104
Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com 65 REVIEW ARTICLE Open Access Recent progress in the research of naturally occurring flavonoids: A look through Shyamal K. Jash and Goutam Brahmachari* Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati University, Santiniketan-731 235, West Bengal, India. E-mail: [email protected]; [email protected] *Corresponding author Copyright: Prof. Goutam Brahmachari Received: January 05, 2013 Accepted: April 08, 2013 1. Introduction Flavonoids are widely distributed to the plant kingdom and are of importance and interest to a wide variety of physical and biological scientists at large. In recent years, plant flavonoids have been shown to be of vital significance to mankind as well as to plants. Continuing work on their chemistry, occurrence, natural distribution and biological function have already resulted in a number of reviews time to time [1-8]. In continuation to our earlier reviews on naturally occurring flavones and flvonols [9] and on naturally occurring flavanones [10], we have attempted to represent the recent developments in the research on naturally occurring flavonoids reported during the period of 2005 to early 2011. This present review describes more than 900 new examples of bio-flavonoids found either as aglycones or glycosides, comprising all classes of flavonoids of varying structural skeletons such as flavones, flavonols, dihydroflavonols, flavanones, coumarins, chalcones, dihydro- chalcones, aurones, anthocyanidins and Abstract The present review describes more than 900 new examples of naturally occurring flavonoids found either as aglycones or glycosides, comprising flavones, flavonols, dihydroflavonols, flavanones, coumarins, chalcones, dihydrochalcones, aurones, anthocyanidins and anthocyanins, reported during the period of 2005 to early 2011. The main topics addressed are source, identification, biological and pharmacological activity. The review cites 413 references. Keywords Flavonoids; Natural sources; Biological and Pharmacological activities.

Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Embed Size (px)

Citation preview

Page 1: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

65

REVIEW ARTICLE                                     Open Access  Recent progress in the research of naturally occurring flavonoids: A look through Shyamal K. Jash and Goutam Brahmachari* Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati University, Santiniketan-731 235, West Bengal, India. E-mail: [email protected]; [email protected] *Corresponding author Copyright: Prof. Goutam Brahmachari

Received: January 05, 2013 Accepted: April 08, 2013

1. Introduction Flavonoids are widely distributed to the plant kingdom and are of importance and interest to a wide variety of physical and biological scientists at large. In recent years, plant flavonoids have been shown to be of vital significance to mankind as well as to plants. Continuing work on their chemistry, occurrence, natural distribution and biological function have already resulted in a number of reviews time to time [1-8]. In continuation to our earlier reviews on naturally occurring flavones and flvonols [9] and on

naturally occurring flavanones [10], we have attempted to represent the recent developments in the research on naturally occurring flavonoids reported during the period of 2005 to early 2011. This present review describes more than 900 new examples of bio-flavonoids found either as aglycones or glycosides, comprising all classes of flavonoids of varying structural skeletons such as flavones, flavonols, dihydroflavonols, flavanones, coumarins, chalcones, dihydro-chalcones, aurones, anthocyanidins and

Abstract The present review describes more than 900 new examples of naturally occurring flavonoids found either as aglycones or glycosides, comprising flavones, flavonols, dihydroflavonols, flavanones, coumarins, chalcones, dihydrochalcones, aurones, anthocyanidins and anthocyanins, reported during the period of 2005 to early 2011. The main topics addressed are source, identification, biological and pharmacological activity. The review cites 413 references. Keywords Flavonoids; Natural sources; Biological and Pharmacological activities.

Page 2: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

66

anthocyanins. This overview deals with natural sources of the reported flavonoids, their natural distribution, and detailed biological activities including pharmacological/ therapeutic potential. Information on natural distribution of this class of natural products as per plant-family is likely to be much useful from the perspective of chemotaxonomy as well. It is now difficult to overstate the importance of recent advances in research on flavonoids, and we consider this overview would stimulate the progress of research on naturally occurring flavonoids in proper directions. 2. Recently reported flavonoids The naturally occurring flavonoids reported during the period 2005 to early 2011 are

presented in Tables 1. The flavonoids are classifed into the sub-groups of flavones, flavans, flavonols, flavanols, isoflavones, isoflavanones, isoflavans, flavanones, anthocyanins, chalcones, aurones, and coumarins; compounds under each sub-group and their natural sources are shown in the respective tables (Tables 1.1 – 1.13). Their structures are also shown in Fig. 1 (Figs. 1.1 – 1.13). Information on the natural sources of flavonoids reported during the period of review indicates that a major part of these flavonoids are originated from the three families viz. Fabaceae (Papilionaceae, Mimosaceae, Leguminosae, Caesalpiniaceae), Asteraceae (Compositae) and Lamiaceae. The present review offers 413 references.

In Figures, some common abbreviations, as shown below, have been used.

Abbreviations: Glc = glucopyranosyl; Glcf = glucofuranosyl; Xyl = xylopyranosyl; Rha = rhamnopyranosyl; Galc = galactopyranosyl; Ara = arabinopyranosyl; Arab = arabinofuranosyl; Gluc = glucuronyl; Ap = apiofuranosyl; Al = allopyranoside; Gal = galloyl; Rut = rutinosyl; Lam = laminaribiosyl; Cell = cellobiosyl; Lyx = lyxopyranosyl; Lav = lavandulyl; Fuc = Fucopyranosyl; Sp = sophorosyl; Sr = Syringoyl; Nh = neohesperidosyl; Boi = boivinopyranoside; Van = vanilloyl (*indicates linkage through C-atom)

Systematic name: Feruloyl = 3-(4-hydroxy-3-methoxyphenyl) prop-2-enoyl; p-Coumaroyl = 3-(4-hydroxyphenyl) prop-2-enoyl; Galloyl = 3,4,5-trihydroxybenzoyl; Lam = β-D-Glc(1 3)-β-D-Glc; Lavandulyl = 2-(2-propenyl), 5-methyl-hex-4-enyl; Sophorosyl = β-D-Glc(1 3)-β-D-Glc; Neohesperidosyl = 2-O-(6-Deoxy-α-L-mannopyranosyl)-β-D-glucopyranosyl; Syringoyl: 4-hydroxy-3,5-dimethoxybenzoyl

Page 3: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

67

OO

OH

O

OH

OH O

OH

OMe

OH

OH

OH

O

OH

OMe

OMe

OH

OMe

OMe

O

(3-methyl-but-2-enyl)

Prenyl =

(1,1-dimethylallyl)

Isoprenyl = Geranyl =

(3,7-dimethyl-oct-2,6-dienyl)

Cinnamoyl =p-Coumaroyl =

trans-Caffeoyl = Feruloyl =(E)/(Z)

Galloyl = Lavandulyl =

Sinapyl =Syringoyl =

Figure 1: Naturally occurring flavonoids

Figure-1.1: Flavones and Flavone glycosides

O

O

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

(only nonhydrogen substituents

are indicated)

Page 4: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

68

1 R2=R7=OH; R4=R5=R10=OMe 2 R2=β-D-GlcO; R4=R5=OMe; R7=OH 3 R2=β-D-GlcO; R4=R5=R6=R9=OMe 4 R1=R2=R4=R8=OMe; R7=OH 5 R2=R4=OH; R7=R9=OMe; R8=[(erythro-β-4- hydroxyphenylglyceryl)ether]O 6 R2=R4=OH; R7=R9=OMe; R8=[(threo-β-4- hydroxyphenylglyceryl)ether]O 7 R2=R4=R8=OH; R3=R7=OMe 8 R2=R8=OH; R3=R4=R7=OMe 9 R2=R7=OH; R4=β-D-(6′′-O-p-hydroxyphenyl- acetyl) GlcO; R8=OMe 10 R2=OH; R3=β-D-(3-O-acetyl)GlcO; R8=OMe 11 R2=R8=OH; R4=OMe; R5=β-[6''-O-(2'''-methyl- butyryl)]Glc* 12 R2=R7=R8=OH; R4=OMe; R5=β-[6''-O-(2'''- methylbutyryl)]Glc* 15 R2=R3=OH; R4=trans-CaffeoylO 16 R2=R7=R8=OH; R3=β-Glc*; R4=α-L-AraO 17 R2=R4=OH; R8=β-D-(2′′-O-p-coumaroyl)GlcO 18 R2=[α-L-Rha (1′′′ 2′′){6′′-O-acetyl}-β-D- Glc]O; R4=R8=OH 19 R2=β-D-GlcO; R4=R5=R8=OH 20 R2=R7=OH; R4=β-D-(6′′-methyl ester) GlucO; R8=OMe 21 R2=R4=R8=OH; R5=[α-L-Rha (1 4)-β-D- Glc]* 22 R1=α-L-AraO; R2=R4=R7=OH; R8=OMe 23 R1=β-D-XylO; R2=R8=OH; R3=R4=OMe 24 R2=R7=R8=OH; R4=β-D-(4''-O-(E)-coumaroyl) GlcO 25 R2=R8=OH; R4=β-D-(4''-O-(E)-coumaroyl) GlcO; R7=OMe 27 R2=OH; R4= β-D-GlcO 28 R2=R8=OH; R3=[α-L-Rha (1′′′→6′′)-β-D- Glc]O; R4=OMe 29 R2=R7=R8=OH; R3=[α-L-Rha (1′′′→6′′)-β- D-Glc]O; R4=OMe 30 R2=R4=R7=OH; R8=β-D-GalcO 31 R2=R8=OH; R4=β-D-(4′′,6′′-p,p′-dihydroxy- μ-truxinyl) GlcO 32 R2=R3=R7=R8=OH; R4=[β-D-Glc (1 3)-β- D-Glc]O 33 R2=R7=R8=OH; R4=FeruloylO; R5=β-D-Glc* 34 R2=R4=R8=OH; R3=OMe; R5=β-(2-O-β-D- Xyl)-D-Glc*

35 R2=R4=R8=OH; R3=β-(2-O-β-D-Xyl)-D- Glc*; R5=OMe 36 R2=R7=R8=OH; R3=β-(2-O-β-D-Xyl)-D- Glc*; R4=R5=OMe 37 R2=R4=R6=OH; R9=OMe 38 R2=R4=R7=R8=OH; R3=(6′′-O-trans-caffeoyl) Glc* 39 R2=R4=R7=R8=OH; R3=β-Boi* 40 R2=R4=R7=R8=OH; R3=trans-(2''-O-α-Rha) ethenyl 42 R2=R8=OH; R3=R4=O-CH2-O; R7=OMe 43 R2=R4=R5=R8=OH; R3=Glc* 44 R2=OH; R4=[(2,3-O-diacetyl)-α-L-Rha (1 6) -β-D-Glc]O; R8=OMe 45 R2=OH; R4=[(2,4-O-diacetyl)-α-L-Rha (1 6) -β-D-Glc]O; R8=OMe 46 R2=OH; R4=[(3,4-O-diacetyl)-α-L-Rha (1 6) -β-D-Glc]O; R8=OMe 47R2=R7=R8=OH; R4=(6′′-O-feruloyl)-β-D-GlcO 48 R2=R7=OH; R4=β-D-(2′′-O-acetyl)GlucO; R8=OMe 49 R2=R7=OH; R4=β-D-(2′′-O-malonyl)GlucO; R8=OMe 50 R2=R7=OH; R4=[β-D-Gluc (1 2)-β-D- Gluc]O; R8=OMe 51 R2=R7=OH; R4=β-D-(3′′-O-malonyl)GlucO; R8=OMe 52 R2=R6=OH; R4=β-D-GlcO; R5=OMe 53 R2=R4=OH; R5=OMe; R6=β-D-GlcO 54 R2=OH; R4=β-D-GlcO; R5=R6=OMe 55 R2=R4=OH; R6=β-D-GlcO 56 R2=R6=R9=OH; R4=β-D-GlcO 57 R2=OH; R4=β-D-GlcO; R5=OMe 58 R2=OH; R4=β-D-GlcO; R7=R8=OMe 59 R1=R3=R4=OMe; R2=[β-D-Xyl (1 4)-β-D- Glc]O; R6=OH 60 R1=[4-{5-(4-hydroxyphenyl)pentanosyl}-α-L- Rha (1 6)-β-D-Galc]O; R2=R6=OH; R4=R8=OMe 64 R2=R7=R8=OH; R4=[{β-D-Gluc (1 2)}-{α- L-Rha (1 6)}-β-D-Glc]O 65 R2=R8=OH; R4=[{β-D-Gluc (1 2)}-{α-L- Rha (1 6)}-β-D-Glc]O 66 R2=R7=OH; R4=[{β-D-Gluc (1 2)}-{α- L-Rha (1 6)}-β-D-Glc]O; R8=OMe

Page 5: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

69

67 R2=OH; R4=[{β-D-Gluc (1 2)}-{α-L-Rha (1 6)}-β-D-Glc]O; R8=OMe 68 R1=OMe; R2=R4=R8=OH; R5=Me 69 R2=R4=R8=OH; R3=β-D-[2′′-O-(E)-feruloyl] Glc*; R5=β-Glc* 70 R1=prenyl; R2=R4=R7=R8=OH 72 R1=R3=R5=prenyl; R2=R4=R6=R8=R9=OH 73 R1=OAc; R2=R8=OH; R4=OMe 74 R1=CH2CH=C(Me)CH2CH2CH2C(OH)Me2; R2=R4=R6=R8=OH 75 R1=prenyl; R4=R6=R8=OH 80 R1=R4=OMe; R2=OH; R8=prenylO 84 R2=R4=R8=OH; R3=α-Ara*; R5=β-(2-O-α- Rha)Glc* 85 R2=R4=R8=OH; R3=β-Xyl*; R5=β-(2-O-α- Rha)Glc* 86 R2=R4=R8=OH; R3=α-Ara*; R5=β-(2-O-α- Rha)Galc* 87 R2=R4=R8=OH; R3=β-(2-O-α-Rha)Glc*; R5=α-Ara* 88 R2=R4=R7=OH; R3=β-D-digitoxopyranosyl*; R8=β-D-GlcO 89 R2=R4=R8=OH; R3=β-Glc*; R5=α-Ara* 90 R2=R4=R8=OH; R5=β-Glc* 91 R2=R7=R8=OH; R3=β-Boi*; R4=β-D-GlcO 92 R2=R4=R7=OH; R3=β-Boi*; R8= β-D-GlcO 93 R2=R4=R7=R8=OH; R3=β-D-GlcO 94 R2=R4=R7=R8=OH; R3=[α-L-Rha (1 2)-β- D-Glc]O 95 R7=OH; R8=R9=OMe 96 R7=OH; R8=R9=O-CH2-O 97 R2=R7=R8=OH; R4=OMe; R5=[2′′-O-(2′′′- methylbutyryl)]Glc* 98 R2=R7=OH; R4=[α-L-Rha (1 2)-β-D-Xyl (1 6)-β-D-Glc]O; R8=OMe 101 R2=R8=OH; R3= R5=OMe; R4=[6′′-O-(3-

hydroxy-3-methylglutanyl) GlcO 105 R2=R7=OH; R4=[β-D-Xyl (1 6)-β-D- Glc]O; R8=OMe 106a R2=R4=R6=R9=OMe 106b R2=R3=OH; R4=R5=R8=OMe 106c R2=R6=OH; R5=R7=R8=OMe 107 R2=R4=R8=OH; R3=(2-hydroxy-5-carboxy- phenyl) 108 R2=CH2COOH; R4=R8=OH 109 R2=CH2COOCH2CH3; R4=R8=OH 110 R2=CH2COOCH2CH2CH2CH3; R4=R8=OH 111 R2=R4=R7=OH; R5=β-D-(2''-sulfate)GlucO; R8=OMe 112 R2=R4=R5=OH; R7=β-D-GlcO; R8=OMe 113 R2=[α-L-Rha(1 3)-β-D-Glc]O; R4=R8=OH 117 R2=OMe; R4=β-D-GlcO; R8=OH 121R2=R3=R6=R7=R10=OMe; R8=R9=O-CH2-O 122 R2=R4=R7=R8=OH; R5=CH=CHCOOH 123 R2=R4=R7=R8=OH; R5=β-[6-deoxy-2-O-(α- L- Rha)-xylo-hexopyranos-3-uloside]* 124 R2=R8=OH; R4=β-D-(6′′-O-p-Z-coumaroyl) GlcO 125 R2=R8=OH; R4=β-D-(4′′-O-p-Z-coumaroyl) GlcO 126 R1=[β-D-Glc (1 6)-β-D-Glc]O; R2=R4=R8=OH; R7=R9=OMe 127 R1=[β-D-Glc (1 6)-β-D-Glc]O; R2=R4=R8=R9=OH; R7=OMe 128 R2=R3=R8=OH; R4=β-D-ApO 129 R2=R8=OH; R4=[β-D-Ap (1 2)-β-D-Ap]O 130 R2=R3=R8=R9=OH; R4=R7=OMe 131 R2=R4=R7=R8=OH; R5=β-Glc*; R6=p- hydroxy-benzoylO 132 R2=OH; R4=β-GlcO; R7=R8=R9=OMe 133 R2=R7=OH; R4=[β-D-Glc(1 2)-β-D-Glc(1 2) -{α-L-Rha (1 6)}-β-D-Glc]O; R8=OMe

Page 6: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

70

O

OOH

OH

OH

O

OOH

OH

OH

14

O

OO

OH

OH

26

O

OH

OH

O

OHO

O

OH

OH

OH

41

O

OOH

O

OH

OH H

61

O

O

O

62 R1=H; R2=R3=OMe63 R1=R2=OMe; R3=H

R1

R2

R3

O

O

OH

OOH

OH

77 R1=Prenyl

O

O

O

OOH

OH76

O

O

OO

OMe

MeOR

99 R=H100 R=OMe

O

O

OHOHOH

OH

O

OOH

O

O

OH

OH

OMe

13

O

OOH

OHOH

OHOH

71

O

OOH

O

OHOH

OH

78

R1

79 R1=H

O O

OH

OH

OH OH

81

O

OOH

O

OH

OHH

82

O

OOH

OH

OH

OH

83

O

OOH

O

OHOR

OH

102 R=H104 R=CH2CH3

Page 7: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

71

O

OOH

OH

O

OH

MeO

O

OOH

OH

OH

OH

O

OOH

O

OH

OH

O

O

OOH

OH

O

OH

MeO

OMe

O

OOH

OH

O

OH

O

OH

OH

O

O O

OH

OH

OHOH

115

116

103

120

114

A B

C

D

EF

G

118 2R, 2''S, 3''R119 2R, 2''R, 3''S

2

2'' 3''

Figure-1.2: Flavans and flavan derivatives

O

R1

R2R3

R4

R5

R6 R7

R8

R9

R10

R11

(only nonhydrogen substituents are indicated)

138 R3=GlcO; R4=R8=R9=OH 139 R3=R8=R9=R10=OH; R5=GalO 140 R3=R8=R10=OH; R5=R9=GalO 141 R2=OH; R3=R4=R5=OMe (2S,4R) 142 R2=R3=R4=R5=OMe (2S,4R) 143 R4=R5=R9=OH (2S) 144 R1=R5=R9=OH; R6=Me (2R,3R) 147 R5=R9=OH; R6=CH2CH2C(OH)Me2 149 R5=OMe; R6=butyric acid; R7=R9=OMe(2S)

150 R5=OH; R6=hydroxyethyl; R7=β-D-GlcO; R9=OMe (2S) 151 R5=OMe; R6=hydroxyethyl; R7=β-D- GlcO; R9=OH (2S) 152 R5=OMe; R6=hydroxyethyl; R7=β-D- GlcO; R9=OH (2R) 166 R1=R9=OH; R3=OMe; R5=β-D-Glc*

Page 8: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

72

135

O

OH

OH

OH

OH

NH

O

H

OH

134

NH

O

HO

OH

OH

OH

OH

OH

145

146

O

OH

O

O

OH

OHO

OH

O

OOH

O

OO

O

O

O

R1 R2

R3

R4

R5Me

153 R1=Ac; R2=R3=R4=H; R5=OMe154 R1=R3=R4=H;R2=Ac; R5=OMe155 R1=R2=R3=R4=H; R5=OMe157 R1=R2=R3=R4=R5=H (4S)158 R1=R2=R3=R4=R5=H (4R)159 R1=R2=R4=R5=H; R3=OMe160 R1=R2=R4=H; R3=OMe; R5=Me161 R1=R2=R3=H; R4=Glc; R5=Me

Me

O

OHOH

OH

O

OHOH

OH

OHO

O

OH

O

OH

O

156

O

OHOH

O

OO

OO

OMe

Me

R2

R1

Me

136 R1=H; R2=CH3CO137 R1=β-D-Glc; R2=H

148

O

OH

O

OH

OH

O

OH

OH

OH

OHOO

162

164

O

OH

O

OH

OCH3CH2O

O

O

OH

OOHOH

OH

163

O

OH

O

OH

OOH

CH3CH2O

O

OH

165

O

OH

O

OH

OCH3

O

O

OH

OOHOH

OH

Page 9: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

73

Figure-1.3: Flavonols and Flavonol Glycosides

O

O

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

(only nonhydrogen substituents

are indicated)

167 R1=R2=OH; R4=α-L-(4″-O-acetyl) RhaO; R8=OMe 168 R1=R2=OH; R4=[(4′′ 13′′′)-2′′′,6′′′,10′′′,14′′′ -tetramethyl-hexadec-13′′′-ol-14′′′-enyl]-β-D- GlcO; R7=R8=OMe 169 R1=[(4′′ 13′′′)- 2′′′,6′′′,10′′′,14′′′-tetramethyl- hexadecan-13′′′-olyl]-β-D-GlcO; R2=R4=OH; R8=OMe 170 R1=R2=R8=OH; R4=α-L-(2-E-p-coumaroyl) RhaO 171 R1=R2=R8=OH; R4=α-L-(2,3-di-E-p- coumaroyl)RhaO 172 R1=β-D-(3-O-acetyl) GlucO; R2=R4=R7= R8=OH 173 R1=[2-O-acetyl-α-L-Rha-(1 6)-β-D-Glc]O; R2=R4=R7=R8=OH 174 R1=OMe; R2=R8=OH; R4=methylGlucO 175 R1=OMe; R2=R8=OH; R4=GlucO 176 R1=OMe; R2=R8=OH; R4=β-D-(6′′-methyl) GlucO 177 R1=R2=R3=R8=OH; R4=β-D-(6''-acetyl) GlcO 180 R1=[β-D-Ap (1 6)-β-D-Glc]O; R2=R4=R8=OH 181 R1=[β-D-Ap (1 6)-β-D-Glc]O; R2=R4=R7=R8=OH 182 R1=α-L-RhaO; R2=R8=OH; R4=β-D-GlcO; R5=prenyl 183 R1=α-L-RhaO; R2=OH; R4=β-D-GlcO; R5=prenyl; R8=OMe 184 R1=[α-L-Rha (1 2)-β-D-Glc]O; R2=OH; R4=β-D-GlcO; R5=prenyl; R8=OMe 185 R1=[α-L-Rha (1 2)-α-L-Rha]O; R2= OH; R4=β-D-GlcO; R5=CH2CH(OH)C(Me)=CH2;

R8=OMe 186 R1=[α-L-Rha (1 2)-α-L-Rha]O; R2= R7=OH; R4=β-D-GlcO; R5=prenyl; R8=OMe 187 R1=α-L-RhaO; R2=R7=OH; R4=β-D-GlcO; R5=prenyl; R8=OMe 188 R1=(2″-E-p-coumaroyl,4″-Z-p-coumaroyl)- α-L-RhaO; R2=R4=R8=OH 189 R1=(3″-Z-p-coumaroyl,4″-E-p-coumaroyl)- α-L-RhaO; R2=R4=R8=OH 190 R1=OMe; R2=R4=R7=R8=OH; R5=R6=prenyl 191 R1=[β-D-Glc (1 2)-β-L-Ara]O;R2=R4=R7= R8=OH 192 R1=[α-L-Rha (1 2)-α-L-Ara]O; R2=R4= R8=OH 193 R1=(2''-α-L-Ara)-α-L-RhaO; R2=R8=OH; R4=α-L-RhaO 194 R1=R4=R7=OMe; R2=R8=OH; R3=R5=Me 195 R1=R7=OMe; R2=R4=R8=OH; R3=R5=Me 196 R1=R4=OMe; R2=R8=OH; R3=R5=R7=Me 197 R1=(2-β-D-Glc)-α-L-RhaO; R2=R8=OH; R4= α-L-RhaO 198 R1=R2=R4=OH; R8=[β-D-Glc (1 2)-β-D- Glc]O 199 R1=R2=R4=OH; R8=[α-L-Rha (1 6)-β-D- Glc]O 200 R1=R2=R8=OH; R4=α-L-(3′′-isobutyryl) RhaO 201 R1=R2=R8=OH; R4=α-L-(3′′-(S)-2-methyl- butyryl) RhaO 202 R1=R2=R7=R8=OH; R4=α-L-(3′′-isobutyryl) RhaO 203 R1=R2=R7=R8=OH; R4=α-L-(3′′-(S)-2- methylbutyryl) RhaO

Page 10: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

74

204 R1=R8=β-D-GlcO; R2=R7=OH; R4=α-L- RhaO 205 R1=R2=R4=R7=OH; R8=β-D-GalcO 206 R1=[β-D-Glc(1 2)-β-D-Glc]O; R2=R4= R8=OH 207 R1=[β-D-Glc (1 2)-β-D-Galc]O; R2=R7= R8=OH; R4=β-D-GlcO 208 R1=α-L-(4''-methoxy) RhaO; R2=R4=R7= R8=OH 209 R1=β-(2′′-O-α-Rha-3′′-O-β-Glc) GlucO; R2=R4=R8=OH 210 R1=β-[2′′-O-α-Rha-3′′-O-(6′′′′-O-α-Rha-β- Glc)] GlcO; R2=R4=R8=OH 211 R1=β-D-GalcO; R2=R4=R8=R9=OH; R7=α-D- GlcO 212 R1=β-D-GalcO; R2=R4=R8=R9=OH; R7=α-D- GalcO 213 R1=β-D-[6′′{3,4,5-trihydroxy (E)-cinnamoyl] GlcO; R2=R4=R7=OH; R3=R8=OMe 214 R1=α-L-RhaO; R2=R4=R7=OH 215 R1=β-D-(2′′,3′′-di-O-Gal) GalcO; R2=R4=R7= R8=OH 216 R1=R2=R4=R7=R8=OH; R9=geranyl 217 R1=R2=R4=R7=R8=OH; R6=geranyl; R9=prenyl 218 R1=R2=R4=R7=OH; R6=geranyl; R8=OMe 221 R1=[β-D-Xyl (1 3)-α-L-Rha (1 6)-β-D- Glc]O; R2=R4=R7=R8=OH 222 R1=[β-D-Xyl (1 2)-β-D-Xyl]O; R2=R4= R8=OH; R7=OMe 223 R1=α-L-(2′′-O-caffeoyl) RhaO; R2=R4=R7= R8=OH 224 R1=α-L-(3′′-O-galloyl) RhaO; R2=R4=R7= R8=OH 225 R1=α-L-(2′′,3′′-di-O-galloyl) RhaO; R2=R4= R7=R8=OH 226 R1=(5''-acetyl)ApO; R2=R8=OH; R4=α-L- RhaO 227 R1=[β-D-Xyl (1'''' 2'')-α-L-Rha]O; R2=R8=OH; R4=α-L-RhaO 228 R1=α-L-(3''-O-4'''-methylgallate)-RhaO; R2=R4=R8=OH 229 R1=[β-D-Xyl (1 2)-{6-O-(3-hydroxy-3- methyl-glutaroyl)}-β-D-Glc]O; R2=R4=R7= R8=OH 230 R1=[β-D-Ap (1 2)-{6-O-(3-hydroxy-3- methyl-glutaroyl)}-β-D-Glc]O; R2=R4=R7=

R8=OH 231 R1=[β-D-Xyl (1 2)-{6-O-(3-hydroxy-3- methyl-glutaroyl)}-β-D-Glc]O;R2=R4=R8= OH 232 R1=[β-D-Ap (1 2)-{6-O-(3-hydroxy-3- methyl-glutaroyl)}-β-D-Glc]O; R2=R4= R8=OH 233 R1=[α-Rha (1 2)-α-Rha]O; R2=R4=R8= R9=OH; R7=α-RhaO 234 R1=β-(2′′-O-α-Rha-4′′-O-α-Rha) GlcO; R2=R4=R8=OH; R7=β-GlcO; R9=OMe 235 R1=[α-Rha (1 2)-α-Rha]O; R2=R4=R8=OH; R7=β-GalcO; R9=OMe 236 R1=R4=RutO; R2=R8=OH 237 R1= RutO; R2=R4=R8=R9=OH; R7=α-RhaO 238 R1=[β-Glc (1 2)-β-Glc]O; R2=R4=R7= R9=OH; R8=β-GlcO 239 R1=[(3-O-Syr)-α-L-Rha (1 6)-β-D-Glc]O; R2=R4=R7=R8=OH 240 R1=[{β-D-Glc (1 4)}{α-L-Rha (1 6)}-β- D-Glc]O; R2=R4=R8=OH 241 R1=[{β-D-Glc (1 4)}{α-L-Rha (1 6)}-β- D-Glc]O; R2=R4= R7=R8=OH 242 R1= [β-D-Glc-(1 2)-{β-D-Glc (1 3)}- {β-D-Glc (1 4)}-α-L-Rha]O; R2=R8=OH; R4=α-L-RhaO 243 R1=[β-D-Glc (1 4)-β-D-6′′′′′[4-hydroxy (E)-cinnamoyl] Glc-(1 3)-{β -D-Glc (1 2)}-α-L-Rha]O; R2=R8=OH; R4=α-L- RhaO 244 R1=β-D-[α-L-Rha (1 3)] GlcO; R2=R4= R8=OH; R7=OMe 245 R1= [(6′′′′-feruloyl)-β-D-Glc (1 3)]-[α-L- Rha (1 6)]-β-D-GlcO; R2=R4=R8=OH 246 R1=R2=R7=R8=OH; R4=[α-L-Rha (1 6)-β- D-Galc]O 250 R1=[{β-Ap (1 2)}-{α-Rha (1 6)}-β- Galc]O; R2=R4=R7=OH; R8=OMe 251 R1=β-D-GlcO; R2=R8=OH; R3=R4=OMe 252 R1=R2=R4=R8=OH; R5=lavandulyl 253 R1=[β-Glc (1 2)-β-Galc]O; R2=R8=OH; R4= α-RhaO 254 R1=[{β-Xyl (1 3)-α-Rha (1 6)}{β-Glc (1 2)}-β-Glc]O; R2=R4=R8=OH 255 R1=R2=R8=OH; R4=OMe; R5=methyl 256 R1=α-L-RhaO; R2=R8=OH; R3= Glc*; R4=β-

Page 11: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

75

D-(6′′-p-coumaroyl)GlcO 257 R1=[2'''-β-Glc-α-L-Rha]O; R2=R8=OH; R3= Glc*; R4=β-D-(6′′-p-coumaroyl) GlcO 258 R1=β-D-[β-D-Xyl (1 2)-α-L-Rha (1 6)] GalcO; R2=R4=R7=R8=OH 259 R1=β-D-AlO;R2=R4=R7=OH; R8= α-L-RhaO 260 R1=R2=R4=R8=OH; R5=p-hydroxybenzyl 261 R1=R2=R4=R7=OH; R3=R5=R8=prenyl 262 R1=R2=R4=R7=OH; R3=R5=prenyl; R8=CH2CH(OH)C(Me)=CH2 267 R1=(2′′-O-galloyl) RutO; R2=R4=R8=OH 268 R1=R2=R8=OH; R3=prenyl; R4=β-D-GlcO 269 R1=R2=R7=R8=OH; R3=prenyl; R4=β-D-GlcO 270 R1=R2=R7=R8=OH; R3=CH2CH2C(OH)Me2; R4=β-D-GlcO 272 R1=OCOCH3; R2=R8=OH; R4=OMe 274 R1=[2′′-O-acetyl-β-D-Glc (1 6)-β-D-Glc] O; R2=R4=R7=R8=OH 275 R1=[2′′′,6′′′-O-diacetyl-β-D-Glc(1 6)-β-D- Glc]O; R2=R4=R7=R8=OH 276 R1=[2′′-O-acetyl-β-D-Glc (1 6)-β-D- Glc]O; R2=R4=R8=OH; R7=OMe 277 R1=[2′′-O-acetyl-β-D-Ara (1 6)-β-D-Glc] O; R2=R4=R7=R8=OH 278 R1=β-D-GalcO; R2=OH; R4=R8=OMe 279 R1=[β-D-Ap (1 2)-β-D-Galc]O; R2=OH; R4=R8=OMe 280 R1=[β-D-Ap (1 2)-β-D-Galc]O; R2=R7=OH; R4=R8=OMe 282 R1=α-L-RhaO; R2=R4=R6=R8=OH 283 R1=β-(4′′,6′′-digallate) GlcO; R2=R4=R7= R8=OH 284 R1=β-(5′′-gallate) ArabO; R2=R4=R8=OH 285 R1=R2=R4=R7=OH; R8=α-ArabO 286 R1=β-D-GlcO; R2=R8=OH; R4=α-L-ArabO 287 R1=[ 6'''-O-acetyl-β-D-Glc (1 4)-3''-O-(4'''', 4''''-dimethyl-3-oxo-butyl)-α-L-Rha]O; R2=R4=R7=OH 288 R1=[ 3'''-O-acetyl-β-D-Glc (1 4)-3''-O- (4'''', 4''''-dimethyl-3-oxo-butyl)-α-L-Rha]O; R2=R4=R7=OH 289 R1=[ 2'''-O-acetyl-β-D-Glc (1 4)-α-L- Rha]O; R2=R4=R7=OH 290 R1=β-D-GlcO; R2=R8=OH; R4=α-L-ArabO 291 R1=[β-D-Glc (1 4)-α-L-Rha (1 2)-β-D- Glc]O; R2=R8=OH; R4= α-L-(4′′-(E)-p-

coumaroyl) RhaO 292 R1=R2=R8=OH; R4=[(6′′′-O-caffeoyl)-β-D- Glc (1 3)-α-L-Rha]O 293 R1=β-D-[{β-D-Xyl (1 3)-4-O-(E-p- caffeoyl)-α-L-Rha (1 6)}{β-D-Glc (1 2)}]GlcO; R2=R4=R7=R8=OH 294 R1=β-D-[{β-D-Xyl (1 3)-4-O-(E-p- coumaroyl)-α-L-Rha (1 6)}{β-D- Glc(1 2)}] GlcO; R2=R4=R7=R8=OH 295 R1=β-D-[{β-D-Xyl (1 3)-4-O-(Z-p- coumaroyl) -α-L-Rha (1 6)}{β-D- Glc(1 2)}] GlcO; R2=R4=R7=R8=OH 296 R1=β-D-[β-D-Glc (1 3)-4-O-(E-p- coumaroyl)-α-L-Rha (1 6)] GlcO; R2=R8=OH; R4=α-L-(4-O-acetyl) RhaO 297 R1=β-D-[β-D-Xyl (1 3)-4-O-(E-p- coumaroyl)-α-L-Rha (1 6)] GlcO; R2=R8=OH; R4=α-L-(4-O-acetyl) RhaO 298 R1=[(2-trans-caffeoyl)-α-L-Ara (1 2)-β- D-Glc]O; R2=R4=R7=R8=OH 299 R1=R2=R8=OH; R4=β-D-(6′′′-O-acetyl) GlcO; R5=prenyl 301 R1=α-L-(2'',3''-di-O-galloyl) RhaO; R2=R4= R8=OH 302 R1=α-L-RhaO; R2=R8=OH; R4=[(6-O- acetyl)-β-D-Glc (1 4)]-[{6-O-(4-hydroxy- E-cinnamoy)}-β-D-Glc (1 2)]-α-L-RhaO 303 R1=α-L-(5′′-O-acetyl) ArabO; R2=R4= R8=OH 304 R1=α-L-(3′′-O-acetyl) ArabO; R2=R4= R8=OH 305 R1=α-L-(3′′,5′′-di-O-acetyl) ArabO; R2=R4= R7=R8=OH 306 R1=β-D-(6′′-E-p-coumaroyl) GlcO; R2=R4= R8=OH 307 R1=[{2-E-p-coumaroyl}-{β-D-Glc(1 3)} {β-D-Glc(1 3)-α-L-Rha (1 6)}-β-D- Glc]O; R2=R4=R7=R8=OH 308 R1=[{2-E-p-coumaryl}-{β-D-Glc(1 3)} {β-D-Glc(1 3)-α-L-Rha (1 6)}-β-D- Glc]O; R2=R4=R8=OH 309 R1=[β-D-Xyl (1 2)-β-D-Glc]O; R2=R4=OH; R8=β-D-GlcO 311 R1=α-L-(5''-O-acetyl) ArabO; R2=R8=OH; R4=α-L-RhaO 312 R1=α-L-ArabO; R2= R7=R8=OH; R4=α-L- RhaO 313 R1=α-L-(5''-O-acetyl) ArabO; R2=R7= R8=OH; R4=α-L-RhaO

Page 12: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

76

O

O

OH

OH

OH

NH

O

OH

R

O

O

O

OH

OH

OH

O

O

OH

O

OO

O

O

OH

O

R

OH

OHO

OH

O

OH

O

OH

OH

O

OH

O

OH

O

O

O

OH

OOH

OH

O

O

OH

CH2OH

CHCOOCH3

O

OH

OH O

OH

OH

OH

O

O

OH O

MeO

O

OH

OH O

OH

OH

OH

178 R=OH179 R=OMe

R1

R2

219 R1=prenyl; R2=OH220 R1=R2=-CH=CHC(Me)2O-

249 263 R=2S-hydroxy-3-methylbut-3-enyl265 R=prenyl

264

266 273

300

Fleminginin (247)

Flemingichromone (248)

271

R1

281 R1=OH310 R1=H

Page 13: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

77

Figure-1.4: Flavanols and Flavanol Glycosides

O

O

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

(only nonhydrogen substituents

are indicated)

314 R1=α-L-RhaO; R2=R4=R8=OH 315 R1=α-L-RhaO; R2=R4=R7=R8=OH 316 R1=R2=R8=OH; R4=β-D-GlcO; R5=prenyl 317 R1=R2=R7=R8=OH; R4=OMe; R5=Glc* 318 R1=R2=R4=R7=OH; R3=Glc*; R8=OMe 319 R1=R4=R8=OH; R3=R7=isoprenyl 320 R1=R4=R8=OH; R3=R5=isoprenyl 321 R1=R4=R8=OH; R3=R5=R7=isoprenyl 322 R1=R2=R4=R8=OH; R3=R5=R7=isoprenyl 323 R1=R2=R4=R6=R8=R10=OH; R3=R5=prenyl 324 R1=R2=R8=OH; R3=prenyl; R4=β-D-GlcO 325 R1=R2=R7=R8=OH; R3=CH2CH2C(OH)Me2; R4=β-D-GlcO 326 R1=R2=OH; R4=R8=OMe (2R,3R) 328 R1=R2=R4=R8=OH; R3=CH2CH=C(Me)CH2- CH2CH(OH)C(Me)=CH2; R7=OMe 329 R1=R2=R4=R8=OH; R3=geranyl; R7=R9=OMe

330 R1=R2=R4=R8=OH; R3=prenyl; R7=OMe 331 R1=R2=R4=R8=OH; R3=R5=methyl (2R,3S) 332 R1=R2=R4=R8=OH; R3=R5=methyl (2R,3R) 333 R1=R2=R8=OH; R4=β-D-(6''-O-acetyl) GlcO; R5=prenyl

O

OH

OH

OMe

MeO

(327)

Figure-1.5: Isoflavones and Isoflavone glycosides

O

O

R8

R7

R6

R5

R4

R3

R2

R1

(only nonhydrogen substituents are indicated)

R9

Page 14: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

78

334 R3=[α-L-Rha (1 2)-β-D-Glc]O 335 R1=R5=R7=OH; R3=OMe; R6=Me 336 R1=R7=OH; R3=R5=OMe; R6=Me 337 R1=R7=OH; R3= R5=OMe 338 R1=R2=R7=OMe; R3=[β-D-Glc (1 4)-α- L-Rha (1 6)-β-D-Glc (1 3)-(α-L-Rha (1 6)-β-D-Glc]O 339 R1=R2=R7=OMe; R3=[α-L-Rha (1 6)-β- D-Glc (1 3)-(α-L-Rha (1 6))-β-D-Glc]O 340 R1=R2=R7=OMe; R3=[α-L-Rha (1 6))-β- D-Glc]O 342 R3=R5=R8=OH; R7=OMe 343 R1=R3=R5=R8=OH; R7=OMe 344 R1=R3=R6=OH; R5=R7=OMe 345 R1=R3=OH; R5=OMe; R7=R8=O-CH2-O 346 R3=R6=OH; R5=R7=OMe 347 R3=R6=OH; R7=OMe; R8=isoprenyl 351 R2=R4=R6=R7=OH; R3=Me; R5=OMe 352 R2=R4=R6=R7=OH; R5=OMe; R9=isoprenyl 355 R3=β-D-(6′′-ethylmalonyl) GlcO; R7=OMe 356 R1=OMe; R3=[α-L-Rha (1 6)-β-D-Glc]O; R7=OH 357 R3=R4=β-D-GlcO; R7=OMe 358 R1=R3=R6=R7=OH; R5=prenyl 359 R3=R6=OH; R4=α-Glcf* 360 R3=R6=OH; R4=β-Glcf* 361 R3=β-D-GalcO; R7=OMe 366 R1=OH; R2=OMe; R3=β-D-GlcO; R7=[β-D- Glc (1'''' 6''')-β-D-Glc]O 367 R1=R3=OH; R2=R6=OMe; R7=[β-D-Glc (1''' 6'')-β-D-Glc]O 368 R1=R5=R6=OH; R2=R3=O-CH2-O 369 R3=β-D-(6′′-OOCCH=CHCH3) GlcO; R6=OH; R7=OMe 370 R3=OH; R7=OMe 371 R3=R7=OMe 372 R1=R7=OH; R3=OMe 373 R3=OH; R2=R7=OMe 375 R3=R5=OH; R7=OMe; R8=prenyl 376 R1=R7=OH; R3=OMe; R8=isoprenyl 377 R1=R5=R7=OH; R3=OMe; R8=isoprenyl 378 R1=R7=OH; R3=OMe; R8= 3-methyl-2- hydroxybuten-3-yl 379 R1=R7=OH; R3=OMe; R8=CHO 381 R3=OH; R6=prenyl; R7=OMe 382 R1=R3=R7=OH; R2=R4=prenyl; R6=isoprenyl

384 R2=R7=OMe; R3=[β-D-Glc (1 6)-β-D- Glc]O 385 R1=R3=R5=R8=OMe; R7=prenylO 386 R1=R3=OH; R5=R8=OMe; R7=prenylO 389 R1=R3=R7=OH; R4=prenyl; R5=R8=OMe 391 R1=R3=R7=OH; R4=CH2CH=C(Me)CH2OH; R5=R8=OMe 392 R1=R3=R6=R7=OH; R2=1-hydroxyallyl; R4=prenyl 393 R1=R3=R6=R7=OH; R2=prenyl; R4=1-hydroxyallyl 395 R3=[β-D-Xyl (1 6)-β-D-Glc]O; R4=OH; R7=OMe 396 R3=[β-D-Xyl (1 6)-β-D-Glc]O; R4=R7=OMe 399 R3=R7=OH; R4=β-D-Glc 400 R3=R7=OH; R4=β-D-Glc; R6=OMe 401 R4=[β-D-Ap (1 6)-β-D-Glc]*; R7=OMe 402 R4=[β-D-Xyl (1 6)-β-D-Glc]*; R7=OMe 403 R1=OH; R2=R3=β-D-GlcO; R7=OMe 404 R1=R2=OH; R3=β-D-GlcO 405 R3=R7=OH; R6=geranyl 406 R1=R3=OH; R7=(6''-O-α-L-Rha)-β-SpO 407 R1=R3=OH; R7=(6'''-O-α-L-Rha)-β-SpO 408 R1=OH; R3=β-D-GlcO; R7=β-(6'''-O-α-L-Rha)-β -SpO 409 R1=OH; R3=α-L-RhaO; R7=β-(6'''-O-α-L-Rha)- β-SpO 410 R1=R3=OH; R7=β-D-GlcO 411 R1=R3=prenylO; R7=OMe 412 R1=R3=R7=OH; R6=CH2CH2C(OH)Me2 413 R1=R3=OH; R2=CH2CH(OH)C(Me)=CH2; R7=OMe 416 R3=R7=OMe; R6=R8=OH 417 R1=R2=R7=OMe; R3= [(5-O-trans-p- coumaroyl )- β-D-Ap (1 6)-β-D-Glc]O; R6=OH 418 R1=R2=R7=R8=OMe; R3= [(5-O-trans-p- coumaroyl)-β-D-Ap(1 6)-β-D-Glc]O; R5=OH 419 R1=R2=R7=R8=OMe; R3= [β-D-Ap (1 6)-β- D-Glc]O; R5=OH 420 R4=R7=OMe; R3=[β-D-Ap (1 6)-β-D-Glc]O 421 R2=R7=OMe; R3=[β-D-Ap (1 6)-β-D-Glc]O 422 R1=OH; R3=R6=OMe; R7=[β-D-Ap (1 6)- β-D-Glc]O 423 R1=R5=OMe; R2=R3=O-CH2-O; R6=R7=OH 424 R1=R2=R6=R7=OH; R3=[β-D-Glc (1 3)-α-L- Rha]O 425 R1=R2=R6=R7=OH; R3=[β-D-Glc (1 6)-β- D-Glc (1 6)-β-D-Glc (1 3)-α-L-Rha]O 426 R3=R5=R7=OH

Page 15: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

79

OO

OH

OH

O

MeO

O

O

OH

OH

O

O

O

OH

OHO

OH

O

O

OH

OH

OH

O

OH

O

OOH

OOH

OMe

O

OOHOMe

O

OH

O O

OH

OH

OHCH2OH

O

O O

OH

H

O

O

O

O

OO

OHO

O

OOHOH

OOMe

OMe

O

O

OH

OH

OMe

OMe

MeO

H

H

O

OOHOH

O

OH

H

OOH

O

O

O

MeO

OMe

O

O

OH

OH

OOH

MeO

O O

O

OH

O

O

MeO

OMe

OMe

OMe

O

OOHOH

OOH

341

348

349

350

351

354

362

R1

R2

R3

R4

R5

363 R1=R3=R5=OMe;R2=H; R4=β-D-GlcO364 R1=R3=R5=H; R2=OMe; R4=OH365 R1=OH; R2=R3=R5=H; R4=[β-D- Glc (1 6)-β-D-Glc]O

374 R1=OMe; R2=CH2C(OH)C(Me)=CH2; R3=R4=R5=R6=H383 R1=OH; R2=R5=prenyl;R3=R4=R6=H389 R1=R3=OH; R2=R5=H; R4=R6=OMe

R1

R2

R3

R4

R5

387

391

394 R1=H; R2=OH414 R1=OMe; R2=H

397

R1

R2

R6

380

398 415

Page 16: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

80

Figure-1.6: Isoflavanones

O

O

O

OH

OMe

O

OOH

O

OO

O

OO

OH

OO

O

OOH OOH

O

O

OOH OOH

O

OO

OH O

OH

OH

OMe

O

O

OH

OH

OH

OH

OMe

O

OO

H

OH

O

OH

OH

OH

O

O

O

OOH

OH OMe

O

OOH

OH

OH

R

O

OH

OH

HH

O

O

OH

OHOH

OH

OH

O

OH O

OH

OO

MeO

O

OOH

OH

O

O

OH

O

OMe

MeO

O

OH O

OH

Me

Me

OMe

O

OH O

OH

Me

Me

OH

OOHOH

OH

OOH

O

OH O

OH

R8

R7

R6

R5

R4

R3

R2

R1

(only nonhydrogen substituents are indicated)

R9

428 R3=R8=OH; R5=R7=OMe429 R3=OH; R7=OMe 430 R1=R3=OH; R2=prenyl; R5=R6=R7=OMe431 R1=R7=OH; R2=Me; R3=R5=OMe432 R1=R3=OH; R7=R8=R9=OMe433 R1=R3=OH; R7=R8=OCH2O; R9=OMe434 R1=OH; R3=OGlc; R7=R8=R9=OMe435 R1=OH; R3=OGlc; R7=R8=OCH2O; R9=OMe436 R1=OH; R3=OGlc; R7=R9=OMe437 R1=R7=OH; R3=OGlc; R8=R9=OMe438 R2=R4=R6=R7=OH; R3=Me; R5=OMe441 R1=R7=OH;R2=CH2CH=C(Me)CH2CH2CH=CMe2; R3=R5=OMe446 R2=Prenyl; R3=R4=OH; R7=OMe 448 R3=R7=OH; R4=R6=prenyl; R5=OMe

R1

R2

451 R1=R2=OH452 R1=Me; R2=H

R1

R2

R3

439 R1=R5=H; R2=OMe; R3=Prenyl;R4=OH440 R1=R3=R5=H; R2=OMe; R4=OH442 R1=R2=H; R3=OH; R4=OMe; R5=CH=CHC(Me)=CH2443 R1=R2=H; R3=OH; R4=OMe; R5=CH=CHC(OH)Me2460 R1=prenyl; R2=OH; R3=OH; R4=OMe; R5=H

456

457 458

459

427R4

R5

444

445

447

449 R=450 R=453

454 455

461 R1=OH; R2=H (3R)462 R1=OH; R2=H (3S)463 R1=H; R2=OH

R1

R2

464 465

Page 17: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

81

Figure-1.7: Isoflavans

O

OOH

OH

O

O

OOH

OH

HMeO

OOH OMeO

OH

OH

OHOMe

OMe

O

OH OHOMe

OMe

O

O

OH OH

O

OOH

H

OH

OH

OH

OH

OH

OMe

OMe

OOH

H

O

OMe

OMe

OH

OOH

OH

OHOH

OOH

OH

OHO

OH

OOH

OH

OHO

469

475

466 467 468

469a R1=CHO; R2=H469b R1=H; R2=OH

R1

R2

470

471 472

474

473

Figure-1.8: Flavanones and Flavanone Glycosides

O

O

R9

R7

R8R6R5

R4

R3

R2

R1

(only nonhydrogen substituents are indicated)

R10

Page 18: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

82

476 R2=R4=R5=R6=OMe 477 R2=β-D-GlcO; R4=R5=OMe 478 R2=R7=R8=R9=OH; R4=OMe 479 R2=R7=OH; R4=OMe; R8=β-D-GlcO 480 R2=R7=R8=R9=OH; R4=β-D-GlcO 487 R4=(6''-O-acetyl)-β-D-GlcO; R5=R7=R8=OH 488 R2=R8=OH; R3=R4=β-D-GlcO (2R) 489 R2=α-L-RhaO; R4=[β-D-Ara-(1 4)-β-D- Glc]O; R5=R8=OMe 490 R2=[β-D-Glc (1 6)-β-D-Glc]O;R4=R8=OH (2S) 491 R2=[β-D-Glc (1 6)-β-D-Glc]O; R4=R8=OH (2R) 492 R2=R8=β-D-GlcO; R4=OH (2S) 493 R2=OMe; R3=OH; R4=prenylO 494 R4=epoxy-isopentyl; R8=OH 495 R2=OMe; R4=β-GlcO; R2=prenyl; R8=OH 496 R1=β-D-GlcO; R2=R4=R8=OH 497 R2=R4=R8=OH; R5=2-hydroxy-3-methyl- butenyl 498 R2=R7=OH; R3=R5=Me; R4=β-D-GlcO; R9=OMe 499 R2=R7=OH; R3=R5=Me; R4=6′′-O-(3′′′- hydroxy-3′′′-methylglutaryl)-β-D-GlcO; R9=OMe 500 R2=R7=OH; R3=R5=Me; R4=[6′′-O-{5′′′- butoxyl-(3′′′-hydroxy-3′′′-methylglutaryl)}]- β-D-GlcO; R9=OMe 501 R2=OH; R3=R5=Me; R4=[6′′-O-{5′′′- oxobuty-(3′′′-hydroxy-3′′′-methylglutaryl)}]- β-D-GlcO; R8=OMe 502 R2=R4=R7=R8=OH; R3=2-hydroxy-3- methylbut-3-enyl; R6=geranyl 503 R2=R4=R7=R8=OH; R3=6-hydroxy-3,7- dimethylocta-2,7-dienyl 511 R5=prenyl 512 R5=prenyl; R8=OH 513 R3=R4=OH (2S) 516 R4=R7=OH; R8=OMe; R9=γ,γ-dimethylallyl 517 R2=R7=R8=OH; R4=SpO 518 R2=R7=R8=OH; R4=(6′′-feruloyl)-β-D-GlcO 519 R2=R7=R8=OH; R4=[6′′-(3′′′-hydroxy-4′′′- methoxy cinnamoyl)]-β-D-GlcO 520 R2=R4=R6=R9=OH (2S)

521 R2=R6=R9=OH; R4=β-D-GlcO (2S) 522 R2=R6=R9=OH; R4=β-D-GlucO (2S) 523 R2=OMe; R6=OH; R4=β-D-GlucO (2S) 524 R2=R6=OH; R3=R4=R10=OMe 525 R2=R6=OH; R3=R4= R5=R10=OMe 532 R2= R4=R8=OH; R3=Me; R7=OMe 535 R2=R7=R8=OH; R7=prenyl; R9=2-hydroxy- 3-methylbut-3-enyl 542 R4=R8=OH; R7=prenyl; R9=2-hydroxy-3- methylbut-3-enyl 543 R2=R7=OH; R7=prenyl; R8=OMe; R9=2-hydroxy-3-methylbut-3-enyl 547 R4=OH; R7=R9=prenyl; R8=OMe 548 R4=OH; R8=OMe; R7=3-hydroxy-3- methyl-trans-but-1-enyl; R9=prenyl 549 R2=R4=OH; R7=prenyl; R8=OMe 550 R2=R4=OH; R3=Me; R5=prenyl; R8=OMe 551 R1=R4=R8=OH; R7=prenyl 552 R4=OH; R8=(6′′-O-α-hydroxylpropionyl)- β-D-GlcO 561 R2=R6=R8=OH; R4=prenylO; R5=prenyl 553 R3=isoprenyl; R4=OH; R5=prenyl; R8=OMe 554 R4=OH; R5=prenyl; R8=OMe 560 R2=R4=R6=R8=OH; R5=Lav; R9=OMe 562 R2=R8=OH; R4=(E)-geranylO (2S) 563 R2=R8=OH; R4=(E)-geranylO; R5=(E)- geranyl* (2S) 564 R4=R8=OH; R2=R7=OMe 565 R2=OH; R4=R8=β-D-GlcO; R7=OMe 566 R2=R7=OH; R4=R8=β-D-GlcO 567 R1=RhaO; R2=R4=OH; R7=R8=OMe 568 R1=R7=R8=OMe; R2=OH; R4=GlcO 569 R2=R3=OMe; R4=[β-D-Glc (1 6)-β-D- Glc]O; R7=R8=O-CH2-O 570 R2=OH; R4=sinapylO; R8=[β-D-Ap (1 2)- β-D-Glc]O 572 R2=R4=R8=OH; R3=Me; R5=formyl (2S) 573 R2=R8=OH; R4=β-D-GlcO; R3=Me; R5=formyl (2S) 574 R2=R7=R9=OH; R4=β-D-AlO 575 R2=R7=R9=OH; R4=β-D-GlcO 580 R2=R7=R9=OH; R4=NhO 581 R2=R3=R4=R5=R6=R7=R9=OH; R8=OMe 582 R2=R3=R5=R6=R9=OH; R4=β-D-XylO;

Page 19: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

83

R8=OMe 583 R4=R6=R8=OH; R4=β-D-GlcO 584 R2=R4=OH; R7=OMe; R8=(6′′-O-3- hydroxy-3-methyl-glutarate)-β-D-GlcO 585 R2=R8=OH; R4=GlcO; R5=prenyl (2R) 586 R1=R2=R8=OH; R4=(6′′′-O-acetyl) GlcO R5=prenyl (2R) 587 R2=OH; R4=[β-D-Glc-(1 2)-β-D-Glc]O; R8=OMe (2R) 588 R2=R4=R8=OH; R3=prenyl; R7=geranyl 589 R2=R4=R8=R9=OH; R3=prenyl; R7=geranyl 590 R2=R4=OH; R3=geranyl; R8=OMe (2S) 591 R2=R4=R7=R8=OMe (2S) 592 R2=R4=R8=OH; R7=R9=OMe 593 R2=R4=R8=OH; R3=CH2CH=C(Me)CH2- CH2(OH)C(Me)=CH2; R7=OMe 594 R2=R4=R8=OH; R3=CH2CH=C(Me)CH2- CH=CHC(OH)Me2; R7=OMe 595 R2=R4=R7=R8=OH; R3=geranyl; R9=OMe 596 R2=R4=R8=OH; R3=geranyl; R7=R9=OMe 598 R2=R4=R9=OH; R6=[β-D-Glc (1 3)-α-L- 2-O-acetylRha]O 599 R2=R4=R9=OH; R6=[β-D-6-O-acetylGlc-

(1 3)-α-L-2-O-acetylRha]O 600 R2=R4=R9=OH; R6=[β-D-2,6-di-O- acetylGlc-(1 3)-α-L-2-O-acetylRha]O 601 R2=R4=R9=OH; R6=[β-D-3,6-di-O- acetylGlc-(1 3)-α-L-2-O-acetylRha]O 602 R2=R4=R9=OH; R6=[β-D-4,6-di-O-acetyl Glc-(1 3)-α-L-2-O-acetylRha]O 603 R2=R4=R9=OH; R6=[β-D-3,4,6-tri-O- acetyl Glc-(1 3)-α-L-2-O-acetylRha]O 604 R4=R7=R8=OMe; R9=OH (2S) 605 R1=R2=OH; R3=R4=OMe (2R,3R) 606 R2=R3=R7=R9=OH; R4=β-D-GlcO (2S) 607 R2=R7=R8=OH; R4=β-D-(2-O-trans- cinnamoyl) GlcO 608 R2=R7=R8=OH; R4=β-D-(6-O-trans- cinnamoyl) GlcO 609 R2=R8=OH; R4=[5-O-trans-cinnamoyl-β-D- Ap (1 2)-β-D-Glc]O 610 R2=OH; R4=OMe; R5=CH(prenyl)2 (2S) 611 R2=OH; R4=OMe; R5=CH(prenyl)2 (2R) 612 R2=R4=OH; R5=CH(prenyl)2 (2S) 613 R2=R4=OH; R5=CH(prenyl)2 (2R) 614 R2=R8=OH; R8=OMe (S)

OO

O

OMe

OMe

O

OHOHOH

O

O

OO

O

OH

OMe

O

OHOHOH

O

OOH

481

482

Page 20: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

84

O O

OH

OH

OOH

O

O

OH

OH O

OH

O

OOH

OOH

OH

R

H

H

OHOH

OMe

OMe

O

OOH

OH

OMe

OMe

O

O

O

OMe

H

O OH

OOHOH

OH

O

O OH

OOHOH

OH

O

O

OOH

O

OOH

OH

O

O

O

HRO

O

O

O

O

HRO

O

O

O

O

H

O

O

MeO O

O

H

O

O

MeO

O

OOH

OH

O

OH

O

OOH

OH

O

OH

R

O

OOH

OH

O

OH

OH

1''

9'''

8'''

504505 Δ1''

1''

1'''

4'''

506 Δ2'' Δ1''' Δ6''' 3'''S507 Δ2'' Δ4''' Δ6''' 3'''R508 Δ2'' Δ4''' Δ6''' 3'''S509 Δ2'' Δ6''' 3'''S510 Δ2'' Δ6''' 3'''R

483 R=OMe; erythro484 R=OMe; threo485 R=H; threo

486

514

515

533 R1=R3=R4=R5=H;R2=OH 557 R1=R5=H; R2=OMe; R3=prenyl;R4=OH558 R1=R4=H; R2=OH; R3=R5=prenyl571 R1=prenyl; R2=R4=OH; R3=R5=H

534

R1

R2

R3 R4

R5

526 R=H528 R=Me

527 R=H529 R=Me 530

531

537 R1=H; R2=OMe538 R1=H; R2=OH540 R1=R2=OH

536 R=H539 R=OH

R2

R1

541

Page 21: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

85

O O

OOH

OH

O O

OOH

OH

O

OO

OH

O

O

O

OH

OH

O

MeO

O

O

OMe

OMe

MeO

OOH

OH

OH O

MeO

O

O

OO

OH

OO

O

OH O

OH

OH

OH

OH

OH

OHOH

OH

OHO

O

544 & 545 R1=CH2OH; R2=CH3

R1

R2

546

555556

559

R1

R2

576 R1,R2=O577 R1=R2=OMe578 R1=H; R2=OH579 R1=OH; R2=H

597

Page 22: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

86

Figure-1.9: Anthocyanins

O+

R8

R7

R6

R5

R4

R3

R2

R1

(only nonhydrogen substituents are indicated)

615 R1=6-O-(3-hydroxy-3-methylglutaryl)-β-GlcO; R2=R4=R7=OH; R6=R8=OMe 616 R1=[2-O-(β-D-Xyl)-6-O-(4-O-E-p-coumaroyl-β-D-Glc)-β-D-Glc]O; R2= [(6-O-malonyl)-β- D-Glc]O; R4=R6=R7=OH 617 R1=[2-O-(2-O-E-sinapoyl-β-D-Xyl)-6-O-(4-O-E-p-coumaroyl-β-D-Glc)-β-D-Glc]O; R2= β- D-GlcO; R4=R6=R7=OH 618 R1=β-D-[2''-O-(6'''-O-caffeoyl-β-Glc)-6''-O-(E-p-coumaroyl)]GlcO; R2=β-D-GlcO; R4=R6=R7=OH 619 R1=β-D-[2''-O-(6'''-O-E-sinapoyl-β-Glc)-6''-O-(E-p-coumaroyl)]GlcO; R2=β-D-GlcO; R4=R6=R7=OH 620 R1=β-D-[2''-O-(6'''-O-feroyl-β-Glc)-6''-O-(E-p-coumaroyl)]GlcO; R2=β-D-GlcO; R4=R6=R7=OH 621 R1=β-D-[2''-O-(6'''-O-E-sinapoyl-β-Glc)-6''-O-(E-p-coumaroyl)]GlcO; R2=β-D-GlcO; R4=R7=OH 622 R1=β-D-[2''-O-(6'''-O-E-coumaroyl-β-Glc)-6''-O-(E-p-coumaroyl)]GlcO; R2=β-D-GlcO; R4=R7=OH 623 R1=β-GalcO; R2=R4=R7=OH; R6=R8=β-GlcO 624 R1=β-GalcO; R2=R4=R7=R8=OH; R6=β-GlcO 625 R1=β-GalcO; R2=R4=R7=OH; R6=β-GlcO 626 R1=β-D-[2''-O-(5'''-O-E-p-coumaroyl)-β-Ap]XylO; R2=β-D-GlcO; R4=R6=R7=OH 627 R1=β-D-[2''-O-(5'''-O-E-p-coumaroyl)-β-Ap]XylO; R2=R4=R6=R7=OH 628 R1=β-D-[2''-O-(5'''-O-E-caffeoyl)-β-Ap]XylO; R2=R4=R6=R7=OH 629 R1=β-D-[2''-O-(5'''-O-E-feroyl)-β-Ap]XylO; R2=R4=R6=R7=OH 632 R1=(6-O-(4-O-malonyl-α-RhaO)-β-GlcO; R2=β-GlcO; R4=R7=OH; R6=R8=OMe 633 R1=(6-O-α-Rha)-β-GlcO; R2=6-O-malonyl-β-GlcO; R4=R7=OH; R6=R8=OMe 634 R1=(6-O-(4-O-Malonyl-α-Rha)-β-GlcO; R2=6-O-malonyl-β-GlcO; R4=R7=OH; R6=R8=OMe 635 R1=6-O-(4-O-malonyl-α-Rha)-β-GlcO; R2=R4=R7=OH; R6=R8=OMe 636 R1=(6-O-(Z)-p-coumaroyl-β-GlcO); R2=β-GlcO; R4=R7=OH; R6=R8=OMe 637 R1=(6-O-α- Rha)-β-GlcO; R2=β-GlcO; R4=R7=OH; R6=R8=OMe 638 R1=(6-O-(E)-p-coumaroyl-β-GlcO); R2=β-GlcO; R4=R7=OH; R6=R8=OMe

Page 23: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

87

+

O

O

OH OO

OH

OH

OH

OH

OOH

OH

OH

O O

OH

O

OR

O

OH

OH

OHO

O O

OHOH

OH

O

OH

OH

OH

OH

I

II

Glc-A

Glc-B

Glc-C

Glu-D

630 R=COCH2COOH631 R=H

+ OH

OH

O

OHO

OH

OHO

O

OHOH

O

OOH

OH

OH

O

O

OO

O

Me

OH

OH

O

OH

OH

OH

O

OH

O

OHOH

OOH

OH

OMe

OMe

O

639

Page 24: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

88

Figure-1.10: Chalcones

O

R9

R8

R6

R5

R4

R3R2

R1R10

R11

R12

R7

(only nonhydrogen substituents are indicated)

O

R9

R8

R6

R5

R4

R3R2

R1R10

R11

R12

R7

(only nonhydrogen substituents are indicated)

640 R3=R4=R10=OMe; R8=OH 641 R4=R8=R10=OH; R9=OMe 642 R8=R10=OH; R9= 2-hydroxybenzyl; R12=OMe 644 R4=R5=R8=OH; R10=(6''-O-acetyl)-β-D-GlcO 646 R5=R10=R12=OH; R8=[β-D-Glc (1 6)- β-D-Glc]O 647 R8=OMe; R9=R12=OH; R10=prenylO 649 R3=R10= R12=OH; R9= prenyl 651 R4=R5=R10=OH; R12=β-D-GlcO 652 R5= R8=R10=OH; R9=prenyl; R12=OMe 654 R5=R8=OH; R9=prenyl; R10=β-GlcO; R12=OMe 655 R5=β-GlcO; R8=OH; R9=prenyl; R10=β-GlcO; R12=OMe 658 R5=R8=R10=OH; R9=CH2CH(OH)C(OMe)Me2 668 R3=R8= R10=OH; R5=R8=Methyl; R12=OMe 669 R8= R10=OH; R9=OMe 670 R8=R10=OH 672 R5=R9=R12=OH; R10=OMe 676 R5=R8=R10=OH; R4=OMe; R6=prenyl 677 R8=R10=OH; R5=OMe; R4=R6=prenyl 679 R3=OMe; R4=R5=R9=R10=OH; R11=prenyl 680 R4=R5=R10=R12=OH; R6=R11=prenyl 683 R5=R10=OH;R3=OMe;R6=CH(Me)C(Me)=CH2 696 R4=R8=OH; R5=OMe; R10=prenylO 699 R3=R5=R8=R10=OH; R9=prenyl; R12=OMe 703 R5=R10=R12=OH; R11=CH2CH(OH)C(OH)Me2 704 R5=R8=R10=OH; R4=R8=CH2CH(OH)- C(Me)=CH2 708 R5=R10=R12=OH; R8=OMe; R9=CHO; R11=Me 709 R5=R12=OH; R8=OMe; R9=CHO; R10=β-D- GlcO; R11=Me 724 R5=R10=R12=OH; R11=CH2CH2C(Me)(OH)CH2- CH2CH=CMe2 726 R5=R10=R12=OH; R11=CH2CH=C(Me)- CH2CH=CHC(OH)Me2

729 R4=R5=R8=OMe; R10=β-D-GlcO; R12=OH

648 R8=R10=R12=OH; R11=OMe 660 R5=R6=R8=OH; R10=OMe; R12=GlcO 661 R5=R8=OH; R10=OMe; R12=O-β-D- ribohexo-3-ulopyranoside 662 R5=R8=OH; R10=OMe; R12=(2′′-acetyl)- β-D-GlcO 663 R5=OH; R10=OMe; R9=R11=β-D-GlcO 666 R5=R10=R12=OH; R4=GlcO 671 R5=OMe; R10=OH; R12=GlcO 681 R1=R4=R5=R10=R12=OH; R6=R11=prenyl 682 R1=R4=R5=R10=R12=OH; R11=prenyl 688 R1=R5=R10=R12=OH; R9=prenyl 689 R1= R10=R12=OH; R5=OMe; R9= prenyl 690 R1=R5=R10=OH; R12=OMe; R9=prenyl 691 R1=R10=OH; R5=R12=OMe; R9=prenyl 692 R1=R5=R10=R12=OH; R9=prenyl;R11=Me 693 R1=R5=R10=R12=OH; R9=prenyl; R11=isoprenyl 717 R1=R5=R10=R12=OH;R4=CH2CH=C(Me) -CH2CH2CH=C(Me)CH2CH2CH=CMe2 718 R1=R5=R10=R12=OH;R4=CH2CH=C(Me) -CH2CH2CH=CMe2 719 R10=R12=OH; R11=OMe 720 R2=R10=R12=OH; R11=OMe 721 R3=R4=OH; R5=R9=R10=R11=OMe 722 R5=R10=R12=OH; R11=OMe

O

OH

OH

O

723

Page 25: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

89

OH

O

O

OH

O

O

OH

OMe

OMe

OMe

OH

O

O

OH

O

O

MeO

MeO

MeO

OH

O

OHO

OOH

OH

O O

OHRO

OH

OMe

O

O OHOH

OHOH

OH

O

OH

OH

MeO

OH

OOH

OHMeO

OOH

OHO

OHOH

MeOO

OMe

O

OOH

OH

O

OOH

OHOH

OH

R

O

OHOH

OH

OH

OAcO

OH OH

OAc

O

O

OHOH

AcO

OAc

OOH

OH

OMe

OH

OHO

O

OH

MeO

643

650

653

656 R=H657 R=Me

659

664 665

R1

R2

R3

R4

R5

667 R1=R2=R4=H; R3=OH; R5=OMe715 R5=H; R2=OH; R1=R3=R4=OMe

R1

R2

673 R1=H; R2=OH684 R1=CH2CH(OH)C(Me)=CH2; R2=H

674 R=H675 R=OH

645

678

Page 26: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

90

O

OH

O

OMe

OH

OOH

O

OMe

OMe

OH

O

OMe

OH OH

OH

O O

OH

OH OH

O

O

OH

OH

OMe

OH

O

OOH

OH

OH

O

OH OH

O

OH

OOH

OH

OOH

OHOOH

OOH

OH

OOH

O

OOH

O

OHOH

R

O

O

OH

MeO

O

OH OH

OMe

MeOOH

OMe

OMe

O

O

OH

MeO

OOH

MeO OHH

OH

OOH

OH

O

OMe

MeO

OOH

OH

OHOH

OMe

694695

697

701700

702 705

686685

687

698

706 R=Prenyl707 R=CH2CH(OH)C(Me)=CH2

710

716

711712

713 714

Page 27: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

91

OO

OH

MeO O

O

OH

OHOH

R

O

OO

OH O

OO

OH

725727 R=C(OH)(Me)CH2CH=CHC(OH)Me2728 R=C(OH)(Me)CH2CH2CH(OH)C(Me)=CH2

R1 R2 R1 R2

730 R1=Me; R2=H732 R1=H; R2=Me

731 R1=Me; R2=H733 R1=H; R2=Me

Figure-1.11: Aurones

O

OR2

R3

OR7

R4O

R5R6

R1

R8

(only nonhydrogen substituents are indicated)

734 R1=R2=OH 735 R2=R5=β-D-GlcO; R3=OH; R6=R8=OMe; R7=Me 736 R2=α-L-RhaO; R3=R7=Me; R6=R8=OMe

Page 28: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

92

Figure-1.12: Coumarins

O

HOOC

O O

740

H

O

O O OH

OH

O O O

741 742

O O

H O

OH

R

OMe

743 R=OMe744 R=H

O

OH

OOHOH

OAcO OO

OH

745 746

O

OH

OHOH

OH

O OO

OH

O

O O

OH

OH

OH

O

OH OH

O

OH

O OO O O

OH

OH

OH

OH

O O

OH

OH

OH

OHO OO

747

Glc-1

Glc-2

748

OO O

R1

R2

749 R1=OCH2CH=CMe2; R2=H750 R1=H; R2=OCH2CH=CMe2

O

O-Glc-Api

O OO

OH H

OMe

737

O OOHApi-GlcO

OH

738

O OO

O

O

OH739

O OO

O

O*n

751 n=8752 n=10

O

O*n

O OO

OH

753 n=8

O OO

O

O*n

OH

754 n=8

Page 29: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

93

O OO

O

H

OH

O O

OH

R

OO O

OH

OH

O O

OOH

O R

OH

OH

O OOH

R

MeO

O OOH

O

OH

O

OHOH

OHOH

HH

OHH

H

O OOH

OH

OH

O OO

O

OH

OH

OH

O

O

OHOH

OH

MeO

OMe

O O

MeO

OMe

OH

OHOH

O O

O O

O OOH

R

OMe

MeO

O OOH

OH

OMe

MeO

OMe

R1

R2

755 R1=R2=H756 R1=Glc; R2=H757 R1=H; R2=Glc758 R1=R2=Glc

761 R=H762 R=COCH2CH3

763

764 R=CH(CH3)2765 R=CH2CH2CH3766 R=CH2CH(CH3)2767 R=CH(CH3)CH2CH3

774 R=CH2CH=C(CH3)2775 R=H

780

783 Hibiscusin (784)

759

760

R1

R2

R3

768 R1=OMe; R2=[6-O-(5-O-Sr-β-D-Ap)-β-D-Glc]O; R3=H769 R1=OMe; R2=[6-O-(2-O-Sr-β-D-Ap)-β-D-Glc]O; R3=H770 R1=OMe; R2=[2-O-(5-O-Sr-β-D-Ap)-β-D-Glc]O; R3=H771 R1=OMe; R2=[6-O-(5-O-Van-β-D-Ap)-β-D-Glc]O; R3=H772 R1=OMe; R2=[2-O-(5-O-Van-β-D-Ap)-β-D-Glc]O; R3=H773 R1=R3=OMe; R2=[6-O-(5-O-Sr-β-D-Ap)-β-D-Glc]O

R1

R2

776 R1=OMe; R2=β-D-GlcO777 R1=β-GlcO; R2=OH

778 R=OH779 R=OMe

781

782

Page 30: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

94

O OOH

O

OHOH

O OOH

O OO

O O OMeO

OOH

OH

OH

OH

O

O

OMe OMe

O O

O

O O

OH

O

OH Me

OH

OO

OHMe

O O

OH

MeO

O

O OMeO

OH

O

OO

CH3COOO

MeOCH3

CH3

H

O

O

MeO O O

O

MeO

OH

OO

OH

OMe

O O

CHO

MeO

O OOH

OH

OH

O O

OH

MeO

O OO

O

OH

OHO OOH

OHCH2

O OO

O

O

O

O OO

OH

OH

OMe

O O

OH

OH

O

O

OH

O O

O

OO OO

OH

OH

O

O O

O

OH

O

O

MeO

786787

789

791

793 794

795

796797

798

800

801 802 803

785

788

790 792

799

Page 31: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

95

Figure-1.13: Miscellaneous

OO

OH

OH

O

OOH

RO

OHO

OH

O

OH

OHOH

O

OOH

OH

OH

OH

OH

O

OMe

OMe

OOH

OH

O

OMe

OMe

O

OOH

OH

OH

O

OOH

OH

OMe

O OH

O

OH

OH

O

O

OH

OH

OHR

O

O

OO

O

O

O

O

O

O

O

O

OHMeO

MeO OMe

O O

OOH

O

OHOH

MeO

O O

MeO

O

O OOH

MeO

O

O

OHOH

OMe

O

OOH

OH

OMe

O

OOH

MeO

OH

OH

OMe

804806 R=Me807 R=H

808

R1

R2

811 R1=OMe; R2=OH812 R1=OH; R2=OMe

813

HO

I-A

I-B

I-C

II-A

II-B

II-C

817 R=H818 R=OH

805

809 810

814

815

. . .

. . .

816

Page 32: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

96

O

OH

OH

OH

OH

OH

O

O OH

OH

OH

OH

OOH

OH

OHOH

OH

O

OH OH

OH

OH

OH

O

OH OH

OH

OH

OH

O

OH OH

OH

OH

OH

O

OH

OH

OH

OH

OH

O

O OH

OH

OH

OH

OOH

OH

OHOH

OH

O

OH OH

OH

OH

OH

O

OH OH

OH

OH

OH

O

OH

OH

OH

OH

OH

O OH

OH

OH

OH

OH

OH

O

OH

OH

OH

OH

O

O

OH

OHOH

OH

OH

H

HOH

OH

OH

OMe

A C

B

D

E

F

H

I

G

J

L

K

N

O

M

819

I

II

III

II'

II''

A C

B

D

E

F

H

I

G

J

L

K

N

O

M

820

I

II

III

II'

II''

Q

R

P

II'''

821 822 825

Page 33: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

97

OH

O

OH

OH

OH

OH

OH

OH

OH

OH

OR

OH

OH

OH

OH

OH

OH

OH

O

O

OH

OHOH

OOH

OH

OMe

OMe

OMe

O

O

O

OH

O

OOH

OHO

O

O

O

O

O

OH

O

MeO

O

O

O

OH

OH

OO

OH

OH

OH

O

O

OH

OH

O

O

O

O

O

O

OH

H

H

OOH

H

HO OH

OMeMeO

n

a

b, c, d

e

823 R=H; R1=Glcp Galloyl; n=1

824 R=Galloyl; R1=Glcp Galloyl; n=36

6

R1

826 827

828

R1

R2

841 R1=isoprenyl; R2=H842 R1=H; R2=Me

R1R2

R3 R4 R5

829 R1=R2=H; R3=R4=R5=OMe830 R1=CH2OH; R2=OMe; R3=prenyl; R4=OH; R5=H

R1

R2

R3

R4

R5

R7

R6

831 R1=R2=R3=R6=R7=H; R4=isoprenyl; R5=OMe832 R1=R3=R4=H; R2=R7=isoprenyl; R5=OH; R6=Me833 R1=OMe; R2=R7=isoprenyl; R3=R4=H; R5=OH; R6=Me834 R1=R3=R4=R6=H; R2=R7=isoprenyl; R5=Me835 R1=R2=R3=R6=H; R4=R7=isoprenyl; R5=Me836 R1=R2=R3=R4=H; R5=OH; R6=Me; R7=isoprenyl837 R1=R2=R3=R4=R6=H; R5=OMe; R7=isoprenyl838 R1=R2=R4=H; R3=R6=Me; R5=OH; R7=isoprenyl839 R1=R2=R4=R6=H; R3=Me; R5=OMe; R7=isoprenyl840 R1=R2=R3=R4=R6=H; R5=Me; R7=isoprenyl

844

R1

R2

R3

R4

843 R1=H; R2=Me; R3=isoprenyl; R4=H2845 R1=isoprenyl; R2=R3=H; R4=O846 R1=R3=isoprenyl; R2=H; R4=O847 R1=H; R2=Me; R3=isoprenyl; R4=O

R3

R4

R1

R2

848 R1=R3=H; R2=R4=isoprenyl849 R1=R4=H; R2=isoprenyl; R3=Me850 R1=R4=isoprenyl; R2=R3=H851 R1=isoprenyl; R2=R4=H; R3=Me

3'852853 Δ3'

854

Page 34: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

98

OOHOH

OHOH

OH

OHH

OMe

OMe

OOOH

HOMe

OMe

OH

OH

OOH

O

OH

O

O

OH

O

O

OMe

MeO

OMe

MeO

OMe

OO

OHOH

OH OH

OH

O

O

OHOH

OH

OH

O

OH

OMe

O

OH

OH

O

OH

O

O

O

OH

OH

O

OHOH

O

O

OH O

OH

O

OH

MeOOH

O

O

OH O

OH

MeO

O

OH O

OHOH

OHOH

H

O

OH O

OH

OHOH

O

H

O

OH O

OHO

OHO

855856

R1

R2

857 R1=OMe; R2=OH858 R1=Me; R2=OH859 R1=R2=OMe

860

861

862

863

864865

866

867

868 869

Page 35: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

99

O O

OOH

O

OOH

OH

OH

OH

O

OH O

O

OH

OHOH

O

O

OHOH

OO

OH O

OH

OHOH

OH

O

O OH

OH

OH

OH

OH

Rha-O

O

OOH

OH

OH

OH

OH

O-Rha

O

OOH

OH

OH

OH

O

OH

OOH

O

OOH

RO

O

OH

OHO

OOH

OH

O

OH

O

Glc-O

O

O

OOH

OH

OH

O

O

OH

H

H

O

O

OH

H

H

O

O

OH

OH

OH

O

O

OH

H

HOH

OH

O

H

OH

O

H

O OH

H

OH

O

H

O

OH

OH

H

H

OHOOH

OH

OMe

OMe

OMe

874

870871 872

873875

876 R=H877 R=β-D-Glc

R1

R2

878 R1=R2=H879 R1=H; R2=prenyl880 R1=β-D-Glc;R2=H

881

R1

R2

R4

882 R1=H; R2=R3=R4=OH884 R1=R2=R3=OH; R4=GlcO

R3

883

R3

R2

R1

885 R1=R3=OMe; R2=OH886 R1=R3=OH; R2=GlcO

887

Page 36: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

100

O

OOH

OH

OH

OH

OH

O

O OH

OH

OH

OH

OH

893

O

OOH

O

O

O

OH

OH

O

OR1

R2

R3

894 R1=R2=H; R3=Me895 R1=Me; R2=R3=H896 R1=R3=H; R2=Me

O

OOH

OH

OH

O

OH

OH

O

OMe

897O

OHOH

OHO

O

O OH

OH

O

OH

OOH

OH

OHO

O

OOH

OH

OMe

OH898

O

O

OMe

OMe

OR

OMeO

MeO

OMe

888 R=Me889 R=H

890 R=H891 R=CH2CH2CH3892 R=C6H4(OH)

O

OH

OH

OHOH

O

O

OH O

O

O

R OMe

OMe

OMe

Page 37: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

101

Tables 1: Naturally occurring new flavonoids reported during the period 2005 to mid 2011

Table-1.1: Flavones and Flavone glycosides

Family Genus Species Parts Compounds (Str. No.) Ref. Acanthaceae Andrographis A. paniculata Whole plants Andropaniculosin A (1) [70]

Andropaniculosin B (2) [70]— 5-hydroxy-7,8,2′,5′-tetramethoxy flavone-5-O-β-D-

glucopyranoside (3) [79]

Annonaceae Goniothalamus G. tenuifolius Leaves 3′-hydroxy-3,5,7,4′-tetramethoxyflavone (4) [66] Arecaceae Calamus C. quiquesetinervius Stems Tricin 4'-O-(erythro-β-4-hydroxyphenylglyceryl) ether

[Calquiquelignan D] (5) [351]

Tricin 4'-O-(threo-β-4-hydroxylphenylglyceryl) ether [Calquiquelignan E] (6)

[351]

Asteraceae / Compositae

Centaurea C. pullata Aerial parts 5,7,4′-trihydroxy-3′,6-dimethoxyflavone [Jaceosidin] (7)

[64]

5,4′-dihydroxy-3′,6,7-trimethoxyflavone [Cirsilineol] (8)

[64]

Chrysanthemum C. morifolium Flowers Diosmetin 7-(6′′-O-p-hydroxyphenylacetyl)-O-β-D-glucopyranoside (9)

[294]

C. sinense Flowers Acacetin 7-O-(3-O-acetyl-β-D-glucopyranoside) (10) [75]Hemistepta H. lyrata Whole plant 6''-O-(2'''-methylbutyryl)isoswertisin (11) [398]

6''-O-(2'''-methylbutyryl)isoswertiajaponin (12) [398] Inula I. cappa Herbs (−)-Hydnocarpin-7-O-β-D-glucoside (13) [397]

Bignoniaceae Oroxylum O. indicum Stem barks 8,8''-bisbaicalein (14) [272] Baicalein-7-O-caffeate (15) [272]

Caryophyllaceae Gypsophila G. repens Aerial parts Luteolin-7-O-α-L-arabinopyranosyl-6-C-β-glucopyranoside (16)

[88]

Camellia Pathinhaea P. cernua — Apigenin 4′-O-(2′′-O-p-coumaroyl)-β-D-glucopyranoside (17)

[42]

Cephalotaxaceae Cephalotaxus C. koreana Aerial parts Apigenin 5-O-α-L-rhamnopyranosyl (1′′′ 2′′) [6′′-O-acetyl]-β-D-glucopyranoside (18)

[60]

Isoscutellarein 5-O-β-D-glucopyranoside (19) [60] Cucurbitaceae Luffa L. cylindrica Fruits Diosmetin 7-O-β-D-glucuronide (20) [85] Ebenaceae Diospyros D. kaki Leaves 8-C-[α-L-rhamnopyranosyl-(1 4)]-α-D-

glucopyranosylapigenin (21) [237]

Euphorbiaceae Bridelia B. monoica Leaves Tamarixetin-3-O-α-L-arabinoside (22) [86] Euphorbia E. leucophylla Roots 4′,5-dihydroxy-6,7-dimethoxy flavone-3-O-β-D-

xylopyranoside (23) [78]

Mallotus M. metcalfianus Whole plant Luteolin 7-O-(4''-O-(E)-coumaroyl)-β-glucopyranoside (24)

[328]

Chrysoeriol-7-O-(4''-O-(E)-coumaroyl)-β-glucopyranoside (25)

[328]

Fabaceae Erythrina E. vogelii Stem barks 7,4′-dihydroxy-2′′,2′′-dimethyl-3′′,4′′-dehydropyrano{1′′,4′′:5,6} flavone [ Vogelin J] (26)

[76]

Podocytisus P. caramanicus — 7-O-β-D-glucopyranosylchrysin (27) [69] Pterogyne P. nitens

— Nitensoside A (28) [89] Nitensoside B (29) [89]

Vicia V. subvillosa Aerial parts Luteolin-4′-O-β-D-galactopyranoside [Viscioside] (30)

[81]

Flacourtiaceae Itoa I. orientalis Bark, twigs, & leaves

Itoside N (31) [209]

Globulariaceae Globularia G. alypum Aerial parts 6-hydroxyluteolin 7-O-laminaribioside (32) [38]Gentianaceae Gentiana G. piasezkii Whole plants 7-O-feruloylorientin (33) [243] Gesneriaceae Corallodiscus C. flabellata

— 5,7,4′-trihydroxy-6-methoxy-8-C-[β-D-xylopyranosyl-(1 2)]-β-D-glucopyranosyl flavonoside (34) [250] 5,7,4′-trihydroxy-8-methoxy-6-C-[β-D-xylopyranosyl-(1 2)]-β-D-glucopyranosyl flavonoside (35)

[250]

5,3′,4′-trihydroxy-7,8-dimethoxy-6-C-[β-D-xylopyranosyl-(1 2)]-β-D-glucopyranosyl flavonoside (36)

[250]

Gnetaceae Gnetum G. macrostachyum Lianas 5,7,2'-trihydroxy-5'-methoxyflavone (37) [295] Gramineae Phyllostachys P. nigra Leaves Luteolin 6-C-(6′′-O-trans-caffeoylglucoside) (38) [82]

Pogonatherum P. crinitum — Luteolin 6-C-β-boivinopyranoside (39) [284] 6-trans-(2''-O-α-rhamnopyranosyl) ethenyl-5,7,3',4'-tetrahydroflavone(40)

[284]

Page 38: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

102

Family Genus Species Parts Compounds (Str. No.) Ref. Guttiferae Hypericum H. connatum Aerial parts Amentoflavone (41) [32] Iridaceae Belamcanda B. chinensis Rhizomes 5,4′-dihydroxy-6,7-methylenedioxy-3′-methoxyflavone

(42) [71]

Iris I. pseudopumila Rhizomes Isoscutellarein 6-C-β-D-glucopyranoside (43) [47] Lamiaceae Dracocephalum D. peregrinum Whole plants Peregrinumin A (44) [222]

Peregrinumin B (45) [222]Peregrinumin C (46) [222]

Elsholtzia E. bodinieri Whole plants Luteolin 7-O-{6′′-(3′′′-hydroxy-4′′′-methoxy cinnamoyl)})-β-D-glucopyranoside (47)

[57]

Meehania M. fargesii Whole plants Fargenin A (48) [317] Fargenin B (49) [317] Fargenin C (50) [317] Fargenin D (51) [317]

Scutellaria S. amabilis Roots 5,7,2′-trihydroxy-8-methoxyflavone 7-O- β-D-glucopyranoside (52)

[21]

5,7,2′-trihydroxy-8-methoxyflavone 2′-O- β-D-glucopyranoside (53)

[21]

5,7-dihydroxy-8,2′-dimethoxyflavone 7-O- β-D-glucopyranoside (54)

[21]

5,7,2′-trihydroxyflavone 2′-O- β-D-glucopyranoside (55)

[21]

5,7,2′,5′-tetrahydroxyflavone 7-O- β-D-glucuronopyranoside (56)

[21]

S. immaculate Roots 5-hydroxy-8-methoxy-7-O-β-D-glucopyranosylflavone [Wogonin-7-O-β-D-glucopyranoside] (57)

[40]

Stachys S. aegyptiaca Aerial parts Luteolin-3′,4′-dimethylether-7-O-β-D-glucoside (58) [87]Leguminosae Butea B. monosperma Seeds 5,2′-dihydroxy-3,6,7-trimethoxyflavone-5-O-β-D-

xylopyranosyl-(1 4)-O-β-D-glucopyranoside (59)

[215] Ebenus E. haussknechtii Aerial parts Morin-3-O-4-5(4-hydroxyphenyl) pentanosyl-α-L-

rhamnopyranosyl (1 6)-β-D-glactopyranosyl-7,4′-di-O-methylether (60)

[44]

Eysenhardtia E. platycarpa Branches & leaves

(1′′R)-5,4′,1′′-trihydroxy-6,7-(3′′,3′′-dimethylchroman)flavone (61)

[193]

Millettia M. erythrocalyx Leaves 3′,5′-dimethoxy-{2′′,3′′:7,8}-furanoflavone (62) [61] 6,3′-dimethoxy-{2′′,3′′:7,8}-furanoflavone (63) [65]

Robinia R. pseudoacacia Leaves Luteolin 7-O-β-D-glucuronopyranosyl-(1 2) [α-L-rhamnopyranosyl-(1 6)]-β-D-glucopyranoside (64)

[354]

Apigenin 7-O-β-D-glucuronopyranosyl-(1 2) [α-L-rhamnopyranosyl-(1 6)]-β-D-glucopyranoside (65)

[354]

Diosmetin 7-O-β-D-glucuronopyranosyl-(1 2)[α-L-rhamnopyranosyl-(1 6)]-β-D-glucopyranoside (66)

[354]

Acacetin 7-O-β-D-glucuronopyranosyl-(1 2) [α-L-rhamnopyranosyl-(1 6)]-β-D-glucopyranoside (67)

[354]

Liliaceae Tupistra T. chinensis Rhizomes 5,7,4'-trihydroxy-3-methoxy-8-methylflavone [Tupichinol F] (68)

[23]

Mimosaceae Acacia A. pennata Leaves Apigenin-6-C-{2′′-O-(E)-feruloyl-β-D-glucopyranosyl}-8-C-β-gluco-pyranoside (69)

[53]

Moraceae Artocarpus

A. heterophyllus Wood 3-Prenyl-3′, 4′, 5, 7-tetrahydroxyflavone (70) [349]A. styracifolius Stem barks Styracifolin A (71) [373]

Styracifolin B (72) [373]Ficus F. hirta Roots 3-acetyl-3,5,4′-trihydroxy-7-methoxylflavone (73) [392] Morus M. yunanensis Stem barks Yunanensol A (74) [73]

Yunanensol B (75) [73] M. nigra

Barks

Morunigrol A (76) [264] Morunigrol B (77) [264] Mornigrol G (78) [390] Mornigrol H (79) [390]

Ochnaceae Spiranthes S. australis Whole plants 3,7-dimethoxy-5-hydroxy-2-{4-3-methyl-2-butenyloxyphenyl}-4H-1-benzopyran-4-one (80)

[11]

Ophioglossaceae Helminthostachys H. zeylanica Rhizomes 4′′a,5′′,6′′,7′′,8′′,8′′a-hexahydro-5,3′,4′-trihydroxy-5′′,5′′,8′′a-trimethyl-4H-chromeno[2′′,3′′:7,6] flavones (81)

[367]

4′′a,5′′,6′′,7′′,8′′,8′′a-hexahydro-5,3′,4′-trihydroxy-5′′,5′′,8′′a-trimethyl-4H-chromeno[2′′,3′′:7,8] flavones (82)

[367]

Page 39: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

103

Family Genus Species Parts Compounds (Str. No.) Ref. 2-(3,4-dihydroxyphenyl)-6-((2,2-dimethyl-6-methylenecyclohexyl) methyl)-5,7-dihydroxy-chroman-4-one (83)

[367]

Orchidaceae Dendrobium D. huoshanense Leaves and stems

6-C-(α-Arabinopyranosyl)-1-C-[(2-O-α-rhamnopyranosyl)-β-gluco-pyranosyl] apigenin (84)

[342]

6-C-(β-Xylopyranosyl)-1-C-[(2-O-α-rhamnopyranosyl)-β-glucopyrano-syl] apigenin (85)

[342]

6-C-(α-Arabinopyranosyl)-1-C-[(2-O-α-rhamnopyranosyl)-β-galacto-pyranosyl] apigenin (86)

[342]

6-C-[(2-O-α-Rhamnopyranosyl)-β-glucopyranosyl]-1-C-(α-arabino-pyranosyl) apigenin (87)

[342]

Papilionaceae Pleioblastus P. argenteastriatus Leaves 5,7,3′-trihydroxy-6-C-β-D-digitoxopyranosyl-4′-O-β-D-glucopyranosyl flavonoside (88)

[265]

Poaceae Eleusine E. indica Aerial parts

6-C-β-glucopyranosyl-8-C-α-arabinopyranosylapigenin [Schaftoside] (89)

[62]

8-C-β-glucopyranosylapigenin [Vitexin] (90) [62] Fargesia F. robusta Leaves Farobin A (91) [411]

Farobin B (92) [411]Sasa S. borealis Leaves

Isoorientin (93) [83] Isoorientin 2-O-α-L-rhamnoside (94) [83]

Primulaceae Primula P. veris Leaves 3′-hydroxy-4′,5′-dimethoxyflavone (95) [63] 3′-methoxy-4′,5′-methylenedioxyflavone (96) [63]

Ranunculaceae Trollius T. ledebouri Flowers 7-methoxyl, 2′′-O-(2′′′-methylbutyryl) orientin (97) [245] Rubiaceae Galium G. verum

— Diosmetin 7-O-α-L-rhamnopyranosyl-(1 2)-[β-D-xylopyranosyl(1 6)] -β-D-glucopyranoside (98) [261]

Rutaceae Citrus C. limon Fruit peels 4′-(9′-ethylene-16′-methylnon-9′,15′-dien-7′,11′-oate)-5,7-dimethoxy-flavone [limonflavonyl lactone A] (99)

[269]

4′-(9′-ethylene-16′-methylnon-9′,15′-dien-7′,11′-oate)-5,7,3′-trimethoxy-flavone [limonflavonyl lactone B] (100)

[269]

C. sudachi Peels 3′-demethoxysudachiin C (101) [190] Poncirus P. trifoliata Stem bark (−)-5,4'-dihydroxy-7,8-[(3'',4''-cis-dihydroxy-3'',4''-

dihydro)-2'',2''-dimethylpyrano]flavone (102) [326]

(−)-5,4'-dihydroxy-7,8-[(3''-hydroxy-4''-one)-2'',2''-dimethylpyrano]-flavone (103)

[326]

(−)-5,4'-dihydroxy-7,8-[(cis-3''-hydroxy-4''-ethoxy-3'',4''-dihydro)-2'',2''-dimethylpyrano]-flavone (104)

[326]

Salicaceae Salix S. raddeana Leaves Diosmetin 7-O-β-D-xylopyranosyl(1 6)-β-D-glucopyranoside [Raddeanalin] (105)

[253]

Scrophulariaceae Limnophila L. indica Whole plants 5,7,2′,5′-tetramethoxyflavone (106a) [68] Aerial parts androots

5,6-dihydroxy-7,8,4'-trimethoxy flavone (106b) [412] 5,2'-dihydroxy-8,3',4'-trimethoxy flavone (106c) [412]

Selaginellaceae Selaginella S. tamariscina Herbs 6-(2-hydroxy-5-carboxyphenyl)-apigenin (107) [315]S. moellendorffii Herbs [7-Hydroxy-2-(4-hydroxy-phenyl)-4-oxo-4H-chromen-

5-yl]-acetic acid (108) [338]

[7-Hydroxy-2-(4-hydroxy-phenyl)-4-oxo-4H-chromen-5-yl]-acetic acid ethyl ester (109)

[338]

[7-Hydroxy-2-(4-hydroxy-phenyl)-4-oxo-4H-chromen-5-yl]-acetic acid butyl ester (110)

[338]

Sterculiaceae Sterculia S. foetida Leaves Hypolaetin 4′-methyl ether 8-O-β-D-glucuronide-2′′-sulfate (111)

[291]

Hypolactin 4′-methyl ether 3′-O-β-D-glucoside (112) [291] Taxaceae Cephalotaxus C. koreana Leaf oil Apigenin 5-O-α-L-rhamnopyranosyl-(1 3)-β-D-

glucopyranoside (113) [84]

Thelypteridaceae Thelypteris T. torresiana Whole plants Protoapigenone (114) [18]5′,6′-dihydro-6-methoxyprotoapigenone (115) [18] Protoapigenin (116) [18]

Thymelaeaceae Aquilaria A. sinensis Leaves 7-β-D-glucoside of 5-O-methylapigenin (117) [221] Daphne D. giraldii Roots Daphnogirins A (118) [67]

Daphnogirins B (119) [67] Macrothelypteris M. torresiana Roots 5,7-dihydroxy-2-(1-hydroxy-2,6-dimethoxy-4-oxo-

cyclohex)-chromen-4-one (120) [379]

Struthiola S. argentea — 5,6,2′,3′,6′-methoxy-4′,5′-methylenedioxyflavone (121) [72] Turneraceae Turnera T. diffusa Leaves Luteolin 8-C-E-propenoic acid (122) [194]

Luteolin 8-C-β-[6-deoxy-2-O-(α-L-rhamnopyranosyl)-xylo-hexopyranos-3-uloside] (123)

[194]

Page 40: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

104

Family Genus Species Parts Compounds (Str. No.) Ref. Apigenin 7-O-(6′′-O-p-Z-coumaroyl-β-D-glucopyranoside) (124)

[194]

Apigenin7-O-(4′′-O-p-Z-coumaroylglucoside) (125) [194] Syringetin 3-O-[β-D-glucopyranosyl-(1 6)-β-D-glucopyranoside] (126)

[194]

Laricitin 3-O-[β-D-glucopyranosyl-(1 6)-β-D-glucopyranoside] (127)

[194]

Verbenaceae Lantana L. trifolia Leaves Scutellarein-7-O-β-D-apiofuranoside (128) [345] Apigenin-7-O-β-D-apiofuranosyl-(1 2)-β-D-apiofuranoside (129)

[345]

5,6,4',5'-tetrahydroxy-7,3'-dimethoxyflavone [Celtidifoline] (130)

[345]

Vitex V. altissima Leaves 2′′-O-p-hydroxybenzoylorientin (131) [74] Vittariaceae Vittaria V. anguste-elongata Whole plants 5-hydroxy-7-O-β-glucopyranosyloxy-3′,4′,5′-

trimethoxyflavone [Vittariflavone] (132) [200] Zygophyllaceae Peganum P. nigellastrum Aerial parts Diosmetin 7-O-β-D-glucopyranosyl(1→2)-β-D-

glucopyranosyl(1→2)-[α-L-rhamnopyranosyl(1→6)]-β-D-glucopyranoside (133)

[381]

Table-1.2: Flavans and flavan derivative

Family Genus Species Parts Compounds (Str. No.) Ref. Actinidiaceae Actinidia A. arguta Roots 6-(2-pyrrolidinone-5-yl)-(–)-epicatechin (134) [227]

8-(2-pyrrolidinone-5-yl)-(–)-epicatechin (135) [227] Amaranthaceae Abacopteris A. penangiana Rhizomes (2R,4S)-6,8-dimethyl-7-hydroxy-4'-methoxy-4,2''-oxidoflavan-5-

O-β-D-6''-O-acetylglucopyranoside (136) [388]

(2R,4S)-5,7-O-β-D-diglucopyranosyloxy-4'-methoxy-6,8-dimethyl-4,2''-oxidoflavane (137)

[388]

Fabaceae Indigofera I. daleoides — 6,3',4'-trihydroxyflavan-5-O-glucopyranoside (138) [287] Pithecellobium P. clypearia Leaves 7-O-galloyltricetifavan (139) [189]

7,4′-di-O-galloyltricetifavan (140) [189] Lauraceae Beilschmiedia B. zenkeri Stem bark (2S,4R)-5,6,7-trimethoxyflavan-4-ol (141) [405]

(2S,4R)-4,5,6,7-tetramethoxyflavan (142) [405] Leguminosae Dalbergia D. odorifera Heartwoods (2S)-6,7,4'-trihydroxyflavan (143) [279] Liliaceae Tupistra T. chinensis Rhizomes (2R,3R)-3,7,4'-trihydroxy-8-methylflavan [Tupichinol D] (144) [23] Moraceae Brosimum B. acutifolium Barks

Brosimacutin J (145) [13] Brosimacutin K (146) [13] Brosimacutin L (147) [13]

Morus M. alba Leaves (2R,4S)-2',4'-dihydroxy-2H-furan-(3'',4'':8,7)-flavan-4-ol (148) [299] (2S)-2',4'-dihydroxy-7-methoxyl-8-butyricflavane (149) [299]

M. wittiorum Leaves (2S)-7-hydroxyl-8-hydroxyethyl-4'-methoxylflavane-2'-O-β-D-glucopyranoside (150)

[395]

(2S)-7-methoxyl-8-hydroxyethyl-4'-hydroxylflavane-2'-O-β-D-glucopyranoside (151)

[395]

(2R)-7-methoxyl-8-hydroxyethyl-4'-hydroxylflavane-2'-O-β-D-glucopyranoside (152)

[395]

Thelypteridaceae Abacopteris A. penangiana Rhizomes Abacopterin A (153) [126] Abacopterin B (154) [126] Abacopterin C (155) [126]Abacopterin D (156) [126]

Aerial parts Abacopterin E (157) [128] Abacopterin F (158) [128] Abacopterin G (159) [128] Abacopterin H (160) [128]Abacopterin I (161) [128]

Thymelaeaceae Daphne D. genkwa Stem barks 5,7,4′-trihydroxy-8-ethoxycarbonylflavanol (162) [127] D. giraldii Stem barks 5-p-hydroxybenzoxy-7-hydroxyl-8-ethoxycarbonyl-(2)-

afzelechin (163) [259]

5-p-hydroxybenzoxy-7-(2, 3, 5-trihydroxybenzoxy)-8-ethoxycarbonyl-(2)-afzelechin (164)

[259]

5-p-hydroxybenzoxy-7-(2, 3, 5-trihydroxybenzoxy)-8-methoxycarbonyl-(2)-afzelechin (165)

[259]

5-methoxy-7-β-D-glucopyranosyl-(−)-afzelechin (166) [289]

Page 41: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

105

Table-1.3: Flavonols and Flavonol Glycosides

Family Genus Species Parts Compounds (Str. No.) Ref. Actinidiaceae Actinidia A. kolomikta Leaves Kaempferide-7-O-(4″-O-acetyl)-α-L-rhamnoside (167) [377]Apocynaceae Catharanthus C. roseus Hairy roots 3′,4′-di-O-methylquercetin-7-O-[(4′′ 13′′′)-2′′′,6′′′,10′′′,14′′′-

tetramethyl-hexadec-13′′′-ol-14′′′-enyl]-β-D-glucopyranoside (168)

[217]

4′-O-methylkaempferol-3-O-[(4′′ 13′′′)- 2′′′,6′′′,10′′′,14′′′-tetramethyl-hexadecan-13′′′-olyl]-β-D-glucopyranoside (169)

[217]

Araliaceae Tetrapanax T. papyriferus Fresh flowers & fruits

Kaempferol 7-O-(2-E-p-coumaroyl-α-L-rhamnoside) (170) [201] Kaempferol 7-O-(2,3-di-E-p-coumaroyl-α-L-rhamnoside) (171) [201]

Asteraceae / Compositae

Acmella A. ciliata —

Quercetin-3-O-(3-O-acetyl-β-D-glucuronopyranoside) (172) [368] Quercetin-3-O-(2-O-acetyl-α-L-rhamnopyranosyl-(1 6)-β-D-glucopyranoside) (173)

[368]

Centaurea C. furfuracea Aerial parts Isokaempferide 7-O-methyl glucuronide (174) [123] Isokaempferide 7-O-glucuronide (175) [123]

Cirsium C. rivulare Flowers Isokaempferide 7-O-β-D-(6′′-methylglucuronide) (176) [39] Rhaponticum R. carthamoides — 6-Hydroxykaempferol-7-(6''-acetyl-β-glucopyranoside) (177) [273]

Senecio S. argunensis Whole herbs 8-(2′′-pyrrolidinone-5′′-yl)-quercetin (178) [271] 8-(2′′-pyrrolidinone-5′′-yl)-isorhamnetin (179) [271]

Solidago S. altissima Leaves Keampferol 3-O-β-D-apiofuranosyl-(1 6)-β-D-glucopyranoside (180)

[56]

Quercetin 3-O-β-D-apiofuranosyl-(1 6)-β-D-glucopyranoside (181)

[56]

Berberidaceae Epimedium E. koreanum Aerial parts Icariside II (182) [110] Icariin (183) [110] Epimedin B (184) [110]

E. sagittatum Aerial parts Sagittasine A (185) [125] Sagittasine B (186) [125]Sagittasine C (187) [125] Acylated flavanol glycoside (188) [125]Acylated flavanol glycoside (189) [125]

Sinopodophyllum

S. hexandrum Fruits 8,2′-diprenylquercetin 3-methyl ether (190) [341]

Brassicaceae Carrichtera C. annua Aerial parts Quercetin 3-O-β-D-glucopyranosyl-(1 2)-β-L-arabinopyranoside (191)

[43]

Draba D. nemorosa Seeds Kaempferol 3-O-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranose [Drabanemoroside] (192)

[365]

Farsetia F. aegyptia —

Kaempferol-3-O-(2''-α-L-arabinopyranosyl)-α-L-rhamnophyranoside-7-O-α-L-rhamnopyranoside (193)

[290]

Caesalpiniaceae

Piliostigma P. reticulatum Leaves 6,8-di-C-methylquercetin-3,3',7-trimethylether (194) [309] 6,8-di-C-methylquercetin-3,3'-dimethylether (195) [309] 3',6,8-tri-C-methylquercetin-3,7-dimethylether (196) [309]

Chenopodiaceae

Chenopodium C. album C. murale

Kaempferol 3-O-(2-β-D-glucopyranosyl)-α-L-rhamnopyranoside-7-O-α-L-rhamnopyranoside (197)

[80]

Convolvulaceae

Evolvulus E. alsinoides Whole plants Kaempferol 4′-O-β-D-glucopyranosyl-(1 2)-β-D-glucopyranoside (198)

[335]

Kaempferol 4′-O-α-L-rhamnopyranosyl-(1 6)-β-D-glucopyranoside (199)

[335]

Crassulaceae Sinocrassula S. indica Whole plants Sinocrassoside A1 (200) [122] Sinocrassoside A2 (201) [122] Sinocrassoside B1 (202) [122]Sinocrassoside B2 (203) [122]

Cruciferae Moricandia M. arvensis Leaves Quercetin 3,4′-di-O-β-D-glucopyranoside-7-O-α-L-rhamnopyranoside [Moricandin] (204)

[197]

Cucurbitaceae Melothria M. purpusila

Quercetin 4′-O-β-D-glactoside (205) [113]Kaempferol 3-O-β-D-glucosyl (1 2)-β-D-glucoside (206) [113] Quercetin 3-O-β-D-glucosyl-(1 2)-β-D-galactoside-7-O-β-D-glucoside (207)

[113]

Cupressaceae Cupressus C. sempervirens Fruits Quercetin-3-O-(4″-methoxy)-α-L-rahmnopyranosyl (208) [333] Ebenaceae Diospyros D. rhombifolia

Leaves

Kaempferol 3-O-β-(2′′-O-α-rhamnopyranosyl-3′′-O-β-glucopyranosyl)-β-glucuronopyranoside (209)

[111]

Kaempferol 3-O-[2′′-O-α-rhamnopyranosyl-3′′-O-(6′′′′-O-α-rhamno-pyranosyl-β-glucopyranosyl)]-β-glucopyranoside (210)

[111]

Ericaceae Rhododendron

R. irroratum Flowers Myricetin 3-O-β-D-galactoside-3'-O-α-D-glucoside (211) [400]Myricetin 3-O-β-D-galactoside-3'-O-α-D-galactoside (212) [400]

Page 42: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

106

Family Genus Species Parts Compounds (Str. No.) Ref. Eriocaulaceae Eriocaulon E. ligulatum Capitulates 6,4′dimethoxyquercetin-3-O-β-D-[6′′{3,4,5-trihydroxy (E)-

cinnamoyl}] glucopyranoside (213)

[54] Euphorbiaceae

Alchornea A. floribunda Leaves 3,5,7,3'-tetrahydroxyflavone-3-O-α-L-rhamnoside (214) [389] Euphorbia E. lunulata Whole plants Quercetin 3-O-(2′′,3′′-digalloyl)-β-D-galactopyranoside (215) [12] Macaranga M. alnifolia Fruits Alnifoliol (216) [108]

M. sampsonii Leaves Macaranone A (217) [230] Macaranone B (218) [230] Macaranone C (219) [230] Macaranone D (220) [230]

Fabaceae Astraglus A. galegiformis Leaves Flagaloside C (221) [48] Flagaloside D (222) [48]

Calliandra C. haematocephala

Leaves & stems

Quercitrin 2′′-O-caffeate (223) [118] Quercitrin 3′′-O-gallate (224) [118] Quercetin 2′′, 3′′-di-O-gallate (225) [118]

Lotus L. lalambensis Aerial parts Kaempferol 3-O-(5''-acetyl)-apioside-7-O-α-L-rhamnopyranoside (226)

[310]

Kaempferol 3-O-β-D-xylosyl-(1''' 2'')-α-L-rhamnopyranoside-7-O-α-L-rhamnopyranside (227)

[310]

Pterogyne P. nitens Fruits Pterogynoside (228) [306] Sutherlandia S. frutescens Leaves Quercetin 3-O-β-D-xylopyranosyl(1 2)-[6-O-(3-hydroxy-3-

methyl-glutaroyl)]-β-D-glucopyranoside [Sutherlandin A] (229) [366]

Quercetin 3-O-β-D-apiofuranosyl(1 2)-[6-O-(3-hydroxy-3-methyl-glutaroyl)]-β-D-glucopyranoside [Sutherlandin B] (230)

[366]

Kaempferol 3-O-β-D-xylopyranosyl(1 2)-[6-O-(3-hydroxy-3-methyl-glutaroyl)]-β-D-glucopyranoside [Sutherlandin C] (231)

[366]

Kaempferol 3-O-β-D-apiofuranosyl(1 2)-[6-O-(3-hydroxy-3-methyl-glutaroyl)]-β-D-glucopyranoside [Sutherlandin D] (232)

[366]

Labiatae Ajuga A. remota Aerial parts Myricetin 3-O-α-rhamnosyl (1′′′ 2′′)-α-rhamnoside-3′-O-α-rhamnoside (233) [117] 5′-O-methylmyricetin 3-O-{α-rhamnosyl (1′′′ 2′′)}{α-rhamnosyl (1′′′ 4′′)}-β-glucoside-3′-O-β-glucoside (234) [117] 5′-O-methylmyricetin 3-O-α-rhamnosyl (1′′′ 2′′)-α-rhamnoside 3′-O-β-glucoside (235)

[117]

Kaemferol 3-O-rutinoside-7-O-rutinoside (236) [117] Myricetin 3-O-rutinoside-3′-O-α-rhmnoside (237) [117]Myricetin 3-O-β-glucosyl (1′′′ 2′′)-β-glucoside-4′-O-glucoside (238)

[117]

Leonurus L. japonicus — Quercetin 3-O-[(3-O-syringoyl-α-L-rhamnopyranosyl)-(1→6)-β-D-glucopyranoside] (239)

[396]

Lamiaceae Lamiun L. amplexicaule Aerial parts Kaempferol 3-O-{β-D-glucopyranosyl-(1 4)}{α-L-rhamnopyranosyl-(1 6)}-β-D-glucopyranoside (240)

[303]

Quercetin 3-O-{β-D-glucopyranosyl-(1 4)}{α-L-rhamnopyranosyl-(1 6)}-β-D-glucopyranoside (241)

[303]

Otostegia O. limbata Roots Kaempferol 3-O-[β-D-glucopyranosyl-(1 2)-{β-D-glucopyranosyl-(1 3)}-{β-D-glucopyranosyl-(1 4)}-α-L-rhamnopyranoside]-7-O-[α-L-rhamnopyranoside] (242)

[223]

Kaempferol 3-O-[β-D-glucopyranosyl-(1→4)-β-D-6′′′′′-[4-hydroxy (E)-cinnamoyl] glucopyranosyl-(1→3)-{β -D-glucopyranosyl-(1→2)}-α-L-rhamnopyranoside]-7-O-[α-L-rhamnopyranoside] (243)

[223]

Leguminosae Alhagi A. maurorum — Isorhamnetin-3-O-[α-L-rhamnopyranosyl-(1→3)]-β-D-glucopyranoside (244)

[382]

Derris D. triofoliata Aerial parts Kaempferol 3-O-[(6′′′′-feruloyl)-β-D-glucopyranosyl-(1 3)]- [α-L-rhamnopyranosyl-(1 6)]-β-D-glucopyranoside (245)

[239]

Ebenus E. haussknechtii Aerial parts Quercetin-7-O-α-L-rhamnopyranosyl (1 6)-β-D-galactopyranoside (246)

[44]

Flemingia F. macrophylla —

Fleminginin (247) [274]Flemingichromone (248) [274]

Millettia M. erythrocalyx Pods 3′,4′-methylenedioxy-{2′′,3′′:7,8}-furanoflavonol (249) [65]M. speciosa Caulis Tamarixetin-3-O-{β-apiofuranosyl-(1→2)-[α-rhamnopyranosyl

(1→6)]}- β-galactopyranoside [Millettiaspecoside D] (250) [339]

Tephrosia T. spinosa — Eupalitin-3-O-β-D-glucoside (251) [112]Sophora S. flavescens Roots 8-lavandulylkaempferol (252) [191] Styphnolobium

S. japonicum Fruits Kaempferol 3-O-β-glucopyranosyl (1 2)-β-galactopyranoside- 7-O-α-rhamnopyranoside (253)

[336]

Page 43: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

107

Family Genus Species Parts Compounds (Str. No.) Ref. Kaempferol 3-O-β-xylopyranosyl (1 3)-α-rhamnopyranosyl (1 6)[β-glucopyranosyl(1 2)]-β-glucopyranoside (254)

[336]

Liliaceae Tupistra T. chinensis Rhizomes 3,5,4'-trihydroxy-7-methoxy-8-methylflavone [Tupichinol E] (255)

[23]

Urginea U. indica Bulbs 5,4'-dihydroxy-3-O-α-L-rhamnopyranosyl-6-C-glucopyranosyl-7-O-(6''-p-coumaroyl-β-D-glucopyranosyl) flavone (256)

[401]

5,4'-dihydroxy-3-O-(2'''''-β-glucopyranosyl-α-L-rhamnopyranosyl)-6-C-glucopyranosyl-7-O-(6''-p-coumaroyl-β-D-glucopyranosyl) flavone (257)

[401]

Malvaceae Hibiscus H. mutabilis Petals Quercetin 3-O-β-D-xylopyranosyl (1 2)-α-L-rhamnopyranosyl (1 6)-β-D-galactopyranoside [Mutabiloside] (258)

[282]

Mimosaceae Acacia A. pennata Leaves Quercetin-4′-O-α-L-rhamnopyranosyl-3-O-β-D-allopyranoside (259)

[53]

Moraceae Cudrania C. tricuspidata Fruits 5,7,4′-trihydroxy-8-p-hydroxybenzyldihydroflavonol (260) [215]Dorstenia D. psilurus Roots Dorsilurin F (261) [213]

Dorsilurin G (262) [213]Dorsilurin H (263) [213] Dorsilurin I (264) [213]Dorsilurin J (265) [213] Dorsilurin K (266) [213]

Nymphaeaceae

Nymphaea N. candida Flower Kaempferol 3-O-(2′′-O-galloylrutinoside) (267) [252]

Ochnaceae Ochna O. integerrima Leaves & twigs

6-γ,γ-Dimethylallylkaempferol 7-O-β-D-glucoside (268) [50] 6-γ,γ-dimethylallylquercetin 7-O-β-D-glucoside (269) [50] 6-(3-hydroxy-3-methylbutyl) quercetin 7-O-β-D-glucoside (270) [50]

Ophioglossaceae

Helminthostachys

H. zeylanica Rhizomes 2-(3,4-dihydroxy-2-[(2,6,6-trimethylcyclohex-2-enyl)methyl]phenyl)-3,5,7-trihydroxy-4H-chromen-4-one (271)

[367]

Orchidaceae Nervilia N. fordii Aerial parts 3-O-acetyl-7-O-methyl kaemferol (272) [238] Sophora S. tonkinensis Roots Tonkinensisol (273) [248]

Papaveraceae Meconopsis M. quintuplinervia

Quercetin-3-O-{2′′-O-acetyl-β-D-glucopyranosyl-(1 6)-β-D-glucopyranoside} (274)

[116]

Quercetin-3-O-{2′′′,6′′′-O-diacetyl-β-D-glucopyranosyl-(1 6)-β-D-glucopyranside} (275)

[116]

Isorhamnetin 3-O-{2′′-O-acetyl-β-O-glucopyranosyl-(1 6)-β-D-glucopyranoside} (276)

[116]

Quercetin-3-O-{2′′′-O-acetyl-α-L-arabinopyranosyl-(1 6)-β-D-glucopyranoside} (277)

[116]

Polygalaceae Polygala P. japonica —

Polygalin A (278) [244] Polygalin B (279) [244] Polygalin C (280) [244]

Polygonaceae Fagopyrum F. dibotrys Dried roots 3,8-dihydroxy-10-methoxy-5-H-isochromeno-4,3-chromen-7-one (281)

[311]

Muehlenbeckia

M. platyclada — Morin 3-O-α-rhamnopyranoside (282) [224]

Triplaris T. cumingiana Young leaves 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxo-4H-chromen-3-yl-4,6-bis-O-β-D-(3,4,5-trihydroxybenzoyl) glucopyranoside (283)

[109]

5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl-5-O-α-L-(3,4,5-trihydroxybenzoyl) arabinofuranoside (284)

[109]

2-hydroxy-4-O-α-L-(3,5,7-trihydroxy-4-oxo-4H-chromen-2-yl) phenyl arabinofuranoside (285)

[109]

Polypodiaceae Drynaria D. fortune Rhizomes Kaempferol 3-O-β-D-glucopyranoside-7-O-α-L-arabinofuranoside (286)

[55]

Neocheiropteris

N. palmatopedata Roots Kaempferol 3-O-[(6'''-O-acetyl-β-D-glucopyranosyl)-(1 4)-3''-O-(4'''',4'''' -dimethyl-3-oxo-butyl)-α-L-rhamnopyranoside][Palmatoside A] (287)

[355]

Kaempferol 3-O-[(3'''-O-acetyl-β-D-glucopyranosyl)-(1 4)-3''-O-(4'''',4'''' -dimethyl-3-oxo-butyl)-α-L-rhamnopyranoside][Palmatoside B] (288)

[355]

Kaempferol 3-O-[(2'''-O-acetyl-β-D-glucopyranosyl)-(1 4)-α-L-rhamnopyranoside] [Palmatoside C] (289)

[355]

Pyrrosia P. petiolosa — Kaempferol-3-O-β-D-glucopyranoside-7-O-α-L-arabinofuranoside (290)

[45]

Primulaceae Lysimachia L. foenum-graecum

Kaempferol-7-O-(4′′-(E)-p-coumaroyl)-α-L-rhmanopyranosyl)-3-O-β-D-glucopyranosyl (1 4)-α-L-rhmanopyranosyl (1 2)-β-D-gluco-pyranoside (291)

[52]

Ranunculaceae Clematis C. terniflora Whole plants Terniflonoside A (292) [121]

Page 44: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

108

Family Genus Species Parts Compounds (Str. No.) Ref. Delphinium D. gracile Aerial parts Quercetin-3-O-{[β-D-xylopyranosyl (1 3)-4-O-(E-p-caffeoyl)-α-L-

rhamnopyranosyl (1 6)][β-D-glucopyranosyl (1 2)]}-β-D-glucopyranoside (293)

[353]

Quercetin-3-O-{[β-D-xylopyranosyl (1 3)-4-O-(E-p-coumaroyl)-α-L-rhamnopyranosyl (1 6)][β-D-glucopyranosyl (1 2)]}-β-D-glucopyranoside (294)

[353]

Quercetin-3-O-{[β-D-xylopyranosyl (1 3)-4-O-(Z-p-coumaroyl)-α-L-rhamnopyranosyl (1 6)][β-D-glucopyranosyl (1 2)]}-β-D-glucopyranoside (295)

[353]

Kaempferol-3-O-{[β-D-glucopyranosyl (1 3)-4-O-(E-p-coumaroyl)-α-L-rhamnopyranosyl (1 6)][β-D-glucopyranoside-7-O-(4-O-acetyl)-α-L-rhamnopyranoside (296)

[353]

Kaempferol-3-O-{[β-D-xylopyranosyl (1 3)-4-O-(E-p-coumaroyl)-α-L-rhamnopyranosyl (1 6)][β-D-glucopyranoside-7-O-(4-O-acetyl)-α-L-rhamnopyranoside (297)

[353]

Hellebores H. foetidus Leaves Quercetin 3-O-(2-trans-caffeoyl)-α-L-arabinopyranosyl-(1 2)-β-D-glucopyranoside (298)

[119]

Rutaceae Phellodendron P. japonicum Leaves 6′′′-O-acetyl amurensin (299) [16] Sabiaceae Sabia S. yunnanensis Stems &

leaves 2-(3,4-dihydroxy-phenyl)-3,5,7-trihydroxy-4-oxo-4H-chromen-8-yl]-8-hydroxy-7-(E-4-hydroxy-3-methyl-but-2-enyl)-2,2-dimethyl-chroman-5-yl] acetic acid methyl ester [Sabian] (300)

[14]

Sapindaceae Koelreuteria K. henryi Leaves Kaempferol 3-O-(2'',3''-di-O-galloyl)-α-L-rhamnopyranoside (301) [312] Stocksia S. brauhica Fruits 3-O-[(α-L-rhmanopyranosyl)oxy]-7-O-[(acetyl)-β-D-glucopyranosyl

(1 4)]-[6-O-(4-hydroxy-E-cinnamoyl)-β-D-glucopyranosyl-(1 2)-α-L-rhmanopyranosyl)-oxy]-kaempferol [Brauhenefloroside D] (302)

[251]

Saxifragaceae Rodgersia R. podophylla Aerial parts Kaempferol-3-O-α-L-5′′-acetyl-arabinofuranoside (303) [115] Kaempferol-3-O-α-L-3′′-acetyl-arabinofuranoside (304) [115] Quercetin-3-O-α-L-3′′-5′′-diacetyl-arabinofuranoside (305) [115]

Sterculiaceae Waltheria W. indica Whole plants Kaempferol 3-O-β-D-(6′′-E-p-coumaryl)-glucopyranoside (306) [120] Theaceae

Camellia

C. sinensis

Quercetin 3-O-{2G-(E)-coumaroyl-3G-O-β-D-glucosyl-3R-O-β-D-gluco-sylrutinoside} (307)

[58]

Kaempferol 3-O-{2G-(E)-coumaroyl-3G-O-β-D-glucosyl-3R-O-β-D-glucosylrutinoside} (308) [58]

Ternstroemia T. japonica Leaves 3-O-β-D-Xylopyranosyl (1 2)-β-D-glucopyranosyl kaempferol 4′-O-β-D-glucopyranoside (309)

[192]

Tiliaceae Muntingia M. calabura Leaves Muntingone (310) [107] Vitaceae Cissus C. sicyoides Aerial part Kaempferol 3-O-α -L-(5''-O-acetyl)-arabinofuranosyl-7-O-α -L-

rhamnopyranoside [Cissoside I] (311) [293]

Quercetin 3-O-α-L-arabinofuranosyl-7-O-α -L-rhamnopyranoside [Cissoside II] (312)

[293]

Quercetin 3-O-α -L-(5''-O-acetyl)-arabinofuranosyl-7-O-α-L-rhamnopyranoside [Cissoside III] (313)

[293]

Table-1.4: Flavanols and Flavanol Glycosides

Family Genus Species Parts Compounds (Str. No.) Ref. Annonaceae Stelechocarpus S. cauliflorus Leaves Engeletin (314) [124]

Astilbin (315) [124] Burseracea Commiphora C. africana Wood stems Phellamurin (316) [34] Gnetaceae Gnetum G.

gnemonoides Barks Noidesol A (317) [347]

Noidesol B (318) [347]Leguminosae Lespedeza L. floribunda Roots Lespeflorin B1 (319) [216]

Lespeflorin B2 (320) [216]Lespeflorin B3 (321) [216]Lespeflorin B4 (322) [216]

Echinosophora E. koreensis Rhizomes 3-hydroxy-kenusanone B (323) [357]

Ochnaceae Ochna O. integerrima Leaves & twigs

6-γ,γ-Dimethylallyldihydrokaempferol 7-O-β-D-glucoside (324) [50] 6-(3-hydroxy-3-methylbutyl) taxifolin 7-O-β-D-glucoside (325) [50]

Poaceae Gynerium G. sagittatum Roots (2R,3R)-2,3-trans-7,4'-di-methoxydihydroflavonol (326) [288] (2R,3S,4S)-2,3-trans-3,4-cis-7,4'-dimethoxy-3,4-flavandiol (327) [288]

Scrophulariaceae Paulownia P. tomentosa Fruits Tomentodiplacol (328) [203] 3′-O-methyl-5′-methoxydiplacol (329) [203] 6-isopentenyl-3′-O-methyltaxifolin (330) [203]

Thymelaeaceae Diplomorpha D. canescens Aerial parts (2R,3S)-6,8-di-C-methyldihydrokaempferol (331) [325] (2R,3R)-6,8-di-C-methyldihydrokaempferol (332) [325]

Rutaceae Phellodendron P. japonicum Leaves 6′′′-O-acetyl phellodendron (333) [16]

Page 45: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

109

Table-1.5: Isoflavones and Isoflavone glycosides

Family Genus Species Parts Compounds (Str. No.) Ref. Asteraceae / Compositae

Echinops E. echinatus Whole plants Echinoside (334) [240]

Cyperaceae Eriophorum E. scheuchzeri Stems 5,2′,4′-Trihydroxy-7-methoxy-3′-methylisoflavone (335) [199] 5,4′-Dihydroxy-7,2′-dimethoxy-3′-methylisoflavone (336) [199] 5,4′-Dihydroxy-7,2′-dimethoxyisoflavone (337) [199]

Fabaceae

Baphia B. bancoensis Roots 4′,5,6-trimethoxyisoflavone-7-O-β-D-glucopyranosyl-(1 4)-α-L-rhamnopyranosyl-(1 6)-β-D-glucopyranosyl-(1 3)-[α-L-rhamno-pyranosyl-(1 6)]-β-D-glucopyranoside (338)

[214]

4′,5,6-trimethoxyisoflavone-7-O-α-L-rhamnopyranosyl-(1 6)-β-D-glucopyranosyl-(1 3)-[α-L-rhamnopyranosyl-(1 6)]-β-D-gluco-pyranoside (339)

[214]

4′,5,6-trimethoxyisoflavone-7-O-α-L-rhamnopyranosyl-(1 6)-β-D-glucopyranoside (340) [214]

Bituminaria B. morisiana —

4′,5′′-dihydroxy-6′′-methoxy-4′′,4′′-dimethyl-4′′,5′′-dihydro-6′′-pyrano {2′′,3′′:7,8}-isoflavone (341)

[91]

Dalbergia D. parviflora Heartwood Khrinone A (342) [406]Khrinone B (343) [406] Khrinone C (344) [406] Khrinone D (345) [406] Khrinone E (346) [406]

Erythrina E. latissima Stem woods

7,3′-dihydroxy-4′-methoxy-5′-(γ,γ-dimethylallyl) isoflavone [Erylatissin A] (347)

[90]

7,3′-dihydroxy-6″,6″-dimethyl-4″,5″-dehydropyrano [2″,3″: 4′,5′] isoflavone [Erylatissin B] (348)

[90]

E. vogelii Stem barks 7, 4′-dihydroxy -8-(γ,γ-di-methylallyl-2′′-zeta-(4′′-hydroxyisopropyl)-dihydrofuranol {1′′,3′′:5,6} isoflavone [Vogelin H] (349)

[76]

7, 4′-dihydroxy -8-{(2′′′-zeta, 3′′′-dihydroxy-3′′′-methyl)butyl}-2′′,2′′-dimethyl-3′′,4′′-dehydro- pyranol {1′′,4′′:5,6}isoflavone [Vogelin I] (350)

[76]

Lespedeza L. cuneata Roots & leaves

6,8,3′,4′-tetrahydroxy-2′-methoxy-7-methylisoflavanone (351)

[254]

6,8,3′,4′-tetrahydroxy-2′-methoxy-6′-(1,1-dimethylallyl)isoflavone (352)

Lotus L. polyphyllos Roots 4′-O-methylerythrinin C (353) [98] 4′-O-methyl-2′′-hydroxydihydro alpinumisoflavone (354) [98]

Millettia M. nitida Stems Formononetin 7-O-β-D-(6′′-ethylmalonyl)-glucopyranoside [Hirsutissimiside A] (355)

[93]

5-O-methyl genistein 7-O-α-L-rhamnopyranosyl-(1 6)-β-D-gluco-pyranoside [Hirsutissimiside B] (356)

[93]

Retusin 7,8-di-O-β-D-glucopyranoside [Hirsutissimiside C] (357)

[93]

Psorothamnus P. arborescens Roots 5,7,3′,4′-tetrahydroxy-2′-(3,3-dimethylallyl) isoflavone (358)

[166]

Pueraria lobata Pueraria lobata Roots Neopuerarin A (359) [386]Neopuerarin B (360) [386]

Trifolium T. pratense Roots Formononetin-7-O-β-D-galactopyranoside (361) [220] Inermin 3-O-β-D-galactopyranoside (362) [220]

Iridaceae Belamcanda B. chinensis Rhizomes 3′,5′-dimethoxy irisolone-4′-O-β-D-glucoside (363) [71] Iris I. kashmiriana Rhizomes 4′-hydroxy-8-methoxy-6,7-methylenedioxyisoflavone

[Isonigricin] (364) [270]

I. pseudopumila Rhizomes Irilone 4′-O-{β-D-glucopyranosyl-(1 6)-β-D-glucopyranoside} (365)

[47]

I. spuria Rhizomes Tectorigenin 7-O-β-D-glucopyranoside-4'-O-β-D-glucopyranosyl-(1'''' 6''')-β-D-glucopyranoside (366)

[301]

Iristectorigenin B 4'-O-β-D-glucopyranosyl-(1''' 6'')-β-D-glucopyranoside (367)

[301]

I. tenuifolia Whole plant

Tenuifone (368) [297]

Leguminosae Astragalus A. membranaceus Roots One new isoflavone glycoside (369) [102] Butea B. superb Tuber roots 7-hydroxy-4'-methoxyisoflavone [Formononetin] (370) [100]

7,4'-dimethoxyisoflavone (371) [100] 5,4'-dihydroxy-7-methoxyisoflavone [Prunetin] (372) [100]

Page 46: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

110

Family Genus Species Parts Compounds (Str. No.) Ref. 7-hydroxy-6,4'-dimethoxyisoflavone (373) [100]

Derris D. scandens Whole plant

Scandinone A (374) [394]

Erythrina E. mildbraedii Root barks 7,2′-dihydroxy-4′-methoxy-5′-(3-methylbut-2-enyl) isoflavone (375)

[101]

E. poeppigiana

5,4′-dihydroxy-7-methoxy-3′-(3-methylbuten-2-yl) isoflavone (376)

[404]

5,2′,4′-trihydroxy-7-methoxy-5′-(3-methylbuten-2-yl) isoflavone (377)

[404]

5,4′-dihydroxy-7-methoxy-3′-(3-methyl-2-hydroxybuten-3-yl) isoflavone (378)

[404]

3′-formyl-5,4′-dihydroxy-7-methoxyisoflavone (379) [404]5-hydroxy-3′′-hydroxy-2′′,2′′ dimethyldihydropyrano-[5′′,6′′:3′,4′]- isoflavone (380)

[404]

E. sacleuxii Root barks 7-hydroxy-4′-methoxy-3′-prenylisoflavone (381) [96]Flemingia F. macrophylla Aerial parts Flemingnin (382) [19] Maackia M. amurensis Stem Bark Maackiapentone (383) [225]

Barks 7-hydroxy-4',6-dimethoxyisoflavone-7-O-β-D-glycopyranosyl-(1 6)-β-D-glucopyranoside [Maackiaisoflavonoside] (384)

[298]

Millettia M. brandisiana Leaves 4′-γ,γ-dimethylallyloxy-5,7,2′,5′-tetramethoxy isoflavone [Brandisianin A] (385)

[104]

Dried leaves

Brandisianin A (386) [105]Brandisianin B (387) [105] Brandisianin C (388) [105] Brandisianin D (389) [105] Brandisianin E (390) [105] Brandisianin F (391) [105]

M. pachycarpa Leaves Millewanin G (392) [185] Millewanin H (393) [185]Furowanin B (394) [185]

Mucuna M. birdwoodiana Vine stems

Retusin 7-O-β-D-xylopyranosyl-(1 6)-β-D-glucopyranoside [Mucodianin E] (395)

[308]

8-O-Methylretusin 7-O-β-D-xylopyranosyl-(1 6)-β-D-glucopyranoside [Mucodianin F] (396)

[308]

Platymiscium P. floribundum Heartwood 7-Hydroxy-6,4′-dimethoxyisoflavone-quinone (397) [92] 2′-Hydroxy-6,4′,6′′,4′′′-tetramethoxy-{7-O-7′′}-bisisoflavone (398)

[92]

Pueraria P. lobata Roots Puerarin (399) [97] 3′-Methoxy puerarin [PG-3] (400) [97] Formononetin 8-C-[β-D-apiofuranosyl-(1 6)]-β-D-glucopyranoside (401)

[262]

Formononetin 8-C-[β-D-xylopyranosyl-(1 6)]-β-D-glucopyranoside (402)

[262]

P. thomsonii Flowers 6-Hydroxybiochanin A-6,7-di-O-β-D-glucopyranoside (403)

[236]

6-Hydroxygenistein-7-O-β-D-glucopyranoside (404) [236] Psoralea P. corylifolia Dried fruits 7,4′-Dihydroxy-3′-[(E)-3,7-dimethyl-2,6-

octadienyl]isoflavone [Corylinin] (405) [247] Sophora S. japonica Small

branches Genistein 4′-O-(6′′-O-α-L-rhamnopyransyl)-β-sophoroside (406)

[103]

Leaves Genistein 4′-O-(6′′′-O-α-L-rhamnopyranosyl)-β-sophoroside (407)

[103]

Genistein 7-O-β-D-glucopyranoside-4′-O-(6′′′-O-α-L-rhamnopyranosyl)-β-sophoroside (408)

[205]

Genistein 7-O-α-L-rhamnopyranoside-4′-O-(6′′′-O-α-L-rhamnopyrano-syl)-β-sophoroside (409) [205]

Steam barks

Glycitein-4′-O-β-D-glucoside (410) [364]

Tephrosia T. tinctoria Stems 5,7-di-O-prenylbiochanin A (411) [267] Moraceae Brosimum B. utile Root barks 5,7,4′-trihydroxy-3′-(3-hydroxy-3-methylbutyl) isoflavone

(412) [94]

Cudrania C. tricuspidata Fruits 5,7-dihydroxy-6-(2′′-hydroxy-3′′-methylbut-3′′-enyl)-4′-methoxyl-isoflavone (413)

[215]

5,4′-dihydroxy-6-(3′′-methylbut-2′′-enyl)-2′′′-(4′′′-hydroxy-4′′′-methyl-ethyl)-3′′′-methoxydihydrofurano-[4′′′,5′′′;7,8] isoflavone (414)

[215]

Page 47: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

111

Family Genus Species Parts Compounds (Str. No.) Ref. 5,4′-dihydroxy-8-(3′′-methylbut-2′′-enyl)-2′′′-(4′′′-hydroxy-4′′′-methyl-ethyl)furano-[4′′′,5′′′;6,7] isoflavone (415)

[215]

Papilionaceae Caragana C. conferta Whole plants

Caragin (416) [263]

Rutaceae Glycosmis

G. pentaphylla Stems 3′,7-dihydroxy-4′,5,6-trimethoxyisoflavone 7-O-(5-O-trans-p-coumaroyl)-β-D-apiofuranosyl-(1 6)-β-D-glucopyranoside (417)

[178]

2′,7-dihydroxy-4′,5′,5,6-tetramethoxyisoflavone 7-O-(5-O-trans-p-coumaroyl)-β-D-apiofuranosyl-(1 6)-β-D-glucopyranoside (418)

[188]

2′,7-dihydroxy-4′,5′,5,6-tetramethoxyisoflavone 7-O-β-D-apiofuranosyl-(1 6)-β-D-glucopyranoside (419)

[188]

7-hydroxy-4′,8-dimethoxyisoflavone 7-O-β-D-apiofuranosyl-(1 6)-β-D-glucopyranoside (420)

[188]

7-hydroxy-4′,6-dimethoxyisoflavone 7-O-β-D-apiofuranosyl-(1 6)-β-D-glucopyranoside (421)

[188]

4′,5-dihydroxy-3′,7-dimethoxyisoflavone 4′-O-β-D-apiofuranosyl-(1 6) -β-D-glucopyranoside (422) [188]

Sapotaceae Madhuca M. latifolia Fruit coats 3',4'-dihydroxy-5,2'-dimethoxy-6,7-methylendioxy isoflavone (423)

[383]

Uricaceae Boehmeria B. rugulosa Leaves Isoflavone-3',4',5,6-tetrahydroxy-7-O-{β-D-glucopyranosyl-(1 3)-α-L-rhamnopyranoside} (424)

[281]

Isoflavone-3',4',5,6-tetrahydroxy-7-O-{β-D-glucopyranosyl-(1 6)-β-D-glucopyranosyl-(1 6)-β-D-glucopyranosyl-(1 3)-α-L-rhamnopyranoside} (425)

[281]

Violaceae Viola V. hondoensis Whole plants

2′,4′,7-trihydroxyisoflavone (426) [95]

Table-1.6: Isoflavanones

Family Genus Species Parts Compounds (Str. No.) Ref. Fabaceae Dalbergia D. parviflora Heartwood Isodarparvinol B (427) [406]

Dalparvin (428) [406] (3S)-sativanone (429) [406]

Desmodium D. uncinatum Roots 5,7-dihydroxy-2′,3′,4-trimethoxy-6-O-(3-methylbut-2-enyl) isoflavanone [Uncinanone D] (430)

[106]

5,4′-dihydroxy-7,2′-dimethoxy-6-methylisoflavanone [Uncinanone E] (431) [106]

D. styracifolium Aerial part 5,7-dihydroxy-2',3',4'-trimethoxy-isoflavanone (432) [286] 5,7-dihydroxy-2'-methoxy-3’,4’-methylenedioxy-isoflavanone (433)

[286]

5,7-dihydroxy-2',3',4'-trimethoxy-isoflavanone 7-O-β-glucopyranoside (434)

[286]

5,7-dihydroxy-2'-methoxy-3',4'-methylenedioxy-isoflavanone 7-O-β-glucopyranoside (435)

[286]

5,7-dihydroxy-2',4'-dimethoxy-isoflavanone 7-O-β-glucopyranoside (436)

[286]

5,7,4'-trihydroxy-2',3'-dimethoxy-isoflavanone 7-O-β-glucopyranoside (437)

[286]

Lespedeza L. cuneata Roots & leaves 6,8,3′,4′-tetrahydroxy-2′-methoxy-7-methylisoflavanone (438) [254]

Leguminosae Campylotropis C. hirtella Roots 3(R)-5,4′-dihydroxy-2′-methoxy-3′-(3-methylbut-2-enyl)-(6′′,6′′-dimethylpyrano)-(7,6 : 2′′,3′′)-isoflavanone (439)

[371]

3(R)-5,4′-dihydroxy-2′-methoxy-(6′′,6′′-dimethylpyrano)-(7,6: 2′′,3′′)-isoflavanone (440)

[371]

3(R)-5,4′-dihydroxy-7,2′-dimethoxy-6-geranylisoflavanone (441) [371] Erythrina E. costaricensis Stems 5,3′-dihydroxy-4′-methoxy-5′-(3-methyl-1,3-butadienyl)-2′′,2′′-

dimethylpyrano [5,6:6,7] isoflavanone (442)

[268] 5,3′-dihydroxy-5′-(3-hydroxy-3-methyl-1-butenyl)-4′-methoxy-2′′,2′′-dimethylpyrano[5,6:6,7] isoflavanone (443)

[268]

Glycyrrhiza G. glabra Roots 8-isoprenyl-7,4'-di-hydroxylicoisoflavanone [Glabraisoflavanone A] (444)

[283]

7,3'-di-hydroxy-8-isoprenyl-4'-cyclogeraniloxyisoflavanone [Glabraisoflavanone B] (445)

[283]

Roots 7,8-dihydroxy-4'-methoxy-6-prenylisoflavanone (446) [378]2',3-dihydroxy-4'-methoxy-3'',3''-dimethylpyrano[ 2'',3'':7,8] isoflavanone (447)

[378]

Page 48: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

112

Family Genus Species Parts Compounds (Str. No.) Ref. Lespedeza L. floribunda Roots Lespeflorin D1 (448) [216]

L. maximowiczi Leaves 2',4',5-trihydroxy-[5''-(1,2-dihydroxy-1-methylethyl)-dihydrofurano- (2'',3'':7,8)]-(3S)-isoflavanone (449)

[363]

2', 4', 5-trihydroxy-[5''-(1,2-dihydroxy-1-methylethyl)-dihydrofurano-(2'',3'':7,8)]-(3R)-isoflavanone (450)

[363]

Papilionaceae Caragana C. conferta Whole plants Conferol A (451) [228] Conferol B (452) [228]

Ormocarpum O. kirkii Roots 4''-hydroxydiphysolone (453) [358] Uraria U. picta Roots 5,7-dihydroxy-2'-methoxy-3',4'-methylene-dioxyisoflavanone

(454) [302]

4',5-dihydroxy-2',3'-dimethoxy-7-(5-hydroxychromen-7yl)-isoflavanone (455)

[302]

Rhamnaceae Berchemia B. discolor Root barks (6aS,11aS)-2-Hydroxyleiocarpin (456) [28] 5,2′-dihydroxy-3′,4′-methylenedioxy-3′′,3′′-dimethylpyrano[7,8] isoflavanone [Discoloranone A] (457)

[28]

(3S)-5,2′-dihydroxy-3′,4′-methylenedioxy-3′′,3′′ -dimethyl-pyrano[6, 7] isoflavanone [(3S)-Isodiscoloranone A] (458)

[28]

(3S)-5,2′,3′-trihydroxy-4′-methoxy-3′′-methyl-3′′-(4-methylpent-3-enyl)pyrano[7,8] isoflavanone [(3S)-Discoloranone B] (459)

[28]

(3S)-5,2′,3′-trihydroxy-4′-methoxy-3′′-methyl-3′′-(4-methylpent-3-enyl) pyrano [6,7] isoflavanone [Isodiscoloranone B] (460)

[28]

Ruscaceae Polygonatum P. odoratum Fibrous roots 5,7-Dihydroxy-6,8-dimethyl-3(R)-(3′-hydroxy-4′-methoxybenzyl)- chroman-4-one (461)

[344]

5,7-dihydroxy-6,8-dimethyl-3(S)-(3′-hydroxy- 4′-methoxybenzyl) chroman-4-one (462)

[344]

(±)-5,7-Dihydroxy-6,8-dimethyl-3-(2′-hydroxy-4′-methoxybenzyl)- chroman-4-one (463)

[344]

(E)-5,7-Dihydroxy-6,8-dimethyl-3-(4′-hydroxybenzylidene)chroman- 4-one (464)

[344]

4′-Demethylleucomin 7-O-β-D-glucopyranoside (465) [344]

Table-1.7: Isoflavans

Family Genus Species Parts Compounds (Str. No.) Ref. Agavaceae Agave A. americana

A. barbadensis

— 7-hydroxy-3-(4-methoxybenzyl)-chroman (466)

[99] Leguminosae Campylotropis C. hirtella Roots 3(S)-7,2′,4′-trihydroxy-5,5′-dimethoxy-6-(3-methylbut-2-

enyl)-isoflavan (467) [371]

3(S)-2′,4′-dihydroxy-5,5′-dimethoxy-(6′′,6′′-dimethylpyrano)-(2′′,3′′:7,6)-isoflavan (468)

[371]

Erythrina E. mildbraedii Root barks (3R)- 2′,7-dihydroxy-3′-(3-methylbut-2-enyl)-2′′,2′′-dimethylpyrano {5′′,6′′:4′,5′}isoflavan (469)

[101]

Glycyrriza G. glabra Roots 5'-formyl glabridin (469a) [378]4''-hydroxyglabridin (469b) [378]

Oxytropis O. falcata Aerial parts and roots

Oxytropisoflavan A (470) [408]Oxytropisoflavan B (471) [408]

Solanaceae Solanum S. lyratum Whole plant Lyratin A (472) [320] Lyratin B (473) [320] Lyratin C (474) [320]

Sterculiaceae Hildegardia H. barteri —

(3R)-6,2′-dihydroxy-7-methoxy-4′,5′-methylenedioxyisoflavan [Hildegardiol] (475)

[202]

Table-1.8: Flavanones and Flavanone Glycosides

Family Genus Species Parts Compounds (Str. No.) Ref. Acanthaceae Andrographis A. macrobotrys Whole

plants 5,7,8,2′-tetramethoxyflavanone (476) [133]

A. paniculata —

5-hydroxy-7,8-di methoxy (2R)-flavanone-5-O-β-D-glucopyranoside (477) [79]

Amaranthaceae Aerva A. persia Whole plants

Persinol (478) [136]Persinoside A (479) [136] Persinoside B (480) [136]

Apocynaceae Catharanthus C. roseus Hairy roots 3′,4′-di-O-methylbutin-7-O-[(6′′ 1′′′)-3′′′,11′′′-dimethyl-7′′′-methylenedodeca-3′′′, 10′′′-dienyl]-β-D-glucopyranoside (481)

[217]

4′-O-methylbutin-7-O-[(6′′ 1′′′)-3′′′,11′′′-dimethyl-7′′′-hydroxy-methylenedodecanyl]-β-D-glucopyranoside (482)

[217]

Page 49: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

113

Family Genus Species Parts Compounds (Str. No.) Ref. Arecaceae Calamus C. quiquesetinervius Stems (2S)-dihydrotricin 4'-O-(erythro-β-guaiacylglyceryl) ether

[Calquiquelignan A] (483) [351]

(2S)-dihydrotricin 4'-O-(threo-β-guaiacylglyceryl) ether [Calquiquelignan B] (484)

[351]

(2S)-dihydrotricin 4'-O-(threo-β-4-hydroxyphenylglyceryl) ether [Calquiquelignan C] (485)

[351]

(2S)-dihydrotricin 4'-O-(β-6''-methoxy-4''-oxo-chroman-3''-yloxy) ether [Calquiquelignan F] (486)

[351]

Asteraceae / Compositae

Bidens B. bipinnata Aerial parts Bidenoside F (487) [142] Carthamus C. tinctorius Petals (2R)-4',5-dihydroxy-6,7-di-O-β-D-glucopyranosyl flavonone

(488) [280]

Echinops E. echinatus Leaves 5,7-dihydroxy-8,4′-dimethoxyflavonone-5-O-α-L-rhamnopyranosyl-7-O-β-D-arabinopyranosyl-(1 4)-O-β-D-glucopyranoside A (489)

[143]

Helichrysum H. arenarium Flower buds Arenariumoside I (490) [226] Arenariumoside II (491) [226] Arenariumoside IV (492) [226]

H. forskahlii Aerial parts Helihrysone C (493) [285] Caesalpiniaceae Parkinsonia P. aculeate — Parkintin (494) [130] Cannabidaceae Humulus H. lupulus — 5-methoxy-8-prenylnaringenin-7-O-β-glucopyranoside (495) [49]Cephalotaxaceae Cephalotaxus C. koreana Aerial parts (2R,3R)-6-Methylaromadendrin 3-O-β-D-glucopyranoside

(496) [60]

Cyperaceae Eriophorum E. scheuchzeri Stems 5,7,4′-Trihydroxy-8-(2-hydroxy-3-methylbutenyl)flavanone (497)

[199]

Dryopteridaceae Dryopteris D. sublaeta Rhizomes Sublaetentin A (498) [148]Sublaetentin B (499) [148] Sublaetentin C (500) [148] Sublaetentin D (501) [148]

Euphorbiaceae Macaranga M. tanarius Leaves Tanariflavanone C (502) [198] Tanariflavanone D (503) [198] Macaflavanone A (504) [212] Macaflavanone B (505) [212]Macaflavanone C (506) [212] Macaflavanone D (507) [212]Macaflavanone E (508) [212] Macaflavanone F (509) [212]Macaflavanone G (510) [212]

Phyllanthus P. niruri —

8-(3-methyl-but-2-enyl)-2-phenylchroman-4-one (511) [120] 2-(4-hydroxyphenyl)-8-(3-methyl-but-2-enyl)-chroman-4-one (512)

[120]

Fabaceae Dalbergia D. sissoo Trunk exudates

(2S)-6,7-dihydroxyflavanone (513) [36]

Dolichos D. tenuicaulis Roots (2S)-5,2′,6′-trihydroxy-8-prenyl-6,7-(3-prenyl-2,2dimethyl-pyrano)-3′,4′-(2,2-dimethyl-1-keone-cyclohexadiene)-flavanone (514)

[255]

(2S)-5,2′,6′-trihydroxy-8-prenyl-6,7-(3-prenyl-2,2-dimethyl-1-keone-cyclohexadiene)-flavanone (515) [255]

Erythrina E. latissima Stem wood (−)-7,3′-dihydroxy-4′-methoxy-5′-(γ,γ-dimethylallyl) flavanone [Erylatissin C] (516)

[90]

Globulariaceae Globularia G. alypum Aerial parts Eriodictyol 7-O-sophoroside (517) [38] Lamiaceae Elsholtzia E. bodinieri Whole

plants Eriodictyol 7-O-(6′′-feruloyl)-β-D-glucopyranoside (518) [57] Eriodictyol 7-O-{6′′-(3′′′-hydroxy-4′′′-methoxy cinnamoyl)})-β-D-glucopyranoside (519)

[57]

Scutellaria S. amabilis Roots

(2S)-5,7,2′,5′-tetrahydroxyflavanone (520) [21] (2S)-5,7,2′,5′-tetrahydroxy-flavanone 7-O- β-D-glucopyranoside (521)

[21]

(2S)-5,7,2′,5′-tetrahydroxyflavanone 7-O-β-D-glucuronopyranoside (522)

[21]

(2S)-7,2′-dihydroxy-5-methoxyflavanone 7-O-β-D-glucurono-pyranoside (523)

[21]

S. cordifrons S. phyllostachya

Roots

(+)-5,2′-dihydroxy-6,7,6′-trimethoxyflavanone (524) [135] (+)-5,2′-dihydroxy-6,7,8,6′-tetramethoxyflavanone (525) [135]

Lauraceae Cryptocarya C. chinensis Leaves Cryptochinone A (526) [410] Cryptochinone B (527) [410] Cryptochinone C (528) [410] Cryptochinone D (529) [410]Cryptochinone E (530) [410]

Page 50: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

114

Family Genus Species Parts Compounds (Str. No.) Ref. Cryptochinone F (531) [410]

Leguminosae Bauhinia B. glauca Caulis 3′-methoxy-6-methyl-5,7,4′-trihydroxyflavanone [6-methyl homoerio-dictyol] (532) [231]

Erythrina E. abyssinica Stem barks Abyssinoflavanone V (533) [138] Abyssinoflavanone VI (534) [138]Abyssinoflavanone VII (535) [138](2S)-5,7-dihydroxy-3′-prenyl-2″ ξ-(4″-hydroxyisopropyl) dihydrofurano [1″,3″:4′,5′] flavanone (536)

[369]

(2S)-5,7-dihydroxy-3′-methoxy-2″ξ-(4″-hydroxyisopropyl)dihydrofurano [1″,3″:4′,5′]flavanone (537)

[369]

(2S)-5,7,3′-trihydroxy-2″ ξ-(4″-hydroxyisopropyl)dihydrofurano [1″,3″:4′,5′]flavanone (538)

[369]

(2S)-5,7-dihydroxy-3′-prenyl-2″ξ-(4″-hydroxyisopropyl)-3″-hydroxy- dihydrofurano[1″,3″:4′,5′] flavanone (539)

[369]

(2S)-5,7,3′-trihydroxy-2″ ξ-(4″-hydroxyisopropyl)-3″-hydroxy- dihydrofurano [1″,3″:4′,5′] flavanone (540)

[369]

(2S)-5,7,3′-trihydroxy-2′-prenyl-2″ ξ-(4″-hydroxyisopropyl)-3″-hydroxy-dihydrofurano [1″,3″:4′,5′] flavanone (541)

[369]

E. addisoniae Stem barks 2S-3′-(2-hydroxy-3-methylbut-3-enyl)licoflavone-4′-methyl ether (542)

[208]

2S-3′-(2-hydroxy-3-methylbut-3-enyl)abyssinone II (543) [208]E. fusca Barks Fuscaflavanone A1 (544) [233]

Fuscaflavanone A2 (545) [233] Fuscaflavanone B (546) [233]

E. mildbraedii Root barks Abyssinone-IV-4′-O-methyl ether (547) [29]7-hydroxy-4′-methoxy-3′-(3-hydroxy-3-methyl-trans-but-1-enyl)-5′-(3-methylbut-2-enyl) flavanone (548)

[29]

Licoflavanone-4′-O-methyl ether (549) [101]Eysenhardtia E. platycarpa Branches &

leaves (2S)-4′-O-methyl-6-methyl-8-prenylnaringenin (550)

[193] Glycyrriza G. glabra Roots (2R,3R)-3,4',7-trihydroxy-3'-prenylflavanone (551) [378]

G. uralensis Fisch 7-hydroxyl-4′-O-β-D-(6′′-O-α-hydroxylpropionyl)-glucopyranosyl dihydroflavone (552)

[234]

Lespedeza L. floribunda Roots Lespeflorin A1 (553) [216]Lespeflorin A2 (554) [216] Lespeflorin A3 (555) [216] Lespeflorin A4 (556) [216]

Maackia M. amurensis Stem Barks Maackiaflavanone A (557) [225]Maackiaflavanone B (558) [225]

Millettia M. erythrocalyx Pods (–)-(2S)-6,3′,4′-trimethoxy-{2′′,3′′:7,8}-furanoflavanone (559)

[65]

Sophora S. flavescens Roots 5,7,2′,4′-tetrahydroxy-8-lavandulyl-5′-methoxyflavanone [Sophoraflavanone K] (560)

[191]

5,2′,4′-trihydroxy-7-(γ,γ-dimethylallyloxy)-8-(γ,γ-dimethylallyl) flavanone) [Sophoraflavanone L] (561)

[191]

Tephrosia T. villosa Roots (2S)-5,4'-dihydroxy-7-O-[(E)-3,7-dimethyl-2,6-octadienyl]flavanone (562)

[399]

(2S)-5,4'-dihydroxy-7-O-[(E)-3,7-dimethyl-2,6-octa-dienyl]-8-C-[(E)-3,7-dimethyl-2,6-octadienyl]flavanone (563)

[399]

Viscum V. coloratum — (2S)-7,4′-dihydroxy-5,3′-dimethoxyflavanone (564) [134] Branches & leaves

(2S)-homoeriodictyol 7,4′-di-O-β-D-glucopyranoside (565)

[144]

(2R)- eriodictyol 7,4′-di-O-β-D-glucopyranoside (566) [144] Liliaceae Veratrum V. nigrum

— 3',4'-dimethoxy-quercitrin (567) [316] 4'-methoxyl-glucotricin (568) [316]

Urginea U. indica Bulbs 5,6-dimethyoxy-3',4'-dioxymethylene-7-O-(6''-β-D-glucopyranosyl-β-D-glucopyranosyl) flavanone (569)

[401]

Loranthaceace Viscum V. album Whole plant

4'-O-[β-D-Apiosyl(1 2)]-β-D-glucosyl]-5-hydroxyl-7-O-sinapylflavanone (570)

[327]

Moraceae Cudrania C. tricuspidata Root barks Cudraflavanone A (571) [31]

Page 51: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

115

Family Genus Species Parts Compounds (Str. No.) Ref. Myrtaceae Cleistocalyx C. operculatus Buds (2S)-8-formyl-6-methyl naringenin (572) [278]

(2S)-8-formyl-6-methyl naringenin 7-O-β-D-glucopyranoside (573)

[278]

Oleaceae Jasminum J. anceolarium Stems & leaves

(2S)-5,7,3′,5′-tetra-hydroxyflavanone 7-O-β-D-allopyranoside (574)

[145]

(2S)-5,7,3′,5′-tetra-hydroxyflavanone 7-O-β-D-glucopyranoside (575)

[145]

Ongokea O. gore Root & Stem barks

Four protoflavonones (576-579) [132]

Polypodiaceae Drynaria D. fortune Rhizome (R)-5,7,3′,5′-tetrahydroxy-flavanone 7-O-neohesperidoside (580)

[55]

Punicaceae Punica P. granatum Flowers 5,6,7,8,2′,3′,5′-heptahydroxy-4′-methoxyflavanone [Punicaflavanol] (581)

[376]

5,6,7,8,2′,5′-hexahydroxy-4′-methoxyflavanone-7-O-β-D-xylopyranoside [Granatumflavanyl xyloside] (582)

[376]

Rosaceae Rosa R. multiflora — 2'-hydroxynaringin 5-O-β-D-glucopyranoside (583) [292] Rutaceae Citrus C. sudachi Peels 4′-β-D-glucosyl-2S-homoeriodictyol-6′′-O-3-hydroxy-3-

methylglutarate (584) [190]

Phellodendron P. japonicum Leaves (2R)-phelodensin-F (585) [16]6′′′-O-acetyl phellamurin (586) [16]

Poncirus P. trifoliate Fruit (2R)-5-hydroxy-4′-methoxyflavanone-7-O-{β-glucopyranosyl-(1 2)-β-glucopyranoside} (587)

[147]

Sarcolaenaceae Schizolaena S. hystrix —

Schizolaenone A (588) [129] Schizolaenone B (589) [129] 4′-O-methylbonannione A (590) [129]

Scrophulariaceae Limnophila L. indica Whole plants

(2S)-5,7,3′,4′-tetramethoxyflavanone (591) [68]

Paulownia P. tomentosa Fruits Dihydrotricin (592) [203] Tomentodiplacone (593) [206]Tomentodiplacone B (594) [206] 3′-O-Methyl-5′-hydroxydiplacone (595) [206]3′-O-Methyl-5′-O-methyldiplacone (596) [206]

Saxifragaceae Penthorum P. chinense Whole plants Pinocembrin-7-O-{3′′-O-galloyl-4′′,6′′-hexahydroxydiphenoyl}-β-glucose (597) [46]

Thelypteridaceae Cyclosorus C. acuminatus Rhizomes (2S)-5,7,5′-trihydroxyflavanone 2′-O-β-D-glucopyranosyl-(1 3)-α-L-2-O-acetylrhamnopyanoside (598) [146] (2S)-5,7,5′-trihydroxyflavanone 2′-O-β-D-6-O-acetylglucopyranosyl-(1 3)-α-L-2-O-acetylrhamnopyanoside (599)

[146]

(2S)-5,7,5′-trihydroxyflavanone 2′-O-β-D-2,6-di-O-acetylglucopyranosyl -(1 3)-α-L-2-O-acetylrhamnopyanoside (600)

[146]

(2S)-5,7,5′-trihydroxyflavanone 2′-O-β-D-3,6-di-O-acetylglucopyranosyl -(1 3)-α-L-2-O-acetylrhamnopyanoside (601)

[146]

(2S)-5,7,5′-trihydroxyflavanone 2′-O-β-D-4,6-di-O-acetylglucopyranosyl -(1 3)-α-L-2-O-acetylrhamnopyanoside (602)

[146]

(2S)-5,7,5′-trihydroxyflavanone 2′-O-β-D-3,4,6-tri-O-acetylglucopyrano- syl-(1 3)-α-L-2-O-acetylrhamnopyanoside (603)

[146]

Tiliaceae Muntingia M. calabura Leaves (2S)-(-)-5′-hydroxy-7,3′,4′-trimethoxy-flavanone (604) [107](2R,3R)-(–)3,5-dihydroxy-6,7-dimethoxyflavanone (605) [137]

Verbenaceae Lippia L. graveolens Stems (−)(2S)-5,6,7,3',5'-pentahydroxyflavanone-7-O-β-D-glucopyranoside (606)

[403]

Viscaceae Viscum V. articulatum Leaves and stems

Visartiside A (607) [337] Visartiside B (608) [337]Visartiside C (609) [337]

Zingiberaceae Boesenbergia B. rotunda Rhizomes Rotundaflavone Ia (610) [141] Rotundaflavone Ib (611) [141]Rotundaflavone IIa (612) [141]Rotundaflavone IIb (613) [141]

Page 52: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

116

Family Genus Species Parts Compounds (Str. No.) Ref. Zygophyllaceae Larrea L. tridentate Flowering

tops (S)-4′,5-dihydroxy-7-methoxyflavonone (614)

[131]

Table-1.9: Anthocyanins

Family Genus Species Parts Compounds (Str. No.) Ref. Balsaminaceae Impatiens I. textori Flowers Malvidin 3-O-[6-O-(3-hydroxy-3-methylglutaryl)-β-

glucopyranoside (615) [329]

Brassicaceae Arabidopsis

A. thaliana

Whole plant

Cyanidin 3-O-[2-O-(β-D-xylopyranosyl)-6-O-(4-O-(β-D-glucopyranosyl) -E-p-coumaroyl)-β-D-glucopyranoside]-5-O-[6-O-(malonyl)-β-D-glucopyranoside] (616)

[331]

Cyanidin 3-O-[2-O-(2-O-(E-sinapoyl)-β-D-xylopyranosyl)-6-O-(4-O-(β-D-glucopyranosyl)-E-p-coumaroyl)-β-D-glucopyranoside]-5-O-[β-D-glucopyranoside] (617)

[331]

Cleomaceae Cleome C. hassleriana Flowers Cyanidin 3-(2''-(6'''-caffeoyl-β-glucopyranosyl)-6''-(E-p-coumaroyl)-β-glucopyranoside)-5-β-glucopyranoside (618)

[330]

Cyanidin 3-(2''-(6'''-E-sinapoyl-β-glucopyranosyl)-6''-(E-p-coumaroyl)-β-glucopyranoside)-5-β-glucopyranoside (619)

[330]

Cyanidin 3-(2''-(6'''-feroyl-β-glucopyranosyl)-6''-(E-p-coumaroyl)- β-glucopyranoside)-5-β-glucopyranoside (620)

[330]

Pelargonidin 3-(2''-(6'''-E-sinapoyl-β-glucopyranosyl)-6''-(E-p-coumaroyl)-β-glucopyranoside)-5-β-glucopyranoside (621)

[330]

Pelargonidin 3-(2''-(6'''-E-p-coumaroyl-β-glucopyranosyl)-6''-(E-p-coumaroyl)-β-glucopyranoside)-5-β-glucopyranoside (622)

[330]

Cornaceae Cornus C. alba — Delphinidin 3-O-β-galactopyranoside-3′,5′-di-O-β-glucopyranoside (623)

[150]

Delphinidin 3-O-β-galactopyranoside-3-O-β-glucopyranoside (624)

[150]

Cyanidin 3-O-β-galactopyranoside-3′-O-β-glucopyranoside (625)

[150]

Euphorbiaceae Synadenium S. grantii Leaves Cyanidin 3-O-(2''-(5'''-(E-p-coumaroyl)-β-apiofuranosyl)-β-xylopyranoside)-5-O-β-glucopyranoside (626)

[359]

Cyanidin 3-O-(2''-(5'''-(E-p-coumaroyl)-β-apiofuranosyl)-β-xylopyranoside) (627)

[359]

Cyanidin 3-O-(2''-(5'''-(E-caffeoyl)-β-apiofuranosyl)-β-xylopyranoside) (628)

[359]

Cyanidin 3-O-(2''-(5'''-(E-feroyl)-β-apiofuranosyl)-β-xylopyranoside) (629)

[359]

Goodeniaceae Leschen aultia.

L. aultia.

Flowers Delphinidin 3-O-6-O-(malonyl)-β-D-glucopyranoside-7-O-6-O-(4-O-(6-O-(4-O-(β-D-glucopyranosyl)-trans caffeoyl-β-D-glucopyranosyl)-trans-caffeoyl)-β-D-glucopyranoside (630)

[151]

Delphinidin 3-(malonylglucoside)-7-(glucosyl-p-coumaroyl)-(glucosyl caffeoyl)-glucoside (631) [151]

Oxalidaceae Oxalis O. triangularis Leaves Malvidin 3-O-(6-O-(4-O-Malonyl-α-rhamnopyranosyl)-β-glucopyrano-side)-5-O-β-glucopyranoside (632) [149] Malvidin 3-O-(6-O-α-rhamnopyranosyl-β-glucopyranoside)-5-O-(6-O-malonyl-β-glucopyranoside) (633) [149] Malvidin- 3-O-(6-O-(4-O-Malonyl-α-rhamnopyranosyl)-β-glucopyrano-side)-5-O-(6-O-malonyl-β-glucopyranoside) (634) [149] Malvidin- 3-O-(6-O-(4-O-Malonyl-α-rhamnopyranosyl)-β-glucopyrano-side) (635) [149] Malvidin- 3-O-(6-O-(Z)-p-coumaroyl-β-glucopyrano side)- 5-O-β-glucopyranoside (636)

[149]

Malvidin-3-O-(6-O-α-rhamnopyranosyl-β-gluco pyranoside)-5-O-β-glucopyranoside (637)

[149]

Malvidin-3-O-(6-O-(E)-p-coumaroyl-β-gluco pyranoside)-5-O-β-glucopyranoside (638)

[149]

Page 53: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

117

Family Genus Species Parts Compounds (Str. No.) Ref.Malvidin 3-O-(6II-O-α-rhamnopyranosyl AIV-β-glucopyranosideAII)-5-O-β-glucopyranoside AIII) (apigenin 6-C-(2II-O-β-glucopyranosyl FIII-β-glucopyranosideFII)) malonate AV (AIV-4 AV-1, FIII-6 AV-3) (639)

[152]

Table-1.10: Chalcones

Family Genus Species Parts Compounds (Str. No.) Ref. Acanthaceae Andrographis A. macrobotrys Whole plants 2′-hydroxy-2,3,4′-trimethoxychalcone (640) [157] Aizoaceae Galenia G. africana Leaves (E)-3,2′,4′-trihydroxy-3′-methoxychalcone (641) [407]Annonaceae Ellopeiopsis E. cherrevensis Aerial parts 2′,4′-dihydroxy-3′-(2-hydroxybenzyl)-6′-

methoxychalcone (642) [161]

Aristolochiaceae Aristolochia A. ridicula Leaves Chalcone-flavone tetramer (643) [155]Asteraceae / Compositae

Bidens B. bipinnata Aerial parts 3,4,2′-trihydroxychalcone-4′-O-(6′′-O-acetyl)-β-D-glucopyranoside [Bidenoside G] (644)

[142]

Bidens B. pilosa Aerial parts Cholcone glycoside (645) [372] Helichrysum H. arenarium Flower buds Arenariumoside III (646) [226]

H. forskahlii Aerial parts Helihrysone A (647) [285] Helihrysone B (648) [285]

H. melanacme —

2,4′,6′-trihydroxy-3′-prenylchalcone (649) [164] 4′,6′,5′′-trihydroxy-6′′,6′′-dimethyldihydropyrano-2′′,3′′-2′,3′-chalcone (650)

[184]

Caprifoliaceae Viburnum V. propinquum Stems & leaves 3,4,2',4'-tetrahydroxy-trans-chalcone-2'-O-β-D-glucoside (651)

[318]

Cannabidaceae Humulus H. lupulus Hops Xanthohumol (652) [162] Desmethyl xanthohumol (653) [162] Xanthohumol 4′-O-β-glucopyranoside (654) [49] Xanthohumol 4,4′-O-β-diglucopyranoside (655) [49]Xanthohumol C (656) [257] Xanthohumol D (657) [257] 1-[2,4-Dihydroxy-3-(3-hydroxy-2-methoxy-3-methylbutyl)-6-methoxy phenyl]-3-(4-hydroxyphenyl) propenone (658)

[275]

Ebenaceae Diospyros D. melanoxylon —

4,6-Dihydroxy-2α,α-(4-hydroxyphenyl) hydroxymethylene-3-(2H)-benzofuranone (659)

[276]

Ericaceae Pieris P. japonica Leaves 3-hydroxyasebotin (660) [196] Asebogenin 2′-O-β-D-ribohexo-3-ulopyranoside (661) [196]2′′-acetylasebotin (662) [196] 3′,4,5′-hydroxy-4′-methoxydihydrochalcone 3′,5′-di-O-β-D-glucopyranoside (663)

[196]

Pierotin A (664) [196] Pierotin B (665) [196]

Fabaceae Butea B. monosperma Flowers Dihydromonospermoside (666) [229] Dalbergia D. sissoo Trunk exudates One New chalcone (667)

[36] Psorothamnus P. polydenius — 2,2′,4′-trihydroxy-6′-methoxy-3′,5′-dimethylchalcone

(668) [153]

Zuccagnia Z. punctata Fruits & aerial parts exudates

2′,4′-dihydroxy-3′-methoxychalcone(669) [167] 2′,4′-dihydroxychalcone (670)

[167] Leguminosae Bauhinia B. glauca Caulis 2′,4′-dihydroxy-4-methoxydihydrochalcone-2′-O-β-D-

glucopyranoside [Bauhiniaside A] (671)

[231] Dalbergia D. odorifera Heartwoods 4,2',5'-trihydroxy-4'-methoxy chalcone (672) [279] Erythrina E. abyssinica Stem barks Abyssinone A (673) [168]

Abyssinone B (674) [168]Abyssinone C (675) [168] Abyssinone D (676) [168]

E. mildbraedii Root barks Abyssinone-VI-4-O-methyl ether (677) [29] Flemingia F. macrophylla Aerial parts Flemingichalcone (678) [19]Glycyrrhiza G. glabra Roots 3,3',4,4'-tetrahydroxy-2'-methoxy-5-prenylchalcone

(679) [378]

2,3',4,4'-tetrahydroxy-3,5'-diprenylchalcone (680) [378]2,3',4,4' ,α-pentahydroxy-3,5'-diprenyl-dihydrochalcone (681)

[378]

2,3',4,4' ,α−pentahydroxy-3-prenyl-dihydrochalcone (682)

[378]

Page 54: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

118

Family Genus Species Parts Compounds (Str. No.) Ref. G. inflata Roots Licochalcone E (683) [159]

Hedysarum H. gmelinii Roots 1-(2,4-dihydroxy-3-(2-hydroxy-3-methyl-3-butenyl)phenyl)-3-(2,2-dimethyl-2H-benzopyran-6-yl)-2-propen-1-one (684)

[158]

1-(4-hydroxy-2-(1-hydroxy-1-methyl-ethyl)-2,3-dihydro-benzofuran-5-yl) -3-(3-methyl-2-butenyl)-4-hydroxy-penyl)-2 propen-1-one (685)

[158]

Lonchocarpus L. xuul Root Isocordoin (686) [319] 2',4'-dihydroxy-3'-(γ,γ-dimethylallyl)-dihydrochalcone (687)

[319]

Lespedeza L. floribunda Roots Lespeflorin C1 (688) [216]Lespeflorin C2 (689) [216] Lespeflorin C3 (690) [216]Lespeflorin C4 (691) [216] Lespeflorin C5 (692) [216] Lespeflorin C6 (693) [216] Lespeflorin C7 (694) [216]

Millettia M. erythrocalyx Pods 2′-hydroxy-3,4-dimethoxy-{2′′,3′′:4′,3′-furanochalcone} (695)

[65]

2′,3-dihydroxy-4-methoxy-4′-γ,γ-dimethylalloxychalcone (696)

[65]

Nepalese N. propolis — One New chalcone (697) [15] Psoralea P. corylifolia Seeds 2'-hydroxy-3',4'-(2'',3''-dihydrofurano)-chalcone (698) [305] Sophora S. flavescens Roots 7,9,2′,4′-tetrahydroxy-8-isopentenyl-5-

methoxychalcone (699) [165]

2,2′,4′-trihydroxy-6-methoxy-6′′,6′′-dimethyl-5′′-prenyldihydropyrano [2′′,3′′:4,3] chalcone [Cyclokuraridin] (700)

[191]

Liliaceae Agapanthus A. africanus Roots Rel-(1-β, 2-α-di-(2,4-dihydroxybenzyl)-rel-(3-β, 4-α)-di-(4-hydroxy-phenyl)-cyclobutane (701) [154]

Moraceae Artocarpus A. communis Heartwood 3′′,3′′-dimethylpyrano [3′,4′] 2,4,2′-trihydroxychalcone (702)

[187]

Brosimum B. acutifolium Barks Brosimacutin M (703) [13] Dorstenia D. angusticornis

D. barteri Twigs

3,5′-di-(2-hydroxy-3-methylbut-3-enyl)-4,2′,4′-trihydroxychalcone (704)

[156]

3,4-(2,2-dimethylpyrano)-3′-(2-hydroxy-3-methyl-but-3-enyl)-2′,4′-dihydroxychalcone (705)

[156]

Morus M. alba Leaves Morachalcone B (706) [348] Morachalcone C (707) [348]

Myrtaceae Cleistocalyx C. operculatus Buds 3'-formyl-4',6',4-trihydroxy-2'-methoxy-5'-methylchalcone (708)

[278]

3'-formyl-6',4-dihydroxy-2'-methoxy-5'-methylchalcone 4'-O-β-D-glucopyranoside (709)

[278]

Piperaceae Piper P. hostmannianum Leaves Rel-(1''R,4''R,5''R)-2'-hydroxy-4'-methoxy-5',6'-O-(4-isopropyl-1-methyl-cyclohexane-1-O,5-yl)dihydrochalcone [Hostmanin A] (710)

[332]

Rel-(1''R,4''S,5''R)-2'-hydroxy-4'-methoxy-5',6'-O-(4-isopropyl-1-methyl-cyclohexane-1-O,5-yl)-dihydrochalcone [Hostmanin B] (711)

[332]

Rel-(1''R,4''R,5''S,6''S)-2'-hydroxy-4'-methoxy-5',6'-O-(4-isopropyl-1-methyl-cyclohexan-1-ol-5,6-O-yl)-dihydrochalcone [Hostmanin C] (712)

[332]

Rel-(1'R*,6'R*)-(4,6-dihydroxy-5-methyl-3-methylester-2-methoxy-phenyl)-(3'-isohexenyl-1'-phenylcyclohex-3'-enyl) methanone [Hostmanin D] (713)

[332]

Polypodiaceae Drynaria D. fortunei — 3'-lavandulyl-4-methoxyl-2,2',4',6'-tetrahydroxylchalcone (714)

[402]

Rubiaceae Tarenna T. attenuata Whole plants Tarennane (715) [163] Tarennone (716) [163]

Rutaceae Boronia B. bipinnata Aerial parts Bipinnatone A (717) [211]Bipinnatone B (718) [211]

Tiliaceae Muntingia M. calabura Leaves 2′,4′-dihydroxy-3′-methoxydihydrochalcone (719) [107] (–)-3′-methoxy-2′,4′,β-trihydroxy-dihydrochalcone (720)

[107]

Page 55: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

119

Family Genus Species Parts Compounds (Str. No.) Ref. 2,3-dihydroxy-4,3′,4′,5′-tetramethoxy-dihydrochalcone (721)

[137]

4,2′,4′,-trihydroxy-3′-methoxydihydrochalcone (722)

[137]

Umbelliferae Angelica A. keiskei Stems Xanthoangelol I (723) [160]Xanthoangelol J (724) [160] Deoxydihydroxanthoangelol H (725) [160] Xanthokeismin A (726) [210]Xanthokeismin B (727) [210]Xanthokeismin C (728) [210]

Uricaceae Boehmeria B. rugulosa Leaves Chalcone-6'-hydroxy-2',3,4-trimethoxy-4'-O-β-D-glucopyranoside (729)

[281]

Zingiberaceae Boesenbergia B. rotunda Rhizomes (+)-Krachaizin A (730) [141](–)-Krachaizin A (731) [141] (+)-Krachaizin B (732) [141] (–)-Krachaizin B (733) [141]

Table-1.11: Aurones

Family Genus Species Parts Compounds (Str. No.) Ref. Ebenaceae Diospyros D. melanoxylon Leaves 4,6-dihydroxy-2α,α-(4-hydroxyphenyl)hydroxymethylene-3(2H)-

benzofuranone (734) [169] Papilionaceae Pterocarpus P. santalinus Heart woods 5,6-dihydroxy-3′,4′,5′-trimethoxy aurone- 4,7-O-β-D-diglucoside

(735) [170]

6-hydroxy-5-methyl-3′,4′,5′-trimethoxy aurone- 4-O-α-L-rhamno- pyranoside (736)

[170]

Table-1.12: Coumarins

Family Genus Species Parts Compounds (Str. No.) Ref. Apiaceae Angelica A. dahurica Fresh roots Tert-O-β-D-apiofuranosyl-(1 6)-β-D-glucopyranosyl-

byakangelicin (737) [322]

2'-O-β-D-apiofuranosyl-(1 6)-β-D-glucopyranosyl-peucedanol (738)

[322]

A. urumiensis Aerial parts (+)-8,9-dihydro-8-(2-hydroxypropan-2-yl)-2-oxo-2H-furo[2,3-h] chromen -9-yl-3-methylbut-2-enoate (739)

[314]

Ferula F. sinaica Roots Ferulsinaic acid (740) [184] F. szowitsiana Roots Szowitsiacoumarin A (741) [183]

Szowitsiacoumarin B (742) [183] Heracleum H. yunngningense Roots Yunngnin A (743) [172]

Yunngnin B (744) [172]Yunngnoside A (745) [172] Yunngnoside B (746) [172]

Peucedanum P. praeruptorum Roots Praeroside VI (747) [260] Praeroside VII (748) [260]

Prangos P. ferulacea Roots Isoimperatorin (749) [178] Imperatorin (750) [178]

Seseli S. devenyense Fruits (+)-Decanoyllomatin (751) [174] (+)-Dodecanoyllomatin (752) [174] (+)-4′-Decanoyl-cis-khellactone (753) [174] (+)-3′-Decanoyl-cis-khellactone (754) [174] (−)-8-[(2S),3-Dihydroxy-3-methylbutyl]-7-hydroxy-chromen-2-one [Devenyol] (755)

[174]

(−)-3′-O-β-D-glucopyranoside of 8-[(2S),3-dihydroxy-3-methylbutyl]-7-hydroxychromen-2-one ) [Devenyoside A] (756)

[174]

(−)-7-O-β-D-Glucopyranoside of 8-[(2S),3-dihydroxy-3-methylbutyl]-7-hydroxychromen-2-one [Devenyoside B] (757)

[174]

(−)-3′-O-β-D-Glucopyranosyl 8-[(2S),3-dihydroxy-3-methylbutyl]-7-hydroxychromen-2-one 7-O-β-D-glucopyranoside [Devenyoside C] (758)

[174]

Araliaceae Acanthopanax A. senticosus Aerial parts Eleutheroside B2 (759) [323] Chloranthaceae Sarcandra S. glabra Whole plant Sarcandracoumarin (760) [343]

Page 56: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

120

Family Genus Species Parts Compounds (Str. No.) Ref. Clusiaceae Marila M. pluricostata Leaves 5-hydroxy-8,8-dimethyl-4-phenyl-9,10-dihydro-8H-

pyrano{2,3-f} chromen-2-one (761) [114]

5-hydroxy-8,8-dimethyl-4-phenyl-6-propionyl-9,10-dihydro-8H-pyrano{2,3-f}chromen-2-one (762)

[114]

5,7-dihydroxy-8-(3-methylbut-2-enyl)-4-phenyl chromen-2-one (763)

[114]

Mammea M. siamensis Twings Siamenol A (764) [175] Siamenol B (765) [175] Siamenol C (766) [175] Siamenol D (767) [175]

Convolvulaceae Canvolvulus C. fatmensis — Four new coumarins [181] Erycibe E. hainanesis Roots and

stems 7-O-[6-O-(5-O-syringoyl-β-D-apiofuranosyl)-β-D-glucopyranosyl]-6-methoxycoumarin [Eryciboside A] (768)

[340]

7-O-[6-O-(2-O-syringoyl-β-D-apiofuranosyl)-β-D-glucopyranosyl]- 6-methoxycoumarin [Eryciboside B] (769)

[340]

7-O-[2-O-(5-O-syringoyl-β-D-apiofuranosyl)-β-D-glucopyranosyl]-6-methoxycoumarin [Eryciboside C] (770)

[340]

7-O-[6-O-(5-O-vanilloyl-β-D-apiofuranosyl)-β-D-glucopyranosyl]-6-methoxycoumarin [Eryciboside D] (771)

[340]

7-O-[2-O-(5-O-vanilloyl-β-D-apiofuranosyl)-β-Dglucopyranosyl]- 6-methoxycoumarin [Eryciboside E] (772)

[340]

7-O-[6-O-(5-O-syringoyl-β-D-apiofuranosyl)-β-D-glucopyranosyl]-6,8- dimethoxycoumarin [Eryciboside F] (773)

[340]

Coriariaceae Coriaria C. nepalensis Leaves & stems

7-hydroxy-6-methoxy-3,8-bis (3-methyl-2-butenyl) coumarin (774)

[242]

7-hydroxy-6-methoxy-3-(3-methyl-2-butenyl) coumarin (775)

[242]

Ericaceae Rhododendron R. lepidotum Aerial parts 7-O-β-D-glucopyranosyl-8-methoxybenzopyranone (776) [374] 7-hydroxy-8-O-β-glycosylbenzopyranone (777) [374]

Guttiferae Calophyllum C. polyanthum Seeds 7,4'-dihydroxy-6,8-dimethoxy-4-phenylcoumarin (778) [391] 7-hydroxy-6,8,4'-trimethoxy-4-phenylcoumarin (779) [391]

Hippocastanaceae Aesculus A. pavia Leaves S-6-[2-(hydroxymethyl)butoxy]-7-hydroxy-4-methyl-2H-chromen-2-one [Pavietin ] (780)

[204]

Leguminosae Psoralea P. corylifolia Seeds 6,7-(2',3'-dihydrofurano)-benzopyran-2-one (781) [305]Mucuna M. birdwoodiana Vine stem Mucodianin A (782) [313]

Liliaceae Asphodelus A. microcarpus Bulbs & roots Asphodelin A 4′-O-β-D-glucoside (783) [182]

Malvaceae Hibiscus H. tiliaceus Stem woods Hibiscusin (784) [176] Moraceae Ficus F. hirta Roots 5-methoxyl-4,2'-epoxy-3-(4', 5'-dihydroxyphenyl)-linear

pyranocoumarin (785) [392]

Orchidaceae Spiranthes S. sinensis Roots 5-γ,γ-dimethylallyl-8-[2-(2,6-dihydroxyphenyl)-3-dimethyl-but-2-enyol]-umbelliferon [Sinensin A ] (786)

[256]

4,6-di-(γ,γ-dimethylallyl)-8-lavandulyl-umbelliferon [Sinensin B] (787)

[256]

Poaceae Bambusa B. pervariabilis Leaves 7,8-dihydroxy-3-(3-hydroxy-4-oxo-4H-pyran-2-yl)-2H-chromen-2-one (788)

[385]

Rutaceae Boenninghausenia

B. sessilicarpa — 9′-methoxyl rutarensin (789) [249]

Citrus C. medica Stem & root bark

Citrumedin-B (790) [307]

C. reticulate Fruit peels One New coumarin (791) [171]Clausena C. suffruticosa Leaves 7-[(2′E,6′E)-7′-carboxy-5′(ζ)-hydroxy-3′-methylocta-2′,6′-

dienyloxy]-coumarin (792) [350]

Micromelum M. minutum Leaves 8,4′′-dihydroxy-8,4′′-dihbydrocapnolactone-2′,3,-diol (793)

[180]

Murraya M. exotica Vegetative branches

Bismurrangain (794) [173] Murramarin A (795) [173]

M. paniculata Aerial parts Murrmeranzin (796) [258] Murralonginal (797) [258]

Sterculiaceae Helicteres H. angustifolia Whole plants 6,7,9a-trihydroxy-3,8,11a-trimethylcyclohexo-{d,e}-coumarin (798)

[177]

Umbelliferae Angelica A. pubescens Roots Angepubebisin (799) [324]

Page 57: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

121

Family Genus Species Parts Compounds (Str. No.) Ref. A. purpuraefolia Roots Isoscopoletin (800) [179]

Oxypeucedanin hydrate (801) [179]Arnottinin (802) [179]

Selinum S. cryptotaenium Roots 3′(S)-angeloyloxy-3′,4′-dihydroseselin [Secryptotaenin A] (803)

[241]

Table-1.13: Miscellaneous

Family Genus Species Parts Compounds (Str. No.) Ref. Agavaceae Dracaena D. cochinchinensis Fresh stems 10,11-dihydroxydracaenone C (804) [246] Apiaceae Angelica A. urumiensis Aerial parts Pyranocoumarin dimmer (805) [314] Aristolochiaceae Aristolochia A. contorta Fruits 3"-hydroxyamentoflavone-7-O-methyl ether (806) [219]

3"-hydroxyamentoflavone (807) [219] Asteraceae / Compositae

Erigeron E. annuus Flowers Erigeroflavanone (808) [207]

Caesalpiniaceae Caesalpinia C. pulcherrima Aerial parts (3E)-2,3-dihydro-6,7-dimethoxy-3-(3-hydroxy-4-methoxyphenyl)-methylene-4H-1-benzopyran-4-one (809)

[300]

Piliostigma P. reticulatum Leaves 6-C-methyl-2-p-hydroxyphenyloxychromonol [Piliostigmol] (810)

[309]

Chloranthaceae Sarcandra S. hainanensis Whole plants (2R,4R)-7-hydroxy-5,8-dimethoxyflavan(4β→3′)-2′,4′-dihydroxy-6′-methoxychalcone [Sarcandrone A] (811)

[232]

7-hydroxy-5,8-dimethoxyflavan-(4β→3′)-2′,6′-dihydroxy-4′-methoxy-chalcone (812)

[232]

Clusiaceae Garcinia G. livingstonei Root barks ent-naringeninyl-(I-3α,II-8)-4′-O-methylnaringenin (813) [186] Convolvulaceae Erycibe E. hainanesis Roots and stems Bis coumarin (814) [340] Cycadaceae Cycas C. circinalis Leaflets (2S,2′′S)-2,3,2′′,3′′-tetrahydro-4′,4′′′-di-O-

methylamentoflavone [Tetrahydroisoginkgetin] (815) [370]

Labiatae Eremostachys E. loasifolia — Loasifolin (816) [387] Lamiaceae Scutellaria S. amabilis Roots (I-2S)-I-5,II-5,I-7,II-7,I-2′,II-2′,II-5′-heptahydroxy-[I-6,II-

6′]-flavanonyl-flavone (817)

[21] (I-2S)-I-5,II-5,I-7,II-7,I-2′,II-2′,I-5′,II-5′-octahydroxy-[I-6,II-6′]-flavanonylflavone (818)

[21]

Lauraceae Machilus M. philippinensis Leaves Machiphilitannin A (819) [409]Machiphilitannin B (820) [409]

Leguminosae Acacia A. nigrescens Heartwood Mesquitol-(4α,5)-epimesquitol-4β-ol (821) [35]3′,4′,7,8-tetrahydroxyflavonone-(3,4)-ent-epimesquitol (822)

[35]

Alhagi A. pseudalhagi Aerial parts and roots

Alhacin (823) [380] Alhacidin (824) [380]

Bauhinia B. glauca Caulis 1-(2,4-dihydroxyphenyl)-3-(4-hydroxy-3-methoxyphenyl)propane [Bauhiniasin] (825)

[231]

Dalbergia

D. sissoo

Trunk exudates 4-[(1S)-1-phenyl-2-propenyl]-1,3-benzenediol (826) [36]S-4′-hydroxy-4-methoxydalbergione (827) [36]

Lespedeza L. floribunda Roots Lespeflorin E1 (828) [216]Lespeflorin F1 (829) [216]Lespeflorin F2 (830) [216] Lespeflorin G1 (831) [216] Lespeflorin G2 (832) [216]Lespeflorin G3 (833) [216] Lespeflorin G4 (834) [216] Lespeflorin G5 (835) [216]Lespeflorin G6 (836) [216]Lespeflorin G7 (837) [216] Lespeflorin G8 (838) [216]Lespeflorin G9 (839) [216]Lespeflorin G10 (840) [216] Lespeflorin G11 (841) [216] Lespeflorin G12 (842) [216]Lespeflorin H1 (843) [216] Lespeflorin H2 (844) [216] Lespeflorin I1 (845) [216]Lespeflorin I2 (846) [216]Lespeflorin I3 (847) [216] Lespeflorin J1 (848) [216]

Page 58: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

122

Family Genus Species Parts Compounds (Str. No.) Ref. Lespeflorin J2 (849) [216] Lespeflorin J3 (850) [216] Lespeflorin J4 (851) [216]

Maackia M. amurensis Stem barks Maackiapterocarpan A (852) [225]Maackiapterocarpan B (853) [225]

Oxytropis O. falcata Aerial parts and roots

(6aR,11aR)-3,8-dihydroxy-9,10-dimethoxypterocarpan (854)

[408]

Oxytropisoflavan A (855) [408] Oxytropisoflavan B (856) [408]

Liliaceae Polygonatum P. odoratum Rhizomes 3-(4'-hydroxybenzyl)-5,7-dihydroxy-6-methyl-8-methoxychroman-4-one (857)

[362]

3-(4'-hydroxybenzyl)-5,7-dihydroxy-6,8-dimethylchroman-4-one (858)

[362]

3-(4'-methoxybenzyl)-5,7-dihydroxy-6-methyl-8-methoxychroman-4-one (859)

[362]

Melastomataceae Miconia M. cabucu Leaves 5-Hydroxy-4',7-dimethoxyflavone-(6-C-6'')-5''-hydroxy-3''',4''',7''-trimethoxyflavone (860)

[304]

Moraceae Artocarpus A. elasticus Root barks Artelastoheterol (861) [17]Artelasticinol (862) [17]Cycloartelastoxanthone (863) [17] Artelastoxanthone (864) [17] Cycloartelastoxanthendiol (865) [17]

Woods Artoindonesianin E1 (866) [360] A. rigida Twings Artorigidin A (867) [352]

Artorigidin B (868) [352]Artorigidin C (869) [352]Cyclorigidol (870) [352]

A. tonkinensis Roots Artotonin A (871) [393]Artotonin B (872) [393]

Myrtaceae Baeckea B. frutescens Leaves 3-O-α-L-rhamnopyranosylmyricetinyl-(I-2″,II-2″)-3-O-α-L-rhamno-pyranosylmyricetin (873)

[334]

Ochnaceae Lophira L. alata Leaves Lophirone L (874) [26] Lophirone M (875) [26]

Ophioglossaceae Ophioglossum O. petiolatum Whole plants Ophioglonin (876) [195]Ophioglonin 7-O-β-D-glucopyranoside (877) [195]Ophioglonol (878) [195]Ophioglonol prenyl ether (879) [195] Ophioglonol 4′-O-β-D-glucopyranoside (880) [195] Isoophioglonin 7-O-β-D-glucopyranoside (881) [195]

Papilionaceae Ormocarpum O. kirkii Roots Liquiritigeninyl-(I-3,II-3)-naringenin (882) [358] Apigeninyl-(I-3,II-3)-naringenin (883) [358]7-O-β-D-glucopyranosylchamaejasmin (884) [358]5,5''-di-O-methyldiphysin (885) [358]7-O-β-D-glucopyranosyldiphysin (886) [358]

Poaceae

Avena A. sativa —

(–)-(5S,6S)-5,6-Dihydro-3,8,10-trihydroxy-5-(4-hydroxy-3-methoxy phenyl)-6-hydroxymethyl-2,4-dimethoxy-7H-benzo [c] xanthen-7-one (887)

[37]

Lauraceae Beilschmiedia B. zenkeri Stem bark Beilschmieflavonoid A (888) [405] Beilschmieflavonoid B (889) [405]

Rosaceae Prunus P. domestica —

Purunuside A (890) [361] Purunuside B (891) [361]Purunuside C (892) [361]

Rubiaceae Galium G. verum — 3,5,7,3′,4′,3′′,5′′,7′′,3′′′,4′′′-decahydroxyl-[8-CH2-8′′]-biflavone (893)

[261]

Selaginellaceae Selaginella S. uncinata Whole herbs (2S, 2′′S)-2,3,2′′,3′′-tetrahydrorobustaflavone-4′′′-methyl ether [Uncinatabiflavone A] (894)

[266]

(2S, 2′′S)-2,3,2′′,3′′-tetrahydrorobustaflavone-4′-methyl ether [Uncinatabiflavone B] (895)

[266]

(2S, 2′′S)-2,3,2′′,3′′-tetrahydrorobustaflavone-7′′-methyl ether [Uncinatabiflavone C] (896)

[266]

(2S)-2,3-dihydrorobustaflavone-4′-methyl ether [Uncinatabiflavone D] (897)

[266]

Solanaceae Solanum S. melongena Aerial parts Isorhamnetin-3-O-β-D-glucopyranoside-(4' O 4"')-galangin-3"-O-β-D-glucopyranoside (898) [218]

Page 59: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

123

3. Biological activities Naturally occurring flavonoids have been found to possess promising biological and pharmacological activities. In recent times, due to such efficacies, chemistry as well as pharmacology of this group of natural products is of much interest to the scientific community at a large. Biological activities shown by these phytochemicals are summarized in Table 8. Different such activities exhibited by the bio-flavonoids are cited below. 3.1 Anti-oxidant activity Generation of various reactive free radicals is a matter of considerable concern both in food chemistry and biological systems. In living systems, free radicals attack key biological molecules thereby developing pathological processes of various diseases. Natural products are found to show antioxidant activities mainly due to their redox properties which can play an important role in neutralizing free radicals, quenching singlet and triplet oxygen, or decomposing peroxides. The plants possibly produce such phenolic compounds as a defense against adverse conditions. Naturally occurring flavonoids have been known to possess significant antioxidant efficacy; the antioxidant effect of the compounds is attributed to both their radical-scavenging activity and metal-chelating properties, of which the former may dominate. Besides HO. and .N3, other oxidizing radicals like t-BuO., O2

., HOO., ROO., etc. also react effectively with flavonoid molecules, all forming the same transient aroxyl radicals. Since the early fifties, the antioxidant potential of such

compounds in regard to food preservation has been a focus of research and due to their structural variety they offer themselves for detailed structure-activity relationship (SAR) studies [277].

The flavone 4, isolated from the leaves of Goniothalamus tenuifofius, showed in vitro free radical scavenging property against DPPH with a moderate value of 11.49 % inhibition at a dose of 40 μg/mL [66]. Likhitwitayawuid et al. suggested that the activity of the compound is attributed due to the presence of free OH at C-3′ [66]. Six flavonoid constituents (5, 6 and 483-486) of Calamus quiquesetinervius were evaluated by Chang and his co-workers for their radical scavenging ability of the hydroxyl radical (.OH) and superoxide anion (.O2

) using an ultraweak CL assay [351]; most of the tested isolates were found to have significant scavenging activities (IC50 0.34–17.18 μg/mL) against the hydroxyl radical except for 486 (IC50 > 20 mg/mL), whereas they showed a moderate or weak scavenging efficiency on the superoxide anion compared with trolox (Table 2). From the structure-activity relationship, it might be argued that the tricin-type analogues 5, 6, 483 and 484 possess antioxidant capacities against the hydroxyl radical rather than superoxide anion; a comparison of the hydroxyl radical scavenging activities of the compounds showed that 483 and 484 are more potent than the others suggesting that the C2–C3 bond in C-ring of tricin-type of derivatives enhances antioxidant activity. Compounds 5 and 6 showed moderate radical scavenging activity due to lack of ortho-methyl group on the aromatic ring of the flavonoid derivatives [351].

Table 2. Hydroxyl radical (.OH) and superoxide anion (.O

2-) scavenging activity of compounds (5,6 and

483-486) isolated from C. quiquesetinervius.

Compounds IC50 (μg/mL) .OH .O2

- 5 13.34 ± 0.80 >200 6 8.74 ± 0.01 >200

483 0.56 ± 0.02 119.03 ± 7.30 484 0.69 ± 0.04 153.82 ± 8.94 486 29.98 ± 5.50 >200

Trolox 1.05 ± 0.13 8.70 ± 0.18

Page 60: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

124

Two flavonoids 24 and 25 isolated from whole plant of Mallotus metcalfianus were also found to show anti-DPPH radical activity as reported by Rivière group [328]; IC50 values of the 24 and 25 were determined as 10.0 ± 1.6 μg/mL and 52.2 ± 0.2 μg/mL respectively [328]. Compounds 28 and 29 isolated from Pterogyne nitens showed antioxidant activities in both DPPH and ABTS assay with respective IC50 values of 14.7 ± 0.5 and 15.3 ± 0.3μM for compound 28 and 11.0 ± 0.3 and 5.0 ± 0.5 μM for compound 29 [89]. Two flavonoid constituents 32 and 517 of Globularia alypum were found to have potent antioxidant properties against DPPH radical with IC50 values 8.0 and 12.0 μM respectively [38]. Wu et al. [243] reported an antioxidant flavone-C-glucoside 33 from Gentiana piasezkii having potent DPPH radical scavenging properties with IC20 value of 5.20 ± 0.10 μM. A flavone, 5,7,2'-trihydroxy-5'-methoxyflavone (37) of Gnetum macrostachyum showed weak radical scavenging activity (IC50 19.90 mM) in DPPH assay [295]. Luteolin 6-C-6′′-O-trans-caffeoylglucoside (38) isolated from Phyllostachys nigra was evaluated to exhibit significant antioxidant potential [82]; the antioxidative efficacy of the flavone glycoside 38 was measured as 1.9937, 1.6601 and 0.7095 nmol equivalents of Trolox at 4.0, 0.4 and 0.04 μM concentrations, respectively [82]. The flavone 43 and the isoflavone 365 also exhibited significant antioxidant activity against luminol-dependent chemiluminescence assay [47]. Two prenylated flavonoids 82 and 271 isolated from the rhizomes of Helminthostachys zeylanica were found to show inhibitory activities on either superoxide anion generation or elastase release by human neutrophils in formyl-L-methionyl-L-leucyl-L-phenylalanine/cytochalasin B (FMLP/ CB) assay [367]. The compounds 82 and 271 showed inhibitory activities on FMLP/CB induced superoxide anion generation and FMLP/CB-induced elastase release by human neutrophils with IC50 values of 3.76 ± 1.52 and 2.50 ± 0.37 μM, respectively for compound 82 and IC50 values of >10 and 0.98 ± 0.15 μM, respectively for compound 271 [367].

Hoyweghen et al. reported that the flavone glycoside 91, isolated from the leaves of Fargesia robusta, exhibited potent antioxidant activity in the TEAC assay, but showed the highest antioxidant capacity in the ORAC assay among the tested compounds; the antioxidant efficacy of 91 was determined as 0.332 ± 0.013 in TEAC assay and 26.8 ± 0.60 in ORAC assay [411]; the number of hydroxy groups and particularly, the presence of a B-ring catechol unit might be responsible for this antioxidant capacity [375]. Two flavonoid C-glycoside derivatives, isoorientin (93) and isoorientin 2''-O-α-L-rhamnoside (94), from Sasa borealis showed significant free radical scavenging activity against DPPH with IC50 values of 9.5 and 34.5 μM, respectively. Besides, these flavonoids were also found to have strong cytoprotective effect against tert-butyl hydroperoxide (tBOOH)-induced oxidative damage in HepG2 cells, at very low concentrations of 1.1 μM and 0.8 μM respectively [83]. Bae et al. reported an antioxidant flavone glycoside 113 that showed good inhibitory activity in superoxide radical scavenging assay with IC50 value of 13.0 ± 1.7 μM; however, its IC50 value was found to be >100 μM against DPPH free radical scavenging assay [84]. Two biflavonoids, daphnogirins A (118) and B (119), isolated from Daphne giraldii were found to possess significant antioxidant efficacy compared with trolox as assessesed in oxygen radical scavenging assay using fluorescence decay induced by 2,2′-azobis(2-amidinopropane) dihydrochloride tenhnique [67]. The four flavan-4-ol glycosides, abacopterins E–H (157-160) isolated from a fern Abacopteris penangiana exhibited antioxidant activity against ABTS.+ in trolox equivalent antioxidant capacity (TEAC) assay with TEAC values of 1.03–1.44 mM [128]. The comparatively lower TEAC value of 160 is due to methylation of -OH function at 4′-position as revealed from the structure-activity relationships described by Zhao et al. [128]. The scavenging potential of the flavonoid glycosides 198 and 199, isolated from the plant Evolvulus alsinoides, was studied by Kumar et al. [335] and found to inhibit the formation of respective superoxide (O2

−) and hydroxyl (.OH) radicals in the range of 18-33% at 100 μg/mL and 24-49%

Page 61: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

125

at 200 μg/mL concentrations. The flavonol derivative moricandin (204) was found to have potent scavenging activity against DPPH, TEAC and other tested reducing power assays [197]; however, the TEAC of 204 was measured 3.4 times lower (TEAC value 1.23 ± 0.02 mM) than that of quercetin (TEAC value 4.26 ± 0.12 mM), which is in accordance with structure-antioxidant activity relationships of flavonoids. The investigators suggested that glycosylation at C-7 and C-4′ reduces radical-scavenging capacity but the attachment of glucose to the OH-3 position does not seem to have any negative effect on the antioxidative efficacy. In reducing power assay, formation of Fe2+ in the reduction of F3+/ferricyanide complex by antioxidants is monitored at 700 nm and compound 204 was proved to be the most active, with IC50 values of 33.5 μg/mL. In the DPPH model system, it showed 60% inhibition of radical-scavenging activity (at the lowest tested concentration of 15 μg/mL) [197]. Regasini et al. [306] isolated a kaempferol derivative, pterogynoside (228) from fruits of Pterogyne nitens; the antioxidant activity of the isolate was evaluated by measuring its free radical scavenging effects using two different assays, the ABTS radical cation decolorization assay and the DPPH radical scavenging activity assay. Compound 228 showed antioxidant activity towards ABTS radical, with IC50 value of 8.10 ± 0.1 μg/mL, and DPPH with value of > 80.0 μg/mL[306]. Nugroho and his groups [303] isolated two new flavonol glycosides 240 and 241 from the Lamium amplexicaule, which exihibited in vitro anti-oxidative activity in DPPH assay; the quercetin glycoside 241 exhibited stronger activity against DPPH radical than the kaempferol glycoside 240; EC50 values for the compounds 240 and 241 were determined 55.9 ± 1.7, and 17.5 ± 1.2 μg/mL, respectively. The activity of quercetin glycoside with one more hydroxy group in their B-ring was more potent than that of kaempferol with one less hydroxyl group [303]. Polyhydroxylation of the aromatic rings is one of the structural requirements for antioxidant and free radical scavenging function of flavonoids; hence, flavonoids possessing a higher number of

hydroxy groups usually exhibit stronger anti-oxidative effect [384]. A new flavonoid isorhamnetin-3-O-[-α-L-rhamnopyranosyl-(1 3)]-β-D-glucopyranoside (244) along with two other known flavonoids were isolated from Alhagi maurorum [382]; all the isolates were evaluated for their antioxidant potential using DPPH free radical scavenging assay. Compound 244 exhibited weak activity with IC50 value of 357.7 μg/mL [382]. The flavonol derivative, kaempferol 3-O-(2′′-O-galloylrutinoside) (267), isolated from Nymphaea candida exhibited significant antioxidant activity estimated by in vitro measurement of low-density lipoprotein (LDL) susceptibility to oxidation, and determination of malondialdehyde (MDA) levels in rat brain; the percentage-increase of conjugated diene formation of LDL and inhibition rate of MDA were determined respectively as 19.67 ± 4.92 and 140.3 % at a dose of 0.01 g/L [252]. The scavenging effect of phenolic compound 301, isolated from the leaves of Koelreuteria henryi, on the stable free radical DPPH was examined by Lee et al., and the activity was compared with that of the standard antioxidant trolox [312]. It was shown that chemical entities with catechol or pyrogallol functionalities would exhibit strong antioxidant activities [321]. This was also observed in 301, which possessed at least one catechol group or pyrogallol group in their structures, and exhibited significant DPPH radical-scavenging activity with respective IC50 value of 3.6 μM when compared with the positive control, trolox (IC50 22.1 μM) [312]. Two acylated flavonoid tetraglycosides 307 and 308 in Oolong Tea (Camellia sinensis) exhibited scavenging activity against DPPH radical with EC50 values of 30.5 and 487.2 μM, respectively [58]. Jo et al. described the antioxidative activity of the flavonol derivative 309 in three different tests [192]. The compound 309 showed potent activity with IC50 value 5.28 ± 0.03 μM in the hydroxyl radical (.OH) inhibitory activity test, 82.21±1.52μM in the total ROS (reactive oxygen species) inhibitory activity test, and 13.53 ± 0.07 μM in the peroxynitrite (ONOO-) scavenging activity test [192]. The isolated

Page 62: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

126

flavonoids 335-337 and 497 from Eriophorum scheuchzeri were found to have antioxidant activity against DPPH assay [199]. All the compounds 347-348 and 516, isolated from Erythrina latissima, showed weak radical scavenging properties towards DPPH assay [90]. Three flavonoid compounds 478-480 isolated from Areva persica exhibited profound antioxidative activities in both DPPH and cytochrome-c-reduction assays using the HL-60 cell culture system with respective IC50 values of 16.9 and 16.5 μg/mL for compound 478, 18.1 and 17.6 μg/mL for compound 479 and 14.4 and 14.0 μg/mL for compound 480 [136]. Ahmed et al. described that the substitution patterns in the B ring markedly affect the antioxidant potencies of the flavonoids. Very particularly, the di-OH substitution at C-3' and C-4' in flavonoid nucleus seems to be important for its oxygen radical absorbing activity [136]. The flavanone 503, isolated from Macaranga tanarius, exhibited radical scavenging properties against DPPH assay with IC50 value of 20 ± 1μM and was stronger than that by flavanone 502 (IC50 value of 33 ± 1μM) from the same plant [198]. Yao et al. isolated two flavanone glycosides 565 and 566 from branches and leaves of Viscum coloratum, and the isolates were found to show antioxidative activities against both hydroxy radical and superoxide anion radical. The results suggested that a hydroxyl or methoxyl substitution at C-3′ might have increased their antioxidative activities [144]. Four flavonoid compounds 572, 573, 708, and 709 from Cleistocalyx operculatus were tested for their in vitro antioxidant activity using a DPPH radical scavenging assay; compounds 572 and 708 exhibited DPPH radical scavenging activity with IC50 values of 22.8 and 27.1 μM, respectively, while compounds 573 and 709 exhibited weak activity with respective IC50 values of 117.2 and 105.8 μM [278]. Kuo and his group isolated two flavonone glycosides visartiside A (607) and visartiside B (608) from Viscum articulatum and evaluated their radical-scavenging activity (ED50 = 37.6, and 34.1 μM, respectively) [337]. Both the flavanones possess a 3′,4′-dihydroxyphenyl moiety in the B ring that might play a crucial role

in radical-scavenging activity [337]. A new chalcone glycoside 651 and a new tetrahydrofuranoid lignan along with 12 known compounds were isolated from stems and leaves of Viburnum propinquum by Wang et al. [318]; all the compounds were evaluated for their antioxidative activity in the DPPH and hydroxyl free radical assays. The new flavonoid glycoside 651 showed antioxidative capacity in the DPPH and hydroxyl free radical assays, with IC50 value of 6.12 ± 0.08 μg/mL and 10.90 ± 0.16 μg/mL, respectively; the presence of a conjugated double bond between α-C and β-C might play a key role in exhibiting antioxidative activity of the compound [318]. Aoki et al. reported three C-geranylated chalcones 726 and 728 from the stems of Angelica keiskei, which showed superoxide-scavenging activity; the isolates exhibited superoxide scavenging activity with IC50 values in the range of 0.51-1.1 μM, greater than that of resveratrol (IC50 5.3 ± 0.59 μM) used as a positive control. Among them, xanthokeismin A (726) showed the most potent superoxide-scavenging activity (IC50 0.51 ± 0.023 μM). The aliphatic long enol side chain within 726-728 is supposed to play an important role in mediating superoxide-scavenging activity [210]. Two new coumarins 739 and 805 were isolated from the aerial parts of Angelica urumiensis, which exhibited antioxidant activity by using DPPH radical scavenging assay and showed moderate antioxidant activity as reported by Mohammadi’s groups [314]. The Compound (805, IC50 170 μg/mL) showed higher scavenging ability on DPPH radicals than the compound (739, IC50 190 μg/mL) [314]. Chen et al. [408] isolated three new flavonoids 854-856 from poisonous plant Oxytropis falcate and evaluated for their growth inhibition against the HL-60 cell line by the MTT method and free radical scavenging activities using the DPPH test. However, none of them exhibited significant activity on HL-60 cells (IC50 > 50 μM). In the DPPH test, flavonoids 855 and 856 lacked significant activity, with IC20 values more than 50 μM. Compound 854 showed potent antioxidant activity, with an IC20 value of 3.8 μM, when compared with that of Vitamine E as reference (IC20 = 7.6 μM) [408].

Page 63: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

127

3.2 Anticancer and antitumor activity Berthier et al. reported that the flavone 27 possesses in vitro anticancer activity against human breast cancer cells (MCF-7) via enhancing estrogen α-transcriptional potential [69]. Three flavonoid constituents 114-116 of Thelypteris torresiana exhibited anti-tumor properties; among them protoapigenone (114) showed significant activity toward HepG2, Hep3B, MCF-7, A549, and MDA-MB-231cell lines with respective IC50 values of 1.60, 0.23, 0.78, 3.88 and 0.27μg/mL. From structure-activity relationships it is revealed that 1-hydroxy-4-oxo-cyclohexa-2,5-dienyl moiety is critically important for such biological activity [18]. (2R,4S)-6,8-Dimethyl-7-hydroxy-4'-methoxy-4,2''-oxidoflavan-5-O-β-D-6''-O-acetyl-glucopyranoside (136) and (2R,4S)-5,7-O-β-D-diglucopyranosyloxy-4'-methoxy-6,8-dimethyl-4,2''-oxidoflavane (137) – the two new flavan-4-ol-glucosides of Abacopteris penangiana showed significant in vitro anticancer activities against

HeLa and L929 cell lines with respective IC50 values of 22.52, 36.75 μg/mL for 136 and 37.68, 64.39 μg/mL for 137 [388]. Two bioactive prenylated dihydroflavanoids 514 and 515, isolated from Dolichos tenuicaulis, were also found to show anti-cancer activity against a number of human cancer cell lines including lung cancer cell A549, liver cancer cell BEL-7402, esophageal cancer cell HT-29, breast cancer cell MCF-7, leukemia cancer cell K562, and kidney cancer cell A498 (Table 3). Compound 514 exhibited significant efficacy against A549 and K562 cell lines with IC50 values of 0.45 μg/mL and 0.84 μg/mL, respectively [255]. The chalcones 723 and 724 are found to have cancer chemopreventive effects as these compounds exhibited potent inhibitory effects on EBV-EA induction and inhibitory effects against activation of (±)-(E)-methyl-2[(E)-hydroxyimino]-5-nitro-6-methoxy-3-hexemide (NOR 1) [a nitrogen oxide (NO) donor] [160].

Table 3. Inhibition of compounds 514 and 515 on the growth of humancancer cells (IC50, μg/mL).

Compound Nos. Cancer cells (IC50, μg/mL)

A549 BEL-7402

HT-29 MCF-7 K562 A498

514 0.45 1.10 2.32 1.42 0.84 1.24 515 1.36 2.54 3.56 3.61 1.28 2.68

Umehara et al. reported that the compound 429 from Thai medicinal plant Dalbergia parviflora possesses cell proliferation stimulatory activity against the MCF-7 and T47D human breast cancer cell lines (EqE10 and EqE100: 2.7 and 8.6 μM for MCF-7 cells; 2.0 and 9.2 μM for T47D cells, respectively) [406]. From the dried roots of Campylotropis hirtella, five novel isoflavonoids 439-441 and 467-468 were isolated by Shou and his co-workers [371]. All of these flavonoids were investigated for their immunosuppressive activities on mitogen-induced splenocyte proliferation in vitro; the results are summarized in Table 4. The SI (safety index, the ratio of CC50/IC50) values of all the test compounds for inhibiting ConA-induced T lymphocyte proliferation were larger than 8, and the SI values

of compounds (440, 441 & 467) for inhibiting LPS-induced B lymphocyte proliferation were even higher than that of cyclosporin A. The chalcones 652 and 653, isolated from Humulus lupulus, were found to have efficacy in inhibiting the growth of the proliferative activity on human prostate cancer cell lines PC-3 and DU145 with IC50 values of 13.2 ± 1.1 μM for PC-3 and 12.3 ± 1.1 μM for DU145 [162]. Five dihydrochalcones 660, 662-665 isolated from leaves of Pieris japonica, were also found to show antiproliferative activities against murine B and T cells in vitro; all of these dihydrochalcones (660, 662-665) inhibited the proliferation of murine B cells, but only the flavonoids 660 and 665 inhibited the proliferation of murine T cells in vitro in a significant manner [196].

Page 64: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

128

3.3 Cytotoxic activity Two prenylated flavonoids, styracifolin A (71) and styracifolin B (72), isolated from the stem barks of Artocarpus styracifolius (Moraceae), exhibited cytotoxic activity against cancer cell line (KB) and human fibroblast cell line (MRC-5); compound 72 showed strong activity against both the cell lines with IC50 values 5.6 and 4.7 μM respectively. Compound 71 showed relatively moderate such activity against the cell lines with IC50 values of 27.2 and 31.7 μM respectively [373].Diosmetin 7-(6''-O-p-hydroxyphenylacetyl)-O-β-D-glucopyranoside (9), a new flavonoid constituent of the flowers of Chrysanthemum morifolium, was evaluated for its cytotoxic activity against human colon cancer cell Colon 205 using MTT assays [294]; compound 9 showed little such activity (IC50 >200 μM). Cao et al. [338] isolated three flavonoid compounds 108-110 from Selaginella moellendorffii; and assessed their cytotoxic activity against A549, BGC-823 and BEL-7402 human cell lines using paclitaxel as positive control. Only compound 109 showed cytotoxic activity against BGC-823 human cell line with IC50 value 6.28 μg/mL [338]. Two flavan derivatives 139 and 140, isolated from leaves of Pithecellobium clypearia, showed moderately cytotoxicity to several cultured cell lines [189]. The flavonoids 145-147 and 703 are found to be cytotoxic against murine leukemia P388 as well as vincristine –resistant P388 cells (IC50 4.4-19 μg/mL) as reported by Takashima et al. [13].

Flavan-4-ol glycosides, abacopterins A-D (153-156) isolated from the rhizomes of Abacopteris penangiana, exhibited weak cytotoxicity activity against HepG2 cells line with IC50 values 3.5, 4.1, 4.0, and 3.1μg/mL, respectively [126]. Four flavonoid glycosides 168-169 and 481-482 showed cytotoxic activity against TNF-α production in THP-1 cells treated with lipopolysaccharide [217]. The flavonol glycosides 170 and 171 showed cytotoxic activity on brine shrimp lethality bioassay with LC50 values of 0.57 and 0.40 μM, respectively [201]. A new cytotoxic flavonoid constituent (190) of the fruits of Sinopodophyllum hexandrum showed remarkable cytotoxic activity against MDA-MB-231 cell line and strong growth inhibitory activity against T47D cell line; the results suggested potential anti-tumor activity of this Tibetan drug [341]. Methanolic extract of the seeds of Draba nemorosa yielded a new flavonol glycoside (192). Which exhibited strong cytotoxic efficacy against human cancer cell line and human melanoma A549 and SK-Mel-2 cell lines in the range of 1.1-1.9 μg/mL [365]. Four new flavonoids 194-196 and 810, isolated from Piliostigma reticulatum, were tested for their cytotoxic potential using the brine shrimp toxicity assay and all of them were active (LC50 < 1000 μg/mL) at different levels, except 196 compound 810 showed the highest activity with LC50 value 0.4336 μg/mL [309]. The prenylflavonol constituents (217-220) of leaves of Macaranga sampsonii exhibited cytotoxic

Table 4. Summary of suppressive activities of compounds 439-441 and 467-468.

Compounds Proliferative responses of lymphocytes ConA LPS

IC50 (μM) SI IC50 (μM) SI 439 16.26 ± 0.17 13.01 43.30 ± 1.4 4.88 440 5.11 ± 0.72 15.32 3.61 ± 0.25 21.69 441 4.55 ± 0.75 25.23 4.47 ± 0.60 25.71 467 5.87 ± 0.96 11.90 2.97 ± 0.22 23.51 468 4.66 ± 0.21 9.72 7.55 ± 0.28 6.00 CsA 0.01 ± 0.001 88.10 0.072 ± 0.002 12.23 CsA: Cyclosporin A as positive control; SI values: safety index, the ratio of CC50/IC50

Page 65: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

129

activity against human cancer cell lines including lung cancer (A549), pulmonary carcinoma (LAC), gastric carcinoma (SGC-7901), and hepatoma (HepG2) cell lines [230]; flavonoids 252 and 700 showed cytotoxic activity against the KB tumor cell line with IC50 values 24.3, 7.1 and 15.1 μg/mL, respectively as reported by Shen et al. [191]. The flavonol derivative, kaempferol-3-O-(2′′-O-galloylrutinoside) (267) showed cytotoxicity to adrenal gland pheochromocytoma and PC12 cells [252]. Deng et al. reported that tonkinensisol (273), a flavonol derivative, showed moderate cytotoxicity as it suppressed proliferation of HL-60 cells in vitro (IC50 value of 36.48 μg/mL) [248]. Three flavonol glycosides 283-285, isolated from Triplaris cumingiana, were found to show cytotoxic activities against MCF-7, H-460, and SF-268 human cancer cell lines [109]. Kaempferol glycosides, palmatosides A (287), B (288) and C (289), together with three known kaempferol glycosides were isolated from the roots of the fern Neocheiropteris palmatopedata by Yang and his group [355]. Among the three compounds, two compounds 288 and 289 showed cytotoxic activities by inhibiting TNF-α-induced NF-κB activity with IC50 values of 15.7 and 24.1 μM, respectively [355]. Ngamrojanavanich et al. described that the isoflavones 371 and 373 isolated from the plant Butea superb, showed moderate cytotoxic activity on KB cell lines with IC50 (μM) values of 37.3 ± 2.5 and 71.1 ± 0.8 and on breast cancer (BC) cell lines with IC50 (μM) values of 32.7 ± 1.5 and 47.3 ± 0.3, respectively [100]. The cytotoxicities of the prenylated flavonoids 383,

557-558 and 852, against four human cancer cell lines, A375S2, HeLa, MCF-7 and HepG2, were assessed using 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) protocol by Li et al. [225], among the flavonoids, 558 showed the strongest cytotoxic activity with IC50 value of 7.8 μM against A375S2 cell line. The isoflavone 412, isolated from the root barks of Brosimum utile, exhibited moderate cytotoxic activity against cell lines MCF7 (human breast carcinoma), PC3 (human prostate carcinoma), HT29 (human colon cancer) and human dermis fibroblasts [94]. From fibroblasts [94]. From the dried roots of Campylotropis hirtella, five novel isoflavonoids 439-441 and 467-468 were isolated by Shou et al. [371]; all of the flavonoids 439-441 and 467-468 were investigated for their cytotoxic activity on splenic lymphocytes in vitro; the results are summarized in Table 5. The flavonoid 459, isolated from root bark of Berchemia discolor, showed cytotoxicity against three human cancer cell lines Lu1, LNCaP, and MCF-7 with ED50 9.6, 6.4 and 3.6 μg/mL [28]. The flavanone 503, isolated from Macaranga tanarius, showed weak cytotoxic activity against human breast cancer and the Vero cell lines with IC50 values of 6.5 μg/mL and 19.5 μg/mL, respectively [198]. Kawakami et al. reported that macaflavanone G (510), the prenylated flavonoid constituent of Macaranga tanarius, showed cytotoxic activity against the KB and A549 cell lines and was found to be the most potent against both of KB and A549 cell lines with IC50 values of 12.3 ± 3.0 and 13.4 ± 2.1 μM, respectively [212]. The flavonoid 544 showed moderate to weak cytotoxic activity against KB, BC and NCI-

Table 5. Cytotoxicities of flavonoid compounds 439 -441 and 467-768

Compounds Cytotoxicity CC50 (μM)

439 211.63 ± 9.65 440 78.32 ± 4.31 441 115.03 ± 17.42 467 69.95 ± 0.52 468 45.34 ± 1.96 CsA 0.88 ± 0.09

CsA: Cyclosporin A as positive control

Page 66: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

130

H187 cells (IC50 6.26-14.64 μg/mL), whereas compound 545 exhibited only weak activity against KB cells (IC50 15.07μg/mL) [233]. Three flavanones 588-590 isolated from Schizolaena hystrix were found to exhibit weak cytotoxic activity against the A2780 human ovarian cancer cell line with IC50 values ranging from 5.5 to 12 μg/mL as determind by Murphy et al. [129]. The flavonoids (604, 719-720) constituents of the leaves of Muntingia calabura showed cytotoxic activities against P-388 and HT-29 cell lines in vitro [107]. A new flavanone glycoside, ( ) (2S)-5,6,7,3',5'-pentahydroxyflavanone-7-O-β-D-glucopyranoside (606), was isolated from the stems of Lippia graveolens and was found to exhibit weak cytotoxic activity against HCT-15, MCF-7, U251, PC-3 and K562 cell lines as assessed by Gonza´lez- Gue¨reca et al. [403]. Wirasathien et al. reported that the chalcone 642 of Ellipeiopsis cherrevensis showed cytotoxic activity against human small-cell lung-cancer (NCI-H187), epidermoid carcinoma (KB) and breast cancer (BC) cell lines with IC50 values of 1.40, 5.31 and 13.92 μg/mL, respectively [161]. Two prenylchalcones 656 and 657, isolated by Wang et al. from hops of Humulus lupulus, showed marginal cytotoxic activity against human stomach carcinoma BGC-823 and human hepatic carcinoma HepG2 cells [257]. The chalcones 673-676, isolated from stem bark of the plant Erythrina abyssinica, were found to exhibit cytotoxic activity against the human colorectal cancer cell line (Caco2). The compounds 673, 675 and 676 showed moderate activity with IC50 values of 13.3, 15.1, and 11.1 μM, respectively, while compound 674 showed very weak activity (IC50 > 30μM) [168]. The prenylated chalcone 699, isolated by Lee et al. from the roots of Sophora flavescens, was found to exhibit potent cytotoxic activities against three cell lines, human acute promyelocytic (HL60), mouse lymphocytic (L1210), and human histiocytic (U937) leukemia cells in a dose-dependent manner [165]. Chinese researchers, Yang et al., found two new chalcone derivatives, morachalcones B (706) and C (707) from the leaves of Morus alba [348]; the cytotoxicity of

the compounds were evaluated in vitro using the MTT method. Compound 706 exhibited cytotoxicity against BGC823 and HCT-8 cell lines with IC50 values of 5.7 and 6.4 μg/mL, while compound 707 with the IC50 values of 8.3 and 9.4 μg/mL, respectively [348]. Two prenylcalcones, ( )-krachaizin B (732) and ()-krachaizin B (733), from the rhizomes of Boesenbergia rotunda, were found to show cytotoxic activity on tumor necrosis factor-α (TNF-α)-induced L929 cells with IC50 30 and 15μM, respectively, which were stronger than those of piperine (52 μM) and silybin (41 μM) [141]. Sarcandracoumarin (760), the first coumarin having a 1-phenylethyl substituent at the C-3 position, was isolated by Feng et al. from the water extract of whole plant of Sarcandra glabra [343]. In evaluation for cytotoxicity using MTT method, compound 760 exhibited weak activity against HepG2 (IC50 196.7 μg/mL) and human pulmonary carcinoma (IC50 158.0 μg/mL) and moderate activity against HeLa (IC50 49.3 μg/mL) and A549 (IC50 76.4 μg/mL) [343]. Three 4-phenylcoumarins 761-763, isolated from leaves of Marila pluricostata, were found to exhibit potent cytotoxic activities against three human cancer cell lines, MCF-7, H-460, and SF-268 with IC50 values in the range 3.4-7.8 μg/mL [114]. Musthapa et al. reported that a new oxepinoflavone, artoindonesianin E1 (866), was isolated from the wood of Artocarpus elasticus, showed moderate cytotoxicity with IC50 5.0 μg/mL [360]. A comparison of the cytotoxic properties of compound 866 to those of other known compounds having IC50 3.9 μg/mL and IC50 2.0 μg/mL, suggested that the presence of the 2-hydroxyprop-2-yl group at C-10 of the oxepin ring (ring D) could be important for cytotoxicity against P-388 cells. Replacing this group with a propen-2-yl group (as in 866) reduces the cytotoxic properties [360]. 3.4 Enzyme inhibitory activity Flavonoids are known to possess inhibitory activity against a number of enzymes such as aldose reductase, xanthine oxidase,

Page 67: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

131

phosphodiesterase, Ca+2-ATPase, lipo-oxygenase and cycloxygenase. Xanthine oxidase (XO) is a key enzyme that catalyzes the oxidation of xanthine and hypoxanthine and plays vital role in producing hyperuricemia and gout. The flavone glycoside 10 isolated from flowers of Chrysanthemum sinense, showed significant xanthine oxidase (XO) inhibitory activity in a concentration-dependent manner with IC50 value of 80.3 μM [75]. Jiao et al. also reported that the flavonoid glycoside 17 of Palhinhaea cernua was substantially active against the xanthine oxidase enzyme with an IC50 value of 23.95 ± 0.43 μM, comparable to that of the positive control allopurinol with IC50 value of 9.82 ± 0.18 μM, a drug clinically prescribed for the treatment of gout [42]. The flavones 28 and 29 isolated from Pterogyne nitens, shows moderate myeloperoxidase (MPO) inhibitory activity [89]. The flavone luteolin 6-C-6′′-O-trans-caffeoylglucoside (38) isolated from Phyllostachys nigra exhibited Aldose reductase (ALR2) and advanced glycation endproducts (AGEs) inhibitory effects; hence this compound warrants for its further study to explore it efficacy as a ‘lead’ in drug discovery programme to alleviate diabetic complications [82]. Pterogynoside (228), a kaempferol derivative, isolated from fruits of Pterogyne nitens was found to exhibit moderate myeloperoxidase (MPO) enzyme inhibitory activity with IC50 value of 10.3 ± 0.03 nM [306]. The investigators suggested that the B-ring oxygenated pattern play a key role for higher MPO inhibitory activity. The compound 228, which is a kaempferol derivative, having a monohydroxy phenolic B-ring showed moderate inhibitory activity (IC50 10.3 ± 0.03 nM) than the positive control quercetin (IC50 1.22 ± 0.01 nM) [306]. Nugroho and his group isolated two new flavonol glycosides 240 and 241 from Lamium amplexicaule; both of them exihibited in vitro enzyme inhibitory activity tyrosinase inhibition assays [303]. Quercetin glycoside 241 exhibited stronger activity against tyrosinase than kaempferol glycoside 240. EC50 value of compounds 240 and 241 were determined as 193.5 ± 3.6, and 146.2 ± 4.3 μg/mL, respectively.

The activity of quercetin glycoside 241 with one more hydroxy group in its B-ring was found to be the more potent than kaempferol derivative 240 with one less hydroxy group [303]. It has been also reported that a higher number of hydroxy groups in the benzene ring may play a critical role in exerting the inhibitory effect on tyrosinase [139]. Tabopda et al. isolated six unusual C-4′-prenylated flavonols, dorsilurins F-K (261-266), from the roots of Dorstenia psilurus; the isolates were found to exhibit glycosidase enzyme inhibitory activity against α-glucosidase, β-glucosidase, and α-mannosidase. Compound 261, with three unmodified prenyl groups, showed the best α-glucosidase inhibitory activity (IC50 4.13 μM), while compound 266, with only one unmodified prenyl group, showed the least α-glucosidase inhibitory activity (IC50 43.95 μM). Hence, the investigators suggested that α-glucosidase inhibitory activity of the compounds increased with the number of unmodified prenylated groups present [213]. These compounds (261-266) showed very weak enzyme inhibitory activities against β-glucosidase and α-mannosidase [213]. Zhou et al. reported an acetyl flavonol 272 from the plant Nervilia fordii, and this flavonol was found to show potent nitric oxide synthase (NOS) inhibitory activity in RAW264.7 stimulated by lipopolysaccharide (LPS) with an IC50 value of 16.79 μM [238]. Two dihydroflavonol glycosides 314 and 315, isolated from the leaves of Stelechocarpus cauliflorus, showed aldose reductase enzyme inhibitory activity; the activity of compound 314 against recombinant human aldose reductase (IC50 1.16 μM) was twice that of quercetin as a positive control (IC50 2.48 μM), and 23 times greater than that of the compound 315 with IC50 value of 26.7 μM [124]. 3-Hydroxy-kenusanone B (323), a new prenylated dihydroflavonol, isolated from the rhizomes of Echinosophora koreensis by Choi et al. showed around two-fold increased activation of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzyme than a negative control [357]; the experimental results suggested that prenylated flavonoids may have the potential to prevent ‘hangovers’ after alcohol intake [357]. The phytochemical study of the

Page 68: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

132

whole plant of Derris scandens resulted in the isolation of a new isoflavone derivative, scandinone A (374), which was found to exhibit intestinal α-glucosidase inhibitory activity with an IC50 value 113.91 μM [394]. Jang et al. reported that the three prenylated flavonoids 375, 469 and 549, isolated from the root of Erythrina mildbraedii, inhibit the activity of protein tyrosine phosphatase 1B (PTP1B) enzyme in vitro with IC50 values ranging from 5.3 to 42.6 μM; it appeared that the prenyl group on the B ring of flavonoids plays an important role in suppressing the enzyme PTP1B [101]. Yuan et al. reported that two isoflavone glycosides 403 and 404 from the flowers of Pueraria thomsonii, substantially inhibited the lipopolysaccharide-induced nitric oxide release from primary cultured rat cortical microglia. With regard to the structure–activity relationships of the isoflavonoids for the inhibition of microglial activation, the glycosylation at the C-7 hydroxy group reduced the inhibitory activity; the methoxylation of 4′-hydroxyl group of 7-glycosylated isoflavonoids reduced the inhibitory activity, while the methoxyl group at the 6-position enhanced the activity [236]. Glycitein-4'-Ο-β-D-glucoside 410, a new isoflavone glycoside, isolated from the stem bark of Sophora japonica, was evaluated to its inhibitory efficacy against rat lens aldose reducatase and found to have such mild inhibitory activity with an IC50 value of 19.4 μM [364]. Two prenylated isoflavones 414 and 415, isolated from the fruits of Cudrania tricuspidata, were found to show inhibitory effects of lipopolysaccaride (LPS)-induced NO production in murine macrophage RAW 264.7 cells with IC50 values 11.8 ± 0.28 and 12.1 ± 0.21 μM, respectively. Results revealed that the fruits of C. tricuspidata may be useful for the treatment of inflammatory diseases caused by excessive production of NO as described by Han et al. [215]. Cui et al. reported three prenylated flavanones 533-535, isolated from stem bark of Erythrina abyssinica, which showed inhibitory activity against PTP1B in a dose-dependent manner with IC50 values >60, 18.9 ± 1.9 and 15.7 ± 0.4 μM, respectively. From the experimental

results the flavanone 533 fused as the 2,2-dimethylpyran moiety on the B ring exhibited a significantly lower PTP1B inhibitory activity (IC50 >60 μM) than the other two flavonoids 534 and 535. Cui et al. suggested that substitution of prenyl groups on flavonoids might be important for in vitro PTP1B inhibitory activity, and cyclization between a hydroxy group and the prenyl group in the B ring might increase the inhibitory activity [138]. Two isoprenyl flavonoids 547 and 677, isolated from the root barks of Erythrina mildbraedii, were found to exhibit inhibitory activity against PTP1B enzyme in a dose-dependent manner with IC50 values 21.2 ± 1.6 and 14.8 ± 1.1 μM, respectively. Na et al. suggested that substitution of isoprenyl groups on the B ring might be important for PTP1B inhibitory activity in vitro, and introduction of one more hydroxy group to C-5 of the A ring or one of the isoprenyl groups in the B ring might be responsible for a loss of such activity [29]. Three flavonoid compounds 667, 826 and 827 from Dalbergia sissoo were found to exhibit significant activity against nitric oxide production by LPS-stimulated macrophage like J774.1 cells in a concentration dependent manner. The flavonoids 667 and 827 were found to be the most potent NO production inhibitors with IC50 values of 6.22 and 3.19 μM, respectively, and compound 826 was measured to have an IC50 value of 31.6 μM as reported by Shrestha et al. [36]. Han et al. reported that the prenylated chalcone, 3′′,3′′-dimethylpyrano[3′,4′] 2,4,2′-trihydroxychalcone (702) isolated from the heartwood of Artocarpus communis exhibits potent inhibitory activity on nitric oxide production in RAW264.7 LPS-activated macrophage cells with IC50 value of 18.8 μM [187]. Two prenylated dihydrochalcone constituents 717 and 718 from Boronia bipinnata were found to inhibit malarial parasite enzyme target hemoglobinase II with IC50 values of 64 and 51 μM, respectively [211]. The prenylcalcones, (+)-krachaizin B (732) and (─)-krachaizin B (733), isolated from rhizomes of Boesenbergia rotunda exerted strong inhibitory effects on aminopeptidase N (APN) activity (>50% inhibition at 30 μM), which were stronger

Page 69: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

133

than that of positive control curcumin with 31.9 ± 1.6 % of inhibition at 30 μM [141]. The 2,3-dioxygenated flavanone, erigeroflavanone (808), isolated from the flowers of Erigeron annuus by Yoo et al., was found to show weak inhibitory activity against rat lens aldose reductase enzyme with IC50 value 46.9 μM [207]. Machiphilitannins A (819) and B (820) the two A-type oligomers isolated from the EtOH extract of the leaves of Machilus philippinensis were found to exhibit enzyme inhibitory activity against α-glucosidase type IV from Bacillus stearothermophilus, with IC50 values of 31.3 and 18.4 μM, respectively [409]. For the A-type oligomers with the same branch linkage at the unit II C-6, the more epicatechin units there are in the branch part, the better the inhibitory activity appears to be, i.e., 820 > 819 (IC50 18.4 vs 31.3 μM). Such structure-activity relationship for the A-type oligomeric proanthocyanidins will be useful as a reference for the development of α-glucosidase inhibitors for blood glucose control in diabetic patients [409]. Kosar and his group isolated three new homoisoflavone glucosides, Purunusides A-C (890-892), from n-butanol soluble fractions of cold ethanol extract of Prunus domestica, it was also found that the compounds 890-892 showed potent inhibitory activity against the enzyme α-glucosidase with IC50 values of 216.6 ± 0.027, 268.4 ± 0.047, and 203.6 ± 1.7 μM, respectively, comparism with positive control deoxynojirimycin (IC50 281.3 ± 2.8 μM) [361]. The enhanced activity is obviously due to the presence of glucose moiety at C-4' of the homoisoflavone skeleton. Although the activities were comparable but the compound 892 was the most potent and it might be attributed to 4-hydroxy phenyl ester moiety which probably acts as a pharmacophoric group [361]. 3.5 Anti-inflammatory activity Itoside-N (31), a rarely reported naturally occurring flavone glycoside truxinate ester, isolated from Itoa orientalis, showed significant anti-inflammatory activity against cyclooxygenase-2 (COX-2) with inhibitory rate of 67.3 % at 10 μM concentration [209]. Two

novel chemical entities 39 and 40, isolated from the whole plants of Pogonatherum crinitum, also inhibited NO production in activated RAW 264.7 cells to various degrees without affecting the cellular viability; Both of these compounds suppressed LPS-induced NO production, with Emax values of 99.51 ± 0.23% and 92.41 ± 3.22%, respectively [284]. Three flavonoid glycoside constituents 44-46 of Dracocephalum peregrinum exhibited anti-inflammatory activity against NO and nuclear factor (NF)-κB activity on RAW 264.7 and pNF-κB-luc-293 cells; the flavonoid 44 showed good inhibitory activities on nitric oxide (NO) production induced by LPS at doses of 100 μg/mL, and 50 μg/mL (% inhibition 56 and 18, respectively), while the compounds 45 and 46 were found to possess weak such efficacy against NF-κB activity at dose of 100 μg/mL (% inhibition 27 and 38, respectively) as reported by Fu et al. [222]. Dongmo et al. [53] evaluated that the flavonoids 69 and 259 of the leaves of Acacia pennata possess anti-inflammatory activity as assesed against cyclooxygenase enzymes (COX-1/2); the flavonoid 259 with a 3′,4′-subtitution in ring B with a glycosylation at the C-3 position was foun to be the most potent inhibitor of COX-1 (IC50 11.6 μg/mL), whereas flavonoid 69 was inactive. But both the flavonoids 69 and 259 showed weak activity against COX-2 [53]. Hence, 259 may serve as useful lead in anti-inflammatory drug discovery processes. The flavone, yunanensol A (74), isolated from stem bark of Morus yunanensis, showed potent anti-inflammatory activity via inhibiting the release of β-glucuronidase from rat PMNs induced by PAF by 93.6% at concentration of 10–5 mol/L [73]. An acylated C-glycosylflavone 97 from Trollius ledebouri was reported to exhibit significant anti-inflammatory effects on TPA-induced ear edema with inhibitory rate of 58.6% [245]. Chung et al. also reported a number of flavonol glycosides 168-169 and 481-482 that showed significant anti-inflammatory activity as assessed in proteolytic enzyme matrix metalloproteinases (MMP-9) assay [217]. The isolated flavonol glycoside 214 from leaves of Alchornea floribunda was also evaluated for anti-inflammatory activity against egg albumen-induced rat paw oedema. The compound exhibited a significant and dose dependent

Page 70: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

134

inhibition of rat paw oedema with inhibitory rate of 51.4% at 50 mg/kg concentration, which is higher than that of the standard anti-inflammatory drug, aspirin (% inhibition 45.9 at 100 mg/kg concentration) [389]. A rare flavonol glycoside 251, isolated from Tephrosia spinosa, was found to exhibit significant anti-inflammatory activity against carrageenin induced paw edema when compared to the standard drug indomethacin [112]. Yen et al. reported that the flavonol, morin-3-O-α-rhamnopyranoside (282), isolated from Muehlenbeckia platyclada, was found to exhibit anti-inflammatory activity by inhibiting neutrophil elastase release with IC50 value of 3.82 ± 0.80 μg/mL and was 15-fold more potent than phenylmethylsulfonyl fluoride (PMSF), the positive control used [224]. Kaempferol glycoside palmatosides A (287) from the roots of the fern Neocheiropteris palmatopedata exhibited anti-inflammatory activity against COX-1 with inhibitory rate of 52% at 10 μg/mL concentrations [355]. Conferols A (451) and B (452), two 4-hydroxyisoflavones were isolated from Caragana conferta, and both the compounds showed significant anti-inflammatory activity in the respiratory burst assay with % inhibition 78.147 and 89.256 respectively as reported by Khan et al. [228]. Three new 4-hydroxyisoflavans lyratin A (472), lyratin B (473) and lyratin C (474) isolated from the whole plant of Solanum lyratum showed in vitro anti-inflammatory activities by inhibiting the release of β-glucuronidase from polymorphonuclear leukocytes of rats in the range of 30.3 38.6% at 10mM [320]. Yadava et al. reported that the flavanone glycoside 489 of Echinops echinatus also showed anti-inflammatory activity [143]. A new flavanone glycoside, ()(2S)-5,6,7,3',5'-pentahydroxyflavanone-7-O-β-D-glucopyranoside (606) isolated from the stems of Lippia graveolens, was found to exhibit weak anti-inflammatory activity against TPA-induced oedema model as assessed by Gonza´lez- Gue¨reca et al. [403]. Kuo and his group isolated three new flavonone glycosides, visartiside A-C (607-609) from Viscum articulatum [337]; all these compounds were evaluated for their anti-inflammatory activities using RAW264.7 cells supplemented with lipopolysaccharide (LPS) to induce cell inflammation and cause nitrite

accumulation in the medium. The investigators reported that all the tested flavonone compounds 607, 608, and 609 markedly inhibited NO production in macrophages with IC50 values of 15.6 μM, 25.1 μM, and 14.9 μM, respectively compared with quercetin (IC50 32.1 μM) as positive control [337]. 3.6 Antimicrobial activity Flavonoids exhibit a variety of antimicrobial activities. Brahmachari and his group [412] isolated two new flavones 106b and 106c from the aerial parts and roots of Limnophila indica; 106b was evalauated for its antimicrobial efficacy aganst a broad spectrum of microbial strains such as Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Alternaria solani, and Candida albicans [413]. The flavone showed moderate to weak inhibitory activity against the bacteria B. subtilis and S. typhimurium with minimum inhibitory concentrations (MICs) 300 and 500 μg/mL, respectivety, and was inactive against S. aureus and E. coli. Compound 106b was also found to possess a considerable inhibitory potential against the human pathogenic yeast C. albicans (MIC 225 μg/mL), however no activity against the fungus A. solani [413]. Three flavonoids 194, 195 and 810 isolates from leaf of Piliostigma reticulatum were found to show antimicrobial acivity against four bacterial strains (S. aureus, B. subtilis, E. coli and Proteus vulgaris) and two fungal strains (Aspergillus niger and C. albicans) [309], among them piliostigmol (810) exhibited the highest activity against E. coli with MIC value of 2.57 μg/mL, 3-fold more potent than amoxicillin used as standard [309]. The acylated flavonol glycoside 306 isolated from Waltheria indica was also reported to have anti-bacterial potential [120]. Flavonoids 335, 336 and 497 from aerial parts of Eriophorum scheuchzeri were reported to exhibit antifungal activity against Candida cucumerinum and C. albicans starins [199]; compounds 335 and 497 showed activity against C. albicans both at 5 and 10 μg concentrations, while 336 had no activity agaist C. albicans but showed the highest efficacy among the tested compounds against C.

Page 71: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

135

cucumerinum only at 1 μg dose [199]. Yao-Kouassi et al. reported that the isoflavonoid glycosides 338 and 339 possess moderate activity against the bacterial strains S. aureus, Enterococcus faecalis, E. coli, and Pseudomonas aeruginosa; however the compound 340 showed some what mild activity [214]. Antimicrobial activities of the isoflavones 347-348 and of the flavonone 516 were tested against a number of microbes, namely E. coli, S. aurones, B. subtilis and C. mycoderma [90]. All the tested compounds were found to show less activity against Gram-negative bacteria than those against both the Gram-positive bacteria and fungi [90]. Semwal et al. [281] reported three new flavonoid glycosides such as isoflavone 3',4',5,6-tetrahydroxy-7-O-{β-D- glucopyranosyl-(1 3)-α-L-rhamnopyranoside} (424), isoflavone-3',4′,5, 6-tetra-hydroxy-7-O-{β-D-glucopyranosyl-(1 6)-β-D-glucopyranosyl-(1 6)-β-D-glucopyranosyl (1 3)-α-L-rhamnopyranoside} (425) and chalcone-6'-hydroxy-2',3,4-trimethoxy-4'-O-β-D-glucopyranoside (729), from the leaves of Boehmeria rugulosa; all of these compounds 424, 425 and 729 showed significant anti-microbial activity against two bacterial strains (S. aureus and Streptococcus mutans) and three fungal pathogens (Microsporum gypseum, M. canis, and Trichophyton rubrum) in comparison with standard antimicrobial drugs novobiocin and erythromycin shown in Table 6 [281]. The microorganisms, E. coli, S. epidermidis, K. pneumoniae, A. niger, A. fumigates, and Penicillium citrinum, remained unaffected by the tested compounds 424, 425 and 729 [281]. The isoflavanone 443, isolated from stems of Erythrina costaricensis, a small tree with

brilliant red flowers, exhibited a moderate anti-bacterial activity against methicillin-resistant S. aureus (MRSA) with MIC50 value of 25μg/mL, while the 442 from the same plant, failed to inhibit the growth of MRSA strains upto the concentration of 50 μg/mL [268]. Dhooghe et al. [358] isolated six new flavonoid compounds (453, 882-886) from Ormocarpum kirkii and tested them for their biological activities in vitro in an integrated antimicrobial screening panel including Trypanosoma cruzi, Leishmania infantum, T. brucei, chloroquine-resistant Plasmodium falciparum K1, S. aureus, C. albicans, Trichophyton rubrum, and Aspergillus fumigatus. The cytotoxicity was evaluated using MRC-5 cells. The isoflavanone 453 showed a non-selective activity against S. aureus (IC50 6.4 ± 3.1 μM) and T. rubrum (IC50 6.0 ± 2.1 μM), while the compound 882 exhibited moderate but non-selective activity and also found to be cytotoxic. Compound 883 was selectively active against T. rubrum (IC50 7.0 ± 6.4 μM) with only low cytotoxicity (CC50 50.2 ± 16.3 μM). For compound 884, an IC50 of 19.5 ± 13.9 μM was observed only against T. rubrum. 5,5''-Di-O-methyldiphysin (885) was not selective and showed moderate activity against almost all of ther bacteria strains tested, a high cytotoxicity (CC50 11.7 ± 6.2 μM). In contrast, no activity was observed for the mono-glucosylated diphysin derivative 886 as reported by Dhooghe’s groups [358]. Two isoflavanones, 5,7-dihydroxy-2'-methoxy-3',4'-methylenedioxyisoflavanone (454) and 4',5-dihydroxy-2',3'-dimethoxy-7-(5-hydroxy- oxychromen-7yl)-isoflavanone (455) were isolated from the roots of Uraria picta [302]; the

Table 6. Minimum inhibitory concentration (MIC) of the tested compounds 424, 425 and 729 against the micro-organisms comparing with reference standard.

Test micro-organisms

424 ± SD 425 ± SD 729 ± SD Novobiocin ± SD

Erythromycin ± SD

S. aureus 18 ± 2 20 ± 2 21 ± 2 21 ± 2 NT S. mutans 13 ± 4 17 ± 4 25 ± 4 22 ± 2 NT M. gypseum 11 ± 3 11 ± 2 06 ± 1 NT 15 ± 2 M. canis 15 ± 4 18 ± 3 21 ± 4 NT 18 ± 3 T. rubrum 17 ± 2 17 ± 2 23 ± 3 NT 20 ± 3

Notes: SD, standard deviation; NT, not tested.

Page 72: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

136

investigators carried out antimicrobial screening of these isolates along with six known compounds including isofavones, terpenes and steroids against two Gram-positive bacteria (S. aureus and B. subtilis), two Gram-negative bacteria (E. coli and Proteus vulgaris) and two fungi (A. niger and C. albicans) -- the new isoflavanones 454 and 455 were found to be the most active against S. aureus. In molar concentration, the order of activity against S. aureus was 455>454>known compounds [302]. In case of E. coli, the sequence of relative potencies of the compounds was known compounds>455>454 and but against human pathogen C. albicans, the order of activity of the compound was shown known isoflavonones> 455>known terpenes>454. The sequence was almost the same for A. niger [302]. The isoflavan hildegardiol (475) isolated from the root extract of Hildegardia barteri was assessed to have moderate anti-fungal activity against a variety of Candida species [202]. Smejkal et al. reported that four new antibacterial C-geranylflavonoids (593-596) from Paulownia tomentosa Fruits. The investigetors determined antibacterial activity of these four compounds against six bacterial strains such as B. cereus, B. subtilis, Enterococcus faecalis, Listeria monocytogenes, S. aureus and S. epidermidis. The investigetors found that compound 593 showed moderate activity, inhibiting only four (Viz. B. cereus, Listeria monocytogenes, S. aureus and S. epidermidis) out of six Gram-positive bacteria with MIC values in the range 16–32 μg/mL. While other three compounds 594-596 were active against all Gram positive bacteria, found with MIC ranging from 2 to 4 μg/ mL. Smejkal et al. also suggested that the presence of 3′-methoxy-4′,5′-dihydroxy and 3′,5′-methoxy-4-hydroxy substitution at ring B of flavonoids increases antibacterial activity on the basic of their study. They also suggested that this is due to the increase in planarity of the flavonoid molecules [206]. Acetylated flavanone glycosides 598-603, from the rhizomes of Cyclosorus acuminatus, showed weak inhibitory activity against S. aureus and E. coli and moderate activity against S. pneumoniae and Haemophilus influenzae with MIC values in the

range of 31-128 μg/mL as reported by Fang et al. [146]. Wirasathien et al. reported that the chalcone 642 isolated from Ellipeiopsis cherrevensis, exhibited antimicrobacterial activity against Mycobacterium tuberculosis with a MIC of 25 mg/mL [161]. Helichrysone A (647), helichrysone B (648) and helichrysone C (493), the three flavonoid isolates of Helichrysum forskahlii, were assessed for anti-bacterial efficacy by Al-Rehaily et al. [285]. Among them, only the chalcone 647 exhibited weak activity against B. subtilis and S. aureus, respectively with MIC values of 100 μg/mL [285]. Lall et al. reported that two chalcone derivative 649 and 650, isolated from Helichrysum melanacme, possess anti-tuberculous activity with MIC value of 0.05 mg/mL for both of them [164]. Chokchaisiri et al. reported that the compound, dihydromonospermoside (666) isolated from the flowers of Butea monosperma, possess antimycobacterial activity with MIC value 50 μg/mL [229]. The chalcones 669 and 670 are found to be antifungal; the later compound 670 is fungicidal rather than fungistatic in nature [167]. The sesquiterpene coumarin (740), isolated from Ferula sinaica, showed strong anti-bacterial activity against Gram-positive strain, particularly B. cereus [184]. A new coumarin compound, pavietin 780, has been isolated from the ethanol extract of Aesculus pavia, which was found to be as lead compound for fungal protection of its source. The investigators suggested that the isolated compound 780 was found to be selective antifungal agent against Guignardia aesculi [204]. The coumaroyl glycoside, asphodelin A 4′-O-β-D-glucoside (783), isolated from Asphodelus microcarpus exhibited moderate antibacterial activity against S. aureus, E. coli and Pseudomonas aeruginosa and low antifungal activity against C. albicans and Botrytis cinerea [182]. Das et al. [300] isolated homoisoflavonoid 809 from aerial parts of the plant Caesalpinia pulcherrima; the compound 809 showed moderate activity with inhibition zone masured in 5-10 mm against the Gram-positive organisms, B. subtilis, B. sphaericus and S. aureus. The antifungal activity of 809 was also found to be moderate against the organisms, A. niger and C.

Page 73: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

137

albicans, but it was inactive against Rhyzopus oryzae [300]. Chemical investigation of the methanolic extract of the leaflets of Cycas circinalis led to the isolation of one new biflavonoid 815, which showed moderate antibacterial activity against S. aureus (IC50 value of 3.9 μM) and methicillin-resistant S. aureus (MRSA; IC50 value of 5.9 μM) as assessed by Moawad et al. [370]. 3.7 Anti-viral activity Cao et al. [338] isolated three flavonoid compounds 108-110 from Selaginella moellendorffii, of which 109 and 110 displayed in vitro inhibitory activity on hepatitis B virus (HBV) surface antigen (HBsAg) secretion of the HepG 2.2.15 cell line with IC50 values of 0.17 mg/mL and 0.46 mg/mL, and on HBVe antigen (HBeAg) secretion with IC50 values of 0.42 mg/mL and 0.42 mg/mL, respectively [338]. Two flavan derivatives 139 and 140 were isolated from Pithecellobium clypearia also were reported to show antiviral activity; cytopathic effect (CPE) reduction assay revealed that both of the compounds 139 and 140 possess antiviral activity against a number of viral strains such as respiratory syncytial virus (RSV), influenza A (H1N1) virus, Coxsackie B3 (Cox B3) virus and Herpes simplex virus type 1 (HSV-1) with respective IC50 values of 5, 15.7, 12.5 and 30 μg/mL for compound 139 and 10, 30, 25 and 20 μg/mL for compound 140 [189]. Two chalcones 649 and 650 constituents of Helichrysum melanacme were evaluated to have inhibitory activity against the replication of influenza A virus with an equal IC50 value of 0.1 mg/mL for both of the compounds [164]. 3.8. Anti-HIV activity Feng and his group [326] isolated three new prenylated flavonoids 102-104 from the stem barks of Poncirus trifoliate and evaluated for their anti-human immunodeficiency virus-1 (HIV-1) activity; compound 103 showed significant anti-HIV-1 activity (EC50, 0.35 μg/mL; CC50, 50.28 μg/mL) with high therapeutic index (TI) of 143.65. Reutrakul et al.

[50] isolated four bioactive flavonoids 269-270 and 324-325 from Ochna integerrima, which showed strong HIV-1 activities in the syncytium assay using the MC99 virus and the 1A2 cell line system with EC50 values ranging from 14.0102.4 μg/mL; the investigators also suggested that the flavonoids 269-270 and 324-325 with an isoprenyl and sugar groups on ring A showed significant anti-HIV activity [50]. Two flavan-chalcone dimers 811 and 812, isolated from whole plants of Sarcandra hainanensis, were found to exhibit weak HIV-1 integrase inhibitory activity with IC50 at 18.05 and 25.27 μM, respectively [232]. Ophioglonin (876), a homoflavonoid isolated from the plant Ophioglossum petiolatum, showed slight anti-hepatitis B virus (HBV) surface antigen secretion at 25 μM using the MS-G2 hepatoma cell line as reported by Lin et al. [195]. 3.9 Anti-leishmaniasis activity Salem and Werbovetz reported that the isoflavone 358 isolated from Psorothamnus arborescens displayed leishmanicidal activity with IC50 value of 13.0 μM against Leishmania donovani axenic amastigotes [166]. The chalcone 668 also exhibited leishmanicidal (IC50 7.5 μg/mL) and trypanocidal (IC50 6.8 μg/mL) properties [153]; furthermore, it was found to reduce the number of infected macrophages by at least 96% with no toxicity to the host cell treated with Leishmania mexicana-preinfected macrophages. Mbwambo et al. observed that the biflavanoid 813 isolated from Garcinia livingstonei possesses mild inhibitory activity against P. falciparum with IC50 value 6.0 μM [186]. 3.10 Antiplasmodial activity Two new prenylated flavonoids, styracifolins A (71) and B (72), isolated from the stem bark of Artocarpus styracifolius (Moraceae), exhibited antiplasmodial activity against chloroquine-resistant strain of Plasmodium falciparum; the compound 72 showed relatively stronger activity with IC50 value 1.12 ± 0.08 μM than compound 71 (IC50 5.7 ± 0.8 μM) [373]. Dhooghe and his group evaluated in vitro antiplasmodial activity

Page 74: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

138

of six new flavonoid constituents (453, 882-886) of Ormocarpum kirkii in an integrated antiparasitic screening panel including Trypanosoma cruzi, Leishmania infantum, Trypanosoma brucei, chloroquine-resistant Plasmodium falciparum K1, Staphylococcus aureus, Candida albicans, Trichophyton rubrum, and Aspergillus fumigatus [358]. The isoflavanone 453 showed a non-selective activity against S. aureus (IC50 6.4 ± 3.1 μM) and T. rubrum (IC50 6.0 ± 2.1 μM), while compound 882 showed moderate but non-selective activity and it was also cytotoxic to MRC-5 cells. Compound 883 was found to be selectively against T. rubrum (IC50 7.0 ± 6.4 μM) with only low cytotoxicity (CC50 50.2 ± 16.3 μM). Compound 884 was found to be active only against T. rubrum with an IC50 of 19.5 ± 13.9 μM. However, 5,5''-Di-O-methyldiphysin (885) showed moderate activity against almost all parasites non-selectively with a high cytotoxicity (CC50 11.7 ± 6.2 μM); in contrast, no activity was observed for the mono-glucosylated diphysin 886 [358]. A chalcone 642, isolated from Ellipeiopsis cherrevensis, was found to show antimalarial activity against P. falciparum with an IC50 value of 7.1 μg/mL [161]. Four new dihydrochalcones 710-713 isoalted from the leaves of Piper hostmannianu were assessed against both chloroquine-resistant (FcB1) and chloroquine-sensitive (F32) strains of P. falciparum by Portet and his group [332]; the compounds 710-713 exhibited antiplasmodial activity with IC50 values in the range of 60.67 125.23 μM for FcB1 strains and 55.44 101.27 μM for F32 strains of the parasite. IC50 values of the compounds (710-713) for cytotoxicity against MCF7 humen cells were found to show in the range 207.12242.64 μM [332]. 3.11 Proliferative activity The flavonol constituent 215 from Euphorbia lunulata showed in vitro proliferative activity against insulin-dependent cell lines (BAF/InsR and BAF/IL10R), and the promising results indiacted that the test compound may be the seed compound for the development of a nonpeptidyl insulin substitutional medicine [12]. Wang et al.

[55] reported that two flavonoids 286 and 580, isolated from the rhizomes of Drynaria fortune, also possess the proliferative effects on UMR106 cells; the flavonoid 286 potently stimulated the proliferation of UMR106 cells by 35.9% and 42.6% at concentrations of 10–8 M and 10–6 M, respectively, and the efficacy was found to be that of 580. 3.12 Anti-diabetic activity A flavone xylopyranoside, 4',5-Dihyroxy-6,7-dimethoxyflavone-3-O-β-D-xylopyranoside (23), isolated from the roots of Euphorbia leucophylla, was found to have significant blood glucose lowering efficacy thereby enhancing the serum insulin levels in normal and diabetic rats [78]. The flavone luteolin 6-C-(6′′-O-trans-caffeoylglucoside) (38) isolated from Phyllostachys nigra showed advanced glycation end products (AGEs) inhibitory effects. As a result, this compound could be offered as a lead for further study in the field of diabetic complications [82]. Jang et al. reported that two flavan-3-ols 134 and 135 from Actinidia arguta possess in vitro inhibitory activity on the formation of advanced glycation end products (AGEs) with respective IC50 values of 13.5 and 17.9 μg/mL, respectively [227]. Two dihydroflavonol glycosides 314 and 315, isolated from the leaves of Stelechocarpus cauliflorus, were also found to inhibit the formation of AGEs and displayed therapeutic potential in the prevention and treatment of diabetic complications [124]. The isoflavone C-glucoside constituents 399 and 400 of Pueraria iobata were also evaluated to have potent in vitro inhibitory activity against AGEs formation with IC50 values 8.7 and 24.9 μg/mL, respectively [97]. The investigators suggested that the compound 399 might be worthy of consideration as a therapeutic agent for diabetic complications or related diseases [97]. Park et al. reported that the two new dihydrofuranoisoflavanones 449 and 450, were isolated from an n-BuOH soluble fraction from the leaves of Lespedeza maximowiczi. All of the isolates 449 and 450 were evaluated in vitro for their inhibitory activity on the formation of AGEs. Among these, compounds 449 and 450

Page 75: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

139

exhibited such inhibitory activity against AGEs formation with IC50 values of 20.6, and 18.4 μM, respectively [363]. Five homoisoflavonoids 461-465, isolated from the EtOAc-soluble fraction of a 90% MeOH extract of the fibrous roots of Polygonatum odoratum, showed effects of sensitizing adipocytes for insulin in a cell-based glucose uptake assay using 3T3-L1 adipocytes compared with the treatment of insulin of 100 nM [344]. Zhang et al. suggested that especially, compound 461 and its enantiomer 462 exhibited the most potent glucose uptake estimulatory activity at the concentration of 1 μM. Preliminary structure-activity relationship analysis indicated that compounds with an additional hydroxy group at C-2′ or C-3′ (compounds 461, 462, and 463) showed much stronger activities than compounds with only one hydroxy or methoxy group at C-4′. The results indicated that homoisoflavonoids may be potential insulin sensitizers for the treatment of diabetes [344]. Cui and his groups investigated that the insulin and leptin signaling pathway can be regulated by protein tyrosine phosphatase 1B (PTP1B), it has been suggested that compounds that reduce PTP1B activity or expression levels could be used for treating type 2 diabetes and obesity [369]. In screening efforts by the groups on new PTP1B inhibitors, six new flavanones 536-541 with dihydrofuran moiety were isolated from the stem bark of Erythrina abyssinica. With the exception of 538 and 540, the compounds 536-537, 539, and 541 inhibited PTP1B activity in an in vitro assay with IC50 values ranging from 15.2 ± 1.2 to 19.6 ± 2.3 μM, whereas RK-682 (positive control) displayed an IC50 value of 4.7 ± 0.5 μM [369]. One flavonone derivative (570), isolated from the organic extracts of Viscum

album, was found to exhibit anti-glycation activity with IC50 value of 264.5 ± 0.9 μM (i.e % inhibition 74.5) [327]. Yoo et al. isolated the 2,3-dioxygenated flavanone erigeroflavanone 808 from the flowers of Erigeron annuus, which was found to exhibit potent inhibitory activity against AGEs formation with IC50 value 22.7 μM [207]. Dong et al., the Chinese group, isolated three homoisoflavanones, 3-(4'-hydroxybenzyl)-5,7-di-hydroxy-6-methyl- 8-methoxychroman-4-one (857), 3-(4'-hydroxybenzyl)-5,7-dihydroxy-6,8-dimethylchroman-4-one (858), and 3-(4'-methoxybenzyl)-5, 7-dihydroxy-6-methyl-8-methoxychroman-4-one (859) from the active CHCl3-soluble fraction of the EtOH extract of rhizomes of Polygonatum odoratum and evaluated their in vitro inhibitory activities against AGE formation; all the isolates 857-859 exhibited much stronger inhibition of AGE formation with respective IC50 value of 56.30, 46.05 and 107.10 μM and the activity was found to be greater than that of aminoguanidine (IC50 123.48 μM), a well-known glycation inhibitor [362]. 3.13 Anti-platelet aggregation activity Chang et al. [351] reported that six flavonoid constituents (5, 6 and 483-486) of the ethylacetate extract of Calamus quiquesetinervius exhibited inhibitory activity at 50 μM on arachidonic acid (AA)- and platelet activity factor (PAF)-induced platelet aggregation of rabbit platelets (Table 7). Notably, compounds 5 and 6 are more potent than that of aspirin (standard). It is indicated that the erythro-configuration in both 5 and 483 (P < 0.05) results in more inhibitory effects

Table 7. Inhibition of isolates at 50 μM on aggregation of washed rabbit platelets induced by AA or PAF.

Compounds

Inhibition (%) at 50 μM Arachidonic acid [AA] (100 μM) Platelet activity factor [PAF] (5 nM)

5 69.1 ± 0.8* 14.5 ± 2.5 6 55.6 ± 1.0 4.7 ± 1.9

483 68.1 ± 0.7* 28.0 ± 0.9 484 53.5 ± 1.3 10.0 ± 2.1 486 43.9 ± 2.3 23.3 ± 1.3

* Indicated P < 0.05, which compared between 5 and 6, 483 and 484, respectively

Page 76: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

140

than the threo-configuration in 6 and 484. Moreover, the substituted chromanone moiety in486 replaced by a phenylpropanoid moiety as in 5, 6 and 483-485 enhances the efficiency to some extent [351]. Dihydrochalcone (721), isolated from leaves of Muntingia calabura, was also found to show significant anti-platelet aggregation activity in vitro as assessed using turbidimetric method in washed rabbit platelets induced by thrombin, arachidonic acid, collagen, and platelet-activating factor with % inhibitions 127, 98.2, 94.1 and 88.7 U/mL, respectively, in 100 μg/mL concentration [137]. 3.14 Melanin synthesis inhibitory activity Skin pigmentations, such as melasma, freckles, and solar lentigo, can be serious aesthetic problems. They result from increased production and accumulation of melanin. Consequently, inhibition of melanin synthesis regarded as a treatment of a variety skin pigmentations. Melanin synthesis inhibitors have been of interest as target molecules of natural product chemistry. Arung and his group isolated 3-prenyl luteolin (70) on activity-guided fraction of Artocarpus heterophyllus extract that possesses anti-melanogenesis activity; the compound 70 exhibited inhibitory activity against mushroom tyrosinase with IC50 value of 76.3 μM, while kojic acid use as positive control exhibited inhibitory activity with IC50 value of 14.1 μM. The compound 70 also showed melanin formation inhibitory activity on B16 melanoma cells with IC50 value of 56.7 μM [349]. Mori-Hongo et al. [216] reported that nine flavonoids 321, 322, 448, 555, 690, 835, 838, 840 and 844 from aerial parts of Lespedeza buergeri showed strong inhibition of melanin synthesis in normal human epidermal melanocytes (NHEM); the IC50 of each of these compounds was lower than 2 μM, while that of hydroquinone, a positive control, was 2.2 μM. Thus, these compounds were more potent than hydroquinone, a compound widely used as a skin-lightening drug [216].

3.15 Anti-estrogenic activity Three prenylated isoflavonoids 392-394, isolated from leaves of Millettia pachycarpa, showed potent antiestrogenic activity in dose-dependent manner as evaluated based on the inhibition of β-galactosidase activity induced by 17β-estradiol (E2) in the yeast two-hybrid assay [185]; IC50 values of the three isoflavonoids 392-394 were determined as 29, 18, and 13 μM, respectively. These values were slightly higher than that of 4-hydroxytamoxifen (positive control; IC50 4.4 μM). 3.16 Neutrophils respiratory burst inhibitory activity Polymorphonuclear neutrophils (PMNs) are important cells involved in the bactericidal host defense system through the respiratory burst. PMNs respiratory burst plays a critical role in the immune-inflammatory processes. Inhibition of neutrophils respiratory burst has been one of the well-documented methods for the evaluation of anti-inflammatory activity for various synthetic compounds and natural products. The flavone glycoside 117 isolated from the leaves of Aquilaria sinensis was found to show significant inhibitory activity against neutrophils respiratory burst stimulated by phorbol 12-myristate 13-acetate (PMA) with IC50 value 61.25 ± 0.21 μ mol/L [221]. 3.17 Neuroprotective activity An et al. isolated (2S)-6,7,4'-trihydroxyflavan (143) and 4,2',5'-trihydroxy-4'-methoxychalcone (672) along with fourteen known flavonoids and two other known arylbenzofurans from the heartwood of Dalbergia odorifera; among them the new compounds 143 and 672 were found to have protective effect on glutamate-induced oxidative injury in HT22 cells with EC50 values of 17.83, and 7.47 μM, respectively [279]. Furthermore, the new chalcone derivative 672 was more potent than the positive control Trolox (EC50 15.8 μM). From these results, the investigators suggested that the compounds 143 and 672 might be lead molecules having neuroprotective activity against oxidative cellular

Page 77: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

141

Table-8: Bioactive naturally occurring new flavonoids during the period 2005-mid 2011.

Sl. No.

Compounds (Str. No.) Bioactivity Ref.

Flavones and flavone glycosides 1 3'-hydroxy-3,5,7,4′-tetramethoxyflavone (4) Antioxidant activity [66] 2 Tricin 4'-O-(erythro-β-4-hydroxyphenylglyceryl)

ether [Calquiquelignan D] (5) Anti-platelet-aggregation activity [351] Antioxidant activity

3 Tricin 4'-O-(threo-β-4-hydroxylphenylglyceryl) ether [Calquiquelignan E] (6)

Anti-platelet-aggregation activity [351] Antioxidant activity

4 Diosmetin 7-(6′′-O-p-hydroxyphenylacetyl)-O-β-D-glucopyranoside (9)

Cytotoxic Activity [294]

5 Acacetin 7-O-(3-O-acetyl-β-D-glucopyranoside)(10)

Enzyme inhibitory activity [75]

6 Apigenin-4′-O-(2′′-O-p-coumaroyl)-β-D-gluco-pyranoside (17)

Enzyme inhibitory activity [42]

7 Isoscutellarein 5-O-β-D-glucopyranoside (19) Osteoclast differentiation inhibitory activity

[60]

8 4',5-dihydroxy-6,7-dimethoxy flavone-3-O-β-D-xylopyranoside (23)

Anti-diabetic activity [78]

9 Luteolin 7-O-(4''-O-(E)-coumaroyl)-β-glucopyranoside (24)

Antioxidant activity [328]

10 Chrysoeriol-7-O-(4''-O-(E)-coumaroyl)-β-glucopyranoside (25)

Antioxidant activity [328]

11 7-O-β-D-glucopyranosylchrysin (27) Anti-cancer activity [69] 12 Nitensoside A (28) Enzyme inhibitory activity

[89] Antioxidant activity 13 Nitensoside B (29) Enzyme inhibitory activity

[89] Antioxidant activity14 Itoside N (31) Anti-inflammatory activity [209] 15 6-hydroxyluteolin 7-O-laminaribioside (32) Antioxidant activity [38] 16 7-O-feruloylorientin (33) Antioxidant activity [243] 17 5,7,2'-trihydroxy-5'-methoxyflavone (37) Antioxidant activity [295] 18 Luteolin 6-C-(6′′-O-trans-caffeoylglucoside) (38) Antioxidant activity

[82]

Enzyme inhibitory activity Advanced glycation endproducts inhibitory activity

19 Luteolin 6-C-β-boivinopyranoside (39) Anti-inflammatory acivity [284] 20 6-trans-(2''-O-α-rhamnopyranosyl) ethenyl-

5,7,3',4'-tetrahydroflavone (40) Anti-inflammatory acivity [284]

21 Isoscutellarein 6-C-β-D-glucopyranoside (43) Antioxidant activity [47] 22 Peregrinumin A (44) Anti inflammatory activity [222] 23 Peregrinumin B (45) Anti inflammatory activity [222] 24 Peregrinumin C (46) Anti inflammatory activity [222] 25 Apigenin-6-C-{2′′-O-(E)-feruloyl-β-D-gluco-

pyrano-syl}-8-C-β-gluco-pyranoside (69) Anti-inflammatory activity

[53] 26 3-Prenyl-3′, 4′, 5, 7-tetrahydroxyflavone (70) Melanin Synthesis Inhibitor

activity [349]

27 Styracifolin A (71) Antiplasmodial activity [373] Antitrypanosomal activity

Cytotoxic Activity 28 Styracifolin B (72) Antiplasmodial activity

[373] Antitrypanosomal activity Cytotoxic Activity

29 Yunanensol A (74) Anti-inflammatory activity [73]

Page 78: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

142

Sl. No.

Compounds (Str. No.) Bioactivity Ref.

30 4′′a,5′′,6′′,7′′,8′′,8′′a-hexahydro-5,3′,4′-trihydroxy-5′′,5′′,8′′a-trimethyl-4H-chromeno[2′′,3′′:7,8] flavone (82)

Antioxidant activity [367]

31 Farobin A (91) Antioxidant activity [411] 32 Isoorientin (93) Antioxidant activity

[83] Cytoprotective effects 33 Isoorientin 2-O-α-L-rhamnoside (94) Antioxidant activity

[83] Cytoprotective effects 34 7-methoxyl, 2′′-O-(2′′′-methylbutyryl) orientin (97) Anti inflammatory activity [245] 35 (−)-5,4'-dihydroxy-7,8-[(3'',4''-cis-dihydroxy-3'',4''-

dihydro)-2'',2''-dimethylpyrano]-flavone (102)Anti-HIV activity [326]

36 (−)-5,4'-dihydroxy-7,8-[(3''-hydroxy-4''-one)-2'',2''-dimethylpyrano]-flavone (103)

Anti-HIV activity [326]

37 (−)-5,4'-dihydroxy-7,8-[(cis-3''-hydroxy-4''-ethoxy-3'',4''-dihydro)-2'',2''-dimethylpyrano]-flavone (104)

Anti-HIV activity [326]

38 5,6-dihydroxy-7,8,4'-trimethoxy flavone (106b) Antibacterial activity [412] [413] Antifungal activity

39 [7-Hydroxy-2-(4-hydroxy-phenyl)-4-oxo-4H-chromen-5-yl]-acetic acid (108)

Anti-HBV activity [338]

40 [7-Hydroxy-2-(4-hydroxy-phenyl)-4-oxo-4H-chromen-5-yl]-acetic acid ethyl ester (109)

Anti-HBV activity [338] Cytotoxic activity

41 [7-Hydroxy-2-(4-hydroxy-phenyl)-4-oxo-4H-chromen-5-yl]-acetic acid butyl ester (110)

Anti-HBV activity [338]

42 Apigenin 5-O-α-L-rhamnopyranosyl-(1 3)-β-D-glucopyranoside (113)

Antioxidant activity [84]

43 Protoapigenone (114) Antitumor activity [18] 44 5′,6′-dihydro-6-methoxyprotoapigenone (115) Antitumor activity [18] 45 Protoapigenin (116) Antitumor activity [18] 46 7-β-D-glucoside of 5-O-methylapigenin (117) Neutrophils respiratory burst

inhibitory activity

[221] 47 Daphnogirins A (118) Antioxidant activity [67] 48 Daphnogirins B (119) Antioxidant activity [67] 49 5,6,2′,5′,6′-pentamethoxy-3′,4′-methylenedioxy

flavone (121) Anthelmintic activity

[72] 50 Scutellarein-7-O-β-D-apiofuranoside (128) Sedative effect [345] 51 Apigenin-7-O-β-D-apiofuranosyl-(1 2)-β-D-

apiofuranoside (129) Sedative effect [345]

52 5,6,4',5'-tetrahydroxy-7,3'-dimethoxyflavone [Celtidifoline] (130)

Sedative effect [345]

Flavans and flavan derivatives53 6-(2-pyrrolidinone-5-yl)-(–)-epicatechin (134) Advanced glycation end products

formation inhibitory activity [227]

54 8-(2-pyrrolidinone-5-yl)-(–)-epicatechin (135) Advanced glycation end products formation inhibitory activity

[227]

55 (2R,4S)-6,8-dimethyl-7-hydroxy-4'-methoxy-4,2''-oxidoflavan-5-O-β-D-6''-O-acetylgluco-pyranoside (136)

Anti cancer activity [388]

56 (2R,4S)-5,7-O-β-D-diglucopyranosyloxy-4'-methoxy-6,8-dimethyl-4,2''-oxidoflavane (137)

Anti cancer activity [388]

57 6,3,4'-trihydroxyflavan-5-O-glucopyranoside (138) Antibacterial activity [287] 58 7-O-galloyltricetifavan (139) Antivirus activity

[189] Cytotoxic activity 59 7,4′-di-O-galloyltricetifavan (140) Antivirus activity

[189] Cytotoxic activity

Page 79: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

143

Sl. No.

Compounds (Str. No.) Bioactivity Ref.

60 (2S)-6,7,4'-trihydroxyflavan (143) Neuroprotective effects [279] 61 Brosimacutin J (145) Cytotoxic activity [13] 62 Brosimacutin K (146) Cytotoxic activity [13] 63 Brosimacutin L (147) Cytotoxic activity [13] 64 Abacopterin A (153) Cytotoxic activity [126] 65 Abacopterin B (154) Cytotoxic activity [126] 66 Abacopterin C (155) Cytotoxic activity [126] 67 Abacopterin D (156) Cytotoxic activity [126] 68 Abacopterin E (157) Antioxidant activity [128] 69 Abacopterin F (158) Antioxidant activity [128] 70 Abacopterin G (159) Antioxidant activity [128] 71 Abacopterin H (160) Antioxidant activity [128]

Flavonols and Flavonol Glycosides72 Kaempferide-7-O-(4″-O-acetyl)-α-L-rhamnoside

(167) AAPH-induced hemolysis inhibitory activity

[377]

73 3′,4′-di-O-methylquercetin-7-O-[(4′′ 13′′′)-2′′′, 6′′′, 10′′′,14′′′-tetramethyl-hexadec-13′′′-ol-14′′′-enyl]-β-D-glucopyranoside (168)

Anti-inflammatory activity [217] Cytotoxic activity

74 4′-O-methylkaempferol-3-O-[(4′′ 13′′′)- 2′′′, 6′′′,10′′′, 14′′′-tetramethyl-hexadecan-13′′′-olyl]-β-D-gluco-pyranoside (169)

Anti-inflammatory activity [217] Cytotoxic activity

75 Kaempferol 7-O-(2-E-p-coumaroyl-α-L-rhamnoside) (170)

Cytotoxic activity [201]

76 Kaempferol 7-O-(2,3-di-E-p-coumaroyl-α-L-rhamnoside) (171)

Cytotoxic activity [201]

77 8,2′-diprenylquercetin 3-methyl ether (190) Cytotoxic activity [341] 78 Kaempferol 3-O-α-L-rhamnopyranosyl-(1 2)-α-L-

arabinopyranose [Drabanemoroside] (192) Cytotoxic activity [365]

79 6,8-di-C-methylquercetin-3,3',7-trimethylether (194)

Cytotoxic activity [309] Antibacterial activity

80

6,8-di-C-methylquercetin-3,3'-dimethylether (195) Cytotoxic activity [309] Antibacterial activity

81

3',6,8-tri-C-methylquercetin-3,7-dimethylether (196)

Cytotoxic activity [309] Antibacterial activity

82 Kaempferol 4′-O-β-D-glucopyranosyl-(1 2)-β-D-glucopyranoside (198)

Antioxidant activity [335]

83 Kaempferol 4′-O-α-L-rhamnopyranosyl-(1 6)-β-D-glucopyranoside (199)

Antioxidant activity [335]

84 Quercetin 3,4′-di-O-β-D-glucopyranoside-7-O-α-L-rhamnopyranoside [Moricandin] (204)

Antioxidant activity [197]

85 3,5,7,3'-tetrahydroxyflavone-3-O-α-L-rhamnoside (214)

Anti-inflammatory activity [389]

86 Quercetin 3-O-(2′′,3′′-digalloyl)-β-D-galacto-pyrano-side (215)

Proliferative activity [12]

87 Macaranone A (217) Cytotoxic activity [230] 88 Macaranone B (218) Cytotoxic activity [230] 89 Macaranone C (219) Cytotoxic activity [230] 90 Macaranone D (220) Cytotoxic activity [230] 91 Pterogynoside (228) Antioxidant activity

[306] Myeloperoxidase inhibitory activity

92 Kaempferol 3-O-{β-D-glucopyranosyl-(1 4)} {α-L-rhamnopyranosyl-(1 6)}-β-D-glucopyranoside (240)

Antioxidant activity

[303]

Tyrosinase inhibitory activity

Page 80: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

144

Sl. No.

Compounds (Str. No.) Bioactivity Ref.

93 Quercetin 3-O-{β-D-glucopyranosyl-(1 4)}{α-L-rhamnopyranosyl-(1 6)}-β-D-glucopyranoside (241)

Antioxidant activity

[303]

Tyrosinase inhibitory activity 94 Isorhamnetin-3-O-[α-L-rhamnopyranosyl-(1 3)]-

β-D-glucopyranoside (244) Antioxidant activity [382]

95 Eupalitin-3-O-β-D-glucoside (251) Anti inflammatory activity [112] 96 8-lavandulylkaempferol (252) Cytotoxic activity [191] 97 Quercetin 3-O-β-D-xylopyranosyl (1 2)-α-L-

rhamnopyranosyl (1 6)-β-D-galactopyranoside [Mutabiloside] (258)

Antiallergic activity [282]

98 Quercetin-4′-O-α-L-rhamnopyranosyl-3-O-β-D-allopyranoside (259)

Anti-inflammatory activity [53]

99 Dorsilurin F (261) Enzyme inhibitory activity [213] 100 Dorsilurin G (262) Enzyme inhibitory activity [213] 101 Dorsilurin H (263) Enzyme inhibitory activity [213] 102 Dorsilurin I (264) Enzyme inhibitory activity [213] 103 Dorsilurin J (265) Enzyme inhibitory activity [213] 104 Dorsilurin K (266) Enzyme inhibitory activity [213] 105 Kaempferol 3-O-(2′′-O-galloylrutinoside) (267) Antioxidant activity

[252] Cytotoxic activity Neuroprotective effects

106 6-γ,γ-dimethylallylquercetin 7-O-β-D-glucoside (269)

Anti-HIV activity [50]

107 6-(3-hydroxy-3-methylbutyl) quercetin 7-O-β-D-glucoside (270)

Anti-HIV activity [50]

108 2-(3,4-dihydroxy-2-[(2,6,6-trimethylcyclohex-2-enyl) methyl] phenyl)-3,5,7-trihydroxy-4H-chromen-4-one (271)

Antioxidant activity [367]

109 3-O-acetyl-7-O-methyl kaempferol (272) Enzyme inhibitory activity [238] 110 Tonkinensisol (273) Cytotoxic activity [248] 111 Morin 3-O-α-rhamnopyranoside (282) Anti-inflammatory activity [224] 112 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxo-4H-

chromen-3-yl-4,6-bis-O-β-D-(3,4,5-trihydroxy benzoyl) glucopyranoside (283)

Cytotoxic activity [109]

113 5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl-5-O-α-L-(3,4,5-trihydroxybenzoyl) arabinofuranoside (284)

Cytotoxic activity [109]

114 2-hydroxy-4-O-α-L-(3,5,7-trihydroxy-4-oxo-4H-chromen-2-yl) phenylarabinofuranoside (285)

Cytotoxic activity [109]

115 Kaempferol 3-O-β-D-glucopyranoside-7-O-α-L-arabinofuranoside (286)

Proliferative activity [55]

116 Palmatoside A (287) Anti-inflammatory activity [355] 117 Palmatoside B (288) Cytotoxic activity [355] 118 Palmatoside C (289) Cytotoxic activity [355] 119 Kaempferol 3-O-(2'',3''-di-O-galloyl)-α-L-

rhamnopyranoside (301) Antioxidant activity [312]

120 Kaempferol 3-O-β-D-(6′′-E-p-coumaryl)-gluco-pyranoside (306)

Antimicrobial activity [120]

121 Quercetin 3-O-{2G-(E)-coumaroyl-3G-O-β-D-glucosyl-3R-O-β-D-glucosylrutinoside} (307)

Antioxidant activity [58]

122 Kaempferol 3-O-{2G-(E)-coumaroyl-3G-O-β-D-glucosyl-3R-O-β-D-glucosylrutinoside} (308)

Antioxidant activity [58]

Page 81: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

145

Sl. No.

Compounds (Str. No.) Bioactivity Ref.

123 3-O-β-D-Xylopyranosyl(1 2)-β-D-glucopyrano-syl kaempferol 4′-O-β-D-glucopyranoside (309)

Antioxidant activity [192]

Flavanols and Flavanol Glycosides124 Engeletin (314) Enzyme inhibitory activity

[124] Advanced glycation endproducts inhibitory activity

125 Astilbin (315) Enzyme inhibitory activity [124] Advanced glycation endproducts

inhibitory activity 126 Lespeflorins B3 (321) Melanin Synthesis Inhibitor

activity[216]

127 Lespeflorins B4 (322) Melanin Synthesis Inhibitor activity

[216]

128 3-hydroxy-kenusanone B (323) Enzyme inhibitory activity [357] 129 6-γ,γ-Dimethylallyldihydrokaempferol 7-O-β-D-

glucoside (324) Anti -HIV activity [50]

130 6-(3-hydroxy-3-methylbutyl)taxifolin 7-O-β-D-glucoside (325)

Anti -HIV activity [50]

Isoflavones and Isoflavones glycosides131 5,2′,4′-Trihydroxy-7-methoxy-3′-methyliso-flavone

(335) Antimicrobial activity

[199] Antioxidant activity 132 5,4′-Dihydroxy-7,2′-dimethoxy-3′-methyliso-

flavone (336) Antimicrobial activity

[199] Antioxidant activity 133

5,4′-Dihydroxy-7,2′-dimethoxyisoflavone (337) Antimicrobial activity

[199] Antioxidant activity 134 4′,5,6-trimethoxyisoflavone-7-O-β-D-glucopyra-

nosyl-(1 4)-α-L-rhamnopyranosyl-(1 6)-β-D-glucopyranosyl-(1 3)-[α-L-rhamnopyranosyl-(1 6)]-β-D-glucopyranoside (338)

Antimicrobial activity

[214]

135 4′,5,6-trimethoxyisoflavone-7-O-α-L-rhamno-pyranosyl-(1 6)-β-D-glucopyranosyl-(1 3)-[α-L-rhamnopyranosyl-(1 6)]-β-D-gluco-pyranoside (339)

Antimicrobial activity

[214]

136 4′,5,6-trimethoxyisoflavone-7-O-α-L-rhamno-pyranosyl-(1 6)-β-D-glucopyranoside (340)

Antimicrobial activity [214]

137 7,3′-dihydroxy-4′-methoxy-5′-(γ,γ-dimethylallyl) isoflavone [Erylatissin A] (347)

Antimicrobial activity [90] Antioxidant activity

138 7,3′-dihydroxy-6″,6″-dimethyl-4″,5″-dehydropyrano [2″,3″: 4′,5′] isoflavone [Erylatissin B] (348)

Antimicrobial activity

[90] Antioxidant activity 139 5,7,3′,4′-tetrahydroxy-2′-(3,3-dimethylallyl)

isoflavone (358)Anti-leishmanicidal activity

[166] 140 Irilone 4′-O-{β-D-glucopyranosyl-(1 6)-β-D-

glucopyranoside} (365) Antioxidant activity

[47] 141 Tectorigenin 7-O-β-D-glucopyranoside-4'-O-β-D-

glucopyranosyl-(1'''' 6''')-β-D-glucopyranoside (366)

Antigen activity [301]

142 Iristectorigenin B 4'-O-β-D-glucopyranosyl-(1''' 6'')-β-D-glucopyranoside (367)

Antigen activity [301]

143 7,4'-dimethoxyisoflavone (371) Cytotoxic activity [100] 144 7-hydroxy-6,4'-dimethoxyisoflavone (373) Cytotoxic activity [100] 145 Scandinone A (374) Enzyme inhibitory activity [394]

Page 82: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

146

Sl. No.

Compounds (Str. No.) Bioactivity Ref.

146 2′,7-dihydroxy-4′-methoxy-5′-(3-methylbut-2-enyl) isoflavone (375)

Enzyme inhibitory activity [101]

147 Maackiapentone (383) Cytotoxic activity [225] 148 Brandisianin D (389) Death-Receptor expression

enhancement activity

[105] 149 Millewanins G (392) Antiestrogenic activity [185] 150 Millewanins H (393) Antiestrogenic activity [185] 151 Furowanin B (394) Antiestrogenic activity [185] 152 Puerarin (399) Advanced glycation end products

formation inhibitory activity [97]

153 3′-methoxy puerarin [PG-3] (400) Advanced glycation end products formation inhibitory activity

[97]

154 6-hydroxybiochanin A-6,7-di-O-β-D-gluco-pyranoside (403)

Enzyme inhibitory activity [236]

155 6-hydroxygenistein-7-O-β-D-glucopyranoside (404)

Enzyme inhibitory activity [236]

156 Glycitein-4′-O-β-D-glucoside (410) Enzyme inhibitory activity [364] 157 5,7,4′-trihydroxy-3′-(3-hydroxy-3-methylbutyl)

isoflavone (412) Cytotoxic activity

[94] 158 5,4′-dihydroxy-6-(3′′-methylbut-2′′-enyl)-2′′′-(4′′′-

hydroxy-4′′′-methyl-ethyl)-3′′′-methoxydihydro-furano-[4′′′,5′′′:7,8] isoflavone (414)

Enzyme inhibitory activity [215]

159 5,4′-dihydroxy-8-(3′′-methylbut-2′′-enyl)-2′′′-(4′′′-hydroxy-4′′′-methyl-ethyl)furano-[4′′′,5′′′: 6,7]-isoflavone (415)

Enzyme inhibitory activity [215]

160 Isoflavone-3',4',5,6-tetrahydroxy-7-O-{β-D-glucopyranosyl-(1 3)-α-L-rhamnopyranoside} (424)

Antimicrobial activity [281]

161 Isoflavone-3',4',5,6-tetrahydroxy-7-O-{β-D-glucopyranosyl-(1 6)-β-D-glucopyranosyl-(1 6)-β-D-glucopyranosyl-(1 3)-α-L-rhamno-pyranoside} (425)

Antimicrobial activity [281]

162 2′,4′,7-trihydroxyisoflavone (426) Regulates the expression of matrix metalloproteinase-1 in human skin fibroblasts.

[85]

Isoflavanones163 (3S)-Sativanone (429) Anti-cancer activity [406]

164

3(R)-5,4′-dihydroxy-2′-methoxy-3′-(3-methylbut-2-enyl)-(6′′,6′′-dimethylpyrano)-(7,6 : 2′′,3′′)-isoflavanone (439)

Anti-cancer activity [371] Cytotoxic activity

165

3(R)-5,4′-dihydroxy-2′-methoxy-(6′′,6′′-dimethyl-pyrano)-(7,6: 2′′,3′′)-isoflavanone (440)

Anti-cancer activity [371] Cytotoxic activity

166

3(R)-5,4′-dihydroxy-7,2′-dimethoxy-6-geranyl-isoflavanone (441)

Anti-cancer activity [371] Cytotoxic activity

167 5,3′-dihydroxy-4′-methoxy-5′-(3-methyl-1,3-butadienyl)-2′′,2′′-dimethylpyrano [5,6:6,7] isoflavanone (442)

Antimicrobial activity [268]

168 5,3′-dihydroxy-5′-(3-hydroxy-3-methyl-1-butenyl) -4′-methoxy-2′′,2′′-dimethylpyrano [5,6:6,7] isoflavanone(443)

Antimicrobial activity [268]

169 Lespeflorin D1 (448) Melanin Synthesis Inhibitor activity [216] 170 2',4',5-trihydroxy-[5''-(1,2-dihydroxy-1-

methylethyl)-dihydrofurano(2'',3'':7,8)]-(3S)-isoflavanone (449)

Anti-diabetic activity [363]

Page 83: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

147

Sl. No.

Compounds (Str. No.) Bioactivity Ref.

171 2', 4', 5-trihydroxy-[5''-(1,2-dihydroxy-1-methylethyl)-dihydrofurano(2'',3'':7,8)]-(3R)-isoflavanone (450)

Anti-diabetic activity [363]

172 Conferol A (451) Anti inflammatory activity [228] 173 Conferol B (452) Anti inflammatory activity [228]

174

4''-hydroxydiphysolone (453) Antimicrobial activity [358] Antiplasmodial activity

175 5,7-dihydroxy-2'-methoxy-3',4'-methylene-dioxyisoflavanone (454)

Antimicrobial activity [302]

176 4',5-dihydroxy-2',3'-dimethoxy-7-(5-hydroxy-chromen-7yl)-isoflavanone (455)

Antimicrobial activity [302]

177 (3S)-5,2′,3′-trihydroxy-4′-methoxy-3′′-methyl-3′′-(4-methylpent-3-enyl) pyrano[7,8] isoflavanone [(3S)-Discoloranone B] (459)

Cytotoxic activity [28]

178 5,7-Dihydroxy-6,8-dimethyl-3(R)-(3′-hydroxy-4′-methoxybenzyl)-chroman-4-one (461)

Anti-diabetic activity [344]

179 5,7-dihydroxy-6,8-dimethyl-3(S)-(3′-hydroxy- 4′-methoxybenzyl) chroman-4-one (462)

Anti-diabetic activity [344]

180 (±)-5,7-Dihydroxy-6,8-dimethyl-3-(2′-hydroxy-4′-methoxybenzyl)-chroman-4-one (463)

Anti-diabetic activity [344]

181 (E)-5,7-Dihydroxy-6,8-dimethyl-3-(4′-hydroxy-benzylidene)chroman-4-one (464)

Anti-diabetic activity [344]

182 4′-Demethylleucomin 7-O-β-D-glucopyranoside (465)

Anti-diabetic activity [344]

Isoflavans183 3(S)-7,2′,4′-trihydroxy-5,5′-dimethoxy-6-(3-

methylbut-2-enyl)-isoflavan (467) Anti-cancer activity [371] Cytotoxic activity

184

3(S)-2′,4′-dihydroxy-5,5′-dimethoxy-(6′′,6′′-dimethylpyrano)-(2′′,3′′:7,6)-isoflavan (468)

Anti-cancer activity [371] Cytotoxic activity

185 (3R)- 2′,7-dihydroxy-3′-(3-methylbut-2-enyl)-2′′,2′′-dimethylpyrano {5′′,6′′:4′,5′}isoflavan (469)

Enzyme inhibitory activity [101]

186 5'-formyl glabridin (469a) PPAR-γ ligand binding activity [378] 187 Lyratin A (472) Anti inflammatory activity [320] 188 Lyratin B (473) Anti inflammatory activity [320] 189 Lyratin C (474) Anti inflammatory activity [320] 190 (3R)-6,2′-dihydroxy-7-methoxy-4′,5′-methylene-

dioxyisoflavan [Hildegardiol] (475) Antimicrobial activity

[202] Flavanones and Flavanone Glycosides

191 Persinol (478) Antioxidant activity [136] 192 Persinoside A (479) Antioxidant activity [136] 193 Persinoside B (480) Antioxidant activity [136]

194

3′,4′-di-O-methylbutin-7-O-[(6′′ 1′′′)-3′′′,11′′′-dimethyl-7′′′-methylenedodeca-3′′′, 10′′′-dienyl]-β-D-glucopyranoside (481)

Anti-inflammatory [217] Cytotoxic activity

195 4′-O-methylbutin-7-O-[(6′′ 1′′′)-3′′′,11′′′-dimethyl-7′′′-hydroxy-methylenedodecanyl]-β-D-glucopyrano-side (482)

Anti-inflammatory activity [217] Cytotoxic activity

196 (2S)-dihydrotricin 4'-O-(erythro-β-guaiacyl-glyceryl) ether [Calquiquelignan A] (483)

Anti-platelet-aggregation activity [351] Antioxidant activity

197 (2S)-dihydrotricin 4'-O-(threo-β-guaiacyl-glyceryl) ether [Calquiquelignan B] (484)

Anti-platelet-aggregation activity [351] Antioxidant activity

198 (2S)-dihydrotricin 4'-O-(threo-β-4-hydroxy-phenylglyceryl) ether [Calquiquelignan C] (485)

Anti-platelet-aggregation activity [351] Antioxidant activity

199 (2S)-dihydrotricin 4'-O-(β-6''-methoxy-4''-oxo- Anti-platelet-aggregation activity

Page 84: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

148

Sl. No.

Compounds (Str. No.) Bioactivity Ref.

chroman-3''-yloxy) ether [Calquiquelignan F] (486)

Antioxidant activity [351]

200 5,7-dihydroxy-8,4′-dimethoxyflavonone-5-O-α-L-rhamnopyranosyl-7-O-β-D-arabinopyranosyl-(1 4)-O-β-D-glucopyranoside A (489)

Anti-inflammatory activity [143]

201

5,7,4′-Trihydroxy-8-(2-hydroxy-3-methyl-butenyl) flavanone (497)

Antimicrobial activity [199] Antioxidant activity

202 Tanariflavanone C (502) Antioxidant activity [198] 203

Tanariflavanone D (503) Antioxidant activity

[198] Cytotoxic activity 204 Macaflavanone G (510) Cytotoxic activity [212] 205 8-(3-methyl-but-2-enyl)-2-phenylchroman-4-one

(511) Nematicidal activity [140]

206 2-(4-hydroxyphenyl)-8-(3-methyl-but-2-enyl)-chroman-4-one (512)

Nematicidal activity [140]

207 (2S)-5,2′,6′-trihydroxy-8-prenyl-6,7-(3-prenyl-2,2dimethyl-pyrano)-3′,4′-(2,2-dimethyl-1-keone-cyclohexadiene)-flavanone (514)

Anti-cancer activity [255]

208 (2S)-5,2′,6′-trihydroxy-8-prenyl-6,7-(3-prenyl-2,2-dimethyl-1-keone-cyclohexadiene)-flavanone (515)

Anti-cancer activity [255]

209

(−)-7,3′-dihydroxy-4′-methoxy-5′-(γ,γ-dimethyl-allyl) flavanone [Erylatissin C] (516)

Antimicrobial activity [90] Antioxidant activity

210 Eriodictyol 7-O-sophoroside (517) Antioxidant activity [38] 211 Abyssinoflavanones V (533) Enzyme inhibitory activity [138] 212 Abyssinoflavanones VI (534) Enzyme inhibitory activity [138] 213 Abyssinoflavanones VII (535) Enzyme inhibitory activity [138] 214 (2S)-5,7-dihydroxy-3-prenyl-2″ ξ-(4-hydroxy-

isopropyl) dihydrofurano [1″, 3″:4′,5′] flavanone (536)

Anti-diabetic activity [369]

215 (2S)-5,7-dihydroxy-3′-methoxy-2″ξ-(4″-hydroxy-isopropyl)dihydrofurano [1″,3″:4′,5′]flavanone (537)

Anti-diabetic activity [369]

216 (2S)-5,7-dihydroxy-3′-prenyl-2″ξ-(4″-hydroxy-isopropyl)-3″-hydroxy- dihydrofurano[1″,3″:4′,5′] flavanone (539)

Anti-diabetic activity [369]

217 (2S)-5,7,3′-trihydroxy-2′-prenyl-2″ ξ-(4″-hydroxy-isopropyl)-3″-hydroxy-dihydrofurano [1″,3″:4′,5′] flavanone (541)

Anti-diabetic activity [369]

218 Fuscaflavanone A1 (544) Cytotoxic activity [233] 219 Fuscaflavanone A2 (545) Cytotoxic activity [233] 220 Abyssinone-IV-4′-O-methyl ether (547) Enzyme inhibitory activity [29] 221 Licoflavanone-4′-O-methyl ether (549) Enzyme inhibitory activity [101] 222 (2R,3R)-3,4',7-trihydroxy-3'-prenylflavanone (551) PPAR-γ ligand binding activity [378]

223 Lespeflorin A3 (555) Melanin Synthesis Inhibitor activity

[216]

224 Maackiaflavanone A (557) Cytotoxic activity [225] 225 Maackiaflavanone B (558) Cytotoxic activity [225] 226 (2S)-homoeriodictyol 7,4′-di-O-β-D-gluco-

pyranoside (565) Antioxidant activity

[144] 227 (2R)- eriodictyol 7,4′-di-O-β-D-glucopyranoside

(566) Antioxidant activity

[144] 228 4'-O-[β-D-Apiosyl(1→2)]-β-D-glucosyl]-5-

hydroxyl-7-O-sinapylflavanone (570) Anti-diabetic activity

[327]

Page 85: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

149

Sl. No.

Compounds (Str. No.) Bioactivity Ref.

229 Cudraflavanone A (571) Vascular smooth muscle cell growth inhibitory activity

[31]

230 (2S)-8-formyl-6-methyl naringenin (572) Antioxidant activity [278] 231 (2S)-8-formyl-6-methyl naringenin 7-O-β-D-

glucopyranoside (573) Antioxidant activity [278]

232 (2S)-5,7,3′,5′-tetra-hydroxyflavanone 7-O-β-D-glucopyranoside (575)

Antioxidant activity [145]

233 (R)-5,7,3′,5′-tetrahydroxy-flavanone 7-O-neohesperidoside (580)

Proliferative activity [55]

234 4′-β-D-glucosyl-2S-homoeriodictyol-6′′-O-3-hydroxy-3-methyl-glutarate (584)

Antimicrobial activity [190]

235 Schizolaenone A (588) Cytotoxic activity [129] 236 Schizolaenone B (589) Cytotoxic activity [129] 237 4′-O-methylbonannione A (590) Cytotoxic activity [129] 238 Dihydrotricin (592) Cytotoxic activity [346] 239 Tomentodiplacone (593) Antimicrobial activity [206]

Cytotoxic activity [346] 240 Tomentodiplacone B (594) Antimicrobial activity [206] 241 3′-O-Methyl-5′-hydroxydiplacone (595) Antimicrobial activity [206]

Cytotoxic activity [346] 242 3′-O-Methyl-5′-O-methyldiplacone (596) Antimicrobial activity [206] 243 (2S)-5,7,5′-trihydroxyflavanone 2′-O-β-D-gluco-

pyranosyl-(1 3)-α-L-2-O-acetylrhamno-pyanoside (598)

Antimicrobial activity [146]

244 (2S)-5,7,5′-trihydroxyflavanone 2′-O-β-D-6-O-acetyl-glucopyranosyl-(1 3)-α-L-2-O-acetylrhamnopyano-side (599)

Antimicrobial activity [146]

245 (2S)-5,7,5′-trihydroxyflavanone 2′-O-β-D-2,6-di-O-acetylglucopyranosyl -(1 3)-α-L-2-O-acetylrhamno-pyanoside (600)

Antimicrobial activity [146]

246 (2S)-5,7,5′-trihydroxyflavanone 2′-O-β-D-3,6-di-O-acetylglucopyranosyl -(1 3)-α-L-2-O-acetylrhamno-pyanoside (601)

Antimicrobial activity [146]

247 (2S)-5,7,5′-trihydroxyflavanone 2′-O-β-D-4,6-di-O-acetylglucopyranosyl -(1 3)-α-L-2-O-acetyl-rhamno-pyanoside (602)

Antimicrobial activity [146]

248 (2S)-5,7,5′-trihydroxyflavanone 2′-O-β-D-3,4,6-tri-O-acetylglucopyranosyl-(1 3)-α-L-2-O-acetylrhamno-pyanoside (603)

Antimicrobial activity [146]

249 (2S)-(−)-5′-hydroxy-7,3′,4′-trimethoxy-flavanone (604)

Cytotoxic activity [107]

250

(−)(2S)-5,6,7,3',5'-pentahydroxyflavanone-7-O-β-D-glucopyranoside (606)

Anti-inflammatory activity [403] Cytotoxicity activity

251

Visartiside A (607) Antioxidant activity [337] Anti-inflammatory activity

252

Visartiside B (608) Antioxidant activity [337] Anti-inflammatory activity

253 Visartiside C (609) Anti-inflammatory activity [337] Chalcones

254

2′,4′-dyhydroxy-3′-(2-hydroxybenzyl)-6′-methoxychalcone (642)

Cytotoxicity activity [161] Antiplasmodial activity

Anti-microbial activity 255 Helihrysone A (647) Antimicrobial activity [285]

Page 86: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

150

Sl. No.

Compounds (Str. No.) Bioactivity Ref.

256

2,4′,6′-trihydroxy-3′-prenylchalcone (649) Antiviral activity [164] Antimicrobial activity

257 4′,6′,5′′-trihydroxy-6′′,6′′-dimethyldihydropyrano-2′′,3′′-2′,3′-chalcone (650)

Antiviral activity [164] Antimicrobial activity

258

3,r,2',4'-tetrahydroxy-trans-chalcone-2'-O-β-D-glucoside (651)

Antioxidant activity [318]

259 Xanthohumal (652) Anti-cancer activity [162] 260 Desmethyl xanthohumol (653) Anti-cancer activity [162] 261 Xanthohumol C (656) Cytotoxic activity [257] 262 Xanthohumol D (657) Cytotoxic activity [257] 263 3-hydroxyasebotin (660) Anti-cancer activity [196] 264 2′′-acetylasebotin (662) Anti-cancer activity [196] 265 3′,4,5′-trihydroxy-4′-methoxydihydrochalcone

3′,5′-di-O-β-D-glucopyranoside (663)Anti-cancer activity

[196] 266 Pierotins A (664) Anti-cancer activity [196] 267 Pierotins B (665) Anti-cancer activity [196] 268 Dihydromonospermoside (666) Antimicrobial activity [229] 269 One New chalcone (667) Enzyme inhibitory activity [36] 270 2,2′,4′-trihydroxy-6′-methoxy-3′,5′-dimethyl

chalcone (668) Anti-leishmaniasis activity

[153] 271 2′,4′-dihydroxy-3′-methoxychalcone (669) Antimicrobial activity [167] 272 2′,4′-dihydroxychalcone (670) Antimicrobial activity [167] 273 4,2',5'-trihydroxy-4'-methoxy chalcone (672) Neuroprotective effects [279] 274 Abyssinone A (673) Cytotoxic activity [168] 275 Abyssinone B (674) Cytotoxic activity [168] 276 Abyssinone C (675) Cytotoxic activity [168] 277 Abyssinone D (676) Cytotoxic activity [168] 278 Abyssinone-VI-4-O-methyl ether (677) Enzyme inhibitory activity [29] 279 Licochalcone E (683) Cytotoxic activity [159] 280 Lespeflorins C3 (690) Melanin Synthesis Inhibitor

activity [216]

281 7,9,2′,4′-tetrahydroxy-8-isopentenyl-5-methoxy-chalcone (699)

Cytotoxic activity

[165]

282 2,2′,4′-trihydroxy-6-methoxy-6′′,6′′-dimethyl-5′′-prenyldihydro- pyrano [2′′,3′′:4,3] chalcone (700)

Cytotoxic activity [191]

283 3′′,3′′-dimethylpyrano[3′,4′]2,4,2′-trihydroxy chalcone (702)

Enzyme inhibitory activity [187]

284 Brosimacutins M (703) Cytotoxic activity [13] 285 Morachalcone B (706) Cytotoxic activity [348] 286 Morachalcone C (707) Cytotoxic activity [348] 287 3'-formyl-4',6',4-trihydroxy-2'-methoxy-5'-

methylchalcone (708) Antioxidant activity [278]

288 3'-formyl-6',4-dihydroxy-2'-methoxy-5'-methylchalcone 4'-O-β-D-glucopyranoside (709)

Antioxidant activity [278]

289 Rel-(1''R,4''R,5''R)-2'-hydroxy-4'-methoxy-5',6'-O-(4-isopropyl-1-methyl-cyclohexane-1-O,5-yl)dihydrochalcone [Hostmanin A] (710)

Antiplasmodial activity [332]

290 Rel-(1''R,4''S,5''R)-2'-hydroxy-4'-methoxy-5',6'-O-(4-isopropyl-1-methyl-cyclohexane-1-O,5-yl)-dihydrochalcone [Hostmanin B] (711)

Antiplasmodial activity [332]

291 Rel-(1''R,4''R,5''S,6''S)-2'-hydroxy-4'-methoxy-5',6'-O-(4-isopropyl-1-methyl-cyclohexan-1-ol-5,6-O-yl)-dihydrochalcone [Hostmanin C] (712)

Antiplasmodial activity [332]

Page 87: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

151

Sl. No.

Compounds (Str. No.) Bioactivity Ref.

292 Rel-(1'R*,6'R*)-(4,6-dihydroxy-5-methyl-3-methylester-2-methoxy-phenyl)-(3'-isohexenyl-1'-phenylcyclohex-3'-enyl) methanone [Hostmanin D] (713)

Antiplasmodial activity [332]

293 Tarennane (715) Antioxidant activity [163] 294 Bipinnatone A (717) Enzyme inhibitory activity [211] 295 Bipinnatone B (718) Enzyme inhibitory activity [211] 296 2′,4,-dihydroxy-3′-methoxydihydrochalcone (719) Cytotoxic activity [107] 297 (–)-3′-methoxy-2′,4′,β-trihydroxy-dihydro-chalcone

(720) Cytotoxic activity

[107] 298 2,3-dihydroxy-4,3′,4′,5′-tetramethoxy-dihydro-

chalcone (721) Anti-platelet aggregation activity

[137] 299 Xanthoangelol I (723) Antitumor-promoters activity [160] 300 Xanthoangelol J (724) Antitumor-promoters activity [160] 301 Xanthokeismins A (726) Antioxidant activity [210] 302 Xanthokeismins B (727) Antioxidant activity [210] 303 Xanthokeismins C (728) Antioxidant activity [210] 304 Chalcone-6'-hydroxy-2',3,4-trimethoxy-4'-O-β-D-

glucopyranoside (729) Antimicrobial activity [281]

305 (+)-Krachaizin B (732) Cytotoxic activity [141] Enzyme inhibitory activity

306 (–)-Krachaizin B (733) Cytotoxic activity [141] Enzyme inhibitory activity

Coumarins 307 (+)-8,9-dihydro-8-(2-hydroxypropan-2-yl)-2-oxo-

2H-furo[2,3-h] chromen -9-yl-3-methylbut-2-enoate (739)

Antioxidant activity [314]

308 Ferulsinaic acid (740) Antimicrobial activity [184] 309 Sarcandracoumarin (760) Cytotoxic activity [343] 310 5-hydroxy-8,8-dimethyl-4-phenyl-9,10-dihydro-

8H-pyrano{2,3-f} chromen-2-one (761) Cytotoxic activity

[114] 311 5-hydroxy-8,8-dimethyl-4-phenyl-6-propionyl-

9,10-dihydro-8H-pyrano{2,3-f}chromen-2-one (762)

Cytotoxic activity [114]

312 5,7-dihydroxy-8-(3-methylbut-2-enyl)-4-phenyl chromen-2-one (763)

Cytotoxic activity [114]

313 7-O-[6-O-(2-O-syringoyl-β-D-apiofuranosyl)-β-D-glucopyranosyl]-6-methoxycoumarin [Eryciboside B] (769)

Hepatoprotective activity [340]

314 7-O-[6-O-(5-O-syringoyl-β-D-apiofuranosyl)-β-D-glucopyranosyl]-6,8-dimethoxycoumarin [Eryciboside F] (773)

Hepatoprotective activity [340]

315 7,4'-dihydroxy-6,8-dimethoxy-4-phenylcoumarin (778)

Cell protective activity [391]

316 7-hydroxy-6,8,4'-trimethoxy-4-phenylcoumarin (779)

Cell protective activity [391]

317 S-6-[2-(hydroxymethyl)butoxy]-7-hydroxy-4-methyl-2H-chromen-2-one [Pavietin ] (780)

Antimicrobial activity [204]

318 Asphodelin A 4′-O-β-D-glucoside (783) Antimicrobial activity [182] Miscellaneous

319 Pyranocoumarin dimmer (805) Antioxidant activity [314] 320 Erigeroflavanone (808) Advanced glycation end products

formation inhibitory activity [207]

Enzyme inhibitory activity

Page 88: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

152

Sl. No.

Compounds (Str. No.) Bioactivity Ref.

321 (3E)-2,3-dihydro-6,7-dimethoxy-3-(3-hydroxy-4-methoxyphenyl) methylene-4H-1-benzopyran-4-one (809)

Antibacterial activity [300] Antifungal activity

322 6-C-methyl-2-p-hydroxyphenyloxychromonol [Piliostigmol] (810)

Cytotoxic activity [309] Antibacterial activity

323 (2R,4R)-7-hydroxy-5,8-dimethoxyflavan (4β→3′)-2′,4′-dihydroxy-6′-methoxychalcone [Sarcandrone A] (811)

Anti HIV activity [232]

324 7-hydroxy-5,8-dimethoxyflavan-(4β 3′)-2′,6′-dihydroxy-4′-methoxy-chalcone (812)

Anti HIV activity [232]

325 ent-naringeninyl-(I-3α,II-8)-4′-O-methyl-naringenin (813)

Anti-leishmanicidal activity [186]

326 Bis coumarin (814) Hepatoprotective activity [340] 327 (2S,2′′S)-2,3,2′′,3′′-tetrahydro-4′,4′′′-di-O-methyl-

amentoflavone [Tetrahydroisoginkgetin] (815) Antibacterial activity [370]

328 Machiphilitannin A (819) Enzyme inhibitory activity [409] 329 Machiphilitannin B (820) Enzyme inhibitory activity [409] 330 One new open-chain neoflavonoid (826) Enzyme inhibitory activity [36] 331 One new open-chain neoflavonoid (827) Enzyme inhibitory activity [36] 332 Lespeflorin G5 (835) Melanin Synthesis Inhibitor

activity [216]

333 Lespeflorin G8 (838) Melanin Synthesis Inhibitor activity

[216]

334 Lespeflorin G10 (840) Melanin Synthesis Inhibitor activity

[216]

335 Lespeflorin H2 (844) Melanin Synthesis Inhibitor activity

[216]

336 Maackiapterocarpan A (852) Cytotoxic activity [225] 337 (6aR,11aR)-3,8-dihydroxy-9,10-dimethoxy-

pterocarpan (854) Antioxidant acticity [408]

338 3-(4'-hydroxybenzyl)-5,7-dihydroxy-6-methyl-8-methoxychroman-4-one (857)

Anti-diabetic activity [362]

339 3-(4'-hydroxybenzyl)-5,7-dihydroxy-6,8-dimethylchroman-4-one (858)

Anti-diabetic activity [362]

340 3-(4'-methoxybenzyl)-5,7-dihydroxy-6-methyl-8-methoxychroman-4-one (859)

Anti-diabetic activity [362]

341 Artoindonesianin E1 (866) Cytotoxic activity [360] 342 Ophioglonin (876) Anti HIV activity [195]

343

Liquiritigeninyl-(I-3,II-3)-naringenin (882) Antimicrobial activity [358] Antiplasmodial activity

344

Apigeninyl-(I-3,II-3)-naringenin (883) Antimicrobial activity [358] Antiplasmodial activity

345

7-O-β-D-glucopyranosylchamaejasmin (884) Antimicrobial activity [358] Antiplasmodial activity

346

5,5''-di-O-methyldiphysin (885) Antimicrobial activity [358] Antiplasmodial activity

347

7-O-β-D-glucopyranosyldiphysin (886) Antimicrobial activity [358] Antiplasmodial activity

348 Purunuside A (890) Enzyme inhibitory activity [361] 349 Purunuside B (891) Enzyme inhibitory activity [361] 350 Purunuside C (892) Enzyme inhibitory activity [361] 351 (2S)-2,3-dihydrorobustaflavone-4′-methyl ether

[Uncinatabiflavone D] (897) Anti-anoxic activity

[266]

Page 89: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

153

injuries [279]. The flavonol derivative, kaempferol 3-O-(2′′-O-galloylrutinoside) (267), exhibited promising neuroprotective effects on ischemic injury model of cultured rat cortical neurons treated with sodium dithionite in glucose-free medium as reported by Liu et al. [252]. 3.18 Osteoclast differentiation inhibitory activity The aerial parts of Cephalotaxus koreana afforded one bioactive flavonoid glycoside 19 which showed strong inhibitory activities against osteoclast differentiation at concentrations of 0.1 (% inhibition 63 ± 4.6) and 1.0 μg/mL (% inhibition 86 ± 6.3) as reported by Yoon et al. [60]. 3.19 Anthelmintic activity Parasitic diseases caused by helminthes lead to significant health hazards to animals resulting in enormous economic impact. The flavone 121, isolated from Struthiola argentea, was found to show the most potent inhibitory anthelmintic activity in vitro with 90% inhibition of larval motility at 3.1 μg/mL [72]. 3.20 Nematicidal activity Two prenylated flavanones 511 and 512, isolated from Phyllanthus niruri plant, showed dose-dependent nematicidal activity against Meloidogyne incognita and Rotylenchulus reniformis nematodes. The LC50 calculated after 72 h showed that compound 512 exhibited nematicidal activity much stronger (LC50 of 14.5 ±0.96 and 3.3± 1.13 ppm, respectively) than the standard bionematicide, Aspergillus niger which has LC50 of 48 ppm after 72 h. This was then compared with another standard, carbofuran having LC50 3.1 ppm [140]. 3.21 Miscellaneous activities Bourjot and his group [373] isolated two new cytotoxic prenylated flavonoids, styracifolins A (71) and B (72) from the stem bark of Artocarpus styracifolius were exhibited antitrypanocidal activity; the compound 72 showed relatively

strong activity against Trypanosoma brucei bruce with IC50 value of 6.9 ± 0.4 μM than compound 71 (IC50 13.3 ± 4.4 μM) [373]. The flavone glycosides scutellarein-7-O-β-D-apiofuranoside (128) and apigenin-7-O-β-D-apiofuranosyl-(1 2)-β-D-apiofuranoside (129), and the flavone celtidifoline (5,6,4',5'-tetrahydroxy-7,3'-dimethoxyflavone, 130) isolated from leaves of the ethyl acetate extract of Lantana trifolia exhibited sedative effect in mice and affinity for the benzodiazepine receptor with IC50 values of 187, 670, and 440 μM, respectively [345]. Lu et al. reported that the new acetylated flavonoid, kaempferide-7-O-(4″-O-acetyl)-α-L-rhamnoside (167) from Actinidia kolomikta possesses protective effect on human erythrocytes against AAPH-induced hemolysis [377]. A flavonoid glycoside Mutabiloside (258) from Hibiscus mutabilis was exhibited significant allergy-preventive activity [282]; the investigators Mutabiloside (258, 20 mg/kg, p.o.) also significantly (p < 0.05) improved the blood flow decrease in a similar manner. The activity of the compound was almost equal to allergy- or blood flow-related clinically effective reagents such as disodium cromoglycate (DSCG: 10 mg/kg, i.v.), NS398 (3 mg/kg, i.p.), Ozagrel (300 mg/kg, p.o.), Flubiprofen (10 mg/kg, p.o.) and L-NAME (10 mg/kg, i.p.). The present data confirm an allergy-preventive activity of the compound for the first time. Thus, combining present data, sugar moiety of flavonol could play an important role in an allergy [282]. The inhibitory effect on the activation of Epstein–Barr virus early antigen (EBV-EA) induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) was evaluated for two newly isolated isoflavone glycosides 366 and 367. Among the tested compounds, the glycosidic isoflavones 366 and 367 showed weak inhibition at 500 mol ratio per TPA (less than 42.0% inhibition), comparable to that of positive control ( )-epigallocatechin gallate (65.1% inhibition) [301]. From bioassay-guided fractionation of the EtOH extract of licorice (Glycyrrhiza glabra roots) yielded 39 phenolics, including 9 new flavonoid compounds 446-447, 469a, 469b, 551 and 679-682. Among the isolates 469a and 551 exhibited significant

Page 90: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

154

PPAR- γ ligandbinding activity. The activity of these compounds at concentration of 10 μg/mL was 3 times more potent than that of 0.5 μM troglitazone [378]. The isoprenyl group at C-6 and the hydroxy group at C-2' in the aromatic ring-C part in the isoflavan, isoflavene, or arylcoumarin skeleton have been found to be the structural requirements for PPAR-γ ligandbinding activity in the phenolics isolated from G. uralensis roots [296]. Kikuchi et al. [105] reported that the isoflavonoid 389 with a pyran ring attached on the C-7/C-8 positions isolated from Millettia brandisiana showed 3-fold activation of DR5 promoter activity, compared with negative control at concentration of 35.0 μM. Moreover, the compound 389 showed more potent activity than that of luteolin (as a positive control) at the concentration of 17.5 μM [105]. A flavonoid constituent Cudraflavanone A (571) of Cudrania tricuspidata inhibits vascular smooth muscle cell growth via Akt-dependent pathway; the compound 571 has ability to inhibit VSMCs growth under 25 ng/mL platelel-derived growth factor BB (PDGF-BB)-stimulated conditions. The compound 571 significantly inhibited PDGF-BB-induced cell numbers in a concentration dependent manner (0.1-1.0 μM) [31]. Song et al. reported that three new flavonoids 769, 773, and 814 isolated from roots and stems of Erycibe hainanesis were found to exhibit inhibitory activities on D-galactosamine-induced cytotoxicity in WB-F344 rat hepatic epithelial stemlike cells; all the compounds 769, 773, and 814 showed potent hepatoprotective activities at concentrations of 1 × 105 to 1 × 104

M [340]. Two new 4-arylcoumarins, 7,4'-dihydroxy-6,8- dimethoxy-4-phenylcoumarin (778) and 7-hydroxy-6,8,4'- trimethoxy-4-phenylcoumarin (779) together with four known compounds were isolated from Calophyllum polyanthum [391]; both the new compounds 778 and 779 exhibited significant cell protective activities against H2O2-induced human umbilical vein endothelial cell damage. Compound 778 attenuated the H2O2-induced HUVEC damage significantly at concentration 1 × 10 5 and 4 × 107 mol/L, but compound 779 showed remarkable

cell protective activities at concentrations 1 × 105, 2 × 10 6, 4 × 10 7 and 8 × 108 mol/L [391]. Zheng et al. reported that the biflavonoid 897 isolated from Selaginella uncinata also exhibits potent anti-anoxic activity as determined by the anoxic PC12 cell assay [266]. 4. Natural distributions This present survey indicates that bio-flavonoids are widely distributed in plant kingdom; all these nine hundred and two flavonoid molecules are distributed among eighty-five plant families (namely, Acanthaceae; Actinidiaceae; Agavaceae; Amaranthaceae; Annonaceae; Apiaceae; Apocynaceae; Aralia-ceae; Aristolochiaceae; Asteraceae (Compositae); Berberidaceae; Bignoniaceae; Brassicaceae; Burseracea; Camellia; Cannabidaceae; Caryo-phyllaceae; Cephalotaxaceae; Chenopodiaceae; Chloranthaceae; Clusiaceae; Convolvulaceae; Coriariaceae; Cornaceae; Crassulaceae; Cruciferae; Cucurbitaceae; Cyperaceae; Dryopteridaceae; Ebenaceae; Ericaceae; Eriocaulaceae; Euphor-biaceae; Fabaceae (Caesalpiniaceae, Mimosaceae, Leguminosae, Papilionaceae); Flacourtiaceae; Gentianaceae; Gesneriaceae; Globulariaceae; Goodeniaceae; Gramineae; Guttiferae; Hippo-castanaceae; Iridaceae; Labiatae; Lamiaceae; Liliaceae; Malvaceae; Moraceae; Nymphaeaceae; Ochnaceae; Oleaceae; Ophioglossaceae; Orchi-daceae; Oxalidaceae; Papaveraceae; Poaceae; Polygalaceae; Polygonaceae; Polypodiaceae; Primulaceae; Ranunculaceae; Rhamnaceae; Rubiaceae; Rutaceae; Sabiaceae; Salicaceae; Sapindaceae; Sarcolaenaceae; Saxifragaceae; Scrophulariaceae; Selaginellaceae; Solanaceae; Sterculiaceae; Taxaceae; Theaceae; Thelypteri-daceae; Thymelaeaceae; Tiliaceae; Turneraceae; Umbelliferae; Verbenaceae; Violaceae; Vittariaceae; Zingiberaceae and Zygophyllaceae).

A major portion of these flavonoids is originated from three plant families, viz. Fabaceae (Papilionaceae, Mimosaceae, Legu-minosae, Caesalpiniaceae), Asteraceae (Com-positae) and Lamiaceae, and very particularly isolated from the aerial parts, leaves and roots of the plant species. It has also been revealed that flavan and flavan derivatives are mainly isolated

Page 91: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

155

from plants species belonging to Actinidiaceae and Thelypteridaceae families, while biflavo-noids from Aristolochiaceae, Chloranthaceae, Leguminosae and Selaginellaceae, and coumarins from the Apiaceae. 5. Concluding remarks The present overview focuses the natural abundance of new flavonoids with varying structural skeletons reported during the period 2005 to early 2011, and their significant biological activities including pharmacological efficacies. The chemistry of flavonoids has been studied enormously, and has already been much developed as a promising area of research. Due to promising multi-directional biological activities along with efficient pharmacological/ therapeutic applications, bioflavonoids have drawn global attention and have already created a stir in the scientific community at a large. However, more systematic scientific works are demanding and the present-day workers have to undertake systematic studies in more depth, so that beneficial effects of these important segments of natural components can find safe and effective uses for the betterment of mankind. Thus, search for more and more new flavonoids from natural sources and studies on their detailed chemistry and bioactive properties are emerging. This overview is anticipated to boost the progress of research on naturally occurring bio-flavonoids in this direction in days coming ahead. Acknowledgements The work was supported by a Research Grant [Project No. F.34–357/2008 (SR) dated 02.01.2009] from the University Grants Commission, New Delhi. References [1] Harborne J. B., and Williams C. A.

(2001) Nat. Prod. Rep. 18, 310-333. [2] Williams C. A., and Grayer R. J. (2004)

Nat. Prod. Rep. 21, 539-573. [3] Reynaud J., Guilet D., Terreux R.,

Lussignol M., and Walchshofer N. (2005)

Nat. Prod. Rep. 22, 504-515. [4] Mackova Z., Koblovska R., and Lapcik

O. (2006) Phytochemistry 67, 849-855. [5] Andersen Ø. M., and Markham K. R.

(Eds.), Flavonoids: Chemistry, Biochemistry and Applications, 1st ed., CRC Press: Boca Raton, 2006.

[6] Li J., and Jiang Y. (2007) Molecules 12, 745-758.

[7] Veitch N. C. (2007) Nat. Prod. Rep. 24, 417-464. [8] Veitch N. C., and Grayer R. J. (2008) Nat.

Prod. Rep. 25, 555-611. [9] Brahmachari G., and Gorai D. (2006)

Curr. Org. Chem. 10, 873-898. [10] Brahmachari G. (2008) Nat. Prod.

Commun. 3, 1337-1358. [11] Dong M. L., Chen F. K., Wu L., and Gao

H. Y. (2005) J. Asian Nat. Prod. Res. 7, 71-74.

[12] Nishimura T., Wang L. Y., Kusano K., and Kitanaka S. (2005) Chem. Pharm. Bull. 53, 305-308.

[13] Takashima J., Komiyana K., Ishiyama H., Kobayashi J. I., and Okhsaki A. (2005) Planta Med. 71, 654-658.

[14] Deng Y., Zheng Y., Chen B., Zhang G. L. and Wu F. E. (2005) J. Asian Nat. Prod. Res. 7, 741-745.

[15] Awale S., Shrestha S. P., Tezuka Y., Ueda J. Y., Matsushige K., and Kadota S. (2005) J. Nat. Prod. 68, 858-864.

[16] Chiu C. Y., Li C. Y., Chiu C. C., Niwa M., Kitanaka S., Damu A. G., Lee E. J., and Wu T. S. (2005) Chem. Pharm. Bull. 53, 1118-1121.

[17] Ko H. H., Lu Y. H., Yang S. Z., Won S. J., and Lin C. N. (2005) J. Nat. Prod. 68, 1692-1695.

[18] Lin A. S., Chang F. R., Wu C. C., Liaw C. C., and Wu Y. C. (2005) Planta Med. 71, 867-870.

[19] Shiao Y. J., Wang C. N., and Wang W. Y. (2005) Planta Med. 71, 835-840.

[20] Chang J., and Case R. (2005) Planta Med. 71, 955-959.

[21] Miyaichi Y., Hanamitsu E., Kizu H., and Tomimori T. (2006) Chem. Pharm. Bull. 54, 435-441.

Page 92: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

156

[22] Koysomboon S., Van Altena I., and Kato S. (2006) Phytochemistry 67, 1034-1040.

[23] Pan W. B., Wel L. M., Wei L. L., and Wu Y. C. (2006) Chem. Pharm. Bull. 54, 954-958.

[24] Weng J. R., Chan S. C., Lu Y. H., Lin H. C., Ko H. H., and Lin C. N. (2006) Phytochemistry 67, 824-829.

[25] Li L., Li X., Shi C., Deng Z., Fu H., Proksch P., and Lin W. (2006) Phytochemistry 67, 1347-1352.

[26] Tih A. E., Ghogomu R. T., Sondengam B. L., Caux C., and Bodo B. (2006) J. Nat. Prod. 69, 1206-1208.

[27] Jung S. J., Kim D. H., Hong Y. H., Lee J. H., Song H. N., Rho Y. D., and Baek N. I. (2007) Arch. Pharm. Res. 30, 146-150.

[28] Chin Y. W., Mdee L. K., Mbwambo Z. H., Mi Q., Chai H. B., Cragg G. M., Swanson S. M., and Kinghorn A. D. (2006) J. Nat. Prod. 69, 1649-1652.

[29] Na M. K., Jang J. P., Njamen D., Mbafor J. T., Fomum Z. T., Kim B. Y., Oh W. K., and Ahn J. S. (2006) J. Nat. Prod. 69, 1572-1576.

[30] Zou Y. S., Hou A. J., and Zhu G. F. (2005) Chem. Biodivers. 2, 131-138.

[31] Han H. J., Kim T. J., Jin Y. R., Hong S. S., Hwang J. H., Hwang B. Y., Lee K. H., Park T. K., and Yun Y. R. (2007) Planta Med. 73, 1163-1168.

[32] Fritz D., Venturi C. R., Cargnin S., Schrip-sema J., Roehe P. M., Montanha J. A., and von Poser G. L. (2007) J. Ethnopharmacol. 113, 517-520.

[33] Jayasinghe U. L. B., Samarakoon T. B., Kumarihamy B. M. M., Hara N., and Fujimoto Y. (2008) Fitoterapia 79, 37- 41.

[34] Ma J., Jones S. H., and Hecht S. M. (2005) J. Nat. Prod. 68, 115-117.

[35] Howell H., Malan E., Brand D. J., Kamara B. I., Benuidenhoudt B. C. B., Marais C., and Steenkamp J. A. (2007) Chem. Nat. Compd. 43, 533-538.

[36] Shrestha S. P., Amano Y., Narukawa Y., and Takeda T. (2008) J. Nat. Prod. 71, 98-101.

[37] Wenzig E., Kunert O., Ferreira D.,

Schmid M., Schhly W., Bauer R., and Hiermann A. (2005) J. Nat. Prod. 68, 289-292.

[38] Es-Safi N. E., Khlifi S., Kerhoas L., Kollmann A., El Abbouyi A., and Ducrot P. H. (2005) J. Nat. Prod. 68, 1293-1296.

[39] Nazaruk J., and Jakoniuk P. (2005) J. Ethnopharmacol. 102, 208-212.

[40] Yuldashev M. P., and Karimov A. (2005) Chem. Nat. Compd. 41, 32-34.

[41] Bekker M., Bekker R., and Brandt V. E. (2006) Phytochemistry 67, 818-823.

[42] Jiao R. H., Ge H. M., Shi D. H., and Tan R. X. (2006) J. Nat. Prod. 69, 1089-1091.

[43] Shahat A. A., Abdel-Shafeek K. A., Husseiny H. A., Claeys M., Apers S., and Pieters L. (2006) Nat. Prod. Sci. 12, 122-124.

[44] Uyar Z., Boke N., Turkay E., Koz O., Yasa I., and Kirmizigul S. (2006) Nat. Prod. Res. 20, 999-1007.

[45] Wang N., Wang J. H., Li X., Ling J. H., and Li N. (2006) J. Asian Nat. Prod. Res. 8, 753-756.

[46] Wang H. W., Liu Y. Q., and Feng C. G. (2006) J. Asian Nat. Prod. Res. 8, 757- 761.

[47] Rigano D., Formisano C., Grassia A., Grassia G., Perrone A., Piacente S., Vuotto M. L., and Senatore F. (2007) Planta Med. 73, 93-96.

[48] Alaniya M. D., Kavtaradze N. S., Bassarello C., Skhirtladze A. V., Pizza C., and Kutateladze I. (2006) Chem. Nat. Compd. 42, 681-685.

[49] Kim H. J., and Lee I. S. (2006) J. Nat. Prod. 69, 1522-1524.

[50] Reutrakul V., Ningnuek N., Pohmakotr M., Yoosook C., Napaswad C., Napaswad C., Kasisit J., Santisuk T., and Tuchinda P. (2007) Planta Med. 73, 683-688.

[51] Chen L., Zhou Y., and Dong J. X. (2007) Acta Pharm. Sin. 42, 183-186.

[52] Li X. R., Li Z. M., Du S. S., and Lin R. C. (2007) Acta Pharm. Sin. 42, 747-749.

[53] Dongmo A. B., Miyamoto T., Yoshikawa K., Arithara S., and Lacaille-Dubois M. (2007) Planta Med. 73, 1202-1207.

[54] Da Silva M. A., Oliverira A. P. S.,

Page 93: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

157

Sannomiya M., Sano P. T., Varanda E. A., Vilegas W., and dos Santos L. C. (2007) Chem. Pharm. Bull. 55, 1635- 1639.

[55] Wang X. L., Wang N. L., Zhang Y., Gao H., Pang W. Y., Wong M. S., Zhang G., Qin L., and Yao X. S. (2007) Chem. Pharm. Bull. 56, 46-51.

[56] Wu B., Takahashi T., Tebayashi S., and Sa Kim C. (2007) Chem. Pharm. Bull. 55, 815-816.

[57] Li R. T., Li J. T., Wang J. K., Han Q. B., Zhu Z. Y., and Sun H. D. (2008) Chem. Pharm. Bull. 56, 592-594.

[58] Lee V. S. Y., Chen C. R., Liao Y. W., and Tzen J. T. C. (2008) Chem. Pharm. Bull. 56, 851-853.

[59] Salib J. Y. (2008) Asian J. Chem. 20, 1593-1598.

[60] Yoon K. D., Jeong D. G., Hwang Y. H., Ryu J. M., and Kim J. (2007) J. Nat. Prod. 70, 2029-2032.

[61] Likhitwitaywuid K., Sritularak B., Benchanak K., Lipipun V., Mathew J., and Schinazi R. F. (2005) Nat. Prod. Res. 19, 177-182.

[62] De Melo G. O., Muzitano M. F., Legora- Machde A., Almeida T. A., De Oliveria D. B., Kaiser C. R., Koatz V. L. G., and Costa S. S. (2005) Planta Med. 70, 362- 363.

[63] Budzianowski J., Morozowska M., and Wesolowska M. (2005) Phytochemistry 66, 1033-1039.

[64] Medjroubi K., Mezhoud S., Benayache F., Seguin E., and Tillequin F. (2005) Chem. Nat. Compd. 41, 226-227.

[65] Sritularak B., and Likhitwitayawuid K. (2006) Phytochemistry 67, 812-817.

[66] Likhitwitayawuid K., Klongsiriwet C., Jongbunprasert V., Sritularak B., and Wongseripipatana S. (2006) Arch. Pharm. Res. 29, 199-202.

[67] Zhou G. X., Jiang R. W., Cheng Y., Ye W. C., Shi J. G., Gong N. B., and Lu Y. (2007) Chem. Pharm. Bull. 55, 1287- 1290.

[68] Reddy N. P., Reddy B. A. K., Gunasekar D., Blond A., Bodo B., and Murty M. M. (2007) Phytochemistry 68, 636-639.

[69] Berthier A., Girard C., Grandvuillemin A., Muyard F., Skaltsounis A. L., Jouvenot M., and Delage-Mourroux R. (2007) Planta Med. 73, 1447-1451.

[70] Wu T. S., Chern H. J., Damu A. G., Kuo P. C., Su C. R., Lee E. J., and Teng C. M. (2008) J. Asian Nat. Prod. Res. 10, 17- 24.

[71] Jin L., Chen H. S., Jin Y. S., Liang S., Xiang Z. B., and Lu J., (2008) J. Asian Nat. Prod. Res. 10, 89-94.

[72] Ayers S., Zink D. L., Mohn K., Powell J. S., Brown C. M., Murphy T., Brand R., Pretorius S., Stevenson D., Thompson D., and Singh S. B. (2008) Phytochemistry 69, 541-545.

[73] Cui X. Q., Wang L., Yan R. Y., Tan Y. X., Chen R. Y. and Yu D. Q. (2008) J. Asian Nat. Prod. Res. 10, 315-318.

[74] Sridhar C., Rao K. V., and Subbaraju G. V. (2005) Phytochemistry 66, 1707-1712.

[75] Nguyen M. T. T., Awale S., Tezuka Y., Tezuka Y., Ueda J., Tran Q. L., and Kadota S. (2006) Planta Med. 72, 46-51.

[76] Waffo A. F. K., Coombes P. H., Mulholland D. A., Nkengfack A. E., and Fomum Z. T. (2006) Phytochemistry 67, 459-463.

[77] Herath W., Mikell J. R., Hale A. L., Ferreira D., and Khan I. A. (2006) Chem. Pharm. Bull. 54, 320-324.

[78] Satyanarayana T., Katyayani B. M., Latha H. E., Mathews A. A., and Eswaraiah C. M. (2006) Phcog. Mag. 2, 244-253.

[79] Li W., Xu X., Zhang H., Ma C., Fong H., Breemen R. V., and Fitzloff J. (2007) Chem. Pharm. Bull. 55, 455-458.

[80] Ibrahim L. F., Kawashty S. A., Baiuomy A., Shabana M. M., El-Eraky W. I., and El-Negoumy S. I. (2007) Chem. Nat. Compd. 43, 24-28.

[81] Yuldashev M. P., Muminova B. A., Drenin A. A., and Botirov E. K. (2007) Chem. Nat. Compd. 43, 34-36.

[82] Jung S. H., Lee J. M., Lee H. J., Kim C. Y., Lee E. H., and Um B. H. (2007) Biol. Pharm. Bull. 30, 1569-1572.

[83] Park H. S., Lim J. H., Kim H. J., Choi H. J., and Lee I. S. (2007) Arch. Pharm. Res. 30, 161-166.

Page 94: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

158

[84] Bae K. H., Jin W. Y., Thuong P. T., Min B. S., Na M. K., Lee Y. M., and Kang S. S. (2007) Fitoterapia 78, 409-413.

[85] Du Q., and Cui H. (2007) Fitoterapia 78, 609-610.

[86] Ilyas M., Parveen M., and Hasan S. M. (2007) Hamdard Med. 50, 5-8.

[87] El-Desoky S. K., Hawas U. W., and Sharaf M. (2007) Chem. Nat. Compd. 43, 542-543.

[88] Elbandy M., Miyamoto T., and Lacaille- Dubois M.A. (2007) Chem. Pharm. Bull. 55, 808-811.

[89] Fernandes D. C., Regasini L. O., Vellosa J. C. R., Pauletti P. M., Castro-Gamboa I., Bolzani V. S., Oliveira O. M., and Silva D. H. S. (2008) Chem. Pharm. Bull. 56, 723-726.

[90] Chacha M., Bojase-Moleta G., and Majinda R. R. T. (2005) Phytochemistry 66, 99-104.

[91] Cottiglia F., Casu L., Bonsignore L., Casu M., Floris C., Leonti M., Gertsch J., Heilmann J. (2005) Planta Med. 71, 254- 260.

[92] Falcao M. J. C., Pouliquem Y. B. M., Lima M. A. S., Gramosa M. O., and Silveria E. R. (2005) J. Nat. Prod. 68, 423-426.

[93] Cheng J., Zhao Y. Y., Wang B., Qiao L., and Liang H. (2005) Chem. Pharm. Bull. 53, 419-421.

[94] Ferrari F., Monache F. D., Suarez A. I., and Arvelo F. (2005) Nat. Prod. Res. 19, 331-335.

[95] Moon H. I., Lee J., Kwak J. H., Zee O. P., and Chung J. H. (2005) Biol. Pharm. Bull. 28, 925-928.

[96] Andayi A. W., and Yenesew A. (2006) Planta Med. 72, 187-189.

[97] Kim J. M., Lee Y. M., Lee G. Y., Jang D. S., Bae K. H., and Kim J. S. (2006) Arch. Pharm. Res. 29, 821-825.

[98] Abdel-Kader M. S., Amer M. E., Tang S., and Kingston D. G. I. (2006) Nat. Prod. Res. 20, 922-926.

[99] Tinto W. F., Simmons-Boyee J. L., McLean S., and Reynolds W. F. (2005) Fitoterapia 76, 594-597.

[100] Ngamrojanavanich N., Loontaisong A., Pengpreecha S., Cherdshewasart W., Pornpakakul S., Pudhom K., Roengsumran S., and Petsom A. (2007) J. Ethnopharmacol. 109, 354-358.

[101] Jang J. P., Thuong P. T., Njamen D., Mbafor J. T., Fomum Z. T., Woo E. R., and Oh W. K. (2008) Chem. Pharm. Bull. 56, 85-88.

[102] Pei Y., Li R., Fu H., Wang J., and Zhou Y. (2007) Fitoterapia 78, 602-604.

[103] Tang Y. P., Zhu H. X., and Duan J. A. (2008) J. Asian Nat. Prod. Res. 10, 65-70.

[104] Pancharoen O., Athipornchai A., Panthong A., and Taylor W. C. (2008) Chem. Pharm. Bull. 56, 835-838.

[105] Kikuchi H., Ohtsuki T., Koyano T., Kowithayakorn T., Sakai T., and Ishibashi M. (2007) J. Nat. Prod. 70, 1910-1914.

[106] Guchu S. M., Yenesew A., Tsanuo M. K., Gikonto N. K., Pickett J. A., Hooper A. M., and Hassanali A. (2007) Phytochemistry 68, 646-651.

[107] Chen J. J., Lee H. H., duh C. Y., and Chen I. S. (2005) Planta Med. 71, 970- 973.

[108] Yoder B. J., Cao S., Norris A., Miller J. S., Ratovoson F., Razafitsalama J., Andriantsiferana R., Rasamison V. E., and Kingston D. G. I. (2007) J. Nat. Prod. 70, 342-346.

[109] Hussein A. A., Barberena I., Correa M., Coley P. D., Solis P. N., Gupta M. P. (2005) J. Nat. Prod. 68, 231-233.

[110] Meng F., Xiong Z., Jiang Z., and Li F. (2005) Pharm. Biol. 43, 92-95.

[111] Furusawa M., Tanaka T., Ito T., Nakaya K., Iliya I., Ohyama M., Iinuma M., Murata H., Inatomi Y., and Inada A. (2005) Chem. Pharm. Bull. 53, 591-593.

[112] Chakradhar V., Babu Y. H., Ganapaty S., Prasad Y. R., and Rao N. K. (2005) Nat. Prod. Sci. 11, 63-66.

[113] Langoljam R. D., Kongbrailatpam R. D., and Laitonjam W. S. (2005) Indian J. Chem. 44B, 1291-1294.

[114] Lopez-Perez J. L., Olmedo D. A., del

Page 95: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

159

Olmo E., Vasquez Y., Solis P. N., Gupta M. P., nd Feliciano A. S. (2005) J. Nat. Prod. 68, 369-373.

[115] Chin Y. W., and Kim J. (2006) Chem. Pharm. Bull. 54, 234-236.

[116] Shang X. Y., Wang Y. H., Li C., Zhang C. Z., Yang Y. C., and Shi J. G. (2006) Phytochemistry 67, 511-515.

[117] Manguro L. O. A., Wagai S. O., and Lemmen P. (2006) Phytochemistry 67, 830-837.

[118] Moharram F. A., Marzouk M. S. A., Ibrahim M. T., and Mabry T. J. (2006) Nat. Prod. Res. 20, 927-934.

[119] Prieto J. M., Siciliano T., and Braca A. (2006) Fitoterapia 77, 203-207.

[120] Maheswara M., Rao Y. K., Rao M., and Rao C. V. (2006) Asian J. Chem. 18, 2761-2765.

[121] Zhang L., Luo X., and Tian J. (2007) Chem. Nat. Compd. 43, 128-131.

[122] Yoshikawa M., Wang T., Morikawa T., and Matsuda H. (2007) Chem. Pharm. Bull. 55, 1308-1315.

[123] Akkal S., Benayache F., Medjroubi K., and Tillequin F. (2007) Chem. Nat. Compd. 43, 319-320.

[124] Wirasathien L., Pengsuparp T., Suttisri R., Ueda H., Moriyasu M., and Kawanishi K. (2007) Phytomedicine 14, 546-550.

[125] Wang G. J., Tsai T. H., and Lin L. C. (2007) Phytochemistry 68, 2455-2464.

[126] Zhao Z., Ruan J., Jin J., Zou J., Zhou D., Fang W., and Zeng F. (2006) J. Nat. Prod. 69, 265-268.

[127] Zhang W. D., Shi Q. R., Shen Y. H., and Chen H. S. (2007) Fitoterapia 78, 596-597.

[128] Zhao Z., Jin J., Ruan J., Zhu C., Lin C., Fang W., and Cai Y. (2007) J. Nat. Prod. 70, 1683-1686.

[129] Murphy B. T., Cao S., Norris A., Miller J. S., Ratovoson F., Andriantsiferana R., Rasamison V. E., and Kingston D. G. I. (2005) J. Nat. Prod. 68, 417-419.

[130] Ali M. S., Ahmed F., Pervez M. K., Azhar I., and Ibrahim S. A. (2005) Nat. Prod. Res. 19, 53-56.

[131] Lambert J. D., Sang S., Dougherty A.,

Caldwell C. G., Meyers R. O., Door R. T., and Timmermann B. N. (2005) Phytochemistry 66, 811-815.

[132] Jerz G., Waibel R., and Achenbach H. (2005) Phytochemistry 66, 1698-1706.

[133] Reddy B. A. K., Reddy M. B. V., Gunasekar D., Murty M. M., Caux C., and Bodo B. (2005) Indian J. Chem. 44B, 1966-1969.

[134] Leu Y. L., Hwang T. L., Chung Y. M., and Hong P. Y. (2006) Chem. Pharm. Bull. 54, 1063-1066.

[135] Siddikov G. U., Yuldashev M. P., Baitirov R. Kh., and Abdullaev S. V. (2006) Chem. Nat. Compd. 42, 356-357.

[136] Ahmed E., Imran M., Malik A., and Ashraf M. (2006) Arch. Pharm. Res. 29, 343-347.

[137] Chen J. J., Lee H. H., Shih C. D., Liao C. H., Chen I. S., and Chou T. H. (2007) Planta Medica 73, 572-577.

[138] Cui L., Ndinteh D. T., Na M. K., Thuaong P. T., Silike-Muruumu J., Njamen D., Mbafor J. T., Fomum Z. T., and Ahn J. S. (2007) J. Nat. Prod. 70, 1039-1042.

[139] Xie L. P., Chen Q. X., Huang H., Wang H. Z., and Zhang R. Q. (2003) Biochemistry (Moscow) 68, 487-491.

[140] Shakil N. A., Kumar P. J., Pandey R. K., and Saxena D. B. (2008) Phytochemistry 69, 759-764.

[141] Morikawa T., Funakoshi K., Ninomiya K., Yasuda D., Miyagawa K., Matsuda H., and Yoshikawa M. (2008) Chem. Pharm. Bull. 56, 956-962.

[142] Li S., Kuang H. X., Okada Y., and Okuyama T. (2005) J. Asian Nat. Prod. Res. 7, 67-70.

[143] Yadava R. N., and Singh S. K. (2006) Indian J. Chem. 45B, 1004-1008.

[144] Yao H., Liao Z. X., Wu Q., Lei G. O., Liu Z. J., Chen D. F., Chen J. K., and Zhou T. S. (2006) Chem. Pharm. Bull. 54, 133- 135.

[145] Sun J. M., Yang J. S., and Zhang H. (2007) Chem. Pharm. Bull. 55, 474-476.

[146] Fang W., Ruan J., Wang Z., Zhao Z., Zou J., Zhou D., and Cai Y. (2006) J. Nat. Prod. 69, 1641-1644.

[147] Han A. R., Kim J. B., Lee J., Nam J. W.,

Page 96: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

160

Lee I. S., Shim C. K., Lee K. T., and Seo E. K. (2007) Chem. Pharm. Bull. 55, 1270-1273.

[148] Feng W. S., Cao X. W., Kuang H. X., and Zheng X. K. (2007) Acta Pharm. Sin. 42, 867-871.

[149] Fossen T., Rayyan S., Holmberg M. H., Nateland H. S., and Andersen, O. M. (2005) Phytochemistry 66, 1133-140.

[150] Bjoroy O., Fossen T., and Andersen O. M. (2007) Phytochemistry 68, 640-645.

[151] Saito N., Tatsuzawa F., Yazaki Y., Shigihara A., and T. (2007) Phytochemistry 68, 673-679.

[152] Fossen T., Rayyan S., Holmberg M. H., Nimtz M., and Andersen O. M. (2007) Phytochemistry 68, 652-662.

[153] Salem M. M., and Werboveta K. A. (2005) J. Nat. Prod. 68, 108-111.

[154] Kamara B. I., Manong D. T. L., and Brandt E. V. (2005) Phytochemistry 66, 1126-1132.

[155] Machado M. B., and Lopes L. M. X. (2005) Phytochemistry 66, 669-674.

[156] Ngadjui B. T., Watchueng J., Keumedjio F., Ngameni B., Simo I. K., and Abegaz B. M. (2005) Phytochemistry 66, 687- 692.

[157] Reddy B. A. K., Reddy M. B. V., Gunasekar D., Murty M. M., Caux C., and Bodo B. (2005) Indian J. Chem. 44B, 1966-1969.

[158] Lin Y., Chen H. B., Qiao L., and Zhao Y. Y. (2005) J. Asian Nat. Prod. Res. 7, 723- 727.

[159] Yoon G., Jung Y. D., and Cheon S. H. (2005) Chem. Pharm. Bull. 53, 694-695.

[160] Akihisa T., Tokuda H., Hasegawa D., Ukiya M., Kimura Y., Enjo F., Suzuki T., and Nishino H. (2006) J. Nat. Prod. 69, 38-42.

[161] Wirasathien L., Pengsuparp T., Moriyasu M., Kawanishi K., and Suttisri R. (2006) Arch. Pharm. Res. 29, 497-502.

[162] Delmulle L., Bellahcene A., Dhooge W., Comhaire F., Roelens F., Huvaere K., Heyerick A., Castronovo V., and De Keukeleire D. (2006) Phytomedicine 13, 732-734.

[163] Yang X. W., Wang J. S., Wang Y. H.,

Xiao H. T., Hu X. J., Mu S. Z., Ma Y. L., Lin H., He H. P., and Li L. (2007) Planta Med. 73, 496-498.

[164] Lall N., Hussein A. A., and Meyer J. J. M. (2006) Fitoterapia 77, 230-232.

[165] Lee J. H., Baek N. I., Kim S. H., Park H. W., Yang J. H., Lee J. J., Kim S. J., Oh C. H., and Lee K. H. (2007) Arch. Pharm. Res. 30, 408-411.

[166] Salem M. M., and Werbovetz K. A. (2006) J. Nat. Prod. 69, 43-49.

[167] Svetaz L., Aguero M. B., Alvarez S., Luna L., Feresin G., Derita M., Tapia A., and Zacchino S. (2007) Planta Med. 73, 1074-1080.

[168] Cui J., Thuong P. T., Lee H. S., Njamen D., Mbafor J. T.,. Formum Z. T, Lee J., Kim Y. H., and Oh W. K. (2008) Planta Med. 74, 422-426.

[169] Mallavadhani U. V., and Mahapatra A. (2005) Nat. Prod. Res. 19, 91-97.

[170] Singh J. (2007) Vegetos 20, 61-69. [171] Saleem M., Afza N., Anwar M. A., and

Ali M. S. (2005) Nat. Prodt. Res. 19, 633- 638.

[172] Taniguchi M., Yokota O., Shibano M., Yang N. H., and Baba K. (2005) Chem. Pharm. Bull. 53, 701-704.

[173] Negi N., Oehi A., Kurosawa M., Ushijima K., Kitaguchi Y., Kusakabe E., Okasho F., KImachi T., Teshima N., and Ju-Ichi M. (2005) Chem. Pharm. Bull. 53, 1180- 1182.

[174] Widelski J., Melliou E., Fokialakis N., Magiatis P., Glowniak K., and Chinou I. (2005) J. Nat. Prod. 68, 1637-1641.

[175] Prachyawarakorn V., Mahidol C., Ruchirawat S., and Siamenols A.-D. (2006) Chem. Pharm. Bull. 54, 884-886.

[176] Chen J. J., Huang S. Y., Duh C. Y., Chen I. S., Wang T. C., and Fang H. Y. (2006) Planta Med. 72, 935-938.

[177] Chen W., Tang W., Lou L., and Zhao W. (2006) Phytochemistry 67, 1041-1047.

[178] Eshbakova K. A., Saidkhodzhaev A. I., Duman H., Baser K. H. C., Vdovin A. D., and Adbullaev N. D. (2006) Chem. Nat. Compd. 42, 102-103.

[179] Min B. S. (2006) Nat. Prod. Sci. 12, 129-

Page 97: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

161

133. [180] Susidarti R. A., Rahmani M., Ismail H. B.

M., Sukari M. A., Hin T. Y. Y., Lian G. E., Ali A. M., Kulip J., and Waterman P. G. (2006) Nat. Prod. Res. 20, 145-151.

[181] Atta A. H., Mohamed N. H., Nasr S. M., and Mouneir S. M. (2007) J. Nat. Rem. 7, 109-119.

[182] El-Seedi H. R. (2007) J. Nat. Prod. 70, 118-120.

[183] Iranshahi M., Arfa P., Ramezani M., Jaafari M. R., Sadeghian H., BaBassarello C., Piacente S., and Pizza C. (2007) Phytochemistry 68, 554-561.

[184] El Bassuony A. A. (2007) Asian J. Chem. 19, 2053-2058.

[185] Ito C., Itoigawa M., Kumagaya M., Okamoto Y., Ueda K., Nishihara T., Kojima N., and Furukawa H. (2006) J. Nat. Prod. 69, 138-141.

[186] Mbwambo Z. H., Kapingu M. C., Moshi M. J., Machumi F., Apers S., Cos P., Ferreira D., Marais J. P. J., Berghe D. V., Maes L., Vlietinck A., and Pieters L. (2006) J. Nat. Prod. 69, 369-372.

[187] Han A. R., Kang Y. J., Windono T., Lee S. K., and Seo E. K. (2006) J. Nat. Prod. 69, 719-721.

[188] Wang J., Yang X., Di Y., Wang Y., Shen Y., and Hao X. (2006) J. Nat. Prod. 69, 778-782.

[189] Li Y., Leung K. T., Yao F., Ooi L. S. M., and Ooi V. E. C. (2006) J. Nat. Prod. 69, 833-835.

[190] Nakagawa H., Takaishi Y., Tanaka N., Tsuchiya K., Shibata H., and Higuti T. (2006) J. Nat. Prod. 69, 1177-1179.

[191] Shen C. C., Lin T. W., Huang Y. L., Wan S. T., Shien B. J., and Chen C. C. (2006) J. Nat. Prod. 69, 1237-1247.

[192] Jo Y., Kim M., Shin M. H., Chung H. Y., Jung J. H., and Im K. S. (2006) J. Nat. Prod. 69, 1399-1403.

[193] Narvez-Mastache J. M., Garduo-Ramrez M. L., Alvarez L., and Delgado G. (2006) J. Nat. Prod. 69, 1687-1691.

[194] Zhao J., Pawar R. S., Ali Z., and Khan I. A. (2007) J. Nat. Prod. 70, 289-292.

[195] Lin Y. L., Shen C. C., Huang Y. J., and

Chang Y. Y. (2005) J. Nat. Prod. 68, 381-384.

[196] Yao G. M., Ding Y., Zuo J. P., Wang H. B., Wang Y. B., Ding B. Y., Chiu P., and Qin G. W. (2005) J. Nat. Prod. 68, 392- 396.

[197] Braham H., Mighri Z., Jannet H. B., Matthew S., and Abreu P. M. (2005) J. Nat. Prod. 68, 517-522.

[198] Phommart S., Sutthivaiyakit P., Chimnoi N., Ruchirawat S., and Sutthivaiyakit S. (2005) J. Nat. Prod. 68, 927-930.

[199] Maver M., Queiroz E. F., Wolfender J. L., and Hostettmann K. (2005) J. Nat. Prod. 68, 1094-1098.

[200] Wu P. L., Hsu Y. L., Zao C. W., Damu A. G., and Wu T. S. (2005) J. Nat. Prod. 68, 1180-1184.

[201] Ho J. C., Chen C. M., and Row L. C. (2005) J. Nat. Prod. 68, 1773-1775.

[202] Meragelman T. L., Tucker K. D., McCloud T. G., Cardellina J. H., and Shoemaker R. H. (2005) J. Nat. Prod. 68, 1790-1792.

[203] Šmejkal K., Grycov L., Marek R., Lemire F., Jankovsk D., Forejtnkov H., Vanco J., and Such V. (2007) J. Nat. Prod. 70, 1244-1248.

[204] Curir P., Galeotti F., Dolci M., Barile E., and Lanzotti V. (2007) J. Nat. Prod. 70, 1668-1671.

[205] Tang Y., Yang R., Duan J. A., Shang E., Su S., Zhu M., and Qian D. (2008) J. Nat. Prod. 71, 448-450.

[206] Šmejkal K., Chudík S., Kloucek P., Marek R., Cvacka J., Urbanová M., Julínek O., Kokoška L., Šlapetová T., Holubová P., Zima A., and Dvorská M. (2008) J. Nat. Prod. 71, 706-709.

[207] Yoo N. H., Jang D. S., Yoo J. L., Lee Y. M., Kim Y. S., Cho J. H., and Kim J. S. (2008) J. Nat. Prod. 71, 713-715.

[208] Wätjen W., Suckow-Schnitker A. K., Rohrig R., Kulawik A., Addae-Kyereme J., Wright C. W., and Passreiter C. M. (2008) J. Nat. Prod. 71, 735-738.

[209] Chai X. Y., Song Y. L., Xu Z. R., Shi H. M., Bai C. C., Bi D., Wen J., Li F. F., and Tu P. F. (2008) J. Nat. Prod. 71, 814- 819.

Page 98: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

162

[210] Aoki N., Muko M., Ohta E., and Ohta S. (2008) J. Nat. Prod. 71, 1308-1310.

[211] Carroll A. R., Fechner G. A., Smith J., Guymer G. P., and Quinn R. J. (2008) J. Nat. Prod. 71, 1479-1480.

[212] Kawakami S., Harinantenaina L., Matsunami K., Otsuka H., Shinzato T., and Takeda Y. (2008) J. Nat. Prod. 71, 1872-1876.

[213] Tabopda T. K., Ngoupayo J., Awoussong P. K., Mitaine-Offer A. C., Ali M. S., Ngadjui B. T., and Lacaille-Dubois M. A. (2008) J. Nat. Prod. 71, 2068-2072.

[214] Yao-Kouassi P. A., Magid A. A., Richard B., Martinez A., Jacquier M. J., Caron C., Debar E. L. M., Gangloff S. C., Coffy A. A., and Zeches-Hanrot M. (2008) J. Nat. Prod. 71, 2073-2076.

[215] Han X. H., Hong S. S., Jin Q., Li D., Kim H. K., Lee J., Kwon S. H., Lee D., Lee C. K., Lee M. K., and Hwang B. Y. (2009) J. Nat. Prod. 72, 164-167.

[216] Mori-Hongo M., Takimoto H., Katagiri T., Kimura M., Ikeda Y., and Miyase T. (2009) J. Nat. Prod. 72, 194-203.

[217] Chung I. M., Ahmad A., Ali M., Lee O. K., Kim M. Y., Kim J. H., Yoon D. Y., Peebles C. A. M., and San K. Y. (2009) J. Nat. Prod. 72, 613-620.

[218] Shen G., Kiem P. V., Cai X. F., Li G., Dat N. T., Choi Y. A., Lee Y. M., Park Y. K., and Kim Y. H. (2005) Arch. Pharm. Res. 28, 657-659.

[219] Chen Y. G., Yu L. L., Huang R., Liu J. C., Lv Y. P., and Zhao Y. (2005) Arch. Pharm. Res. 28, 1233-1235.

[220] Drenin A. A., Botirov E. K., and Petrulyak E. V. (2008) Chem. Nat. Compd. 44, 24-27.

[221] Qi J., Lu J. J., Liu J. H., and Yu B. Y. (2009) Chem. Pharm. Bull. 57, 134-137.

[222] Fu P., Zhao C. C., Tang J., Shen Y. H., Xu X. K., and Zhang W. D. (2009) Chem. Pharm. Bull. 57, 207-210.

[223] Khan A., Ahmad V. U., Farooq U., Bader S., and Arshad S. (2009) Chem. Pharm. Bull. 57, 276-279.

[224] Yen C. T., Hsieh P. W., Hwang T. L., Lan Y. H., Chang F. R., and Wu Y. C. (2009)

Chem. Pharm. Bull. 57, 280-282. [225] Li X., Wang D., Xia M. Y., Wang Z. H.,

Wang W. N., and Cui Z. (2009) Chem. Pharm. Bull. 57, 302-306.

[226] Morikawa T., Wang L. B., Nakamura S., Ninomiya K., Yokoyama E., Matsuda H., Muraoka O., Wu L. J., and Yoshikawa M. (2009) Chem. Pharm. Bull. 57, 361-367.

[227] Jang D. S., Lee G. Y., Lee Y. M., Kim Y. S., Sun H., Kim D. H., and Kim J. S. (2009) Chem. Pharm. Bull. 57, 397-400.

[228] Khan R., Malik A., Adhikari A., Qadir M. I., and Choudhary M. I. (2009) Chem. Pharm. Bull. 57, 415-417.

[229] Chokchaisiri R., Suaisom C., Sriphota S., Chindaduang A., Chuprajob T., and Suksamrarn A. (2009) Chem. Pharm. Bull. 57, 428-432.

[230] Li X., Xu L., Wu P., Xie H., Huang Z., Ye W., and Wei X. (2009) Chem. Pharm. Bull. 57, 495-498.

[231] Wu Z. B., Zhao Y. Y., Yang X. W., and Liang H. (2009) Chem. Pharm. Bull. 57, 628-631.

[232] Cao C. M., Peng Y., Xu L. J., Wang Y. J., Yang J. S., and Xiao P. G. (2009) Chem. Pharm. Bull. 57, 743-746.

[233] Innok P., Rukachaisirikul T., and Suksamrarn A. (2009) Chem. Pharm. Bull. 57, 993-996.

[234] Liu H. X., Lin W. H., Wang X. L., and Yang J. S. (2005) J. Asian Nat. Prod. Res. 7, 139-143.

[235] Yadava R. N., and Tiwari L. (2005) J. Asian Nat. Prod. Res. 7, 185-188.

[236] Yuan D., Xie Y. Y., Bai X., Wu X., Yang J. Y., and Wu C. F. (2009) J. Asian Nat. Prod. Res. 11, 471-481.

[237] Chen G., Wei S. H., Huang J., and Sun J. (2009) J. Asian Nat. Prod. Res. 11, 503- 507.

[238] Zhou G. X., Lu C. L., Wang H. S., and Yao X. S. (2009) J. Asian Nat. Prod. Res. 11, 498-502.

[239] Xu L. R., Wu J., and Zhang S. (2006) J. Asian Nat. Prod. Res. 8, 9-13.

[240] Singh S., Upadhyay R. K., Pandey M. B., Singh J. P., and Pandey V. B. (2006) J. Asian Nat. Prod. Res. 8, 197-200.

Page 99: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

163

[241] Rao G. X., Gao Y. L., Lin Y. P., Xiao Y. L., Li S. H., and Sun H. D. (2006) J. Asian Nat. Prod. Res. 8, 273-275.

[242] Shen Y. H., Li S. H., Han Q. B., Li R. T., and Sun H. D. (2006) J. Asian Nat. Prod. Res. 8, 345-350.

[243] Wu Q. X., Li Y., and Shi Y. P. (2006) J. Asian Nat. Prod. Res. 8, 391-396.

[244] Li T. Z., Zhang W. D., Yang G. J., Liu W. Y., Liu R. H., Zhang C., and Chen H. S. (2006) J. Asian Nat. Prod. Res. 8, 401- 409.

[245] Wu X. A., Zhao Y. M., and Yu N. J. (2006) J. Asian Nat. Prod. Res. 8, 541- 544.

[246] Zheng Q. A., Zhang Y. J., and Yang C. R. (2006) J. Asian Nat. Prod. Res. 8, 571- 577.

[247] Ruan B., Kong L. Y., Takaya Y., and Niwa M. (2007) J. Asian Nat. Prod. Res. 9, 41-44.

[248] Deng Y. H., Xu K. P., Zhou Y. J., Li F. S., Zeng G. Y., and Tan G. S. (2007) J. Asian Nat. Prod. Res. 9, 45-48.

[249] Yang Q. Y., Tian X. Y., and Fang W. S. (2007) J. Asian Nat. Prod. Res. 9, 59-65.

[250] Feng W. S., Zheng X. K., Liu Y. B., and Kuang H. X. (2007) J. Asian Nat. Prod. Res. 9, 85-89.

[251] Ahmad V. U., Bader S., Arshad S., Iqbal S., Ahmed A., Mohammad F. V., Kann A., and Tareen R. B. (2007) J. Asian Nat. Prod. Res. 9, 299-305.

[252] Liu R. N., Wang W., Ding Y., Xie W. D., Ma C., and Du L. (2007) J. Asian Nat. Prod. Res. 9, 333-338.

[253] Xu C. L., Zheng Y. N., Yang X. W., Li X. G., Li X., and Chen Q. C. (2007) J. Asian Nat. Prod. Res. 9, 415-419.

[254] Deng F., Chang J., and Zhang J. S. (2007) J. Asian Nat. Prod. Res. 9, 655-658.

[255] Peng J. Y., Dong F. Q., Liu K. X., Han X., Xu Y. W., Qi Y., Xu Q. W., and Xu L. N. (2008) J. Asian Nat. Prod. Res. 10, 169-175.

[256] Peng J. Y., Han X., Xu L. N., Qi Y., Xu Y. W., and Xu Q. W. (2008) J. Asian Nat. Prod. Res. 10, 256-259.

[257] Wangab W. S., Yeb Y. H., and Zhoub Y.

W. (2008) J. Asian Nat. Prod. Res. 10, 485-490.

[258] Saied S., Nizami S. S., and Anis I. (2008) J. Asian Nat. Prod. Res. 10, 515-519.

[259] Su J., Wu Z. J., Shen Y. H., Zhang C., Li H. L., Liu R. H., and Zhang W. D. (2008) J. Asian Nat. Prod. Res. 10, 547-550.

[260] Chang H. T., Okada Y., Ma T. J., Okuyama T., and Tu P. F. (2008) J. Asian Nat. Prod. Res. 10, 577-581.

[261] Zhao C. C., Shao J. H., Li X., Kang X. D., Zhang Y. W., Meng D. L., and Li N. (2008) J. Asian Nat. Prod. Res. 10, 611- 615.

[262] Sun Y. G., Wang S. S., Feng J. T., Xue X. Y., and Liang X. M. (2008) J. Asian Nat. Prod. Res. 10, 719-723.

[263] Khan R., Fatima I., Ahmad N., and Malik A. (2008) J. Asian Nat. Prod. Res. 10, 823-825.

[264] Wang L., Cui X. Q., Gong T., Yan R. Y., Tan Y. X., and Chen R. Y. (2008) J. Asian Nat. Prod. Res. 10, 897-902.

[265] Guo X. F., Yue Y. D., Tang F., Wang J., and Yao X. (2008) J. Asian Nat. Prod. Res. 10, 903-907.

[266] Zheng J. X., Wang N. L., Liu H. W., Chen H. F., Li M. M., Wu L. Y., Fan M., and Yaoa X. S. (2008) J. Asian Nat. Prod. Res. 10, 945-952.

[267] Khalivulla S. I., Reddy B. A. K., Gunasekar D., Blond A., Bodo B., Murthy M. M., and Rao T. P. (2008) J. Asian Nat. Prod. Res. 10, 953-955.

[268] Tanaka H., Hattori H., Uchi T. O., Sato M., Yamaguchi R., Sako M., and Tateishi Y. (2008) J. Asian Nat. Prod. Res. 10, 983-987.

[269] Sultana S., Ali M., Ansari S. H., and Bagri P. (2008) J. Asian Nat. Prod. Res. 10, 1123-1127.

[270] Nazir N., Koul S., Qurishi M. A., Taneja S. C., Purnima B., and Qazi G. N. (2008) J. Asian Nat. Prod. Res. 10, 1137-1141.

[271] Li N., Shao L., Zhang C. F., and Zhang M. (2008) J. Asian Nat. Prod. Res. 10, 1143-1146.

[272] Dinda B., Mohanta B. C., Arima S., Sato N., and Harigaya Y. (2007) Nat. Prod.

Page 100: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

164

Sci. 13, 190-194. [273] Miliauskas G., van Beek T. A., de Waard

P., Vanskutonis R. P., and Sudholter E. J. R. (2005) J. Nat. Prod. 68, 168-172.

[274] Shiao Y. J., Wang C. N., and Wang W. Y. (2005) Planta Med. 71, 835-840.

[275] Zhao F., Watanabe Y., Nozawa H., Daikonnya A., Kondo K., and Kitanaka S. (2005) J. Nat. Prod. 68, 43-49.

[276] Mallavandhani U. V., and Mahapatra A. (2005) Nat. Prod. Res. 19, 91-97.

[277] Brahmachari G. In. Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues, Ed. Teixeira da Silva JA, Global Science Books: London, UK, 2006, Vol. IV, pp. 373-378.

[278] Min B. S., Thu C. V., Dat N. T., Dang N. H., Jang H. S., and Hung T. M. (2008) Chem. Pharma. Bull. 56, 1725-1728.

[279] An R. B., Jeong G. S., and Kim Y. C. (2008) Chem. Pharma. Bull. 56, 1722- 1724.

[280] Zhou Y. Z., Chen H., Oiao L., Xu N., Cao J. Q., and Pei Y. H. (2008) J. Asian Nat. Prod. Res. 10, 429-433.

[281] Semwal D. K., Rawat U., Semwal R., Singh R., Krishan P., Singh M., and Singh G. J. P. (2009) J. Asian Nat. Prod. Res. 11, 1045-1055.

[282] Iwaoka E., Oku H., Takahashi Y., and Ishigura K. (2009) Biol. Pharma. Bull. 32, 509-512.

[283] Suman A., Ali M., and Alam P. (2009) Chem. Nat. Compd. 45, 487-491.

[284] Wang G. J., Chen Y. M., Wang T. M., Lee C. K., Chen K. J., and Lee T. H. (2008) J. Ethnopharmacol. 118, 71-78.

[285] Al-Rehaily A. J., Albishi O. A., El-Olemy M. M., and Mossa J. S. (2008) Phytochemistry 69, 1910-1914.

[286] Zhao M., Duan J. A., and Che C. T. (2007) Phytochemistry 68, 1471-1479.

[287] Mathabe M. C., Hussein A. A., Lall N., Nikolova R. V., Basson A. E., and Meyer J. J. M. (2008) Med. Plants 1, 21-26.

[288] Benavides A., Bassarello C., Montoro P., Vilegas W., Piacente S., and Pizza C. (2007) Phytochemistry 68, 1277-1284.

[289] Su J., Wu Z., Shen Y., Liu R., Zhang C., Li H., and Zhang W. (2008) Nat. Prod. Res. 22, 1355-1358.

[290] Marzouk M. M., Kawashty S. A., Saleh N. A. M., and Al-Nowaihi A. S. M. (2009) Chem. Nat. Compd. 45, 483-486.

[291] Xia P. F., Feng Z. M., Yang Y. N., and Zhang P. C. (2009) J. Asian Nat. Prod. Res. 11, 765-770.

[292] Kawakami S., Matsunami K., Otsuka H., Kawahata M., and Yamaguchi K. (2009) J. Nat. Med. 63, 46-51.

[293] Xu F., Mastsuda H., Hata H., Sugawara K., Nakamura S., and Yoshikawa M. (2009) Chem. Pharm. Bull. 57, 1089- 1095.

[294] Xie Y. Y., Yuan J. Y., Wang L. H., and Wu C. F. (2009) J. Asian Nat. Prod. Res. 11, 771-778.

[295] Saisin S., Tip-Pyang S., and Phuwapraisir P. (2009) Nat. Prod. Res. 23, 1472-1477.

[296] Kuroda M., Mimaki Y., Sashida Y., Mae T., Kishida H., Nishiyama T., Tsukagawa M., Konishi E., Takahashi K., Kawada T., Nakagawa K., and Kitahara M. (2003) Bioorg. Med. Chem. Lett. 13, 4267-4272.

[297] Choudhary M. I., Hareem S., Siddiqui H., Anjum S., Ali S., Atta-ur-Rahman, and Zaidi M. I. (2008) Phytochemistry 69, 1880-1885.

[298] Li X., Li J. F., Wang D., Wang W. N., and Cui Z. (2009) Acta Pharm. Sin. 44, 63-68.

[299] Yanga Y., Zhanga T., Xiao L., and Chena R.-Y. (2010) J. Asian Nat. Prod. Res. 12, 194-198.

[300] Das B., Thirupathi P., Ravikanth B., Rathod A. K., Sharama A. V. S., and Basha S. J. (2009) Chem. Pharm. Bull. 57, 1139-1141.

[301] Farag S. F., Kimura Y., Ito S., Takayasu J., Tokuda H., and Hatano T. (2009) J. Nat. Med. 63, 91-95.

[302] Rahman M. M., Gibbons S., and Gray A. I. (2007) Phytochemistry 68, 1692-1697.

[303] Nugroho A., Choi J. K., Park J. H., Lee K. T., Cha B. C., and Park H. J. (2009) Planta Med. 75, 364-366.

[304] Rodrigues J., Rinaldo D., dos Santos L.

Page 101: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

165

C., and Vilegas W. (2007) Phytochemistry 68, 1781-1784.

[305] Sah P., Rustagi V., and Garg S. P. (2009) J. Med. Aromat. Plant Sci. 31, 330-335.

[306] Regasini L. O., Vellosa J. C. R., Silva D. H. S., Furlan M., de Oliverira O. M. M., Khalia N. M., Brunetti I. L., Young M. C. M., Barreiro E. J., and Bolzani V. S. (2008) Phytochemistry 69, 1739-1744.

[307] Chan Y.-Y., Li C.-H., Shen Y.-C., and Wu T.-S. (2010) Chem. Pharm. Bull. 58, 61-65.

[308] Gonga T., Zhang T., Wang D.-X., Liub P., Chena R.-Y., and Yua D.-Q. (2010) J. Asian Nat. Prod. Res. 12, 199-203.

[309] Babajide O. J., Babajide O. O., Daramola A. O., and Mabusela W. T. (2008) Phytochemistry 69, 2245-2250.

[310] El-Youssef H. M., Murphy B. T., Amer M. E., Al-Rehaily A. J., Abdel-Kader M. S., and Kingston D. G. I. (2008) Nat. Prod. Sci. 14, 86-89.

[311] Zhang J., Yin Z. O., Cao P., Li Y. B., and Duan J. A. (2008) Chem. Nat. Compd. 44, 701-703.

[312] Lee T. H., Chiang Y. H., Chen C. H., Chen P. Y., and Lee C. K. (2009) J. Nat. Med. 63, 209-214.

[313] Gong T., Wang D.-X., Yang Y., Liu P., Chen R.-Y., and Yu D.-Q. (2010) Chem. Pharm. Bull. 58, 254-256.

[314] Mohammadi M., Yousefi M., Habibi Z., and Shafiee A. (2010) Chem. Pharm. Bull. 58, 546-548.

[315] Liu J.-F., Xu K.-P., Li F.-S., Shen J., Hu C.-P., Zou H., Yang F., Liu G.-R., Xiang H.-L., Zhou Y.-J., Li Y.-J., and Tan G.-S. (2010) Chem. Pharm. Bull. 58, 549-551.

[316] Li H. L., Tang J., Liu R. H., Zhnag C., and Zhang W. D. (2009) Nat. Prod. Res. 23, 122-126.

[317] Murata T., Miyase T., and Yoshizaki F. (2010) Chem. Pharm. Bull. 58, 696-702.

[318] Wang X. Y., Shi H. M., Zhang L., and Li X. B. (2009) Planta med. 75, 1262-1265.

[319] Borges-Arqaez R., Vela-Catzim T., Ampuc A., Chai-Bacab J., Moo-Puc R. E., and Caceres-Farfan M. (2009) Planta medica 75, 1336-1338.

[320] Zhang D.-W., Li G.-H., Yu Q.-Y., and Dai S.-J. (2010) Chem. Pharm. Bull. 58, 840-842.

[321] Arora A., Nair M. G., and Strasburg G. M. (1998) Free Radic. Biol. Med. 24, 1355-1363.

[322] Jia X., Zhao X., Wang M., Chen Y., Dong Y., and Feng X. (2008) Chem. Nat. Compd. 44, 692-695.

[323] Li Z. F., Wu Z. H., Chen G., Zhang Q. H., and Pei Y. H. (2009) J. Asian Nat. Prod. Res. 11, 716-719.

[324] Yang X. W., Zhang C. Y., Zhang B. G., Lu Y., Luan J. W., and Zheng Q. T. (2009) J. Asian Nat. Prod. Res. 11, 698- 703.

[325] Devkota H. P., Watanabe M., Watanabe T., and Yahara S. (2010) Chem. Pharm. Bull. 58, 859-861.

[326] Feng T., Wang R.-R., Cai X.-H., Zheng Y.-T., and Luo X.-D. (2010) Chem. Pharm. Bull. 58, 971-975.

[327] Choudhary M. I., Maher S., Begum A., Abbaskhan A., Ali S., Khan A., Rehman S. U. and Rahman A. U. (2010) Chem. Pharm. Bull. 58, 980-982.

[328] Rivière C., Hong V. N. T., Pieters L., Dejaegher B., Heyden Y. V., Van M. C., and Quetin-Leclercq J. (2009) Phytochemistry 70, 86-94.

[329] Tatsuzawa F., Sait N., Mikanagi Y., Shinoda K., Toki K., Shigihara A., and Honda T. (2009) Phytochemistry 70, 672- 674.

[330] Jordheim M., Andersen Ø. M., Nozzolillo C., and Amigue V. T. (2009) Phytochemistry 70, 740-745.

[331] Nakabayashi R., Kusano M., Kobayashi M., Tohge T., Yonekura-Sakakibara K., Kogure N., Yamazaki M., Kitajima M., Saito K., and Takayama H. (2009) Phytochemistry 70, 1017-1029.

[332] Portet B., Fabre N., Roumy V., Gornitzka H., Bourdy G., Chevally S., Sauvain M., Valentin A., and Moulis C. (2007) Phytochemistry 68, 1312-1320.

[333] Rawat P., Khan M. F., Kumar M., Tamarkar A. K., Srivastava A. K., Arya K. R., and Maurya R. (2010) Fitoterapia

Page 102: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

166

81, 162-166. [334] Kamiya K., and Satake T. (2010)

Fitoterapia 81, 185-189. [335] Kumar M., Ahmad A., Rawat P., Khan

M. F., Rasheed N., Gupta P., Sathiamoorthy B., Bhatia G., Palit G., and Maurya R. (2010) Fitoterapia 81, 234- 242.

[336] Kite G. C., Veitch N. C., Boalch M. E., Lewis G. P., Leon C. J., and Simmonds M. S. J. (2009) Phytochemistry 70, 785- 794.

[337] Kuo Y.-J., Yang Y.-C., Zhang L.-J., Wu M.-D., Kuo L-M. Y., Kuo Y.-C., Hwang S.-Y., Chou C.-J., Lee K.-H., Ho H.-O., and Kuo Y.-H. (2010) J. Nat. Prod. 73, 109-114.

[338] Cao Y., Tan N.-H., Chen J.-J., Zeng G.- Z., Ma Y.-B., Wu Y.-P., Yan H., Yang J., Lu L.-F., and Wang Q. (2010) Fitoterapia 81, 253-258.

[339] Yin T., Liang H., Wang B., and Zhao Y. (2010) Fitoterapia 81, 274-275.

[340] Song S., Li Y., Feng Z., Jiang J., and Zhang P. (2010) J. Nat. Prod. 73, 177- 184.

[341] Kong Y., Xiao J.-J., Meng S.-C., Dong X.-M., Ge Y.-W., Wang R.-F., Shang M.- Y., and Cai S.-Q. (2010) Fitoterapia 81, 367-370.

[342] Chang C.-C., Ku A. F., Tseng Y.-Y., Yang W.-B., Fang J.-M., and Wong C.-H. (2010) J. Nat. Prod. 73, 229-232.

[343] Feng S., Xu L., Wu M., Hao J., Qiu S. X., and Wei X. (2010) Fitoterapia 81, 472- 474.

[344] Zhang H., Yang F., Qi J., Song X.-C., Hu Z.-F., Zhu D.-N., and Yu B.-Y. (2010) J. Nat. Prod. 73, 548-552.

[345] de Santana Julião L., Leitão S. G., Lotti C., Picinelli A. L., Rastrelli L., Fernandes P. D., Noël F., Thibaut J.-P. B., and Leitão G. G. (2010) Phytochemistry 71, 294-300.

[346] Smejkal K., Svacinova J., Slapetova T., Schneiderova K., Acqua S. D., Innocenti G., Zavalova V., Kollar P., Chudık S., Marek R., Julınek O., Urbanova M., Kartal M., Csollei M., and Dolezal K.

(2010) J. Nat. Prod. 73, 568-572. [347] Shimokawa Y., Akao Y., Hirasawa Y.,

Awang K., Hadi A. H. A., Sato S., Aoyama C., Takeo J., Shiro M., and Morita H. (2010) J. Nat. Prod. 73, 763- 767.

[348] Yang Y., Zhang T., Xiao L., Yang L., and Chen R. (2010) Fitoterapia 81, 614-616.

[349] Arung E. T., Shimizu K., Tanaka H., and Kondo R. (2010) Fitoterapia 81, 640- 643.

[350] Begum R., Rahman M. S., Chowdhury S., Rahman M. M., Gibbons S., and Rashid M. A. (2010) Fitoterapia 81, 656-658.

[351] Chang C.-L., Wang G.-J., Zhang L.-J., Tsai W.-J., Chen R.-Y., Wu Y.-C., and Kuo Y.-H. (2010) Phytochemistry 71, 271-279.

[352] Ren Y., Kardono L. B. S., Riswan S., Chai H., Farnsworth N. R., Soejarto D. D., de Blanco E. J. C., and Kinghorn A. D. (2010) J. Nat. Prod. 73, 949-955.

[353] Diaz J. G., and Herz W. (2010) Phytochemistry 71, 463-468.

[354] Veitch N. C., Elliott P. C., Kite G. C., and Lewis G. P. (2010) Phytochemistry 71, 479-486.

[355] Yang J.-H., Kondratyuk T.P., Marler L. E., Qiu X., Choi Y., Cao H., Yu R., Sturdy M., Pegan S., Liu Y., Wang L.-Q., Mesecar A. D., Breemen R. B. V., Pezzuto J. M., Fong H. H. S., Chen Y.- G., and Zhang H.-J. (2010) Phytochemistry 71, 641-647.

[356] Rahman M. M., and Gray A. I. (2005) Phytochemistry 66, 1601-1606.

[357] Choi E. J., Kwon H. C., Sohn Y. C. , Nam C. W. , Park H. B., Kim C. Y., and Yang H. O. (2009) Arch. Pharm. Res. 32, 851-855.

[358] Dhooghe L., Maregesi S., Mincheva I., Ferreira D., Marais J. P. J., Lemière F., Matheeussen A., Cos P., Maes L., Vlietinck A., Apers S., and Pieters L. (2010) Phytochemistry 71, 785-791.

[359] Andersen Ø. M., Jordheim M., Byamukama R., Mbabazi A., Ogweng G., Skaar I., and Kiremire B. (2010) Phytochemistry 71, 1558-1563.

[360] Musthapa I., Juliawaty L. D., Syah Y.

Page 103: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

167

M., Hakim E. H., Latip J., and Ghisalberti E. L. (2009) Arch. Pharm. Res. 32, 191-194.

[361] Kosar S., Fatima I., Mahmood A., Ahmed R., Malik A., Talib S., and Chouhdar M. I. (2009) Arch. Pharm. Res. 32, 1705- 1710.

[362] Dong W., Shi H. B., Ma H., Miao Y. B., Liu T. J., and Wang W. (2010) Arch. Pharm. Res. 33, 669-674.

[363] Park H. Y., Kim G. B., and Kwon Y. S. (2010) Arch. Pharm. Res. 33, 1159-1163.

[364] Park H. Y., Kim S. H., Kim G. B., Sim J. Y., Lim S. S., Kim M. J., Chun W., and Kwon Y. S. (2010) Arch. Pharm. Res. 33, 1165-1168.

[365] Moon S.-S., Rahman A. A., Manir M., and Jamal Ahamed V. S. (2010) Arch. Pharm. Res. 33, 1169-1173.

[366] Fu X., Li X. C., Wang Y. H., Avula B., Smillie T. J., Mabusela W., Syce J., Johnson Q., Folk W., and Khan I. A. (2010) Planta med. 76, 178-181.

[367] Huang Y.-C., Hwang T.-L., Yang Y.- L., Wu S.-H., Hsu M.-H., Wang J.- P., Chen S.-C., Huang L.-J., and Liaw C.- C. (2010) Planta Med. 76, 447-453.

[368] Kasper J., Melzig M. F., and Jenett-Siems K. (2010) Planta Med. 76, 633-635.

[369] Cui L., Lee H. S., Ndinteh D. T., Mbafor J. T., Kim Y. H., Le T. V. T., Nguyen P.H., and Oh W. K. (2010) Planta Med. 76, 713-718.

[370] Moawad A., Hetta M., Zjawiony J. K., Jacob M. R., Hifnawy M., Marais J. P. J., and Ferreira D. (2010) Planta Med. 76, 796-802.

[371] Shou Q.-Y., Tan Q., and Shen Z. (2010) Planta Med. 76, 803-808.

[372] Wang R., Wu Q.-X., and Shi Y.-P. (2010) Planta Med. 76, 893-896.

[373] Bourjot M., Apel C., Martin M. T., Grellier P., Nguyen V. H., Gueritte F., and Litaudon M. (2010) Planta Med. 76, 1600-1604.

[374] Ahmad K., Rehman S.U., Chisti A. M., Shawl A. S., and Taneja S. C. (2010) Chem. Nat. Compd. 46, 195-197.

[375] Heim K. E., Tagliaferro A. R., and

Bobilya D. J. (2002) J. Nutr. Biochem. 13, 572-584.

[376] Bagri P., Ali M., Sultana S., and Aeri V. (2010) Chem. Nat. Compd. 46, 201-204.

[377] Lu J., Jin Y., Liu G., Zhu N., Gui M., Yu A., and Li X. (2010) Chem. Nat. Compd. 46, 205-208.

[378] Kuroda M., Mimaki Y., Honda S., Tanaka H., Yokota S., and Mae T. (2010) Bioorg. Med. Chem. 18, 962-970.

[379] Tang Y., Xiong C., Zhou D., Wei A., Fu W., Cai Y., and Ruan J. (2010) Chem. Nat. Compd. 46, 209-211.

[380] Alimova D. F., Kuliev Z. A., Nishanbaev S. Z., Vdovin A. D., Abdullaev N. D., and Aripova S. F. (2010) Chem. Nat. Compd. 46, 352-356.

[381] Yang F., Feng L., Li H.-D., Zhang H., and Chen R. (2010) Chem. Nat. Compd. 46, 520-522.

[382] Ahmad S., Riaz N., Saleem M., Jabbar A., Rehman N.-U., and Ashraf M. (2010) J. Asian Nat. Prod. Res. 12, 138-143.

[383] Siddiqui B. S., Khan S., and Kardar M. N. (2010) Nat. Prod. Res. 24, 76-80.

[384] Cook N. C., and Samman S. (1996) J. Nutr. Biochem. 7, 66-76.

[385] Sun J., Yue Y.-D., Tang F., and Guo X.- F. (2010) J. Asian Nat. Prod. Res. 12, 248-251.

[386] Zhang H.-J., Yang X.-P., and Wang K.- W. (2010) J. Asian Nat. Prod. Res. 12, 293-299.

[387] Mughal U. R., Fatima I., Malik A., and Tareen R. B. (2010) J. Asian Nat. Prod.Res. 12, 328-330.

[388] Fanga J.-B., Chen J.-C., and Duan H.-Q. (2010) J. Asian Nat. Prod. Res. 12, 355- 359.

[389] Okoye F. B. C., and Osadebe P. O. (2010) Nat. Prod. Res. 24, 266-273.

[390] Wang L., Yang Y., Liu C., and Chena R.- Y. (2010) J. Asian Nat. Prod. Res. 12, 431-437.

[391] Zhong H., Ruan J.-L., and Yao Q.-Q. (2010) J. Asian Nat. Prod. Res. 12, 562- 568.

[392] Ya J., Zhang X.-Q., Wang Y., Zhang Q.-W., Chen J.-X., and Ye W.-C. (2010)

Page 104: Recent progress in the research of naturally occurring ...signpostejournals.com/ejournals/Portals/3/6 article Brahmachari.pdf · chemotaxonomy as well. It is now difficult to overstate

Jash S. K., and Brahmachari G. (2013) Signpost Open Access J. Org. Biomol. Chem. 1, 65-168. Volume 01, Article ID 010306, 104 pages. ISSN: 2321-4163 http://signpostejournals.com

168

Nat. Prod. Res. 24, 621-625. [393] Ma J.-P., Qiao X., Pan S., Shen H., Zhu

G.-F., and Hou A.-J. (2010) J. Asian Nat. Prod. Res. 12, 586-592.

[394] Babu T. H., Tiwari A. K., Rao V. R. S., Ali A. Z., Rao J. M., and Babu K. S. (2010) J. Asian Nat. Prod. Res. 12, 634- 638.

[395] Hana W.-L., Zhang X.-Q., Wang G.-C., Wang Y., and Ye W.-C. (2010) J. Asian Nat. Prod. Res. 12, 680-684.

[396] Changa J.-M., Shen C.-C., Huang Y.-L., Shieh B.-J., and Chend C.-C. (2010) J. Asian Nat. Prod. Res. 12, 740-744.

[397] Wang Y.-L., Li Y.-J., Wang A.-M., He X., Liao S.-G., and Lan Y.-Y. (2010) J. Asian Nat. Prod. Res. 12, 765-769.

[398] Dong F.-Y., Guan L.-N., Zhang Y.-H., Cui Z.-H., Wang L., and Wang W. (2010) J. Asian Nat. Prod. Res. 12, 776-780.

[399] Madhusudhana J., Reddy R. V. N., Reddy B. A. K., Reddy M. V. B., Gunasekar D., Deville A., and Bodo B. (2010) Nat. Prod. Res. 24, 743-749.

[400] Yang M. H., Luo J. G., Huang X. F., and Kong L. Y. (2010) Nat. Prod. Res. 24, 920-925.

[401] Sultana N., Akter K., Nahar N., Khan M. S. H., Mosihuzzaman M., Sohrab M. H., and Krohn K. (2010) Nat. Prod. Res. 24, 1018-1026.

[402] Wang X.-L., Wang N.-L., Gao H., Zhang G., Qin L., Wong M.-S., and Yao X.-S. (2010) Nat. Prod. Res. 24, 1206- 1213.

[403] Gonzalez-Guëreca M. C., Soto- Hernandez M., and Martinez-Vazquezc M. (2010) Nat. Prod. Res. 24, 1528-1536.

[404] Djiogue S., Halabalaki M., Alexi X., Njamen D., Fomum Z. T., Alexis M. N., and Skaltsounis A.-L. (2009) J. Nat. Prod. 72, 1603-1607.

[405] Lenta B. N., Tantangmo F., Devkota K. P., Wansi J. D., Chouna J. R., Rene Soh C. F., Neumann B., Stammler H.-G., Tsamo E., and Sewald N. (2009) J. Nat. Prod. 72, 2130-2134.

[406] Umehara K., Nemoto K., Matsushita A., Terada E., Monthakantirat O., De-

Eknamkul W., Miyase T., Warashina T., Degawa M., and Noguchi H. (2009) J. Nat. Prod. 72, 2163-2168.

[407] Mativandlela S. P. N., Muthivhi T., Kikuchi H., Oshima Y., Hamilton C., Hussein A. A., van der Walt M. L., Houghton P. J., and Lall N. (2009) J. Nat. Prod. 72, 2169-2171.

[408] Chen W.-H., Wang R., and Shi Y.-P. (2010) J. Nat. Prod. 73, 1398-1403.

[409] Lin H.-C., and Lee S.-S. (2010) J. Nat. Prod. 73, 1375-1380.

[410] Chou T.-H., Chen J.-J., Lee S.-J., Chiang M.-Y., Yang C.-W., and Chen I.-S. (2010) J. Nat. Prod. 73, 1470-1475.

[411] Hoyweghen L. V., Karalic I., Calenbergh S. V., Deforce D., and Heyerick A. (2010) J. Nat. Prod. 73, 1573-1577.

[412] Brahmachari G., Jash S. K., Gangopadhyay A., Sarkar S., Laskar S., and Gorai D. (2008) Indian J. Chem. 47B, 1898-1902.

[413] Brahmachari G., Mandal N. C., Jash S. K., Roy R., Mandal L. C., Mukhopadhyay A., Behera B., Majhi S., Mondal A., and Gangopadhyay A. (2011) Chem. Biodivers. 8, 1139-1150.