Rectangular Drawing

Embed Size (px)

DESCRIPTION

Rectangular Drawing. Imo Lieberwerth. Content. Introduction Rectangular Drawing and Matching Thomassen’s Theorem Rectangular drawing algorithm Advanced topics. Introduction. Conditions Each vertex is drawn as a point - PowerPoint PPT Presentation

Citation preview

  • Rectangular DrawingImo Lieberwerth

  • Content Introduction

    Rectangular Drawing and Matching

    Thomassens Theorem

    Rectangular drawing algorithm

    Advanced topics

  • Introduction Conditions Each vertex is drawn as a point Each edge is drawn as a horizontal or vertical line segment, without edge-crossing Each face is drawn as a rectangle Special case of a convex drawing Not every plane graph has a rectangular drawing Rectangular drawing is used in floorplanning

  • Example

  • Rectangular Drawing and Matching A graph G with 4 has a rectangular drawing D if and only if a new bipartite graph Gd constructed from G has a perfect matching.

    Gd is called a decision graph

    Assumption: G is 2-connected

  • Definitions Angle of vertex v = the angle formed by two edges incident to v

    In rectangular drawing alone angles of: 90 = label 1 180 = label 2 270 = label 3

  • Example of Labeling

  • Regular labeling A regular labeling of G satisfies: For each vertex the sum of labels is equal to 4 The label of any inner angle is 1 or 2 Every inner face has exactly four angles with label 1 The label of any outer angle is 2 or 3 The outer face has exactly four angles of label 3 Follows: A non-corner vertex v with degree 2, has two labels 2 if d(v) = 3, then one angle with label 2 and the other 1if d(v) = 4, four angles with label 1

  • Regular labeling (2) A plane graph G has a rectangular drawing if and only if G has a regular labeling

    Have to find a regular labeling

    Assumptions: convex corners a, b, c, and d of degree 2 are given

  • Example labeling

  • Decision graph All vertices wit a label x are vertices of Gd Add a complete bipartite graph K to Gd inside each inner face with a label x K(a, b) where a = 4 n1 and b = nx n1 = number of angles with label 1 n1 4 nx = number of angles with x The idea of adding K originates from Tuttes transformation for finding an f-factor of a graph

  • Matching A matching M of Gd is a set of pairwise non-adjacent edges in Gd Perfect matching: if an edge in M is incident to each vertex of Gd If an angle with label x and his corresponding edge is contained in a perfect matching, then = label 2 otherwise = label 1

  • Example labeling

  • Theorem Let G be a plane graph with 4 and four outer vertices a, b, c and d be designated as corners. Then G has a rectangular drawing D with the designated corners if and only if the decision graph Gd of G has a perfect matching. D can be found in time O(n1.5) whenever G has D.

  • Thomassens Theorem Assume that G is a 2-connected plane graph with 3 and the four outer vertices of degree two are designated as the corners a, b, c and d. Then G has rectangular drawing if and only if:

    any 2-legged cycle contains two or more corners

    Any 3-legged cycle contains one or more corners

  • Definitions leg of cycle k-legged cycle good cycle, bad cycle

    Thomassens Theorem: G has a rectangular drawing if and only if G has no bad cycle

  • Number of corners

  • SufficiencyLemma 1: Let J1, J2, , Jp be the Co(G)-components of a plane graph G , and let Gi = Co(G) U Ji , 1 i p. Then G has a rectangular drawing with corners a, b, c and d if and only if each Gi has a rectangular drawing with corners a, b, c and d

  • Critical cycle

  • Boundary faceLemma 2: If G has no bad cycle, then every boundary NS-, SN-, EW- or WE-path P of G is a partitioning path, that is, G can be splitted along P into two subgraphs, each having no bad cycle

  • Partition-pair Pc and Pcc

  • Lemma & proofLemma 3: Assume that a cycle C in the Co(G)-component J has exactly four legs. Then the subgraph G(C) of G inside C has no bad cycle when the four leg-vertices are designated as corners of G(C).

    Proof. If G(C) has a bad cycle, then it is also a bad cycle in G, a contradiction to the assumption that G has no bad cycle.

  • Westmost NS-pathA path is westmost if:P starts at the second vertex of PNP ends at the second last vertex of PSThe number of edges in G P is minimum

    Counterclockwise depth-first searchw

  • LemmaLemma 4: If G has no bad cycle and has no boundary NS-, SN-, EW- or WE-path, then G has a partition-pair Pc and Pcc

  • Case 1

  • Case 2

  • Case 3.1

  • Illustration case 3.2

  • Case 3.2

  • After the breakRectangular drawing algorithm

    Advanced topics

  • Questions?

    Hier figuur 6.9 toevoegen