc

kC

II-2

CII

-3C

ZII

I-1

CII

-1C

II-1

CII

-1S

ampl

e63

3A4

141

604

413

060

325

15

646

451

060

336

364

600

1pr

imar

yst

ront

iani

teas

soci

ated

wit

hse

cond

ary

stro

ntia

nite

(aft

erbu

rban

kite

)as

soci

ated

wit

hsy

nchy

site

-(C

e)

sync

hysi

te-(

Ce)

cord

ylit

e-(C

e)an

cyli

te-(

Ce)

sync

hysi

te-(

Ce)

ancy

lite

-(C

e)an

dba

ryte

pari

site

-(C

e)an

dan

dpa

risi

te-(

Ce)

and

bary

tean

dba

ryte

bast

nasi

te-(

Ce)

mea

n(1

0)sd

mea

n(6

)sd

mea

n(3

)m

ean

(25)

sdm

ean

(4)

sdm

ean

(6)

sdm

ean

(4)

sdm

ean

(8)

sdco

rem

antl

eri

m

Na 2

Ob

db

db

d0

140

05b

d0

210

050

100

04b

dC

aO3

250

563

230

443

073

461

003

370

331

580

373

720

325

970

20S

rO66

21

068

668

00

5166

62

635

71

2664

34

051

682

00

6063

95

100

625

80

78B

aO0

190

170

160

070

221

610

471

630

150

720

290

830

092

000

57L

a 2O

3b

db

d0

160

480

20b

d0

620

120

330

060

150

04C

e 2O

30

180

120

110

110

570

610

240

190

080

760

160

420

050

250

05C

O2

307

930

99

310

530

71

305

131

11

306

931

99

Tot

al10

063

101

2910

169

100

5810

004

103

2010

004

102

94

Cal

cula

ted

to1

(CO

3)2

shygr

oup

Na

000

60

010

000

5C

a0

083

008

20

077

008

80

087

004

00

095

014

6S

r0

913

091

50

911

087

90

895

093

10

885

083

1B

a0

002

000

10

002

001

50

015

000

70

008

001

8L

a0

001

000

40

005

000

30

001

Ce

000

20

001

000

50

005

000

20

007

000

40

002

Tot

al0

999

100

00

997

099

80

999

099

90

999

099

8

Mg

Mn

Fe

Pr

Nd

Sm

Y

T

han

dU

are

belo

wde

tect

ion

lim

its

CO

2ca

lcul

ated

byst

oich

iom

etry

A N ZAITSEV ETAL

244

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 18: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

strontianite baryte barytocalcite edingtonite andharmotome (Table 3) The first two minerals arecommon in late-stage carbonatites e g MountainPass (Olsen et al 1954) Vuoriyarvi SeblyavrSallanlatvi (Kapustin 1980) Sarnu-Dandali (Wallet al 1993) and Kangankunde (Wall andMariano 1996)

Barytocalcite is extremely rare in carbonatitesand has been described only from Vuoriyarvi andan unnamed Siberian carbonatite (Kapustin 1980)and possibly Chipman Lake (Platt and Woolley1990)

Edingtonite and harmotome are bariumzeolites Their occurrence at Khibina is the first

TABLE 10 Chemical composition of cebaite-(Ce) at Khibina

Rock CZ III-1Sample 6031435Analysis 14 24 25 29 30 33 Mean (18) Sd

Na2O 0 09 0 10 0 08 0 11 0 13 0 10 0 10 0 03CaO 0 40 1 18 0 47 0 61 0 52 0 70 0 61 0 21MnO 0 07 0 47 0 12 0 73 0 83 0 13 0 16 0 24FeO 0 45 0 13 b d 0 14 0 61 b d 0 16 0 19SrO 1 40 1 27 1 45 1 25 1 28 1 31 1 43 0 36BaO 43 93 40 51 42 19 42 09 42 59 42 93 42 77 1 84La2O3 5 30 7 28 6 71 5 58 5 48 5 72 5 67 0 52Ce2O3 13 59 14 33 14 52 14 66 13 66 14 91 14 45 1 16Pr2O3 1 54 1 69 1 83 1 78 1 51 1 81 1 63 0 19Nd2O3 6 15 5 69 5 99 6 32 5 70 5 34 5 54 0 48Sm2O3 0 60 0 61 0 50 0 38 0 42 0 34 0 48 0 11Eu2O3 0 17 0 18 b d 0 24 b d b d 0 07 0 11Gd2O3 0 59 0 66 0 53 0 49 0 40 0 37 0 50 0 13ThO2 0 99 0 51 0 49 0 92 1 07 0 99 0 92 0 22F 4 24 4 10 4 15 3 78 3 99 3 61 3 76 0 21CO2 21 57 21 79 21 41 21 79 21 65 21 41 21 42shy O=F2 1 78 1 73 1 75 1 59 1 68 1 52 1 58

Total 99 31 98 77 98 78 99 29 98 15 98 15 98 10

Calculated for 5 (CO3)2shy groups

Na 0 031 0 032 0 025 0 038 0 042 0 034 0 032Ca 0 073 0 212 0 085 0 111 0 095 0 130 0 114Mn 0 010 0 066 0 018 0 105 0 119 0 018 0 023Fe 0 064 0 018 0 020 0 087 0 023Sr 0 137 0 124 0 143 0 123 0 127 0 132 0 144Ba 2 915 2 659 2 802 2 805 2 855 2 926 2 900

Total 3 230 3 111 3 072 3 201 3 325 3 240 3 236

La 0 331 0 450 0 419 0 350 0 346 0 367 0 362Ce 0 841 0 878 0 900 0 911 0 854 0 948 0 914Pr 0 095 0 103 0 113 0 110 0 094 0 115 0 102Nd 0 372 0 340 0 362 0 384 0 348 0 332 0 342Sm 0 035 0 035 0 029 0 022 0 024 0 021 0 029Eu 0 010 0 011 0 014 0 004Gd 0 033 0 036 0 030 0 028 0 023 0 021 0 029Th 0 038 0 019 0 019 0 036 0 042 0 039 0 036

Total 1 755 1 872 1 873 1 855 1 730 1 843 1 819

F 2 268 2 174 2 221 2 033 2 159 1 986 2 057

Y Dy Er Yb and Lu are below detection limitsCO2 calculated by stoichiometry

A N ZAITSEV ETAL

242

TABLE 11 Chemical position of mckelveyite-(Y) at Khibina

Rock CZ IIISample 6031435Point 1 2 4 5 9 10 Mean (12) sd

Na2O 3 12 3 05 3 21 3 10 3 33 3 14 3 19 0 10CaO 4 56 4 34 4 32 4 34 4 20 4 72 4 43 0 38MnO 0 06 b d b d b d b d 0 06FeO b d b d 0 64 b d 0 07 0 11 0 18 0 26BaO 29 43 29 89 28 47 28 73 29 69 27 13 28 97 0 98SrO 9 16 9 56 9 29 10 41 8 25 12 42 9 56 1 26Y2O3 6 39 6 33 5 32 7 02 5 84 8 42 6 44 0 93La2O3 1 22 1 22 1 60 0 85 1 84 0 96 1 34 0 34Ce2O3 1 93 1 79 2 43 1 17 2 96 1 77 2 18 0 65Pr2O3 0 22 0 22 0 15 0 30 0 24 0 15 0 22 0 06Nd2O3 0 69 0 77 0 91 1 11 0 71 0 37 0 84 0 24Sm2O3 0 81 0 87 0 81 0 89 0 85 0 20 0 78 0 23Eu2O3 0 49 0 64 0 50 0 36 0 60 0 34 0 47 0 10Gd2O3 2 15 1 94 2 18 2 05 2 32 1 05 2 02 0 38Dy2O3 2 39 2 40 2 97 2 29 2 83 2 00 2 48 0 29Er2O3 1 03 1 09 1 28 0 87 0 68 1 03 0 94 0 19Yb2O3 0 44 0 44 0 56 0 59 0 25 0 61 0 47 0 12ThO2 b d 0 17 b d b d b d b dF 0 18 0 15 b d b d 0 17 0 16 0 14 0 09CO2 25 71 25 70 25 86 25 81 25 71 26 72 25 93H2O 10 52 10 51 10 58 10 56 10 52 10 93 10 61shy O=F2 0 07 0 06 0 07 0 07 0 06

Total 100 43 101 01 101 07 100 44 100 98 102 24 101 13

Calculated to 6 (CO3)2shy and 3H2O groups

Na 1 000 0 984 1 000 1 000 1 000 0 978 1 000Ca 0 735 0 757 0 561 0 778 0 565 0 785 0 676Na 0 009 0 040 0 006 0 075 0 023La 0 075 0 075 0 099 0 052 0 113 0 057 0 082Ce 0 118 0 109 0 148 0 071 0 181 0 104 0 132Pr 0 013 0 013 0 009 0 018 0 014 0 009 0 013Nd 0 041 0 046 0 054 0 067 0 042 0 021 0 050Mn 0 009 0 008 0 000Fe 0 089 0 010 0 015 0 025

Total 1 000 1 000 1 000 0 992 1 000 1 000 1 000

Ba 1 923 1 950 1 865 1 884 1 941 1 707 1 880Sr 0 885 0 922 0 900 1 009 0 798 1 156 0 917Ca 0 080 0 017 0 212 0 185 0 026 0 110

Total 2 888 2 890 2 977 2 893 2 924 2 889 2 907

Y 0 567 0 561 0 473 0 625 0 518 0 719 0 567Sm 0 047 0 050 0 047 0 051 0 049 0 011 0 045Eu 0 028 0 036 0 029 0 021 0 034 0 018 0 026Gd 0 119 0 107 0 121 0 114 0 128 0 056 0 111Dy 0 128 0 129 0 160 0 123 0 152 0 104 0 132Er 0 054 0 057 0 067 0 045 0 036 0 052 0 049Yb 0 023 0 022 0 028 0 030 0 013 0 030 0 024Th 0 007

Total 0 965 0 969 0 925 1 009 0 930 0 990 0 954

F 0 092 0 081 0 088 0 082 0 071

Lu is below detection limit CO2 and H2O calculated by stoichiometry

REE-SR-BA MINERALS

243

TA

BL

E12

C

hem

ical

com

posi

tion

ofst

ront

iani

teat

Khi

bina

Roc

kC

II-2

CII

-3C

ZII

I-1

CII

-1C

II-1

CII

-1S

ampl

e63

3A4

141

604

413

060

325

15

646

451

060

336

364

600

1pr

imar

yst

ront

iani

teas

soci

ated

wit

hse

cond

ary

stro

ntia

nite

(aft

erbu

rban

kite

)as

soci

ated

wit

hsy

nchy

site

-(C

e)

sync

hysi

te-(

Ce)

cord

ylit

e-(C

e)an

cyli

te-(

Ce)

sync

hysi

te-(

Ce)

ancy

lite

-(C

e)an

dba

ryte

pari

site

-(C

e)an

dan

dpa

risi

te-(

Ce)

and

bary

tean

dba

ryte

bast

nasi

te-(

Ce)

mea

n(1

0)sd

mea

n(6

)sd

mea

n(3

)m

ean

(25)

sdm

ean

(4)

sdm

ean

(6)

sdm

ean

(4)

sdm

ean

(8)

sdco

rem

antl

eri

m

Na 2

Ob

db

db

d0

140

05b

d0

210

050

100

04b

dC

aO3

250

563

230

443

073

461

003

370

331

580

373

720

325

970

20S

rO66

21

068

668

00

5166

62

635

71

2664

34

051

682

00

6063

95

100

625

80

78B

aO0

190

170

160

070

221

610

471

630

150

720

290

830

092

000

57L

a 2O

3b

db

d0

160

480

20b

d0

620

120

330

060

150

04C

e 2O

30

180

120

110

110

570

610

240

190

080

760

160

420

050

250

05C

O2

307

930

99

310

530

71

305

131

11

306

931

99

Tot

al10

063

101

2910

169

100

5810

004

103

2010

004

102

94

Cal

cula

ted

to1

(CO

3)2

shygr

oup

Na

000

60

010

000

5C

a0

083

008

20

077

008

80

087

004

00

095

014

6S

r0

913

091

50

911

087

90

895

093

10

885

083

1B

a0

002

000

10

002

001

50

015

000

70

008

001

8L

a0

001

000

40

005

000

30

001

Ce

000

20

001

000

50

005

000

20

007

000

40

002

Tot

al0

999

100

00

997

099

80

999

099

90

999

099

8

Mg

Mn

Fe

Pr

Nd

Sm

Y

T

han

dU

are

belo

wde

tect

ion

lim

its

CO

2ca

lcul

ated

byst

oich

iom

etry

A N ZAITSEV ETAL

244

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 19: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

TABLE 11 Chemical position of mckelveyite-(Y) at Khibina

Rock CZ IIISample 6031435Point 1 2 4 5 9 10 Mean (12) sd

Na2O 3 12 3 05 3 21 3 10 3 33 3 14 3 19 0 10CaO 4 56 4 34 4 32 4 34 4 20 4 72 4 43 0 38MnO 0 06 b d b d b d b d 0 06FeO b d b d 0 64 b d 0 07 0 11 0 18 0 26BaO 29 43 29 89 28 47 28 73 29 69 27 13 28 97 0 98SrO 9 16 9 56 9 29 10 41 8 25 12 42 9 56 1 26Y2O3 6 39 6 33 5 32 7 02 5 84 8 42 6 44 0 93La2O3 1 22 1 22 1 60 0 85 1 84 0 96 1 34 0 34Ce2O3 1 93 1 79 2 43 1 17 2 96 1 77 2 18 0 65Pr2O3 0 22 0 22 0 15 0 30 0 24 0 15 0 22 0 06Nd2O3 0 69 0 77 0 91 1 11 0 71 0 37 0 84 0 24Sm2O3 0 81 0 87 0 81 0 89 0 85 0 20 0 78 0 23Eu2O3 0 49 0 64 0 50 0 36 0 60 0 34 0 47 0 10Gd2O3 2 15 1 94 2 18 2 05 2 32 1 05 2 02 0 38Dy2O3 2 39 2 40 2 97 2 29 2 83 2 00 2 48 0 29Er2O3 1 03 1 09 1 28 0 87 0 68 1 03 0 94 0 19Yb2O3 0 44 0 44 0 56 0 59 0 25 0 61 0 47 0 12ThO2 b d 0 17 b d b d b d b dF 0 18 0 15 b d b d 0 17 0 16 0 14 0 09CO2 25 71 25 70 25 86 25 81 25 71 26 72 25 93H2O 10 52 10 51 10 58 10 56 10 52 10 93 10 61shy O=F2 0 07 0 06 0 07 0 07 0 06

Total 100 43 101 01 101 07 100 44 100 98 102 24 101 13

Calculated to 6 (CO3)2shy and 3H2O groups

Na 1 000 0 984 1 000 1 000 1 000 0 978 1 000Ca 0 735 0 757 0 561 0 778 0 565 0 785 0 676Na 0 009 0 040 0 006 0 075 0 023La 0 075 0 075 0 099 0 052 0 113 0 057 0 082Ce 0 118 0 109 0 148 0 071 0 181 0 104 0 132Pr 0 013 0 013 0 009 0 018 0 014 0 009 0 013Nd 0 041 0 046 0 054 0 067 0 042 0 021 0 050Mn 0 009 0 008 0 000Fe 0 089 0 010 0 015 0 025

Total 1 000 1 000 1 000 0 992 1 000 1 000 1 000

Ba 1 923 1 950 1 865 1 884 1 941 1 707 1 880Sr 0 885 0 922 0 900 1 009 0 798 1 156 0 917Ca 0 080 0 017 0 212 0 185 0 026 0 110

Total 2 888 2 890 2 977 2 893 2 924 2 889 2 907

Y 0 567 0 561 0 473 0 625 0 518 0 719 0 567Sm 0 047 0 050 0 047 0 051 0 049 0 011 0 045Eu 0 028 0 036 0 029 0 021 0 034 0 018 0 026Gd 0 119 0 107 0 121 0 114 0 128 0 056 0 111Dy 0 128 0 129 0 160 0 123 0 152 0 104 0 132Er 0 054 0 057 0 067 0 045 0 036 0 052 0 049Yb 0 023 0 022 0 028 0 030 0 013 0 030 0 024Th 0 007

Total 0 965 0 969 0 925 1 009 0 930 0 990 0 954

F 0 092 0 081 0 088 0 082 0 071

Lu is below detection limit CO2 and H2O calculated by stoichiometry

REE-SR-BA MINERALS

243

TA

BL

E12

C

hem

ical

com

posi

tion

ofst

ront

iani

teat

Khi

bina

Roc

kC

II-2

CII

-3C

ZII

I-1

CII

-1C

II-1

CII

-1S

ampl

e63

3A4

141

604

413

060

325

15

646

451

060

336

364

600

1pr

imar

yst

ront

iani

teas

soci

ated

wit

hse

cond

ary

stro

ntia

nite

(aft

erbu

rban

kite

)as

soci

ated

wit

hsy

nchy

site

-(C

e)

sync

hysi

te-(

Ce)

cord

ylit

e-(C

e)an

cyli

te-(

Ce)

sync

hysi

te-(

Ce)

ancy

lite

-(C

e)an

dba

ryte

pari

site

-(C

e)an

dan

dpa

risi

te-(

Ce)

and

bary

tean

dba

ryte

bast

nasi

te-(

Ce)

mea

n(1

0)sd

mea

n(6

)sd

mea

n(3

)m

ean

(25)

sdm

ean

(4)

sdm

ean

(6)

sdm

ean

(4)

sdm

ean

(8)

sdco

rem

antl

eri

m

Na 2

Ob

db

db

d0

140

05b

d0

210

050

100

04b

dC

aO3

250

563

230

443

073

461

003

370

331

580

373

720

325

970

20S

rO66

21

068

668

00

5166

62

635

71

2664

34

051

682

00

6063

95

100

625

80

78B

aO0

190

170

160

070

221

610

471

630

150

720

290

830

092

000

57L

a 2O

3b

db

d0

160

480

20b

d0

620

120

330

060

150

04C

e 2O

30

180

120

110

110

570

610

240

190

080

760

160

420

050

250

05C

O2

307

930

99

310

530

71

305

131

11

306

931

99

Tot

al10

063

101

2910

169

100

5810

004

103

2010

004

102

94

Cal

cula

ted

to1

(CO

3)2

shygr

oup

Na

000

60

010

000

5C

a0

083

008

20

077

008

80

087

004

00

095

014

6S

r0

913

091

50

911

087

90

895

093

10

885

083

1B

a0

002

000

10

002

001

50

015

000

70

008

001

8L

a0

001

000

40

005

000

30

001

Ce

000

20

001

000

50

005

000

20

007

000

40

002

Tot

al0

999

100

00

997

099

80

999

099

90

999

099

8

Mg

Mn

Fe

Pr

Nd

Sm

Y

T

han

dU

are

belo

wde

tect

ion

lim

its

CO

2ca

lcul

ated

byst

oich

iom

etry

A N ZAITSEV ETAL

244

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 20: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

TA

BL

E12

C

hem

ical

com

posi

tion

ofst

ront

iani

teat

Khi

bina

Roc

kC

II-2

CII

-3C

ZII

I-1

CII

-1C

II-1

CII

-1S

ampl

e63

3A4

141

604

413

060

325

15

646

451

060

336

364

600

1pr

imar

yst

ront

iani

teas

soci

ated

wit

hse

cond

ary

stro

ntia

nite

(aft

erbu

rban

kite

)as

soci

ated

wit

hsy

nchy

site

-(C

e)

sync

hysi

te-(

Ce)

cord

ylit

e-(C

e)an

cyli

te-(

Ce)

sync

hysi

te-(

Ce)

ancy

lite

-(C

e)an

dba

ryte

pari

site

-(C

e)an

dan

dpa

risi

te-(

Ce)

and

bary

tean

dba

ryte

bast

nasi

te-(

Ce)

mea

n(1

0)sd

mea

n(6

)sd

mea

n(3

)m

ean

(25)

sdm

ean

(4)

sdm

ean

(6)

sdm

ean

(4)

sdm

ean

(8)

sdco

rem

antl

eri

m

Na 2

Ob

db

db

d0

140

05b

d0

210

050

100

04b

dC

aO3

250

563

230

443

073

461

003

370

331

580

373

720

325

970

20S

rO66

21

068

668

00

5166

62

635

71

2664

34

051

682

00

6063

95

100

625

80

78B

aO0

190

170

160

070

221

610

471

630

150

720

290

830

092

000

57L

a 2O

3b

db

d0

160

480

20b

d0

620

120

330

060

150

04C

e 2O

30

180

120

110

110

570

610

240

190

080

760

160

420

050

250

05C

O2

307

930

99

310

530

71

305

131

11

306

931

99

Tot

al10

063

101

2910

169

100

5810

004

103

2010

004

102

94

Cal

cula

ted

to1

(CO

3)2

shygr

oup

Na

000

60

010

000

5C

a0

083

008

20

077

008

80

087

004

00

095

014

6S

r0

913

091

50

911

087

90

895

093

10

885

083

1B

a0

002

000

10

002

001

50

015

000

70

008

001

8L

a0

001

000

40

005

000

30

001

Ce

000

20

001

000

50

005

000

20

007

000

40

002

Tot

al0

999

100

00

997

099

80

999

099

90

999

099

8

Mg

Mn

Fe

Pr

Nd

Sm

Y

T

han

dU

are

belo

wde

tect

ion

lim

its

CO

2ca

lcul

ated

byst

oich

iom

etry

A N ZAITSEV ETAL

244

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 21: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

documentedoccurrence in carbonatites (Zaitsev etal 1992)

The chemical composition of strontianite fromcarbonatites is generally close to the end-membercontaining a few percent of CaO (e g Kapustin1980 Wall and Mariano 1996) Average micro-probe results from Khibina are presented inTable 12 Primary strontianite is characterizedby minor replacement of Sr by Ca which iscommon for carbonatitic strontianite but lowcontents of other elements such as Ba(0 05 shy 0 63 wt of BaO) La Ce and Nd(REE2O3 = 015shy 071 wt ) Compared withthis primary strontianite secondary strontianite atKhibina contains more BaO (0 44 shy 3 34 wt)and REE2O3 (0 35 shy 2 47 wt) some secondarystrontianite also shows core-mantle-rim zoning(Table 12)

Microprobe analyses of baryte from Khibinaare in good agreement with available data forother late-stage carbonatites (Kapustin 1980Wall and Mariano 1996) and show only a smallreplacement of Ba by Sr (0 09 shy 175 wt of SrOCa (0 05 shy 013 wt of CaO) and Na (008shy 022wt of Na2O)

Barytocalcite from Khibina (CaO 18 96 BaO5182 SrO 028 Na2O 006 CO2 calc 2990 total101 02 wt) has less SrO than that reportedpreviously from other carbonatites (Kapustin1980)

Rare earth patterns

Burbankite and carbocernaite from C II-1carbonatites which are early primary RE-richminerals show almost identical REE distributionpatterns with LaNdcn (cn = chondrite-normal-ized) ratios between 52 and 85 for burbankiteand between 74 and 77 for carbocernaite Anexception is Ba-enriched burbankite which has arelative enrichment in Nd (LaNdcn ratio 2 9)(Fig 6a)

REE distribution patterns in Ca-REE fluocar-bonates from syntaxic intergrowths in C II-1carbonatites are similar to those in burbankite andcarbocernaite (Fig 6b) with LaNdcn ratios5 1 shy 6 0 5 4 shy 63 and 7 1shy 75 for synchysite-(Ce) parisite-(Ce) and bastnasite-(Ce) respec-tively Average values from C II-2 carbonatitesare more light-REE-enriched than those from theC II-3 carbonatites and the minerals from C II-3type have relatively low LaNdcn ratios of3 0 shy 3 3 and 3 2shy 38 for synchysite-(Ce) andparisite-(Ce) respectively (Fig 6c)

The Ba-REE fluocarbonates cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) from C II-

FIG 6 Chondrite-normalized plots of (a) burbankite andcarbocernaite from C I carbonatites (b) bastnasite-(Ce)parisite-(Ce) and synchysite-(Ce) from syntaxial inter-growths C II-2 carbonatites (c) parisite-(Ce) andsynchysite-(Ce) from syntaxial intergrowths C II-3carbonatites (d) cordylite-(Ce) and kukharenkoite-(Ce)from C II-3 carbonatites and CZ III-1 carbonate-zeolite

veins Chondrite values from Wakita et al (1971)

REE-SR-BA MINERALS

245

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 22: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

3 carbonatites and CZ III carbonate-zeolite veinswere the final light REE minerals to crystallizeand are characterized by REE chondrite-normal-ized plots similar to those for synchysite-(Ce)andparisite-(Ce) from syntaxial intergrowths from CII-3 carbonatites (Fig 6d) The LaNdcn ratios are2 5 shy 3 9 2 8 shy 3 5 and 1 6shy 24 for cordylite-(Ce)kukharenkoite-(Ce) and cebaite-(Ce) respectively

The distribution of REE in primary carbonatesfrom Khibina shows an evolutionary trend fromearly carbonatites (C I) through late carbonatites(C II) to carbonate-zeolite veins (CZ III) Thistrend is marked by changes in the LaNdcn ratio ofthe REE-minerals which gradually decreases fromearly burbankite and carbocernaite (LaNdcn=52 shy 86) to later Ca-REE fluocarbonates(LaNdcn=5 1 shy 75 for C II-2 carbonatite type and30 shy 3 8 for C II-3 carbonatite) and finally to Ba-REE fluocarbonates with LaNdcn between16 shy 3 9

The extreme of this trend may be representedby the suite of Y and Sm-Er-enriched minerals(mckelveyite-(Y) donnayite-(Y) and ewaldite)which are always late The average REEchondrite-normalized distribution for Khibinamckelveyite-(Y) is shown in Fig 7 There is abimodal distribution of REE probably related tothe presence of more than one site for the REEAlthough the crystal structure of mckelveyite-(Y)has not been solved Chao et al (1978) providedevidence that it is similar to weloganiteNa2(Sr)3Zr(CO3)6 3H2O which has co-ordinationnumbers of 6 for the Na site 9 for the Zr and 10for the Sr site If the Ca in mckelveyite-(Y)occupies the equivalent of the 6 co-ordinated Nasite (ion size of 10 0 AEcirc ) it could be substituted byLa (ion size 1032 AEcirc ) Ce (101 AEcirc ) Pr (9 9 AEcirc ) andNd (983 AEcirc ) If the Y in the mckelveyite-(Y)

structure corresponded to the Zr position inweloganite then Y would have a co-ordinationnumber of 9 (ion size 1075 AEcirc ) and could besubstituted by heavy REE such as Sm-Yb whereion sizes range from 11 32 AEcirc for Sm to 10 42 AEcircfor Yb all ion sizes are from Shannon (1976)Calculated formulae of mckelveyite-(Y) based onREE in two different sites (Table 11) producetotals close to an ideal formula

REE distribution during alteration

The widespread alteration of REE minerals atKhibina allows us to monitor the REE distributionduring the alteration process The main primary-secondary mineral pairs at Khibina are following(a) burbankite ancylite-(Ce)(b) burbankite synchysite-(Ce)(c) carbocernaite cordylite-(Ce)+synchysite-(Ce)(d) cordylite-(Ce) (low Ca-Sr) cordylite-(Ce)(high Ca-Sr)Chondrite-normalizedplots of REE for these pairsshow two distinct types of REE pattern The firsttype (Fig 8a) is represented by mineral pairs withsimilar LaNdcn ratios for primary-secondary

FIG 7 Chondrite-normalized plot of mckelveyite-(Y)from CZ III-1 carbonate shy zeolite vein

FIG 8 Chondrite-normalized plots of primary-secondarymineral pairs for (a) burbankitendashancylite-(Ce) and (b)carbocernaitendash synchysite-(Ce)+high Ca-Sr cordylite-

(Ce) C II-1 carbonatites

A N ZAITSEV ETAL

246

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 23: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

minerals pairs This type is the most common andincludes burbankite-ancylite-(Ce) burbankite-synchysite-(Ce) and low Ca-Sr cordylite-(Ce)-high Ca-Sr cordylite-(Ce) The second type (Fig8b) seen only in an assemblage of carbocernaitecordylite-(Ce) and synchysite-(Ce) shows achange in LaNdcn ratio from primary tosecondary minerals

Discussion and conclusions

The geological geochemical and mineralogicaldata presented in this paper show that the Khibinacarbonatites are unusual compared with othercarbonatites This is mainly due to the strongdifferentiation of the carbonatitic rocks giving thesequence phoscorite early carbonatite at leastthree types of late carbonatites and finally threetypes of carbonate-zeolite veins (Table 3)

Detailed mineralogical investigations haverevealed two distinct types of REE -Sr-Bamineralization at Khibina (1) primary mineralscrystallized directly from a magma or other fluidand (2) minerals produced by secondary metaso-matic processes (Table 3) A general sequence forthe REE-Sr-Ba-rich mineralization in the latecarbonatites and carbonate-zeolite veins can beexpressed as follows

Sr-REE-Ca-Na-rich carbonates (burbankitecarbocernaite) Ca-REE fluocarbonates (bast-nasite group) Ba-REE fluocarbonates (cordy-lite group) Y-rich carbonates (mckelveyitegroup)

Similar age relationships for the Sr-REE-Ca-Na-rich carbonates burbankite and carbocernaiteand the Ca-REE fluocarbonates have beenestablished in carbonatites from other complexes(Zdorik 1966 Somina 1975 Kapustin 1980Platt and Woolley 1990) and probably thissequence is universal for late-stage carbonatites

The primary RE minerals in Khibina carbona-tites such as burbankite carbocernaite cordylite-(Ce) and mckelveyite-(Y) contain essential Na(ranging from a minimum of 222 wt Na2O incordylite-(Ce) to 12 12 wt of Na2O inburbankite) and the whole rock Na2O content ofthe CII-1 carbonatites ranges up to 4 95 wtThese data show that carbonatite formation in theKhibina massif was characterized by a highcontent of alkaline elements (particularly Na) atall stages The high content of alkaline elements(both Na and K) during the early stages is alsomarked by abundant aegirine and biotite in thephoscorites

The LaNd ratio in minerals has been shown tobe a useful indicator of the paragenetic type ofoccurrence and geological environment byFleischer (1965 1978) and Fleischer andAltschuler (1969) Their results cannot be directlyapplied to the Khibina data because they used theLaNd ratio from the atomic percent of total REEnormalized to 100 but comparison of therelative changes in the LaNd ratio can beuseful Fleischer (1978) calculated LaNd ratios(from atomic percent of total REE) for bastnasite-(Ce) synchysite-(Ce) and parisite-(Ce) fromvarious rocks These data show a decreasing LaNd ratio in the sequence from carbonatites tohydrothermal rocks with average LaNd ratios inbastnasite-(Ce) 2 7 and 1 8 respectively andaverage LaNd values for parisite-(Ce) are 2 8(carbonatites) and 1 3 (hydrothermal rocks)

The Khibina carbonatites are interpreted aspolygenetic in origin (Zaitsev 1996) Phoscoritesand early carbonatites (C I) are probablymagmatic formation of the late carbonatites (CII) is likely to be from volatile-rich fluid(carbohydrothermal) and carbonate-zeolite veinsfrom hydrothermal fluids The decreasing LaNdcn ratios in Khibina carbonatites probablyreflect increase of lsquocarbohydrothermalrsquo fractionin carbonatite-forming system

The alteration of burbankite or carbocernaite toassemblages of ancylite-(Ce) + strontianite+-baryte synchysite-(Ce) + strontianite+baryte orstronianite + cordylite-(Ce) + synchysite-(Ce) +baryte is probably an open-system hydrothermalprocess (Wall and Mariano 1996) This conclu-sion is confirmed by reactions calculated for twodifferent paths of burbankite alteration at KhibinaCalculation of the equations was based on thefollowing 1 volumes of primary burbankite andsecondary ancylite-(Ce) synchysite-(Ce) stron-tianite and baryte are the same (full hexagonalprismatic pseudomorphs are strong evidence forthis) 2 proportions of the secondary mineralswere calculated from the backscattered electronimages as ancylite-(Ce) 30 vol strontianite 50vol baryte 5 vol porous 15 vol forreaction (1) and synchysite-(Ce) 20 vol strontianite 50 vol baryte 10 vol andporous 20 vol for reaction (2) 3 actualmineral compositions were used 4 coefficientsin the reactions are numbers of mineral moles in alsquosinglersquo volume which was assumed as 1000volume units (cm3) 5 the number of mineralmoles were calculated by using mineral densityand unit cell parameters Thus replacement of

REE-SR-BA MINERALS

247

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 24: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

burbankite by an assemblage of ancylite-(Ce) +strontianite + baryte may be represented byequation (1) above

Replacement of burbankite by the assemblageof synchysite-(Ce)+ strontianite+ baryte could bedescribed by equation (2) above

Both reactions show that H2O (equation 1) F Sand Sr with traces of Ba and REE (in equation 1)must be introduced to form ancylite-(Ce)synchysite-(Ce) strontianite and baryte Thesesecondary minerals do not contain Na and thiselement together with Ca REE (in equation 2)and CO2(aq) are removed from the carbonatiteCalculation of similar equations for the alterationof carbocernaite produces similar results toequation (2)

Residual solutions enriched in Na Ca and CO2(aq)may be described as alkaline carbohydrothermalfluids (lsquohot brinesrsquo) and may be an additional causeof wall rock fenitization or may be involved in theformaion of the carbonate-zeoliteveins

The two different geochemical paths ofburbankite and carbocernaite alteration (ancylite-(Ce) versus synchysite-(Ce) and cordylite-(Ce))seems to imply action on these minerals by fluidsof different composition One of these fluids wascharacterizedby a high activity of F shy and (SO4)

2shy

and low (OH)shy resulting in the formation ofsynchysite-(Ce) cordylite-(Ce) and baryte Incontrast the second type of fluid was character-ized by a high activity of (OH)shy (SO4)2shy and lowF shy which resulted in the formation of ancylite-(Ce) and baryte Although there are no data onthe temperature stability fields of ancylite(Ce) orsynchysite-(Ce) ancylite-(Ce) as a water-bearingmineral containing both (OH)shy and H2O groupsappears to be stable at lower temperatures thananhydrous synchysite-(Ce)

The nature of these fluids is unclear but there isno change in the Sr and Nd isotope ratios during

the evolution (Zaitsev and Bell in preparation)and all appear to be directly related to thecarbonatite complex The ratio of LaNdcn inprimary-secondarymineral pairs can also be usedto give some information about the fluids SimilarLaNdcn ratios for the pairs burbankite-ancylite-(Ce) and burbankite-synchysite-(Ce) indicate thatalteration took place soon after the initialformation of burbankite before the evolution ofcarbonatitic fluids Different LaNdcn values forminerals in the system carbocernaite-synchysite-(Ce)+cordylite-(Ce) and particularly low LaNdcn

ratios for synchysite-(Ce) and cordylite-(Ce)probably indicate involvement not only of fluidsrelated to carbonatites but also fluids responsiblefor the formation of the carbonate-zeolite veinsFinally low but similar LaNdcn ratios for thepair low-Ca-Sr cordylite-(Ce)-high-Ca-Sr cordy-lite-(Ce) indicate a fluid source related only to theformation of carbonate-zeolite veins

Acknowledgements

A Zaitsev received a Royal Society grant for twovisits to the UK Terry Williams and John Sprattare thanked for assistance and advice with theelectron microprobe analyses This work wascarried out as a portion of a comprehensive studyof the Kola alkaline massifs carried out at St-Petersburg University University of Leicester andThe Natural History Museum The authors thanksA G Bulakh for discussion on mineralogy ofREE-rich carbonatites and AM McDonald fordiscussion on chemistry of mckelveyite-(Y) KBell and an anonymous reviewer made helpfulcomments on the manuscript AN Zaitsev wouldlike to thank all staff of the Department ofGeology Leicester University and Department ofMineralogy The Natural History Museum forhospitality Special thanks go to Helen Olga and

Equation 1555(Na242 Ca050)S292(Sr150 Ca086REE055 Ba009)S300(CO3)5 + 600Sr2+ + 052Ba2+ +

0 25REE3+ + 520H2O + 114Fshy + 0 97SO2shy4 =

317REE104(Sr078Ca014Ba002)S094(CO3)2(OH064F036) H2O + 1286(Sr092Ca008)S100CO3 +097(Ba099Sr001)S100SO4 + 1342Na+ + 607Ca2+ + 8 52CO3

2shy + 203H+ (1)

Equation 2548(Na264Ca030)S294(Sr122Ca090REE079Ba009)S300(CO3)5 + 387Sr2+ + 1 43Ba2+ + 3 00Fshy + 1 94SO2shy

4 =303(Ca093Sr003)S096REE102(CO3)2F099 + 1157(Sr090Ca009Ba001)S100CO3 +

194(Ba099Sr001)S100SO4 + 14 46Na+ + 271Ca2+ + 124REE3+ + 9 76CO2shy3 (2)

A N ZAITSEV ETAL

248

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 25: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

Polina Zaitseva for their support This work wasfunded by the Royal Society (pro ject638072 P699) and partly by Russian Foundationfor Fundamental Sciences (grant 96-05-66151)

References

Andersen T (1986) Compositional variation of somerare earth minerals from the Fen complex (TelemarkSE Norway) implication for the mobility of rareearths in a carbonatite system Mineral Mag 50503 shy 9

Bulakh A G and Izokh E P (1966) New data oncarbocernaite Dokl Acad Sci USSR 175 118 shy 20

Bulakh A G Kondrateva V V and Baranova E N(1961) Carbocernaite a new rare earth carbonateZap Vses Mineral Obshch 90 (1) 42 shy 9 (inRussian)

Chao G Y Mainwaring PR and Baker J (1978)Donnayite NaCaSr3Y(CO3)6 3H2O a new mineralfrom Mont St-Hilaire Quebec Canad Mineral 16335 shy 40

Chen T T and Chao G Y (1975) Cordylite from MontSt Hilaire Quebec Canad Mineral 13 93 shy 4

Clarke LB Le Bas MJ and Spiro B (1992) Rareearth trace element and stable isotope fractionationof carbonatites at Kruidfontein Transvaal S AfricaInternational Kimberlite Conference 5 Araxa 1991Proceedings CPRM Special publication CPRMBrasilia 236 shy 51

Dal Negro A Rossi G and Tazzoli V (1975) Thecrystal structure of ancylite (RE)x(CaSr)2shy x(CO3)2(OH)x (2 shy x)H2O Amer Mineral 60 280 shy 4

Donnay G and Donnay J D H (1953) The crystal-lography of bastnasite parisite rontgenite andsynchysite Amer Mineral 38 932 shy 63

Effenberger H Kluger F Paulus H and Wolfel E R(1985) Crystal structure refinement of burbankiteNeues Jahrb Mineral Mh 161 shy 70

Fleischer M (1965) Some aspects of the geochemistryof ytt rium and the lan thanides GeochimCosmochim Acta 29 755 shy 72

Fleischer M (1978) Relative proportions of thelanthanides in minerals of the bastnaesite groupCanad Mineral 16 361 shy 3

Fleischer M and Altschuler Z S (1969) The relation-ship of rare-earth composition of minerals togeological environment Geochim CosmochimActa 33 725 shy 32

Flink G (1901) On the minerals from Narsarsuk on theTunugdliarfic in Southern Greenland Meddel aEcirc mGronland 24 42 shy 9

Fu P and Su X (1988) Baiyuneboite-(Ce) mdash a newmineral Chinese J Geochem 7 348 shy 56

Harris D C (1972) Carbocernaite a Canadian occur-

rence Canad Mineral 11 812 shy 18Hatzl T (1992) Die Genese Karbonati te - und

Alkalivulkanit-assoziierten Fluorit-Baryt-Bastna sit-Vererzung bei Kizilcaoren (Turkei) MunchnerGeol Hefte 8 271 pp

Hogarth D D Hartree R Loop S and Solberg T N(1985) Rare-earth element minerals in four carbona-tites near Gatineau Quebec Amer Mineral 701135 shy 42

Kapustin Yu L (1973) First find of huanghoite in theUSSR Dokl Acad Sci USSR 202 116 shy 9

Kapustin Yu L (1980) Mineralogy of CarbonatitesAmerind Publishing New Dehli 259 pp

Khomyakov A P (1995) Mineralogy of hyperagpaiticalkaline rocks Clarendon Press Oxford 220 pp

Knudsen C (1991) Petrology geochemistry andeconomic geology of the Qaquarssuk carbonatitecomplex southern West Greenland MonographSeries on Mineral Deposit s 29 GebruderBorntraeger Berlin-Stuttgart 110 pp

Kogarko LN Kononova V A Orlova MP andWoolle y A R (1995 ) Alkaline Rocks andCarbonatites of the World Part 2 former USSRChapman and Hall London 226 pp

Kramm U and Kogarko L N (1994) Nd and Sr isotopesignatures of the Khibina and Lovozero agpaiticcentres Kola Alkaline Province Russia Lithos 32225 shy 42

Kramm U Kogarko L N Kononova V A andVartiainen H (1993) The Kola Alkaline Provinceof the CIS and Finland precise Rb-Sr ages define380 shy 360 Ma age range for all magmatism Lithos30 33 shy 44

Kukharenko A A Orlova M P Bulakh A G Bagdasarov E A Rimskaya-Korsak ova O M Nefedov E I Ilinsky G A Sergeev A S andAbakumova NB (1965) The Caledonian complexesof ultrabasic-alkaline and carbonatite rocks on Kolapeninsula and in Northern Karelia (geologypetrology mineralogy and geochemistry) NedraMoscow 772 pp (in Russian)

Milton C Ingram B Clark J R and Dwornik E J(1965) Mckelveyite a new hydrous sodium bariumrare-earth uranium carbonate mineral from GreenRiver Formation Wyoming Amer Mineral 50593 shy 612

Minakov F V and Dudkin O B (1974) Possiblepresence of carbonatite in the Khibiny alkalic massifDokl Akad Nauk SSSR (Earth Sci Sect ) 215109 shy 12

Minakov F V Dudkin O B and Kamenev E A (1981)The Khibina carbonatite complex Dokl Akad NaukSSSR (Earth Sci Sect ) 259 58 shy 60

Nelson D R Chivas A R Chappel B W andMcCulloch M T (1988) Geochemical and isotopicsystematics in carbonatites and implication for the

REE-SR-BA MINERALS

249

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250

Page 26: REE-Sr-Ba minerals from the Khibina carbonatites, Kola ... · The carbonatites form a stockwork (Zaitsev, 1996) in which it is possible to distinguish early calcite carbonatites (C

evolution of ocean-isl and sources GeochimCosmochim Acta 52 1 shy 17

Ngwenya B T (1994) Hydrothermal rare earth miner-alization in carbonatites of the Tundulu complexMalawi processes at the fluidrock interfaceGeochim Cosmochim Acta 58 2061 shy 72

Ni Y Hughes J M and Mariano A N (1993) Theatomic arrangement of bastnasite-(Ce) Ce(CO3)Fand structural elements of synchysite-(Ce) rontgen-ite-(Ce) and parisite-(Ce) Amer Mineral 78415 shy 8

Olsen JC Shawe D R Pray L C and Sharp W N(1954) Rare-earth mineral deposit of the MountainPass district San Bernardino County CaliforniaUS Geol Surv Prof Pap 261 75 pp

Pecora W T and Kerr J H (1953) Burbankite andcalkinsite two new carbonate minerals fromMontana Amer Mineral 38 1169 shy 83

Platt R G and Woolley A R (1990) The carbonatitesand fenites of Chipman Lake Ontario CanadMineral 28 241 shy 50

Shannon R D (1976) Revised effective ionic radii andsystematic studies of interatomic distance in halidesand chalcogenides Acta Crystallogr A 32 751 shy 67

Somina MYa (1975) Dolomite and ankerite carbona-tites from the East Siberia Nedra Moscow 91 pp(in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P and ZaitsevA N (1990) Mckelveyite from carbonatites andhydrothermalites of alkaline rocks Kola peninsula(the first findings in the USSR) Zap Vses MineralObshch 119 (6) 76 shy 86 (in Russian)

Voloshin A V Subbotin VV Yakovenchuk VN Pakhomovsky Y A Menshikov Yu P Nadezhdina T N and Pustcharovsky D Yu (1992)New data on the ewaldite Vses Mineral Obshch 121 (1) 56 shy 67 (in Russian)

Wakita H Rey P and Schmitt R A (1971)Abundances of the 14 rare-earth elements and 12other trace-elements in Apollo 12 samples fiveigneous and one breccia rocks and four soils Proc2nd Lunar Sci Conf 1319 shy 29

Wall F and Mariano A N (1996) Rare earth mineralsin carbonatit es a discussion centred on theKangankunde Carbonatite Malawi In Rare EarthMinerals Chemistry Origin and Ore Deposits (A P

Jones F Wal l and C T Wil liams eds )Mineralogical Society Series 7 Chapman andHall London 193 shy 225

Wall F Le Bas M J and Srivastava R K (1993)Calcite and carbocernaite exsolution and cotectictextures in a Sr REE-rich carbonatite dyke fromRajasthan India Mineral Mag 57 495 shy 513

Williams C T (1996) Analysis of rare earth mineralsIn Rare Earth Minerals Chemistry Origin and OreDeposits (AP Jones F Wall and C T Williamseds ) Mineralogical Society Series 7 Chapman andHall London 327 shy 48

Wood D A Joron J L Treuil M Norry M andTarney J (1979) Elemental and Sr isotope variationsin basic lavas from Iceland and surrounding oceanfloor Contrib Mineral Petrol 70 319 shy 39

Woolley A R and Kempe D R C (1989) Carbonatitesnomenclature average chemical composition andelement distribution In Carbonatites Genesis andEvolution (K Bell ed ) Unwin Hyman London1 shy 14

Zaitsev AN (1996) Rhombohedral carbonates fromcarbonatites of the Khibina massif Kola peninsulaRussia Canad Mineral 34 453 shy 68

Zaitsev A N Menshikov Yu P and YakovenchukV N (1992) Barium zeolites from Khibina alkalinemassif Zap Vses Mineral Obshch 121 (2) 54 shy 61(in Russian)

Zaitsev A N Yakovenchuk V N Chao G Y GaultR A Subbotin V V Pakhomosky Ya A andBogdanov a A N (1996) Kukharenkoite-(Ce)Ba2Ce(CO3)3F a new mineral from Kola peninsulaRussia and Quebec Canada Eur J Mineral 81327 shy 36

Zdorik T B (1966) Burbankite and its alteration InNew Data on Minerals from USSR 17 NaukaMoscow 60 shy 75 (in Russian)

Zhabin A G Shumyatskaya N G and SamsonovaN S (1971) Burbankite from the Arbarastakhcarbonatite complex In New Data on Mineralsfrom USSR 20 Nauka Moscow 202 shy 4 (inRussian)

Zhang P and Tao K (1986) Bayan Obo MineralogyScience Publisher Beijing 208 pp (in Chinese)

[Manuscript received 25 February 1997revised 4 August 1997 ]

A N ZAITSEV ETAL

250