60
1/47 Recent Progress in Gamma-ray Bursts: S. R. Kulkarni California Institute of Technology Credit: NASA E/PO, Sonoma State University, Aurore Simonnet

Recent Progress in Gamma-ray Bursts:

  • Upload
    ayoka

  • View
    42

  • Download
    0

Embed Size (px)

DESCRIPTION

Recent Progress in Gamma-ray Bursts:. S. R. Kulkarni California Institute of Technology. Image Credit: NASA E/PO, Sonoma State University, Aurore Simonnet. Long & Short. T. Piran, Hebrew U. P. A. Price, U. Hawaii J. Rich, ANU M. Rauch, Carnegie K. Roth, Gemini Obs M. Roth, Carnegie - PowerPoint PPT Presentation

Citation preview

Page 1: Recent Progress in Gamma-ray Bursts:

1/47

Recent Progress in Gamma-ray Bursts:

S. R. Kulkarni

California Institute of Technology

Image Credit: NASA E/PO, Sonoma State University, Aurore Simonnet

Page 2: Recent Progress in Gamma-ray Bursts:

2/47

Page 3: Recent Progress in Gamma-ray Bursts:

3/47

Long & Short

Page 4: Recent Progress in Gamma-ray Bursts:

4/47

The Gang and collaboratorsT. Piran, Hebrew U.P. A. Price, U. HawaiiJ. Rich, ANUM. Rauch, CarnegieK. Roth, Gemini ObsM. Roth, CarnegieD. J. Sand, CaltechB. P. Schmidt, ANUS. Shectman, CarnegieA. M. Soderberg, CaltechM. Takada, Tohuku U.T. Totani, Kyoto U.W. T. Vestrand, LANLD. Watson, U. CopenhagenR. White, LANLP. Wozniak, LANLJ. Wren, LANL

G. Kosugi, NAOJ W. Krzeminski, CarnegieS. R. Kulkarni, CaltechP. Kumar, U. TexasD. C. Leonard, CaltechB. L. Lee, U. TorontoA. MacFadyen, IASP. J. McCarthy, CarnegieD. -S. Moon, CaltechD. C. Murphy, CarnegieE. Nakar, CaltechH. S. Park, LLNLB. Penprase, Pomona C.S. E. Persson, CarnegieB. A. Peterson, ANUM. M. Phillips, Carnegie

K. Aoki, NAOJE. Berger, CarnegieP. B. Cameron, CaltechR. A. Chevalier, U. VirginiaS. B. Cenko, CaltechL. L. Cowie, U. HawaiiA. Dey, NOAOS. Evans, LANLD. B. Fox, Penn S./CaltechD. A. Frail, NRAOH. Furusawa, TITA. Gal-Yam, CaltechF. A. Harrison, CaltechK. C. Hurley, UC BerkeleyM. M. Kasliwal, CaltechN. Kawai, TIT

Page 5: Recent Progress in Gamma-ray Bursts:

5/47

CollaboratorsT. Piran, Hebrew U.P. A. Price, U. HawaiiJ. Rich, ANUM. Rauch, CarnegieK. Roth, Gemini ObsM. Roth, CarnegieD. J. Sand, CaltechB. P. Schmidt, ANUS. Shectman, CarnegieA. M. Soderberg, CaltechM. Takada, Tohuku U.T. Totani, Kyoto U.W. T. Vestrand, LANLD. Watson, U. CopenhagenR. White, LANLP. Wozniak, LANLJ. Wren, LANL

G. Kosugi, NAOJ W. Krzeminski, CarnegieS. R. Kulkarni, CaltechP. Kumar, U. TexasD. C. Leonard, CaltechB. L. Lee, U. TorontoA. MacFadyen, IASP. J. McCarthy, CarnegieD. -S. Moon, CaltechD. C. Murphy, CarnegieE. Nakar, CaltechH. S. Park, LLNLB. Penprase, Pomona C.S. E. Persson, CarnegieB. A. Peterson, ANUM. M. Phillips, Carnegie

K. Aoki, NAOJE. Berger, CarnegieP. B. Cameron, CaltechR. A. Chevalier, U. VirginiaS. B. Cenko, CaltechL. L. Cowie, U. HawaiiA. Dey, NOAOS. Evans, LANLD. B. Fox, Penn S./CaltechD. A. Frail, NRAOH. Furusawa, TITA. Gal-Yam, CaltechF. A. Harrison, CaltechK. C. Hurley, UC BerkeleyM. M. Kasliwal, CaltechN. Kawai, TIT

Page 6: Recent Progress in Gamma-ray Bursts:

6/47

Long Duration Bursts:

Collapsar Model: Woosley, Heger, MacFadyen

Kulkarni et al.Bloom et al.Frail et al.Berger et al.Soderberg etal

Page 7: Recent Progress in Gamma-ray Bursts:

7/47

SN 1998bw/GRB 980425

Galama et al. 1998, Kulkarni et al. 1998 E~1048 erg (isotropic)

Page 8: Recent Progress in Gamma-ray Bursts:

8/47

Collapsar: The Movie

A Hollywood-Bollywood Production

From Bogus Enterprise,A Division of General

Propaganda

Page 9: Recent Progress in Gamma-ray Bursts:

9/47

Page 10: Recent Progress in Gamma-ray Bursts:

10/47

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

With physics and lots of hardwork (MacFadyen)

Page 11: Recent Progress in Gamma-ray Bursts:

11/47

A New Family of Cosmic Explosions:

Soderberg

Page 12: Recent Progress in Gamma-ray Bursts:

12/47

Keck Laser Guide Star AO

Page 13: Recent Progress in Gamma-ray Bursts:

13/47

Progenitors of Ibc SNe: A Hot Result

Page 14: Recent Progress in Gamma-ray Bursts:

14/47

Palomar 60-inch: A second life

Page 15: Recent Progress in Gamma-ray Bursts:

15/47

Exploitation of GRBs has already begun

Reichart et al. 2005 Berger et al.

GRB 050904: z=6.2Observations at 3 hours (P60, optical; SOAR, NIR)

Page 16: Recent Progress in Gamma-ray Bursts:

16/47

Page 17: Recent Progress in Gamma-ray Bursts:

17/47

Two classes of GRBs

Short - Hard

Long - Soft

Page 18: Recent Progress in Gamma-ray Bursts:

18/47

Summarizing Four Papers

1. Fox et al. “The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts”, Nature, October 6, 2005

2. Berger et al. “A merger origin for short γ-ray bursts inferred from the afterglow and host galaxy of GRB 050724”, Nature, November, 2005

3. Kulkarni “Modeling Macronovae”

4. Kulkarni et al. “Constraints on supernova-like emission associated with the short-hard gamma-ray burst 050509b

Page 19: Recent Progress in Gamma-ray Bursts:

19/47

Toward the SHB Progenitor: Redux• How far away are they?• How much energy do they release?

– is the energy release isotropic or collimated?– are the central engines long or short-lived?– Is there associated non-relativistic ejecta?

• What are the progenitors?– Clue (macro) = host galaxy + offset– Clue (micro) = circumburst environment

The key to answering these questions has been the precise positions enabled by the discovery of long-lived afterglows.

Page 20: Recent Progress in Gamma-ray Bursts:

20/47

GRB 050509B: Swift Detection

• BAT: very faint GRB• XRT: T+62 s detects 11

photons(!)• No optical, no radio.

very faint limits– Low energy event and/or

low density medium?

• Giant elliptical galaxy in cluster. z=0.22 Host?

Geh

rels

et a

l. 20

05

T90=40 ms

Page 21: Recent Progress in Gamma-ray Bursts:

21/47

Bloom et al. 2005

NSC J123610+285901 z=0.225

Page 22: Recent Progress in Gamma-ray Bursts:

23/47

HST Imaging: No Supernova

Kulkarni et al. 2005 Error radius = 9.3 arcsec 4 HST EpochsMay 14 to June 10

48 sources in XRT error circle

Giant elliptical Bloom et alL=1.5L*

SFR<0.1 M yr-1

Page 23: Recent Progress in Gamma-ray Bursts:

25/47

GRB 050709: HETE Detection

• A Hard spike, 84 keV• A Soft (PL) bump

(alpha=-2)• Roughly equal energy

in each component

Vil

lase

nor

et a

l. 20

05

T90=70 ms

Page 24: Recent Progress in Gamma-ray Bursts:

26/47

GRB 050709: Accurate Localization

Fox et al. 2005

SXCc

GRB QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 25: Recent Progress in Gamma-ray Bursts:

27/47

HST imaging & search for supernova explosion

Fox et al. 2005

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 26: Recent Progress in Gamma-ray Bursts:

28/47

GRB 050709: Panchromatic Studies

• X-ray– source “flares” for initial 6 ks

of 18 ks in second epoch• Long-lived central engine?

– early and late flux do not fit

• Optical– inconsistent with simple PL

decay (slope=-1.3 --> -2.8)– “jet” break at T+10 d – SN limits MR>-12 mag

• Radio– violate simple AG model

Fox et al. 2005; Hjorth et al. 2005

Page 27: Recent Progress in Gamma-ray Bursts:

29/47

GRB 050724: Swift Detection

• Brightest Swift SHB• Hard spike/soft bump• X-ray, optical and radio

afterglow detected

Bar

thel

my

al. 2

005

T90=40 ms

15-150 keV

15-25 keV

T90=3 s250 ms

100 s

Page 28: Recent Progress in Gamma-ray Bursts:

30/47Barthelmy al. 2005

Page 29: Recent Progress in Gamma-ray Bursts:

31/47

Berger et al. 2005

GRB 050724: Swift

Page 30: Recent Progress in Gamma-ray Bursts:

32/47Kulkarni & Cameron

Red ellipticalz=0.258L=1.6 L*

SFR<0.03 M yr-1

Page 31: Recent Progress in Gamma-ray Bursts:

33/47

Toward the SHB Progenitor

• How far away are they?– At least some short bursts are z ~ 0.2

• How much energy do they release?– About 1049 to 1050 erg– Evidence for ``jets’’

• Is there an associated supernova explosion?– Supernova, if any, are faint (Mv > -13)

• What are they?– Both elliptical and star-forming host galaxies

Page 32: Recent Progress in Gamma-ray Bursts:

34/47

Comparison to Long Duratrion Gamma-ray Bursts

Page 33: Recent Progress in Gamma-ray Bursts:

35/47

Empirical Connection to Ia Supernovae

Nakar & Gal-Yam

Page 34: Recent Progress in Gamma-ray Bursts:

36/47

Binary Coalescence

1

Collapsar

Magnetar

1

1 1 1

Energy Density Host Offset No SNe

1

1 0 00

0

1

0 0

1

The Score Card

Page 35: Recent Progress in Gamma-ray Bursts:

37/47

Holy smokes, he is dead?!!

Ph: Glendinning

Page 36: Recent Progress in Gamma-ray Bursts:

38/47

Coalescence of Neutron Stars (Shibata)

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 37: Recent Progress in Gamma-ray Bursts:

39/47

Black Hole-Neutron Star (Rupert, Janka)

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 38: Recent Progress in Gamma-ray Bursts:

40/47

Macronova

• Is there a sub-relativistic explosion accompanying short hard bursts?

Li & Paczynski 1998

• If so, (observationally)> Nova< Supernova

=> “Mini-supernova” or “Macronova” Kulkarni

Page 39: Recent Progress in Gamma-ray Bursts:

41/47

Macronova Model

• Parameters: Mejecta & v=c

• Composition– Free Neutrons– Radioactive Nickel– Neutron Rich Material (non-radioactive)

• Injection of energy essential for macronova to shine and be detectable

Page 40: Recent Progress in Gamma-ray Bursts:

42/47

Nickel Decay

Page 41: Recent Progress in Gamma-ray Bursts:

43/47

r-process and s-process elements

Page 42: Recent Progress in Gamma-ray Bursts:

44/47

Page 43: Recent Progress in Gamma-ray Bursts:

45/47

Comparison to Data (GRB 050509b)

=0.5

=0.05

Page 44: Recent Progress in Gamma-ray Bursts:

46/47

The Macronova as a Reprocessor

Page 45: Recent Progress in Gamma-ray Bursts:

47/47

Page 46: Recent Progress in Gamma-ray Bursts:

48/47

Page 47: Recent Progress in Gamma-ray Bursts:

49/47

Page 48: Recent Progress in Gamma-ray Bursts:

50/47

Quasars: A Historical Analogy, II

• Scintillation: Interplanetary Scintillation showed that quasars were compact

• The Central Engine: After three decades we have a working model involving black holes

• The Pesky Jets: Questions remain– FRI and FRII– What is the difference between radio quiet and radio loud AGN?

• Unification: The desire to unify various classes of quasars drove much of quasar research.

Page 49: Recent Progress in Gamma-ray Bursts:

51/47

Quasars: A Historical Analogy, I

• Astonished & Impressed: The immense power and energy of quasars resulting from Schmidt’s discovery of redshift.

• Amused and Educated: Relativistic effects such as super-luminal motion were anticipated by Rees.

• Ruthless Exploitation: Ask not why quasars quase but simply use them as light beacons to study the IGM.

Page 50: Recent Progress in Gamma-ray Bursts:

52/47

The Macronova as a reprocessor

•Long lived central soure (e.g. magnetar)•Long lived accretion disk

There are already indications of tremendous late time activity.

Page 51: Recent Progress in Gamma-ray Bursts:

53/47

SHBs Observational Milestones

• 050509B– rapid arcsecond (+/-9.3”) localization of X-ray emission (AG?)– tentative host is elliptical galaxy in merging cluster (z=0.225) – macronova and SNe limits

• 050709 – sub-arcsecond position of X-ray afterglow– unambiguous identification of spiral host galaxy & redshift (z=0.16)– discovery of optical afterglow– evidence that outflows are jet-like– evidence that central engines remain active for days to weeks

• 050724 – discovery of first radio afterglow– unambiguous identification of red elliptical host galaxy (z=0.257)

Page 52: Recent Progress in Gamma-ray Bursts:

54/47

Coalescence --> Black Hole (Shibata)

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 53: Recent Progress in Gamma-ray Bursts:

55/47

Gal Yam

Page 54: Recent Progress in Gamma-ray Bursts:

56/47

Possible SHB Progenitors

• Magnetar – Highly magnetized young neutron star (1014-1015 G)– Crustal breaking and magnetic reconnection = hyper-flares – short (0.2 s) hard pulse and long (300 s), soft pulse– Dominant timescale is Alfven velocity in NS

• Collapsar– Massive star core collapses to black hole + short-lived accretion disk– Nicely explains long-soft bursts– Dominant timescale is set by jet propagation in CO core (20 s)– Shorter timescales = collimated jet that wanders due to instabilities

• Binary Coalescence– Merging compact remnants (WD, NS, & BH) – Hypercritical accretion onto a newly formed BH– Dominant timescale is set by accretion disk viscosity

Page 55: Recent Progress in Gamma-ray Bursts:

57/47

Page 56: Recent Progress in Gamma-ray Bursts:

58/47Taken from K.Thorne NSF Review talk

• Widely expected based on burst brightness distribution – <V/Vmax>=0.39+/0.02

– luminosity similar to long bursts but duration 100x less

– predicts faint AG

• Future z distribution will constrain merger timescale

• Tavnir et al (astro-ph) suggests 5-25% SHB are at d<100 kpc

• Good news for GW detectors like LIGO

Guetta & Piran (2005)SF + delay

Page 57: Recent Progress in Gamma-ray Bursts:

59/47

GRB/Host Offset Distributions• Offsets are notoriously

difficult to calculate. – Binary synthesis models– Galactic population of

binaries

• Depends on…– Merger times (0.1-100 Gyrs)– Proper motions (50-500 km/s)– Host galaxy potential– Binary evolution theory

• Future offsets can help constrain all of above

Fryer, Woosley & Hartmann 1999

Col

laps

ar

NS/

NS

Page 58: Recent Progress in Gamma-ray Bursts:

63/47

GRB 050709: Optical AfterglowPr

ice

et a

l. 20

05 a

nd H

jort

h et

al 2

005

T+1.42 d T+2.39 d ΔT

Decays as t-1.3

1.5m Danish Telescope, La Silla

Page 59: Recent Progress in Gamma-ray Bursts:

64/47

GRB 050724: Gemini Spectra

Prochaska et al. ; Berger et al. 2005

z=0.257

Page 60: Recent Progress in Gamma-ray Bursts:

67/47

Palomar 60-inch: Now a robotic telescope