149
Recent Advances in Organosilicon Chemistry Liam Cox SCI Annual Review Meeting December 2009

Recent Advances in Organosilicon Chemistry

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Recent Advances in Organosilicon Chemistry

Recent Advances inOrganosilicon Chemistry

Liam Cox

SCI Annual Review Meeting December 2009

Page 2: Recent Advances in Organosilicon Chemistry

2

Contents1. Silicon - basic properties, why Silicon?

2. Allylsilanes and related nucleophiles

3. Organosilanes in Pd-Catalysed cross-coupling

4. Brook rearrangement chemistry

5. Low coordination silicon compounds

6. Silicon Lewis acids

7. Silicon protecting groups

8. Using the temporary silicon connection

9. Biological applications

Page 3: Recent Advances in Organosilicon Chemistry

3

Silicon − FundamentalProperties

Page 4: Recent Advances in Organosilicon Chemistry

4

SiliconPosition in Periodic Table: Period 3, Group 14 (old group IV)

Electronegativity: 1.90 (Pauling scale)

more electropositive than carbon (2.55) and hydrogen (2.2)

metallic in character

C−Si and H−Si bonds are polarised:

Si C

! !Si H

! !

Page 5: Recent Advances in Organosilicon Chemistry

5

Silicon

Electron Configuration: 1s2, 2s2, 2p6, 3s2, 3p2

Four electrons in the valence shell and, like carbon, can form four covalent bonds(after hybridisation):

Me

SiMe

Me

Mecf

H

CH

H

H

O

SiO

O

O

Si

Si

Si

O

O

O

OO

O

OO

O

Page 6: Recent Advances in Organosilicon Chemistry

6

SiliconThe availability of relatively low energy empty 3d AOs allows Si to attain highercoordination numbers (hypervalent silicon compounds).

Electronegative substituents lower the energy of the 3d AOs, which facilitates theformation of hypervalent silicon compounds.

We will see later how the ability of Si to expand its valence state has ramificationson the mechanisms of many reactions proceeding at Si.

hexafluorosilicate dianion

F

SiF

F

F

F

Si

F

F F

F F

2

2 x F

Page 7: Recent Advances in Organosilicon Chemistry

7

Stabilisation of β-Positive ChargeSilicon is better at stabilising β-positive charge than is carbon.

This stabilisation effect is stereoelectronic in origin and often known as the β-Si-effect.1

Si

Si

Maximum stabilisation requires the σC−Si MO to align with the empty p AO on theadjacent carbocationic centre.

Page 8: Recent Advances in Organosilicon Chemistry

8

β-Silicon Effect

The higher energy σC-Si MO and the larger coefficient on the carbon in this MO(as a result of the more electropositive Si) lead to more effective orbital overlapand increased stabilisation.

Siemptyp AO

filled !C-Si MO

E

"E1

"E2

>"E1 "E2

empty p AO

!C-C

!C-Si

empty p AO

C

filled !C-C MO

Page 9: Recent Advances in Organosilicon Chemistry

9

Stabilisation of α-Negative Charge

Carbanions with an α-silicon group are more stable than their carbon analogues:

RSi is more stable than RC

Si exerts a weak +I inductive effect through the σ-framework − but this shoulddestabilise α-negative charge. This effect is over-ridden by a number of factors:

1. Empty 3d AOs allow pπ-dπ bonding.

2. Overlap between the filled σ orbitalof the metal-carbon bond and theunfilled σ*C−Si orbital is energeticallyfavourable. The larger coefficient onthe silicon atom in the σ* MO furtherimproves the orbital overlap.

Si C

empty 3d AO filled sp3 HAO

!M-C

!"Si-CSi

M

(filled orbital)

(unfilled orbital)

M

Si

Page 10: Recent Advances in Organosilicon Chemistry

10

Stabilisation of α-Negative Charge 3. Si is a relatively large atom (van der Waals radius ~2.1 Å) and thereforereadily polarised. Induced dipoles will also stabilise proximal negative charge.

This effect is probably the most important mechanism for stabilising α-negativecharge.

R

Si

Page 11: Recent Advances in Organosilicon Chemistry

11

Bond Strengths and Bond Lengths

1.57565 (in Me3SiF)Si−F

1.66452 (in Me3SiOMe)Si−O

1.85318 (in Me4Si)Si−C

1.48318 (in Me3SiH)Si−H

bond length (Å)bond strength

(kJ mol−1)bond

Key points:

1) Bonds to Si are approximately 25% longer than the same bonds to C;2) Si−O and Si−F bonds are much stronger than Si−C and Si−H bonds.

Page 12: Recent Advances in Organosilicon Chemistry

12

Why Silicon?

Page 13: Recent Advances in Organosilicon Chemistry

13

Attractive Features of OrganosiliconChemistry

Organosilanes display many attractive properties:

• compared with other organometallic reagents they are much moremoisture- and air-stable

• readily prepared from a wide range of often cheap starting materials

• low toxicity

• rich and diverse chemistry that can usually be rationalised by understanding a relatively small number of fundamental properties ofSilicon

Page 14: Recent Advances in Organosilicon Chemistry

14

Allylsilanes andRelated Nucleophiles

Page 15: Recent Advances in Organosilicon Chemistry

15

Allyltrialkylsilanes

allyltrimethylsilane

cheap and commercially available

not a strong nucleophile;1 thus reaction with aldehydes generally requiresan external Lewis acid.2,3

SiMe3

O

HR

LAO

HR

LAO

R

LA

SiMe3

Nu

OH

R

SiMe3

Page 16: Recent Advances in Organosilicon Chemistry

16

Mechanism

Reaction proceeds through an anti SE2’ reaction pathway.4,5

O

RH

LA

SiMe3

H H

OLA

HR

SiMe3

!

"

open T.S.(range of staggered

reactive conformations needto be considered)

reaction proceedsthrough the γ-carbon

Page 17: Recent Advances in Organosilicon Chemistry

17

Mechanism

O

RH

LA

Si

ORH

LA

Si

HH

H HH

!* LUMO

HOMO

ORH

LA

H HH

Nucarbocation stabilised

by "-Si effectsilyl group remote

from reacting centre

Page 18: Recent Advances in Organosilicon Chemistry

18

Enantioselective Allylation

Page 19: Recent Advances in Organosilicon Chemistry

19

Enantioselective Allylation ofAldehydes

Use a chiral Lewis acid to differentiate the enantiotopic faces of the electrophile:6

O

H

SiMe3

i) 10 mol% active catalyst

CH2Cl2, 0 °C, 4 hOH

90%, 94% e.e

OH

OH(S)-BINOL20 mol% 10 mol% TiF4

MeCN

ii) TBAF, THF

Carreira

Page 20: Recent Advances in Organosilicon Chemistry

20

Enantioselective Allylation of Imines

SiMe3

EtO

O

NCbz

H

NH HN

Ph Ph

10 mol% Cu(OTf)2

3 Å MS, 0 °C, CH2Cl2

Nap Nap

EtO

O

NHCbz

11 mol%

73%, 88% e.e.

Kobayashi:7

Nap = !-naphthyl

EtOP

O

NTroc

H

EtOSiMe3

conditions as above EtOP

O

NH

EtO

Troc

73%, 89% e.e.

Page 21: Recent Advances in Organosilicon Chemistry

21

Stereoselective CrotylationType II allylating agents8 have traditionally not been used widely to effect thestereoselective crotylation of aldehydes: reactions with crotylsilanes are particularlyrare.9

The analogous reaction with crotylstannanes is usually syn-selective.10,11

Effective enantioselective variants have not been developed.9

R H

O SnBu3

(E) : (Z) 90:1

BF3·OEt2, CH2Cl2, !78 °CR

OH

R

OH

R = Ph, syn:anti 98:2 (85%)R = Cy, syn:anti 94:6 (88%)

syn anti

Page 22: Recent Advances in Organosilicon Chemistry

22

AllyltrichlorosilanesUsed on their own, allyltrichlorosilanes are poor allylating agents. However, theirreactivity can be significantly increased when used in the presence of DMF,12 whichacts as a Lewis base activator13 (remember, Si can expand its valence state). Thisobservation opened up the possibility of using chiral Lewis bases to effect theenantioselective allylation of aldehydes using allyltrichlorosilanes.

SiCl3

LBpoor Nu

SiCl3

LB

good Nu

SiCl3OR

H LB

SiCl3OR

H LB

R

OSiCl3

chair T.S.ensures

predictablesyn / antiselectivity

regeneratecatalyst

syn

Page 23: Recent Advances in Organosilicon Chemistry

23

Chiral PhosphoramidesDenmark was the first to exploit chiral Lewis bases as catalysts for the enantio-selective crotylation of aldehydes with allyltrichlorosilanes:14

SiCl3

PhCHO

Ph

OH

68%, 80 : 20 e.r.

syn/anti 2 : 98

conditions as above

SiCl3

PhCHO

N

P

N O

N

1 eq.

CH2Cl2, !78 °C, 6 h Ph

OH

72%, 83 : 17 e.r.

syn/anti 98 : 2

Page 24: Recent Advances in Organosilicon Chemistry

24

Chiral PhosphoramidesCareful analysis of the mechanism of the reaction and consideration of thereactive transition state structures led to the development of improved catalystsbased on a bis-phosphoramide scaffold:15,16

Aliphatic aldehydes are not good substrates for the reaction. Under the reactionconditions, rapid formation of the α-chloro silyl ether occurs. Inclusion of HgCl2 asan additive improves the yield of the allylation; however enantioselectivity iscompromised.15

SiCl3

PhCHO

iPrNEt2, CH2Cl2, !78 °C, 8-10 hPh

OH

82%, 92.8 : 7.2 e.r.

syn:anti 1 : 99

N

P

N

N NP

N

NO O

H

HH

H5

5 mol%

Page 25: Recent Advances in Organosilicon Chemistry

25

Other Chiral Lewis Base Catalysts

N

O O

NH Ph

amine oxides17sulfoxides19

pyridine N-oxides and relatedsystems18

N

OMe

O

O

SOtBu

O

SO tBu

2

S

S

Ph2

P

PPh2

O

O

diphosphine oxides20

Ph N Ph

H O

formamides21

Page 26: Recent Advances in Organosilicon Chemistry

26

Strain-Induced Lewis AcidityWe have seen how the stereoselectivity of an allylation can be improved andpredicted by forcing the reaction to proceed via a closed chair-like T.S. by makingthe Si atom more Lewis acidic. Another way of increasing the Lewis acidity of theSi centre is to include the Si atom in a small ring:22

PhSi

PhCHO

130 °C, 12 h

Ph

OSi

85%

PhSi

PhCHO

160 °C, 24 h

No Reaction

Page 27: Recent Advances in Organosilicon Chemistry

27

Strain-Induced Lewis Acidity

Si 90° (ideal for

two groups occupying

apical and equatorial

positions in a trigonal

bipyramid)

OSi

O

strain released

on coordination

Page 28: Recent Advances in Organosilicon Chemistry

28

Leighton’s Allylsilanes

reagents are crystalline, shelf-stable, and easy to prepare

Leighton has introduced a range of allylsilanes in which the Si atom is containedwithin a five-membered ring. The long Si−N and short C−N bonds ensure thesilacycle is still strained. The electronegative N and Cl substituents further enhancethe Lewis acidity of the Si centre.23, 24

N

Si

N

Cl

Br

Br

RCHO, CH2Cl2,

!10 °C, 20 h

R

OH

95-98% e.e.

Page 29: Recent Advances in Organosilicon Chemistry

29

Enantioselective Allylation of Imines

Of particular note in these examples, the choice of nitrogen substituent in the iminedetermines the diastereoselectivity of the reaction.26

Leighton has recently used a related class of chiral γ-substituted allylsilane, readilyprepared from the simple allylsilane by cross metathesis, in enantioselective imineallylation.25

NMe

Si

O

Ph

Ph

Cl

Ph

N

HOH

NHAr

Ph

Ph

Ph

N

H

OH

NHAr

Ph

Ph

68%, 7:1 d.r., 96% e.e. 64%, >20:1 d.r., 96% e.e.

syn-selective anti-selective

Page 30: Recent Advances in Organosilicon Chemistry

30

More Allylsilane Chemistry

Page 31: Recent Advances in Organosilicon Chemistry

31

Substrate-Controlled StereoselectiveAllylations in Ring Synthesis

Intramolecular allylation provides an excellent opportunity for generating rings. Sincecyclisation frequently proceeds through well-defined transition states, levels of stereo-selectivity can be excellent.

Brønsted acids are not commonly used as activators for reactions involvingallylsilanes owing to the propensity for these reagents to undergoprotodesilylation.

This was not a problem in this example however; indeed in this case, the use ofLewis acid activators led to a reduction in diastereoselectivity.27

O

CHOPh

SiMe3

MeSO3H, toluene, !78 °C

Ph OH

88%, d.e. > 95%

Page 32: Recent Advances in Organosilicon Chemistry

32

Allylsilanes in Multicomponent ReactionsLewis- or Brønsted acid-mediated reaction of alcohols or silyl ethers with aldehydesand ketones affords oxacarbenium cations. These reactive electrophiles reactreadily with allylsilanes. Both inter- and intramolecular variants have beenreported.28

OTBDPS

HMe

CHO

OTBDPS TMSO

Et

SiMe3

10 mol% TMSOTf

CH2Cl2, 5 h, ! 78 °C

O Et

TBDPSOH H

81%, d.r. > 95:1

TBDPSO

O

Et

RO H

SiMe3

H

TMSOTf

Felkin-Anh control

Markó28a

Page 33: Recent Advances in Organosilicon Chemistry

33

Allylsilanes in Multicomponent Reactions

In this example, condensation of the TES ether with PhCHO generates oxacarbeniumion I. Further rearrangement to a second oxacarbenium II reveals an allylsilane,which undergoes cyclisation.28b

R

OTES

SiMe3R = C5H11

5 mol% BiBr3

CH2Cl2, rt

PhCHO

OR Ph

70%, single diastereoisomer

O

R

Ph

SiO

R

SiMe3

Ph

oxonia-Cope reveals

a more reactive allylsilane

OR Ph

SiMe3

I II

Page 34: Recent Advances in Organosilicon Chemistry

34

Vinylsilanes are Poor NucleophilesAllylsilanes are far more nucleophilic than vinylsilanes. In an allylsilane, the C−Sibond can align with the developing β-positive charge. In a vinylsilane, the C−Si bondis initially orthogonal to the empty p AO. As a result, the C−Si bond needs to undergoa 60° bond rotation before it can optimally stabilise the β-positive charge. As aconsequence, vinylsilanes are not much more nucleophilic than standard olefins.

Si

E

H

C!Si bond orthogonal

to " bond

H H

E

SiH

HH

H H

E

Si

H

bond

rotation

Page 35: Recent Advances in Organosilicon Chemistry

35

Intramolecular Hosomi Sakurai ReactionUnder Lewis acid-activation, allylsilanes are good nucleophiles for conjugateaddition reactions to α,β-unsaturated carbonyl compounds. Schauss used anintramolecular version of this reaction in a synthesis of the trans decalin scaffoldfound in the clerodane diterpenoid natural products.29,30

H

O

H

BF3

O

PhMe2Si

HH

chair-like T.S. with maximum

number of substituents adopting

pseudoequatorial positions

O OH

SiMe2Ph

O OHH

H

BF3·OEt2

CH2Cl2

!78 to !10 °C

81%, 98% d.e.

Page 36: Recent Advances in Organosilicon Chemistry

36

Reactions of Allylsilanes with otherElectrophiles

Activated alkynes31

R

Si

Ph Ph

1 mol% PPh3AuCl / AgSbF6

rt, CH2Cl2

OH

OSi

Ph Ph

R

71%, (Z):(E) 10:1

AuLn

R

Si

Ph Ph

LnAu SiLnAu

R

Ph Ph

R = C6H13

SiLnAu

R

Ph Ph

OR

HOR

Page 37: Recent Advances in Organosilicon Chemistry

37

Reactions of Allylsilanes withElectrophilic Fluorine Sources

Regio- and stereoselective fluorination strategies

Allylsilanes react with electrophilic halogen sources. Of particular interest is theuse of ‘F+’ electrophiles as a means for generating organofluorines in a controlledmanner.32 As expected, fluorination occurs regiospecifically at the γ-terminus of theallylsilane to provide a cationic intermediate that collapses to provide an allylfluoride (SE2’) product.

SiMe3 "F " SiMe3

F

OBz OBz

desilylation

F

OBz

N

N

Cl

F

2 BF4

Selectfluor is the most commonlyused electrophilic fluorine source.

Page 38: Recent Advances in Organosilicon Chemistry

38

Stereoselective ElectrophilicFluorination of Allylsilanes

Substrate control:33

Auxiliary control:34

OBn

OBn

Selectfluor

SiMe3

OBn

OBnF

OBn

OBnF

82 : 18

82%

Me3Si

Bn

N

O

O

O

Bn

Bn

N

O

O

O

Bn

F

syn : anti = 1 : 2

(diastereoisomers separable)

Selectfluor

Page 39: Recent Advances in Organosilicon Chemistry

39

Enantioselective ElectrophilicFluorination of Allylsilanes

Reagent control: Catalytic enantioselective fluorination of allylsilanes hasrecently also been disclosed:35

N

O

N N

O

N

Ph

Ph

MeO OMe

N

Et

HH

H

N

Et

H

(DHQ)2PYR

Bn10 mol% (DHQ)2PYR

K2CO3, MeCN, !20 °C, 9 h Bn

F

63%, 93% e.e.

F-N(SO2Ph)2 (NFSI)

SiMe3

Page 40: Recent Advances in Organosilicon Chemistry

40

Electrophilic Fluorination of otherOrganosilanes

allenylsilanes36

allenylmethylsilanes37

vinylsilanes38Selectfluor

MeCNC6H13

SiMe3

C6H13

F

(Z):(E) = 4:145%

·

Ph

Me3SiSelectfluor

NaHCO3, acetone

F

Ph

99%

·

PhMe2Si

Bu

H

Cy

Bu

F

CyH

Selectfluor

anti SE2'e.e. > 90% e.e. > 90%

MeCN

47%

Page 41: Recent Advances in Organosilicon Chemistry

41

[3+2] Annulation Approaches

Page 42: Recent Advances in Organosilicon Chemistry

42

Allylsilanes in Annulation ReactionsAllylation of aldehydes is a step-wise process, proceeding via a carbocationicintermediate. Normally, attack of an external nucleophile on the silyl group in thisintermediate is rapid, leading to a homoallylic alcohol product.

However, if the second step of this allylation can be slowed down or disfavoured,alternative reaction pathways can be followed leading to different products. One ofthe easiest ways to redirect the allylation reaction is to replace the methylsubstituents on the silyl group with bulkier groups. In this case, intramoleculartrapping of a carbocationic intermediate provides ring products.

R

OLA

SiiPr3RCHO

SiiPr3

LA

Nu

R

OLA

RDS slow

OR

SiiPr3

fast

Page 43: Recent Advances in Organosilicon Chemistry

43

Allylsilanes in Annulation ReactionsAlthough the product outcome is rather substrate-dependent, a tetrahydrofuran productis particularly common.39 This outcome requires rearrangement of the initially formedcationic intermediate:

R

OLA

SiiPr3RCHO

SiiPr3

LA

OR

SiiPr3

R

OLASiiPr3

R

OLA SiiPr3LA

Page 44: Recent Advances in Organosilicon Chemistry

44

Roush’s Synthesis of AsimicinRoush employed the [3+2] annulation of allylsilanes and aldehydes in the synthesis ofthe two tetrahydrofuran rings of asimicin.40

O

O

HO

OH

O

HO

8

9

CHO

O

TBDMSO

9

PhMe2Si

SiMe2Ph

TBDMSO

8

OTBDMS

OTBDPS

asimicin

Page 45: Recent Advances in Organosilicon Chemistry

45

Roush’s Synthesis of Asimicin

The excellent diastereoselectivity of this reaction was attributed to the matchedfacial selectivity associated with using a chiral allylsilane (anti SE2’) and SnCl4-chelated chiral aldehyde reacting through a syn synclinal T.S. as proposed byKeck.41

CHO

O

R2

PhMe2Si

SiMe2Ph

R1O

HH

H

O

H

H

R2

SiMe2PhR1

SnCl4

O

O

PhMe2Si

R1

R2

PhMe2Si

SnCl4, CH2Cl2, 4 Å MS,

0 °C, 3.5 h, 80%

d.r. > 20:1

Page 46: Recent Advances in Organosilicon Chemistry

46

[3+2] Annulation Route to PyrrolidinesA 1,2-silyl shift of the silyl group in the initially formed carbocationic intermediate issometimes unnecessary, as in Somfai’s synthesis of highly functionalisedpyrrolidines where the sulfonamide functions as an internal nucleophile trap:42,43

R

NHTs

H

O

PhMe2Si SiMe2Ph

MeAlCl2, !78 °C, CH2Cl2

NTs

R

SiMe2Ph

SiMe2PhHO

d.e. > 98:2

R

TsHN

OLA

SiMe2Ph

SiMe2Ph

KBr, AcOOH

stereospecific oxidation

of Si!C bondsNTs

R

OH

OHHO

Tamao-Fleming44

Page 47: Recent Advances in Organosilicon Chemistry

47

Synthesis of Allylsilanes

Page 48: Recent Advances in Organosilicon Chemistry

48

Cross Metathesis ApproachCross-metathesis provides an efficient route to γ-substituted allylsilanes.45 Allyl-trimethylsilane is a Type I alkene according to Grubbs’ classification46 and homo-dimerises readily. The homodimer readily takes part in secondary cross-metathesisprocesses. Particularly good results are obtained with Type II olefins:45a

If the cross-metathesis product is required from an allylsilane and an alkene ofsimilar reactivity, the best yields of product are obtained by employing theallylsilane in excess:45c

Me3Si

4 eq.

CH2Cl2, 4 h, !

(E) : (Z) 92 : 8

ref 45c

Ph

OH

1 eq.

Ph

OH

SiMe3

5 mol%

Grubbs II

86%

Me3Si EtO

O

1 eq. 3 eq.

Ru

OCl

Cl

iPr

NMesMesN

Me3SiOEt

O

5 mol%

CH2Cl2, rt

40%

(E) : (Z) 30:1

ref 45a

Page 49: Recent Advances in Organosilicon Chemistry

49

A Silylsilylation Approach

Use of a temporary silyl ether connection47 enables an intramolecular bis-silylation of the proximal olefin. In the second step, syn-specific Peterson48 of anintermediate oxesiletane unveils the allylsilane product.49

Ph2Si

O

SiMe2Ph

C6H13

NC2 mol%

Pd(acac)2

xylene, !

8 mol%

i)

ii) nBuLi, THF,

then KOtBu, 50 °C

H

SiMe2Ph

90%, 99.1% e.e.

C6H13

99.7% e.e.

Page 50: Recent Advances in Organosilicon Chemistry

50

Mechanism

Si

Ph

Ph2Si

O

SiMe2Ph

R

Pd

Me

Ph

R

O Si

H

Pd(0) oxidative addition into Si!Si bond

syn-silasilylation of olefin

Si

Ph

Me

Ph

R

O Si

H H

HO SiPh2

R

Si

Ph2Si O

SiPh2O

Si

R

Si

R

O SiPh2

R

Si

OPh2Si

R

Si

strain-induced

Lewis acidity drives

dimerisation

chair-like T.S., Me pseudoeq.

minimises 1,3-diaxial int'ns

Page 51: Recent Advances in Organosilicon Chemistry

51

Mechanism

Ph2Si O

SiPh2O

Si

R

Si

R

syn-specific ring

contraction

SiMe2Ph

H

R

O

Ph2SiO

Ph2

SiSi

R

nBuLi, KOtBu

NuSiMe2Ph

H

R

O

Ph2SiO

SiPh2Nu

syn-specific

Peterson

O SiR3

R'

Page 52: Recent Advances in Organosilicon Chemistry

52

Allenyl, Propargyl and Vinylsilanes

Page 53: Recent Advances in Organosilicon Chemistry

53

AllenylsilanesSince the C−Si bond can align with the nucleophilic π-bond, allenylsilanes react in ananti SE2’ fashion similar to allylsilanes.51 Chiral allenylsilanes can also be preparedenantioselectively, often by SN2’ displacement of a propargyl mesylate by a silylnucleophile, or in this example,52 by a Johnson orthoester Claisen rearrangement.

OH

SiMe2Ph

MeC(OMe)3

cat. EtCO2H

xylenes, !·

HSiMe2Ph

CO2Me

81%, 98% e.e.99% e.e.

CHO

Br

TMSO

BF3·OEt2, MeCN, "20 °C

Br

OCO2Me

78%, >20:1 d.r.

·

Me

H

O

Ar

H

SiMe2Ph

proposed reactive

conformation

CO2Me

Page 54: Recent Advances in Organosilicon Chemistry

54

Propargylsilanes

Propargylsilanes also react in an SE2’ fashion although anti selectivity is not as highas is observed with allyl- and allenylsilanes.51 Reaction with aldehydes, and relatedelectrophiles, proceeds under Lewis- or Brønsted acid activation to afford allenylalcohol products.

ref 27

O

Ph

SiMe3

O

MeSO3H, CH2Cl2, !78 °C O

Ph OH

·

single diastereoisomer

Page 55: Recent Advances in Organosilicon Chemistry

55

VinylsilanesWe have already explained why vinylsilanes are far less nucleophilic than allyl-,allenyl- and propargylsilanes. Nevertheless this class of organosilane still reacts withelectrophiles with predictable regioselectivity. Panek used a stereodefined vinylsilaneas a masked vinyl iodide in his synthesis of discodermolide. The trisubstituted vinyliodide was unmasked upon treatment with NIS. This iododesilylation proceeded withcomplete retention of configuration.53

MeO

O OO

PMP

OMOM

OTBS

SiMe3

MeO

O OO

PMP

OMOM

OTBS

I

NIS

MeCN, 95%

(+)-discodermolide

O

OH

O

HOH

OH

OH O NH2

O

Page 56: Recent Advances in Organosilicon Chemistry

56

Enantioselective Vinylation of AldehydesShibasaki used vinyltrimethoxysilane as a starting reagent in an enantioselectivevinylation of aldehydes in the presence of CuF2 and a chiral bis-phosphine.54

RCHO

Si(OMe)3

i) CuF2·2H2O, DTBM-SEGPHOS,

DMF, 40 °C

ii) TBAF

OH

R

O

O

P

P

OMe

tBu

tBu

tBu

OMe

tBu

2

2

DTBM-SEGPHOS

84-99% e.e.

Page 57: Recent Advances in Organosilicon Chemistry

57

Enantioselective Vinylation of Aldehydes

The likely nucleophile in this reaction is a vinylcopper reagent, which is generatedin situ by transmetallation of a fluoride-activated vinylsilane intermediate.

The formation of the hypervalent silyl species is important as transmetallation fromstandard organosilanes to other vinyl metal species is less efficient.

Evans has since reported an enantioselective vinylation of aldehydes that proceedsin the presence of a chiral scandium catalyst directly from a vinylsilanenucleophile.55

Si(OMe)3

CuF2

Si(OMe)3

F

transmetallation

activation

CuLn

Page 58: Recent Advances in Organosilicon Chemistry

58

Organosilanes in Cross-Coupling Reactions

Page 59: Recent Advances in Organosilicon Chemistry

59

DisconnectionPd-catalysed cross-coupling strategies require an ‘electrophilic’ coupling partner,usually an organohalide or pseudohalide (sulfonate, phosphate, diazonium spetc) and a ‘nucleophilic’ coupling partner. Commonly used organometallicreagents include B, Sn, Zn, Cu, Mg, Zr and Si species.

R

S

OTfR

M

SX M

Pd catalystPd catalyst

Reactions which employ organosilanes in this type of cross-coupling are commonlyreferred to as Hiyama couplings.1

Page 60: Recent Advances in Organosilicon Chemistry

60

Hiyama CouplingOwing to the low polarisation of the C−Si bond, organosilanes are relatively unreactivenucleophilic coupling partners for Pd(0)-catalysed cross-coupling reactions.

As a result, reaction is usually performed in the presence of an activator, typically afluoride source (TBAF, TASF etc).

In the presence of an activator, reaction proceeds more readily owing to the in situformation of a pentacoordinate siliconate species, which undergoes more rapidtransmetallation.

SiR3

Nu

SiR3

Nu

ArPdIIX

Pd

Ar

R3SiX + Nu

Ar

The substituents on the silyl group are also important. Silanes containing electron-withdrawing groups tend to be most useful: Me2FSi−, MeF2Si− (but not F3Si−) aregood, as are alkoxysilanes (Me2(RO)Si− and Me(RO)2Si− better than (RO)3Si−).2

Page 61: Recent Advances in Organosilicon Chemistry

61

Recent DevelopmentsAlkoxysilanes and silanols are particularly attractive coupling partners for Hiyamacouplings. Reactions proceed efficiently in the presence of a fluoride source.1,3

Hiyama couplings under fluoride-free conditions are also possible. Denmark hasmade significant contributions to this field,1,4 showing that organosilanols undergoPd-catalysed cross-coupling in the presence of a base.1,4

SiOHR1

I

2 eq. base, r.t., DME

[Pd(dba)2]R1

R2

R2

Page 62: Recent Advances in Organosilicon Chemistry

62

Denmark ModificationsA range of bases can be employed including: NaOtBu, NaH and Cs2CO3. KOSiMe3 is aparticularly mild alternative.

In all cases, the reactive species is the corresponding silanolate.

Mechanistic studies have revealed a different mechanistic pathway for this base-mediated Hiyama coupling. Specifically, reaction does not require the formation of apentavalent siliconate species, rather transmetallation proceeds in a direct, intra-molecular fashion on an intermediate tetracoordinate PdII species:

SiOHR

SiO MR

ArPdIIX MX

SiOR

PdLn

Ar

PdLn

Ar

R

reductive

elimination

intramolecular

transmetallationSi O

n

ArR

B

Page 63: Recent Advances in Organosilicon Chemistry

63

Effect of Silicon Substituents

Denmark has studied the effect of silicon substituents on the efficiency of Hiyamacross-coupling reactions.2

For fluoride-activated cross-couplings, the order of reactivity is:

(CF3CH2CH2)MeSiOH > Me2SiOEt > Me2SiOH > Ph2SiOH > Et2SiOH > MeSi(OEt)2 >iPr2SiOH > Si(OEt3) >> tBu2SiOH

For TMSOK-activated cross-couplings, the order of reactivity is:

Ph2SiOH > (CF3CH2CH2)MeSiOH > MeSi(OEt)2 > Me2SiOH > Si(OEt3) ~ Me2Si(OEt) >>iPr2SiOH

Fluoride-activated cross-couplings tend to be faster and less sensitive to structuraland electronic features of the substrates than base-mediated couplings.

Page 64: Recent Advances in Organosilicon Chemistry

64

ApplicationsThe different activity of organosilanes can be exploited in sequential Hiyama couplingreactions:5

Lopez has recently applied this cross-couplingstrategy to a highly stereoselective synthesis of retinoids.6

SiMe2OHRMe2Si

I

2 eq. TMSOK

2.5 mol% [Pd(dba)2]

dioxane, rt

RMe2Si

I

2 eq. TBAF

THF, rtR = 2-thienyl or benzyl

R1

R1

R2

R1

R2

2.5 mol% [Pd(dba)2]

Page 65: Recent Advances in Organosilicon Chemistry

65

Biaryl SynthesisHiyama couplings have been used to prepare biaryls, including, after optimisation,particularly challenging 2-aryl heterocycles:7

These couplings require careful optimisation of the reaction conditions. Choice ofprotecting group on the indole nitrogen, pre-forming the sodium silanolate prior toreaction, judicious choice of Pd catalyst and ligand, and in some cases theinclusion of a copper salt all need to be considered.7

NBoc

MeO

Si

OH

I CF3

5 mol% [Pd2(dba)3·CHCl3]

2 eq. NaOtBu, 0.25 eq. Cu(OAc)2

toluene, 3 h, 4 h, 82% NBoc

MeO

CF3

O

Si

O Na

Cl OMe

O

OMeTHF, 60 °C, 8 h

2.5 mol% [(allyl)PdCl]2

MeO OMe

PCy2

5 mol%77%

Page 66: Recent Advances in Organosilicon Chemistry

66

All-Carbon Substituted Organosilanesfor Hiyama Couplings

Although silanols, fluorosilanes and alkoxysilanes are the most commonly employedcross-coupling agents for Hiyama couplings, a range of latent silane couplingpartners, which generate the reactive coupling agent in situ can also be used. Theseinclude, 2-pyridyl-, 2-thienyl, benzyl and allylsilanes:8

Yoshida has previously shown that 2-pyridylsilanes are useful alkenyl, alkynyl andbenzyl transfer agents; however in this example, in the presence of a Ag(I) salt, theallyldimethylsilyl group functions as a 2-pyridyl transfer agent.8a

N Si 5 mol% [Pd(PPh3)4]

1.5 eq. Ag2O

THF, 60 °C, 76%

I

1.5 eq.

N

Page 67: Recent Advances in Organosilicon Chemistry

67

Ni-Catalysed Hiyama ReactionsFu recently reported a Ni-catalysed variant of the Hiyama coupling between 2° alkylhalides and aryltrifluorosilanes.9 The inclusion of norephedrine as a ligand wasimportant for obtaining good yields of product.

Br

10 mol% NiCl2·glyme

15 mol% ephedrine

12 mol% LiHMDS, 8 mol% H2O

3.8 eq. CsF, DMA, 60 °C

PhSiF3 Ph

88%

Cl

N

O

O

PhSiF3

Ph

N

O

O

conditions as above

86%

Page 68: Recent Advances in Organosilicon Chemistry

68

Hiyama Couplings in Pd-CatalysedSequences

Prestat and Poli used a Pd-catalysed intramolecular allylic alkylation − Hiyama cross-coupling sequence in their synthesis of a series of picropodophyllin analogues:10

O

MeO2C

O

Si

Ar

O

O

MeO2C

1 mol% Pd(OAc)2

2 mol% dppe

DMF, 60 °C, 1.5 h, 59%

OO

MeO2C

Si

Ar

I

O

O

O

O

2.4 eq. TBAF

2.5 mol% Pd2(dba)3

THF, rt, 69%

OO

MeO2C

O

O

O

O

OO

OO

MeO2C

HO

HCO2H, THF, 0 °C

quant.

Ar = 2-thienyl

Page 69: Recent Advances in Organosilicon Chemistry

69

One-Pot Hiyama / Narasaka CouplingMioskowski exploited the different reactivity of differentially substituted vinylsilanesin a synthesis of stereodefined enones:11,12

SiSiEtO

Ph

1.0 eq. PhI

9 mol% ionic gel Pd cat.

1.4 eq. PS-TBAF

dioxane, 60 °C, 2 h1.3 eq.

SiPh

filter through Celite

O

3 eq. Ac2O

5 mol% [RhCl(CO)2]2

90 °C, 24 h

83%

Hiyama with more

reactive alkoxysilane

Narasaka with

remaining vinylsilane

Page 70: Recent Advances in Organosilicon Chemistry

70

Direct Arylation of Cyclic EnamidesIn contrast to standard Hiyama couplings, which employ halide coupling partners, thisexample uses C−H activation to generate the vinyl-Pd transmetallation precursor. TheAgF additive is proposed to play a dual role, activating the alkoxysilane towardstransmetallation, and as an oxidant in regenerating Pd(II) at the end of the catalyticcycle.13

O

NHAc

O

HN O

Pd

Pd(OAc)2

HOAc

OAc

L

O

HN O

Pd

Ar

L

ArSi(OMe)3F

AcOSi(OMe)3 + F

Pd(0)

Ag(I)

Ag(0)

O

NHAc

Ar

activated arylsilane

facilitates transmetallation

Page 71: Recent Advances in Organosilicon Chemistry

71

Brook (and related)Chemistry

Page 72: Recent Advances in Organosilicon Chemistry

72

Brook RearrangementSi−F and Si−O bonds are notably stronger than Si−H and Si−C bonds. This differencein bond strength can be a strong driving force for chemical reactions, and has beenparticularly widely exploited to generate carbanions from alkoxides through the so-called Brook rearrangement:1

R

OH

SiMe3

B

R

O

SiMe3

O

R

SiMe3

1,2-Brook

1,2-retro-Brook

The rearrangement is reversible. The position of the equilibrium depends on a numberof factors including: i) solvent polarity, ii) anion-stabilising ability of the carbonsubstituents, and iii) strength of the oxygen-metal bond.

Whilst the original report was of a [1,2]-rearrangement, the reaction is rather general.A range of [1,n]-silyl group to oxygen migrations have been reported and whereinvestigated, been shown to proceed via intramolecular silyl group transfer.

Page 73: Recent Advances in Organosilicon Chemistry

73

Novel Silyl Enol Ether SynthesisTreatment of acyl silanes with a copper alkoxide affords the corresponding copperenolate, which undergoes a 1,2-Brook rearrangement to afford the correspondingalkenylcopper species with high stereoselectivity. The use of DMF as solvent and acopper rather than alkali metal alkoxide is important to ensure smooth 1,2-silylmigration.2,3

The generated alkenyl copper species is ripe for further elaboration:

regioselective synthesis from ketoneusing standard deprotonation chemistry

would be difficult

R

OSiPh3

Cu

Cl

R

Ph3SiO

61%

PhI, [Pd(PPh3)4]

R

OSiPh3

Ph

R = Me

71%

R = PhCH2CH2

O

SiPh3

CuOtBu

DMF

O

SiPh3

Cu

O

Cu

SiPh3

1,2-Brook

Page 74: Recent Advances in Organosilicon Chemistry

74

One-Pot Synthesis of 2,3-DisubstitutedThiophenes

In this example from Xian, the inclusion of DMPU as a co-solvent was important toensure a smooth 1,4-Brook rearrangement:4,5

SSitBuMe2

Br

i) tBuLi

ii) PhCHO, Et2O

!78 °C to !20 °CS

SitBuMe2

Ph

O

EtCHO

THF, DMPU

!20 °C to 0 °C

S

Ph

OSitBuMe2

S

Ph

OSitBuMe2

OH

Et

1,4-Brook

50%

O

EtH

Page 75: Recent Advances in Organosilicon Chemistry

75

Retro Brook RearrangementsWhen used in its reverse sense, the retro-Brook rearrangement provides a useful methodfor preparing organosilanes. Cox used a 1,4-retro-Brook rearrangement to generatestereodefined tetrasubstituted β-halovinylsilanes, which serve as masked alkynes foroligoyne assembly. Intramolecular silyl group transfer allowed the incorporation ofbulky silyl groups, which would be difficult to introduce by standard intermoleculartrapping methods.6,7

Li

SnMe3

O

Si

tBu

Ph

Ph

Ph

Me3Sn

SnMe3

O

Si

tBu

Ph

Ph

Ph

nBuLi

THF

!78 °CSitBuPh2

SnMe3Ph

OH

1,4-retro Brook

Selectfluor

SitBuPh2

FPh

OH

SitBuPh2

F

F

SitBuPh2

Ph

Ph

Ph Ph

10 mol% TBAF

Page 76: Recent Advances in Organosilicon Chemistry

76

Anion Relay ChemistryOrganosilanes and Brook-type rearrangements have been employed to great effectin multicomponent synthesis. Recent work from Smith is particularly noteworthy:8

ref 8d

OMe

O

O

S

SnBuLi, KOtBu

THF, !78 °C

SiMe2tBu

O SS

R1

S S

R1 M

THF, !78 °C S S

R1

O SiMe2tBu

S

S

1,4-Brook

S S

R1

O

S

S

SiMe2tBu

O

HMe3Si

S S

R1

OSS

O SiMe3

Si*

!78 °C

THFS S

R1

OSS

OSiMe3

Si*

Br

THF, !78 °C

to 0 °C

S S

R1

OSS

OSiMe3

Si*

1,4-Brook

TBAF S SOH

SS

OHOMe

O

O

d.r. 1.3 : 1

37% (2 steps)

Page 77: Recent Advances in Organosilicon Chemistry

77

Fluoride Activation of Latent CarbanionsOther carbanionic nucleophiles can be unmasked from organosilanes, often providingan alternative to using a strong base on the corresponding protonated precursor.9Silylated 1,3-dithianes provide a nice illustration:8,9

S

S H

SiMe3

TBAF

S

S H

SiMe3F

PhCHO

S

S H

PhHO

note: overall retention

of configuration

cf:

ref 9c

nBuLi

THF, !78 °CS

S H

H

S

S Li

H

PhCHO

S

S

H

Ph

OH

Page 78: Recent Advances in Organosilicon Chemistry

78

Fluoride-Mediated Carbanion Generation

Trifluoromethylation:

The formation of a thermodynamically stable Si−F bond allows a range of organo-silanes to be used as latent carbanions. For example, the Ruppert-Prakash reagentMe3SiCF3 is a useful source of the CF3

− anion.10

Me3Si CF3

FCF3

Si Me

FMe

Me

"CF3 "

E

E CF3

Page 79: Recent Advances in Organosilicon Chemistry

79

Trifluoromethylation of IminesWhilst the fluoride-mediated trifluoromethylation of carbonyl compounds is widespread,the corresponding reaction with imines has received less attention.10

Activated imines bearing electron-withdrawing substituents react readily with Me3SiCF3in the presence of a fluoride source such as TBAF. Tartakovsky recently showed thattrifluoromethylation of simple imines proceeds under acidic conditions under optimisedconditions.11

O

O

Ph

NBn

O

O

Ph

NH

Bn

CF3

O

OH

F3C

NBn

Ph

CF3CO2H, KHF2

Me3SiCF3

MeCN, rt, 3 h

Me3SiCF3 , TBAF

THF, 4 °C, 18 h

73%

70%

Page 80: Recent Advances in Organosilicon Chemistry

80

Trifluoromethylation of IminesThe authors proposed the reaction was mediated by HF, generated in situ from KHF2and the Brønsted acid additive. CF3

- anion transfer proceeds via a hypervalent silylspecies, rather than the free CF3

- anion, which would be quenched under the acidicreaction conditions.

R1

N

H

H R2

R1

N

H

R2

HF

CF3

Si

FH

F

MeMe

Me

R1

N

CF3

H R2

Page 81: Recent Advances in Organosilicon Chemistry

81

Low-Coordinate SiliconCompounds

Page 82: Recent Advances in Organosilicon Chemistry

82

Silylenes, Silenes and Related SpeciesSince Silicon lies immediately below Carbon in the Periodic Table, much effort hasfocused on preparing the Silicon analogues of carbenes, olefins and relatedunsaturated species.1

Si

R

R

silylene

dimerisationSi Si

R

R R

R

disilene

R2C

C Si

R

R R

R

silene

Silenes, disilenes and silylenes and related low-coordinate Silicon species tend tobe highly reactive; however this instability can be tempered by using sterically verybulky substituents and donor groups. Metal coordination offers another importantstabilisation strategy.

Page 83: Recent Advances in Organosilicon Chemistry

83

Silylenes

Silylenes are the Silicon analogues of carbenes. They invariably possess singletground states and as a consequence of the vacant orbital on the Silicon, are highlyelectrophilic in character.

In analogy with singlet carbenes, the chemistry of silylenes is typified by additionto π bonds:

Insertion reactions into σ bonds (e.g. O−H, Si−H, Si−O) are also common. In thesecases, reaction often proceeds via a nucleophilic addition-rearrangementmechanism.

Si

R

RSi Si

R RR R

silacyclopropane silacyclopropene

Page 84: Recent Advances in Organosilicon Chemistry

84

Silylene PreparationSilylenes have commonly been accessed by thermolysis- or photolysis-inducedfragmentation or rearrangement processes. They dimerise readily to thecorresponding disilene; however in the presence of a suitable trapping agent, suchas cyclohexene, the silylene can react to afford the correspondingsilacyclopropane. With bulky tert-butyl substituents on the silicon, this speciesexhibits sufficient stability for its application as a silylene transfer agent undermetal catalysis.2

Si

tButBu

Me3Si SiMe3

h!Si

tBu

tBu dimerisationSi Si

tBu

tBu tBu

tBu

Si

tBu

tBu

AgX

X

AgSi

tBu

tBu

silver silylenoid

Page 85: Recent Advances in Organosilicon Chemistry

85

Metal-Catalysed Silylene TransferIn the presence of metal salts, commonly Ag(I) salts, silacyclopropanes react to afforda metal silylenoid species, (cf. metal carbenoids formed from diazo compounds andRh or Cu species). The resulting silver silylenoid displays a rich chemistry that hasbeen investigated in significant detail by Woerpel.2-4

Si

tBu

tBu

Bu5 mol% AgOTf

20 mol% ZnBr2, HCO2Me

Bu

Si

tButBu

O

OMe

H Bu

Si

tButBu

O

OMe

H

Bu

OSi

tBu

tBu

OMe

87%, d.r. 76:24

regioselective insertion into C=O group

strain-inducedLewis acidity

ref 3

Page 86: Recent Advances in Organosilicon Chemistry

86

Si

tBu

tBu

10 mol%

Ag3PO4

Bu OTIPS

Bu OTIPS

Si

tBu tBu

Bu

OSi

OTIPS

Pr

tButBu 25 mol% Sc(OTf)3

2 mol% CSA

2:1 PhMe:CH2Cl2

!78 °C to 22 °C

OSi

O

tButBu

Ph

Bu O

Pr

PhCHO

d.r. 92:6:2

89%

Ph

OH

Bu

OH

Pr

OH

i) LiAlH4 (d.r. >99:1)

ii) TBAF

82%

(2 steps)

OSi

OTIPS

Pr

Bu

O

Ph

86%

tButBu

PrCHO, CuI

Application to 1,2,4-Triol Synthesis5,6

regioselective C=O insertion

Mukaiyama aldol

1,3-Brook

Page 87: Recent Advances in Organosilicon Chemistry

87

Metal-Catalysed Silylene Transfer to IminesSilylene transfer to imines is also possible.7 The mechanism of silaaziridine formationlikely proceeds via nucleophilic addition of the imine nitrogen to the electrophilicsilylenoid to provide an ylide which undergoes a 4π-electrocyclisation to provide thestrained product.

Ph NBn

Si

tBu

tBu

1 mol% AgOTf Ph NBn

Si

tButBu

80%

Si

tBu

tBu

Ag

TfO

" "

Ph NSi

tBu

tBu

Bn

4!-electrocyclic

Page 88: Recent Advances in Organosilicon Chemistry

88

SilaaziridinesSilaaziridines are sensitive to air and moisture; they can be isolated (with care) bydistillation. More commonly, they are used directly in further transformations.

They undergo ring-expansion reactions with aldehydes to afford the correspondingN,O-acetal resulting from insertion into the more ionic Si−N bond.7

In contrast, reaction with tert-butylisocyanide (a softer E+) proceeds via insertioninto the more covalent Si−C bond.7

iPr NBn

Si

tButBu

BnN O

Si

iPr

tBu

tBu

Ph

PhCHO

1 mol% AgOTf

>95% (by NMR) d.r. 91:9

iPr NBn

Si

tButBu

tBuNC, 23 °C

>95% (by NMR)N

Si

tBuNtBu

tBu

BniPr

Page 89: Recent Advances in Organosilicon Chemistry

89

SilaaziridinesAlkynes undergo regioselective insertion into the Si−C bond under Pd-catalysis toprovide an azasilacyclopentene ring-expanded product. Subsequent protodesilyl-ation affords an allylic amine product.7

iPr NBn

Si

tButBu

[Pd(PPh3)4], 50 - 80 °C

Ph Hi)

ii) KOtBu, TBAFPh

iPr

NHBn

Pd

N

Si

tBu

tBu

BniPr

Pd(0)

Pd

NSi

tBu tBu

Ph iPr

Bn

N

Si

Ph

tBu tBu

Bn

iPr

Ph H

Pd(0)

90%

step i

step ii

72%oxidative

addition

regioselective

alkyne insertion reductive

elimination

protodesilylation

Page 90: Recent Advances in Organosilicon Chemistry

90

SilenesSilenes are also reactive species. Traditionally, they have been generated bythermolysis processes:1

More recently, anionic approaches have allowed silenes to be generated under muchmilder conditions:1,8

R

Si(SiMe3)Ph

H

BuLi,

10 mol% LiBr

R

Si

O

PhSiMe3

SiMe3

R

Si

OH

PhSiMe3

SiMe3Peterson

R

O

Si(SiMe3)3

180 °C

R

OSiMe3

Si(SiMe3)2Brook

Page 91: Recent Advances in Organosilicon Chemistry

91

SilenesSilenes are reactive species. For example, they react in a [2+2] cycloadditionfashion with carbonyl compounds, imines, alkenes and alkynes, whilst [4+2]cycloaddition pathways are (usually) observed with dienes and α,β-unsaturatedcarbonyls.

cycloadduct ripe for elaboration

Ph

Si(SiMe3)2Ph

OH

Si Ph

SiMe3

BuLi

10 mol% LiBr

Ph

Si(SiMe3)Ph

H

Diels-Alder

d.r. 74:20:6

allylsilane

chemistry

45%

Tamao-Fleming

oxidation

ref 10

ref 9

ref 11

Page 92: Recent Advances in Organosilicon Chemistry

92

Silicon Lewis Acids

Page 93: Recent Advances in Organosilicon Chemistry

93

Strong Lewis AcidsTMSOTf, and to a lesser extent TMSCl, are synthetically Lewis acids. Recent variantsthat exhibit increased Lewis acidity have been introduced. Of these, trialkylsilylbistrifluoromethanesulfonamides (R3SiNTf2), developed by Ghosez1 and Mikami,2 areproving particularly useful.

In light of their very high reactivity, R3SiNTf2 Lewis acids are most convenientlyprepared in situ from the corresponding Brønsted acid and an allylsilane or relatedspecies:

SiR3

HNTf2

(g)

R3Si NTf2

Page 94: Recent Advances in Organosilicon Chemistry

94

Application3

TMSNTf2 is formed in situ from the acid HNTf2 and silyl enol ether.

The Lewis acid generates an N-acyl iminium species that is trapped in adiastereoselective fashion by the silyl enol ether.

Reaction is 108 times faster than the TIPSOTf-catalysed process.

N

O

Bn OAc

OActBu

OTMS

5 mol% HNTf2

1.4 eq.

CH2Cl2, 15 min, 0 °CN

O

Bn

OAc

O

tBu90%

> 95 : 5

Page 95: Recent Advances in Organosilicon Chemistry

95

Even Stronger Lewis AcidsThe effect of the counteranion on the strength of silyl Lewis acids was studied bySawamura.4 Silyl borates of the form R3Si(L)BAr4, which contain a very weaklycoordinating counteranion, were shown to be even more powerful Lewis acids thansilyl bistrifluoromethanesulfonamides.

O

Ph

OTMS

Ph

Et3Si(toluene) B(C6F5)4

OH O

PhPh

1 mol% LA

toluene, !78 °C

1 h

97%

TMSNTf2

TMSOTf

12%

0%

Et3SiH Ph3CB(C6F5)4Et3Si(toluene) B(C6F5)4

toluene

Ph3CH

Preparation:

Page 96: Recent Advances in Organosilicon Chemistry

96

Lewis Base Activation of SiCl4Whilst SiCl4 is a very weak Lewis acid, we have already seen how Lewis baseadditives can generate much more reactive Lewis acidic species:

SiCl4

LB

SiCl4(LB) SiCl3(LB) Cl

In a nice illustration of this strategy, Takenaka recently used helical chiral pyridineN-oxide Lewis bases with SiCl4 in an efficient desymmetrisation of meso epoxides:5

N

O

O

Ph Ph

10 mol%

SiCl4 , iPr2NEt, CH2Cl2

!78 °C, 48 h

PhPh

OSiCl3

Cl

77%, 93% e.e.

Page 97: Recent Advances in Organosilicon Chemistry

97

Strain-Induced Lewis AcidityWe have already seen how Leighton has used strain-induced Lewis acidity inenantioselective allylation reactions with allylsilanes. Using a similar concept, he hasintroduced a new class of Silicon Lewis acids for enantioselective synthesis using acylhydrazones:6

The Lewis acid is readily prepared from pseudoe-phedrine and PhSiCl3 as an inconsequential 2:1mixture of diastereoisomers.

Reaction with the acyl hydrazone generates an activatedintermediate in which the faces of the electrophile aresterically differentiated.

NMe

Si

OPh

Me

Ph

Cl

d.r. ~ 2:1

N

HR

NHBz

N

Si

NMe

O

PhO

N

R

H

Ph

MeH

Cl

Ph

Page 98: Recent Advances in Organosilicon Chemistry

98

NMe

Si

OPh

Me

Ph

Cl

d.r. ~ 2:1

H

N

Ph

NHBz

OtBu

NHN

Ph OtBu

Ph

O

1.5 eq.

toluene, 23 °C, 24 h

84%, d.r. 96 : 4, 90% e.e.2 2

i) AcCl

ii) TMSOTf,

SiMe3

iii) SmI2

NHAc

Ph

NHBz

2

56% (3 steps)

> 20 : 1

Synthetic Application

[3 + 2] cycloaddition of acyl hydrazones with tert-butyl vinyl ether proceeds with excellentenantioselectivity and diastereoselectivity toprovide an aminal product that is primed forfurther reaction.6

Page 99: Recent Advances in Organosilicon Chemistry

99

A More Active Leighton LALeighton has recently shown that replacing the Ph substituent in his 1st gen LA withan alkoxy group provides a more straightforward method for catalyst tuning.Moreover the more electron-withdrawing alkoxy group generates a more reactiveactivator, which allowed its application in an enantioselective Mannich reactioninvolving aliphatic ketone-derived acyl hydrazones.7,8

NMe

Si

OPh

Me

O

Cl

d.r. ~ 2:1

Me

N

Ph

NH

2

p-CF3-C6H4 O

tBu

NH O

OMeMe

Ar(O)CHN

Ph

1.3 eq.

OTMS

OMe

PhCF3 , 23 °C,

30 min 89%, 90% e.e.

Page 100: Recent Advances in Organosilicon Chemistry

100

Silyl Protecting Groups

Page 101: Recent Advances in Organosilicon Chemistry

101

Silyl Ethers as Alcohol ProtectingGroups

Silyl ethers are important alcohol protecting groups. They are particularly usefulbecause they can be cleaved with a fluoride source, which leaves other protectinggroups intact. Moreover, the size of the substituents on the silyl group can be used tomodulate their stability.

Silyl ethers are usually formed by treating the alcohol with a silyl chloride or triflate. Abase is invariably included to scavenge the acid by-product.

R OH

R1R2R3SiCl or

R1R2R3SiOTf

R OSi

R3

R1 R2

F source

R OHbase, B

B·HCl or B·HOTf

Page 102: Recent Advances in Organosilicon Chemistry

102

Formation of Silyl EthersNew methods for forming silyl ethers that avoid the formation of HX·amine saltshave been developed. For example, Vogel has introduced silyl methallylsulfinatesas silylating agents for alcohols, phenols and carboxylic acids.1 The reactionproceeds under mild and non-basic reaction conditions. Volatile by-products (SO2and isobutene) facilitate work-up:

OH

OEt

O SOSiEt3

O

20 °C, CH2Cl2, < 5 min

Et3SiO

OEt

O

quant (1H-NMR)

PhOH

SOSitBuMe2

O

20 °C, 7 h, CH2Cl2

1.1 eq.

1.5 eq.

PhOSitBuMe2

quant (1H-NMR)quench excess reagent

with MeOH to generate

volatiles side-products

Page 103: Recent Advances in Organosilicon Chemistry

103

Formation of Silyl EthersThe dehydrogenative coupling of a silane with an alcohol is an attractive method forsilyletherification since the only by-product is H2. Ito and Sawamura have developedone of the best reagent systems for effecting this type of silyletherification.2a

O

PAr2 PAr2

Ar = OMe

tBu

tBu

DTBM-xantphos =

Under the optimised conditions, a range of silanes can be employed, although poorresults are observed with very hindered silanes such as iPr3SiH. Excellent levels ofselectivity are observed in the selective silylation of 1° over 2° alcohols. A related Au(I)-xantphos catalyst system has also been developed.2b

HOC8H17

C8H17

OH

2 mol% CuOtBu

2 mol% DTBM-xantphos

Et3SiH, 22 °C, 19 h, toluene

Et3SiOC8H17

C8H17

OSiEt3

99

1

:

95%

Page 104: Recent Advances in Organosilicon Chemistry

104

Modifying Reactivity by SilylationSilylation can be used to modify the reactivity of a range of reagents:

In this example from Oestreich, the silyl phosphine functions as a maskedphosphinide in a Rh(I)-catalysed phosphination of cyclic enones.4

OtBuMe2SiPPh2

1,4-dioxane!H2O 10:1

60 °C, 2 d

5 mol% [(dppp)Rh(cod)]ClO4

5 mol% dppp, Et3N

O

PPh2

77%

Page 105: Recent Advances in Organosilicon Chemistry

105

Modifying Reactivity by SilylationCarreira has introduced silanolates as hydroxide equivalents in an Ir-catalysedenantioselective synthesis of allylic alcohols:5

Ph O OtBu

O

2 eq. Et3SiOK, CH2Cl2, rt

3 mol% [Ir(cod)Cl]2

6 mol% phosphoramidite ligand

i)

ii) TBAF

Ph

OH

88%, 97% e.e.

tBuMe2SiOK and iPr3SiOK could also be used if the the desired product is a alcoholthat is protected as a more robust silyl ether.

O

O

P N

Ph

Phligand =

Page 106: Recent Advances in Organosilicon Chemistry

106

Modifying Activity by SilylationProline derivatives have emerged as powerful organocatalysts for mediating a rangeof transformations. Diarylprolinol silyl ethers, introduced by Hayashi and Jørgensen,have been used particularly widely, for example in this recent example of a directenantioselective α-benzoylation of aldehydes.6

H

O

OH

OBz

NH

OSitBuMe2

Ph

Ph

20 mol%

1.5 eq. BzOOBz

THF, rt, 20 h

then NaBH4

77%, 92% ee

The silyl protecting group in this class of organocatalyst generates a sterically bulkysubstituent off the pyrrolidine and is important for achieving high levels of asymmetricinduction.

Page 107: Recent Advances in Organosilicon Chemistry

107

New Silyl Protecting GroupsCrich has introduced the 3-fluoro-4-silyloxy-benzyl ether protecting group. The groupis readily introduced and can be removed by treatment with TBAF in THF undermicrowave irradiation.7

The electron-withdrawing fluoro substituent imparts enhanced stability to acid andthe oxidative reaction conditions used to remove PMB protecting groups, whichallows these two types of benzyl ethers to be used as orthogonal alcohol protectinggroups.

O

OPMB

OO

OR

OPh

F

OSitBuPh2

O

OPMB

HOO

OR

OPhTBAF, THF

µw, 90 °C

DDQ

CH2Cl2-H2O

O

OH

OO

OR

OPh

F

OSitBuPh2

R = adamantyl

80%

74%

Page 108: Recent Advances in Organosilicon Chemistry

108

Chiral Silylating Agents in KineticResolutions

Oestreich has used a chiral silane to effect the kinetic resolution of racemic 2°alcohols.9 Silylation proceeds with retention of configuration at the silicon centre.The silane resolving agent can be recovered (retention of configuration) from thesilyl ether by treatment with DIBALH.

N

OHPh

5 mol% CuCl

10 mol% PAr3

5 mol% NaOtBu

toluene, 25 °C

Si

tBu

H

N

OPhSi

tBu

0.6 eq.

N

OHPh

1.0 eq.96% e.e.

DIBALH

N

OHPh

HSi

tBu

98%, 96% e.e.78%, 71% e.e.

56% conversion

d.r. = 86:14

84% e.e.

Page 109: Recent Advances in Organosilicon Chemistry

109

Catalytic Enantioselective Silylation ofTriols

Imidazole is commonly used as a nucleophilic catalyst (as well as an acid scavenger)in silylation reactions involving silyl chlorides. Hoveyda and Snapper havedeveloped a chiral imidazole catalyst for the enantioselective silylation of alcohols.10

They recently extended this strategy to the desymmetrisation of meso 1,2,3-triols:11,12

N

MeN N

tBu

N

OtBu

H

H

MeH

SiCl

Et

EtEt

OO

O

H HH

R

H

HO OH

OHN

MeN NH

tBu

HN

O tBu

20 mol%

TESO OH

OH

TESCl, DIPEA

THF, !78 °C, 48 h

85%, > 98% e.e.

Page 110: Recent Advances in Organosilicon Chemistry

110

Silyl Linkers for Solid-Supported SynthesisSilyl groups have been used as traceless linkers for solid-supported synthesis.14

Tan showed that a tert-butyldiarylsilyl linker exhibited increased stability to acidsthan previously used diisopropylsilyl-based linkers.14a

BrP

P = polystyrene resin

i) tBuLi, PhH, rt

ii) ClSi

H

Ph tBu

SiP

tBu

H

Ph

SiP

tBu

Cl

Ph

SiP

tBu

O

Ph

i) solid-supported

chemistry

ii) TASF, rt, < 1 hR' OH

R OH

N

NO

O

Cl

Cl

R

Page 111: Recent Advances in Organosilicon Chemistry

111

Temporary SiliconConnection

Page 112: Recent Advances in Organosilicon Chemistry

112

Silyl TethersSilyl groups have been used widely to tether two reacting species. Subsequent reactioncan then occur in an intramolecular fashion and therefore benefit from all theadvantages associated with intramolecular processes. Cleavage of the tether postreaction provides a product of an overall net intermolecular process.1

FG1

X

R

FG2

Y

R

R R

FG1

R

FG2

Rform silyl

tether

reaction

X'

R

Y'

Rremove

tether

Si

Si

Page 113: Recent Advances in Organosilicon Chemistry

113

Silyl Ether Connection in IntramolecularAllylation2

1. silyl ether links allylsilane to aldehyde

2. highly stereoselective intramolecularallylation

3. subsequent stereospecific (retention ofconfiguration) oxidative cleavage of silyl tetherprovides a stereodefined 1,2,4-triol

O

O

O

Si

SiMe3

Et Et

TMSOTf, 2,6-DTBMP

CH2Cl2, !78 °C

OSi

Et Et

OTMS

O

H2O2, KF, KHCO3,

THF-MeOH

OH OH

OHO

>95:5

21:1

Page 114: Recent Advances in Organosilicon Chemistry

114

Tandem Silylformylation-Crotylation-Oxidation Route to Polyketides4

ref 4a

iPr

OSi

HRh(acac)2(CO)2

CO, PhH, 60 °C

O

iPr

Si

H

O

O

iPr

Si O

intramolecular

silylformylation

intramolecular

crotylation

OH

iPr

O OH

H2O2, KF,

THF-MeOH

40 °C

C!Si oxidation and

diastereoselective

protonation

15 : 1 (major: all minor diastereoisomers)

62%

Page 115: Recent Advances in Organosilicon Chemistry

115

Diastereoselective Oxidative Couplingof Bis-Silyl Enol Ethers5

OSi

O

R R

O

O

d/l : meso

R = Me 29% 2.4 : 1

R = iPr 57% 10 : 1

CAN, NaHCO3

MeCN, !10 °C

isolated yield of

d/l diastereoisomer

The R substituents in the silyl tether were important in governing the yieldand diastereoselectivity of the reaction.

Unsymmetrical bis-silyl enol ethers can also be used.

Page 116: Recent Advances in Organosilicon Chemistry

116

Origins of Diastereoselectivity

O

OSi

R

R

O

OSi

R

R

d / l meso

O

O

Si

R

R

! "

increase

size of R

increase

size of !decrease

size of "destabilise T.S.

leading to meso

Page 117: Recent Advances in Organosilicon Chemistry

117

Silyl-Tethered Tandem Ring-ClosingMetathesis6

HO

OTBS

TBSO

O

EtO2CTBSO

O

O

O

OAcH

H

H

H

H

HO

Roush

(!)-cochleamycin A

ref 7

Page 118: Recent Advances in Organosilicon Chemistry

118

Formation of Metathesis Precursor

Note the use of silyl acetylides8 as an alternative to silyl chlorides or silyl triflates for silyletherification

S

S

OEt

EtO OH

R1

O

R1

SiSi

10 mol% NaH,

hexane

81%

PivO

HO

10 mol% NaH,

hexane

R2

O

R1

Si

O

R2

68%

Page 119: Recent Advances in Organosilicon Chemistry

119

Double RCM - ProtodesilylationSynthesis of (E,Z)-1,3-Diene

O

R1

Si

O

R2

Grubbs II

OSi

O

R2

R1

TBAF

HO

HO

R2

R1

H

(E)

(Z)

61% over two steps

Double RCM generates an intermediatebicyclic siloxane. Subsequent fluoride-induced protodesilylation provides thestereodefined (E,Z)-1,3-diene.

Page 120: Recent Advances in Organosilicon Chemistry

120

Biological Applications ofOrganosilanes

Page 121: Recent Advances in Organosilicon Chemistry

121

Bioactive OrganosilanesIn spite of the similarity of Silicon and Carbon, silicon-containing organic compoundsare relatively rare in biological chemistry research programmes. However, bioactiveorganosilanes are known and in some cases have been commercialised:

Si

Ph OH

N

muscarinic receptor agonist

NN

N

Si

F

Fflusilazole

antifungal agent

($$$)

Si

EtO

F

OPh

silafluofen

insecticide

($$$)

Si

N

N

N

N

N

N

N NHO O

Si N

Pc4 (photodynamic agent for

application in cancer treatment)

Page 122: Recent Advances in Organosilicon Chemistry

122

Silanediols as Protease InhibitorsProteases are enzymes that catalyse the hydrolysis of a peptide bond. Aspartic acidproteases and metalloproteases both catalyse the addition of a water molecule to theamide carbonyl group. Molecules that mimic the hydrated form of the hydrolysingamide bond have therefore been used as inhibitors of these two classes of enzymes.

Silanediols have recently come to the fore as potentially useful isosteres of thetetrahedral intermediate in this type of hydrolysis reaction. Providing theirpropensity to oligomerise to siloxanes can be controlled (e.g. by steric blocking),they are potentially very attractive stable hydrate replacements since they are neutralat physiological pH.1,2

NH

O

R1 O

R2

H2O

proteaseNH

R1 O

R2HO OH

H3N

O

R1 O

R2

O

peptide chain

Si

R1 O

R2HO OH

Page 123: Recent Advances in Organosilicon Chemistry

123

Silanediol Inhibitors of Angiotensin-Converting Enzyme (ACE)

Sieburth prepared the silanediol analogue of a known ACE inhibitor.1b

HNPh

O Bn

O

N

O CO2H

HNPh

O

Si

Bn

N

O CO2H

HO OH

known ACE inhibitor

IC50 1.0 nM IC50 3.8 nM

Significantly, the inhibitory activity of the silanediol analogue compared favourablywith the keto lead.

The synthesis of the silanediol is noteworthy.

Page 124: Recent Advances in Organosilicon Chemistry

124

Silanediol Synthesis

HNPh

O

Si

Bn

N

O CO2H

HO OH

HNPh

O

Si

Bn

N

O CO2tBu

Ph PhTfOH H

NPh

O

Si

Bn

N

O CO2tBu

Ph

H

! 2 PhH

HNSi

O

O

Ph

Bn

N

CO2HNH4OH

HF(aq)

HNPh

O

Si

Bn

N

O CO2H

F F

NaOH

Page 125: Recent Advances in Organosilicon Chemistry

125

Some Conclusions

Page 126: Recent Advances in Organosilicon Chemistry

126

The chemistry of organosilicon compounds is rich and diverse and findsapplication in many aspects of modern organic synthesis. Most of it, however,can still be rationalised by considering the basics:

electronegativity: Si is more electropositive than C and H

size: Si is a relatively large and polarisable atom compared with C, H,O etc

electron config’n: 1s2, 2s2, 2p6, 3s2, 3p2

pos’n in Periodic Table: Period 3, therefore capable of expanding its valencestate

stereoelectronics: C−Si bond is good at stabilising β-positive charge

bond strengths: Si−O and Si−F bonds are significantly stronger than Si−C andSi−H bonds.

Page 127: Recent Advances in Organosilicon Chemistry

127

References

Page 128: Recent Advances in Organosilicon Chemistry

128

ReferencesGeneral References and introductory section

For a useful introduction to organosilicon chemistry: Organic Synthesis: The Roles of Boron and Silicon (OxfordChemistry Primers series), S. E. Thomas, 1991.

1: J. B. Lambert et al., Acc. Chem. Res. 1999, 32, 183-190.

Allylation and related nucleophiles

1. (a) H. Mayr et al., Angew. Chem. Int. Ed. Engl., 1994, 33, 938-957; (b) H. Mayr et al., J. Chem. Soc., Chem.Commun. 1989, 91-92.

2. General reviews: (a) S. E. Denmark et al., Chem. Rev., 2003, 103, 2763-2794; (b) Y. Yamamoto et al.,Chem. Rev., 1993, 93, 2207-2293; (c) W. R. Roush In Comprehensive Organic Synthesis; Trost, B. M.;Fleming, I. Eds.; Pergamon: Oxford, 1991; Volume 2, Chapter 1.1, pp 1-53. (d) I. Fleming InComprehensive Organic Synthesis; Trost, B. M.; Fleming, I. Eds.; Pergamon: Oxford, 1991; Volume 2,Chapter 2.2, pp 563-593; (e) J. W. J. Kennedy et al., Angew. Chem. Int. Ed., 2003, 42, 4732-4739; (f) I.Fleming et al., Chem. Rev., 1997, 97, 2063-2192; (g) I. Fleming et al., Org. React., 1989, 37, 57-575; (h) L.Chabaud et al., Eur. J. Org. Chem., 2004, 3173-3199.

3. Note that additives, such as fluoride, which activate the allylsilane, have occasionally been used. In thesecases, the nucleophile may be an allyl anion, see: (a) A. Hosomi et al., Tetrahedron Lett., 1978, 3043-3046;(b) T. K. Sarkar et al., Tetrahedron Lett., 1978, 3513-3516; (c) for the use of Schwesinger bases to activatesilyl nucleophiles: M. Ueno et al., Eur. J. Org. Chem., 2005, 1965-1968.

4. (a) M. J. C. Buckle, et al., Org. Biomol. Chem., 2004, 2, 749-769; (b) S. E. Denmark et al., J. Org. Chem.,1994, 59, 5130-5132; (c) S. E. Denmark et al., Helv. Chim. Acta, 1983, 66, 1655-1660.

5. For computational investigations on the Lewis acid-mediated reaction of allyltrialkylsilanes with aldehydes:(a) L. F. Tietze et al., J. Am. Chem. Soc., 2006, 128, 11483-11495; (b) P. S. Mayer et al., J. Am. Chem.Soc., 2002, 124, 12928-12929; (c) A. Bottoni et al., J. Am. Chem. Soc., 1997, 119, 12131-12135.

Page 129: Recent Advances in Organosilicon Chemistry

129

ReferencesAllylation and related nucleophiles (contd)

6. D. R. Gauthier Jr. et al., Angew. Chem. Int. Ed. Engl., 1996, 35, 2363-2365. Note the enantioselectiveallylation of allylstannanes has been used much more widely, see for example: G. E. Keck et al.,Tetrahedron Lett., 1993, 34, 7827-7828 and references therein.

7. H. Kiyohara et al., Angew. Chem. Int. Ed., 2006, 45, 1615-1617.

8. For the classification of allyl metals: (a) R. W. Hoffmann, Angew. Chem. Int. Ed. Engl., 1982, 21, 555-566;(b) ref 4c.

9. (a) K. Ishihara et al., J. Am. Chem. Soc., 1993, 115, 11490-11495; (b) S. Aoki et al., Tetrahedron, 1993, 49,1783-1792.

10. G. E. Keck et al., J. Org. Chem., 1994, 59, 7889-7896.

11. For a review on stereoselective allylation: Y. Yamamoto, Acc. Chem. Res., 1987, 20, 243-249.

12. S. Kobayashi et al., J. Org. Chem., 1994, 59, 6620-6628.

13. Lewis base activation of silyl nucleophiles has been recently reviewed, see: J. Gawronski et al., Chem. Rev.,2008, 108, 5227-5252.

14. S. E. Denmark et al., J. Org. Chem., 2006, 71, 1513-1522.

15. S. E. Denmark et al., J. Org. Chem., 2006, 71, 1523-1536.

16. For reviews on chiral Lewis base-catalysed allylations: S. E. Denmark et al., Chem. Commun., 2003, 167-170.

Page 130: Recent Advances in Organosilicon Chemistry

130

ReferencesAllylation and related nucleophiles (contd)

17. (a) J. F. Traverse et al., Org. Lett., 2005, 7, 3151-3154; (b) V. Simonini et al., Synlett, 2008, 1061-1065..

18. (a) A. V. Malkov et al., Angew. Chem. Int. Ed., 2003, 42, 3674-3677; (b) R. Hrdina et al., Chem. Commun.,2009, 2314-2316; (c) for a review on chiral N-oxides in asymmetric synthesis: A. V. Malkov et al., Eur. J.Org. Chem., 2007, 29-36.

19. (a) P. Wang et al., Org. Biomol. Chem., 2009, 7, 3741-3747; (b) A. Massa et al., Tetrahedron: Asymmetry,2009, 20, 202-204.

20. (a) V. Simonini et al., Adv. Synth. Catal., 2008, 350, 561-564; (b) S. Kotani et al., Tetrahedron, 2007, 63,3122-3132.

21. K. Iseki et al., Tetrahedron, 1999, 55, 977-988.

22. K. Matsumoto et al., J. Org. Chem., 1994, 59, 7152-7155.

23. (a) K. Kubota et al., Angew. Chem. Int. Ed., 2003, 42, 946-948; (b) X. Zhang et al., Angew. Chem. Int. Ed.,2005, 44, 938-941.

24. Related agents for enantioselective crotylation have also been reported: (a) B. M. Hackman et al., Org.Lett., 2004, 6, 4375-4377; (b) N. Z. Burns et al., Angew. Chem. Int. Ed., 2006, 45, 3811-3813.

25. J. D. Huber et al., Angew. Chem. Int. Ed., 2008, 47, 3037-3039.

26. J. D. Huber et al., J. Am. Chem. Soc., 2007, 129, 14552-14553.

27. P. J. Jervis et al., Org. Lett., 2006, 8, 4649-4652.

Page 131: Recent Advances in Organosilicon Chemistry

131

ReferencesAllylation and related nucleophiles (contd)

28. (a) J. Posp ísil et al. Angew. Chem., Int. Ed., 2006, 45, 3357-3360; (b) Y. Lian et al., J. Org. Chem., 2006,71, 7171-7174; (c) F. Peng et al., J. Am. Chem. Soc., 2007, 129, 3070-3071; (d) M. Pham et al., J. Org.Chem., 2008, 73, 741-744; (e) P. R. Ullapu et al., Angew. Chem. Int. Ed., 2009, 48, 2196-2200; (f) J. T.Lowe et al., Org. Lett., 2005, 7, 3231-3234; (g) Y. Zhang et al., Org. Lett., 2009, 11, 3366-3369.

29. S. A. Rodgen et al., Angew. Chem. Int. Ed., 2006, 45, 4929-4932.

30. B. D. Stevens et al., J. Org. Chem., 2005, 70, 4375-4379.

31. S. Park et al., J. Am. Chem. Soc., 2006, 128, 10664-10665.

32. For a review of this area: M. Tredwell et al., Org. Biomol. Chem., 2006, 4, 26-32; for a nice recentapplication: S. C. Wilkinson et al., Angew. Chem. Int. Ed., 2009, 48, 7083-7086.

33. S. Purser et al., Chem. Eur. J., 2006, 12, 9176-9185.

34. M. Tredwell et al., Org. Lett., 2005, 7, 1267-1270.

35. T. Ishimaru et al., Angew. Chem. Int. Ed. Engl., 2008, 47, 4157-4161 and references therein.

36. (a) L. Carroll et al., Org. Biomol. Chem., 2008, 6, 1731-1733; (b) L. Carroll et al., Chem. Commun., 2006,4113-4115.

37. M. C. Pacheco et al., Org. Lett., 2005, 7, 1267-1270.

38. B. Greedy et al., Chem. Commun., 2001, 233-234.

Page 132: Recent Advances in Organosilicon Chemistry

132

ReferencesAllylation and related nucleophiles (contd)

39. see for example: (a) R. H. Bates et al., Org. Lett., 2008, 10, 4343-4346; (b) G. C. Micalizio et al., Org. Lett.,2000, 2, 461-464.

40. J. M. Tinsley et al., J. Am. Chem. Soc., 2005, 127, 10818-10819.

41. G. E. Keck et al., J. Am. Chem. Soc., 1995, 117, 6210-6223.

42. M. Dressel et al., Chem. Eur. J., 2008, 14, 3072-3077.

43. Isocyanates have also been used to trap β-carbocations resulting in heterocyclic ring products: A. Romeroet al., Org. Lett., 2006, 8, 2127-2130.

44. For reviews on the oxidation of C−Si bonds: (a) I. Fleming, Chemtracts: Org. Chem., 1996, 9, 1-64; (b) G.R. Jones et al., Tetrahedron, 1995, 52, 7599-7662.

45. (a) S. Bouzbouz et al., Adv. Synth. Catal., 2002, 344, 627-630; (b) P. Langer et al., Synlett, 2002, 110-112;(c) F. C. Engelhardt et al., Org. Lett., 2001, 3, 2209-2212; (d) ref 25; (e) H. Teare et al., Arkivoc, 2007, partx, 232-244; (f) A. D. McElhinney et al., Heterocycles, 2009, 49, 417-422.

46. A. K. Chatterjee et al., J. Am. Chem. Soc., 2003, 125, 11360-11370.

47. For reviews on the use of the temporary Silicon connection: (a) L. R. Cox, S. V. Ley, In Templated OrganicSynthesis; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 2000; Chapter 10, pp 275-375; (b) M.Bols et al., Chem. Rev., 1995, 95, 1253-1277; (c) L. Fensterbank et al., Synthesis, 1997, 813-854; (d) D. R.Gauthier Jr. et al., Tetrahedron, 1998, 54, 2289-2338.

Page 133: Recent Advances in Organosilicon Chemistry

133

ReferencesAllylation and related nucleophiles (contd)

48. For reviews on the Peterson olefination: (a) L. F. van Staden et al., Chem. Soc. Rev., 2002, 31, 195-200;(b) D. J. Ager, Org. React. 1990, 38, 1-223; (c) D. J. Ager, J. Chem. Soc., Perkin Trans. 1, 1986, 183-194;(d) D. J. Ager, Synthesis, 1984, 384-398; for a recent application of this reaction in the synthesis ofvinylsilanes: J. McNulty et al., Chem. Commun., 2008, 1244-1245.

49. (a) M. Suginome et al., Chem. Eur. J., 2005, 11, 2954-2965; (b) W. R. Judd et al., J. Am. Chem. Soc.,2006, 128, 13736-13741.

50. For other interesting synthetic approaches to allylsilanes: (a) L. E. Bourque et al., J. Am. Chem. Soc., 2007,129, 12602-12603; (b) R. Shintani et al., Org. Lett., 2007, 9, 4643-4645; (c) N. J. Hughes et al., Org.Biomol. Chem., 2007, 5, 2841-2848; (d) R. Lauchli et al., Org. Lett., 2005, 7, 3913-3916.

51. For a review on vinyl-, propargyl- and allenylsilicon reagents in asymmetric synthesis: M. J. Curtis-Long etal., Chem. Eur. J., 2009, 15, 5402-5416.

52. (a) R. A. Brawn et al., Org. Lett., 2007, 9, 2689-2692; (b) see also: W. Felzmann et al., J. Org. Chem.,2007, 72, 2182-2186.

53. A. Arefelov et al., J. Am. Chem. Soc., 2005, 127, 5596-5603. This paper also provides a powerfulillustration of Panek’s chiral allylsilane reagents in stereoselective synthesis. Note judicious choice ofsolvent can be important for controlling the stereoselectivity of this type of iododesilylation: E. A. Ilardi et al.,Org. Lett., 2008, 10, 1727-1730.

54. D. Tomita et al., J. Am. Chem. Soc., 2005, 127, 4138-4139; For another example of transmetallation oforganosilanes to organocopper reagents: J. R. Herron et al., J. Am. Chem. Soc., 2008, 130, 16486-16487.

55. D. A. Evans et al., J. Am. Chem. Soc., 2006, 128, 11034-11035.

Page 134: Recent Advances in Organosilicon Chemistry

134

ReferencesOrganosilanes in metal-catalysed cross-coupling chemistry

1 For some recent reviews: (a) S. E. Denmark et al., Chem. Eur. J., 2006, 12, 4954-4963; (b) S. E. Denmarket al., Acc. Chem. Res., 2008, 41, 1486-1499; (c) S. E. Denmark, J. Org. Chem., 2009, 74, 2915-2927; (d)T. Hiyama et al., Top. Curr. Chem., 2002, 219, 61-85.; (e) S. E. Denmark et al., Acc. Chem. Res., 2002, 35,835-846.

2 S. E. Denmark et al., J. Org. Chem., 2006, 71, 8500-8509.

3 S. E. Denmark et al., J. Am. Chem. Soc., 2004, 126, 4865-4874.

4 S. E. Denmark et al., J. Am. Chem. Soc., 2004, 126, 4876-4882.

5 S. E. Denmark et al., J. Am. Chem. Soc., 2005, 127, 8004-8005.

6 J. Montenegro et al., Org. Lett., 2009, 11, 141-144.

7 (a) S. E. Denmark et al., J. Org. Chem., 2008, 73, 1440-1455; (b) S. E. Denmark et al., J. Am. Chem. Soc.,2009, 131, 3104-3118.

8 (a) T. Nokami et al., Org. Lett,. 2006, 8, 729-731; (b) L. Li et al., Org. Lett., 2006, 8, 3733-3736; (c) K. Hosoiet al., Chem. Lett., 2002, 138-139; (d) K. Itami et al., J. Am. Chem. Soc., 2001, 123, 5600-5601; (e) B. M.Trost et al., Org. Lett., 2003, 5, 1895-1898; (f) S. E. Denmark et al., J. Am. Chem. Soc., 1999, 121, 5821-5822; (g) Y. Nakao et al., J. Am. Chem. Soc., 2005, 127, 6952-6953.

9 N. A. Strotman et al., Angew. Chem. Int. Ed., 2007, 46, 3556-3558.

10 M. Vitale et al., J. Org. Chem., 2008, 73, 5795-5805.

Page 135: Recent Advances in Organosilicon Chemistry

135

ReferencesOrganosilanes in metal-catalysed cross-coupling chemistry (contd)

11. C. Thiot et al., Eur. J. Org. Chem., 2009, 3219-3227.

12. For other examples of Hiyama-type cross-coupling reactions in tandem processes: (a) S. E. Denmark et al.,J. Am. Chem. Soc., 2007, 129, 3737-3744; (b) C. Thiot et al., Chem. Eur. J., 2007, 13, 8971-8978; (c) S. E.Denmark et al., J. Org. Chem., 2005, 70, 2839-2842.

13. H. Zhou et al., Angew. Chem. Int. Ed., 2009, 48, 5355-5357.

14. For other relevant papers:

(a) Mechanistic study on the Pd-catalysed vinylation of aryl halides in H2O: A. Gordillo et al., J. Am. Chem.Soc., 2009, 131, 4584-4585;

(b) Hiyama couplings using phosphine-free hydrazone ligands: T. Mino et al., J. Org. Chem., 2006, 71,9499-9502;

(c) Hiyama coupling in oligoarene synthesis: Y. Nakao et al., J. Am. Chem. Soc., 2007, 129, 11694-11695.

Page 136: Recent Advances in Organosilicon Chemistry

136

ReferencesBrook Chemistry

1 (a) A. G. Brook, J. Am. Chem. Soc., 1058, 80, 1886-1889; (b) A. G. Brook et al., J. Am. Chem. Soc., 1959,81, 981-983; (c) A. G. Brook et al., J. Am. Chem. Soc., 1961, 83, 827-831.

2 A. Tsubouchi et al., J. Am. Chem. Soc., 2006, 128, 14268-14269.

3 For other examples of 1,2-Brook rearrangements: (a) Y. Nakai et al., J. Org. Chem., 2007, 72, 1379-1387;(b) R. B. Lettan, II et al., Angew. Chem. Int. Ed., 2008, 47, 2294-2297; (c) R. Baati et al., Org. Lett., 2006, 8,2949-2951.

4 N. O. Devarie-Baez et al., Org. Lett., 2007, 9, 4655-4658.

5 For other uses of Brook rearrangements: (a) R. Unger et al., Eur. J. Org. Chem., 2009, 1749-1756; (b) Y,Matsuya et al., Chem. Eur. J., 2005, 11, 5408-5418; (c) M. Sasaki et al., Chem. Eur. J., 2009, 15, 3363-3366.

6 (a) S. M. E. Simpkins et al., Org. Lett., 2003, 5, 3971-3974; (b) S. M. E. Simpkins et al., Chem. Commun.,2007, 4035-4037; (c) M. D. Weller et al., C. R. Chimie, 2009, 12, 366-377.

7 For other examples of retro Brook rearrangements: (a) Y. Mori et al., Angew. Chem. Int. Ed., 2008, 47,1091-1093; (b) A. Nakazaki et al., Angew. Chem. Int. Ed., 2006, 45, 2235-2238; (c) S. Yamago et al., Org.Lett., 2005, 7, 909-911.

8 (a) A. B. Smith III et al., Chem. Commun., 2008, 5883-5895; (b) A. B. Smith III et al., J. Org. Chem., 2009,74, 5987-6001; (c) N. O. Devarie-Baez et al., Org. Lett., 2009, 11, 1861-1864; (d) A. B. Smith III et al., Org.Lett., 2007, 9, 3307-3309.

Page 137: Recent Advances in Organosilicon Chemistry

137

ReferencesBrook Chemistry (contd)

9. (a) A. Degl’Innocenti et al., Chem. Commun., 2006, 4881-4893; (b) M. M. Biddle et al., J. Org. Chem.,2006, 71, 4031-4039; (c) V. Cere et al., Tetrahedron Lett., 2006, 47, 7525-7528.

10. For a review on the use of this reagent: R. P. Singh et al., Tetrahedron, 2000, 56, 7613-7632.

11. V. V. Levin et al., Eur. J. Org. Chem., 2008, 5226-5230.

Page 138: Recent Advances in Organosilicon Chemistry

138

ReferencesLow coordination silicon compounds

1 For a recent overview: H. Ottosson et al., Chem. Eur. J., 2006, 12, 1576-1585.

2 (a) A. K. Franz et al., Acc. Chem. Res., 2000, 33, 813-820; (b) for mechanistic studies: T. G. Driver et al., J.Am. Chem. Soc., 2003, 125, 10659-10663; (c) T. G. Driver et al., J. Am. Chem. Soc., 2004, 126, 9993-10002.

3 (a) J. Cirakovic et al., 2002, 124, 9370-9371; (b) see also: A. K. Franz et al., Angew. Chem. Int. Ed., 2000,39, 4295-4299.

4 See also: (a) T. G. Driver et al., J. Am. Chem. Soc., 2002, 124, 6524-6525; (b) P. A. Cleary et al., Org. Lett.,2005, 7, 5531-5533; (c) B. E. Howard et al., Org. Lett., 2007, 9, 4651-4653; (d) K. M. Buchner et al., Org.Lett., 2009, 11, 2173-2175.

5 T. B. Clark et al., Org. Lett., 2006, 8, 4109-4112.

6 For other examples of silylene transfer to alkynes: (a) W. S. Palmer et al., Organometallics, 2001, 20, 3691-3697; (b) T. B. Clark et al., J. Am. Chem. Soc., 2004, 126, 9520-9521.

7 Z. Nevárez et al., Org. Lett., 2007, 9, 3773-3776.

8 (a) M. B. Berry et al., Tetrahedron Lett., 2003, 44, 9135-9138; (b) M. B. Berry et al., Org. Biomol. Chem.,2004, 2, 2381-2392.

9 (a) A. S. Batsanov et al., Tetrahedron Lett., 1996, 37, 2491-2494; (b) M. J. Sanganee et al., Org. Biomol.Chem., 2004, 2, 2393-2402.

10 (a) N. J. Hughes et al., Org. Biomol. Chem., 2007, 5, 2841-2848; (b) J. D. Sellars et al., Tetrahedron, 2009,65, 5588-5595.

11 J. D. Sellars et al., Org. Biomol. Chem., 2006, 4, 3223-3224.

Page 139: Recent Advances in Organosilicon Chemistry

139

ReferencesSilicon Lewis acids

1 B. Mathieu et al., Tetrahedron Lett., 1997, 38, 5497-5500.

2 A. Ishii et al., Synlett, 1997, 1145-1146.

3 R. B. Othman et al., Org. Lett., 2005, 7, 5335-5337.

4 K. Hara et al., Org. Lett., 2005, 7, 5621-5623.

5 N. Takenaka et al., Angew. Chem. Int. Ed., 2008, 47, 9708-9710.

6 S. Shirakawa et al., J. Am. Chem. Soc., 2005, 127, 9974-9975.

7 G. T. Notte et al., J. Am. Chem. Soc., 2008, 130, 6676-6677.

8 For other applications of this class of Lewis acids: (a) K. Tran et al., Org. Lett., 2008, 10, 3165-3167; (b) F.R. Bou-Hamdan et al., Angew. Chem. Int. Ed., 2009, 48, 2403-2406.

Page 140: Recent Advances in Organosilicon Chemistry

140

ReferencesSilicon Protecting Groups

1 X. Huang et al., Chem. Commun., 2005, 1297-1299.

2 (a) H. Ito et al., Org. Lett., 2005, 7, 1869-1871; (b) H. Ito et al., Org. Lett., 2005, 7, 3001-3004.

3 For other silyletherification approaches that do not employ silyl halides or triflates: (a) disilanes: E.Shirakawa et al., Chem. Commun., 2006, 3927-3929; (b) vinylsilanes: J.-W. Park et al., Org. Lett., 2007, 9,4073-4076; (c) aminosilanes: J. Beignet et al., J. Org. Chem., 2008, 73, 5462-5475; (d) alkynylsilanes: J. B.Grimm et al., J. Org. Chem., 2004, 69, 8967-8970.

4 V. T. Trepohl et al., Chem. Commun., 2007, 3300-3302.

5 I. Lyothier et al., Angew. Chem. Int. Ed., 2006, 45, 6204-6207.

6 H. Gotoh et al., Chem. Commun., 2009, 3083-3085 and references therein.

7 D. Crich et al., J. Org. Chem., 2009, 74, 2486-2493.

8 For the development of very bulky silyl protecting groups for stabilising oligoynes: W. A. Chalifoux et al., Eur.J. Org. Chem., 2007, 1001-1006.

9 (a) S. Rendler et al., Angew. Chem. Int. Ed., 2005, 44, 7620-7624; (b) B. Karatas et al., Org. Biomol. Chem.,2008, 6, 1435-1440; (c) S. Rendler et al., Chem. Eur. J., 2008, 14, 11512-11528.

10 Y. Zhao et al., Nature, 2006, 443, 67-70.

11 Z. You et al., Angew. Chem. Int. Ed., 2009, 48, 547-550.

Page 141: Recent Advances in Organosilicon Chemistry

141

ReferencesSilicon Protecting Groups (contd)

12 For an overview of stereoselective silylation of alcohols in kinetic resolutions and desymmetrisations: S.Rendler et al., Angew. Chem. Int. Ed., 2008, 47, 248-250 and references therein.

13 For the use of chiral silyl ethers in diastereoselective synthesis: M. Campagna et al., Org. Lett., 2007, 9,3793-3796.

14 (a) C. M. DiBlasi et al., Org. Lett., 2005, 7, 1777-1780; (b) A. Ohkubo et al., J. Org. Chem., 2009, 74, 2817-2823; (c) T. Lavergne et al., Eur. J. Org. Chem., 2009, 2190-2194.

15 For an application of fluorous silyl ether protecting groups in natural product synthesis: Y. Fukui et al., Org.Lett., 2006, 8, 301-304.

Page 142: Recent Advances in Organosilicon Chemistry

142

ReferencesUse of the temporary Silicon connection

1 For reviews on the use of the temporary Silicon connection: (a) L. R. Cox, S. V. Ley, In Templated OrganicSynthesis; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 2000; Chapter 10, pp 275-375; (b) M.Bols et al., Chem. Rev., 1995, 95, 1253-1277; (c) L. Fensterbank et al., Synthesis, 1997, 813-854; (d) D. R.Gauthier Jr. et al., Tetrahedron, 1998, 54, 2289-2338.

2 J. Beignet et al., J. Org. Chem., 2008, 73, 5462-5475.

3 For another recent example where a temporary Silicon connection was used with allylsilanes: J. Robertsonet al., Org. Biomol. Chem., 2008, 6, 2628-2635.

4 (a) J. T. Spletstoser et al., Org. Lett., 2008, 10, 5593-5596; see also: (b) S. J. O’Malley et al., Angew.Chem. Int. Ed., 2001, 40, 2915-2917; (c) M. J. Zacuto et al., J. Am. Chem. Soc., 2002, 124, 7890-7891; (d)M. J. Zacuto et al., Tetrahedron, 2003, 59, 8889-8900; (e) P. K. Park et al., J. Am. Chem. Soc., 2006, 128,2796-2797.

5 C. T. Avetta, Jr., et al., Org. Lett., 2008, 10, 5621-5624.

6 S. Mukherjee et al., Org. Lett., 2009, 11, 2916-2919.

7 T. A. Dineen et al., Org. Lett., 2004, 6, 2043-2046.

8 J. B. Grimm et al., J. Org. Chem., 2004, 69, 8967-8970.

9 For other recent examples where temporary Silicon connections have been usefully employed in synthesis:(a) C. Rodríguez-Escrich et al., Org. Lett., 2008, 10, 5191-5194; (b) Q. Xie et al., J. Org. Chem., 2008, 10,5345-5348; (c) C. Cordier et al., Org. Biomol. Chem., 2008, 6, 1734-1737; (d) F. Li et al., J. Org. Chem.,2006, 71, 5221-5227; (e) T. Gaich et al., Org. Lett., 2005, 7, 1311-1313.

Page 143: Recent Advances in Organosilicon Chemistry

143

ReferencesBiological applications

1 (a) S. McN. Sieburth et al., Eur. J. Org. Chem., 2006, 311-322; (b) J. Kim et al., J. Org. Chem., 2005, 70,5781-5789.

2 L. Nielsen et al., J. Am. Chem. Soc., 2008, 130, 13145-13151.

Silyl Enol Ethers

Silyl enol ethers, ketene acetals and related species are important nucleophiles. For some recentexamples of their use:

1 Lewis base-mediated Mukaiyama aldol reactions:

1 S. E. Denmark et al., J. Am. Chem. Soc., 2007, 129, 14684-14865.2 S. E. Denmark et al., J. Am. Chem. Soc., 2006, 128, 1038-1039.3 S. E. Denmark et al., J. Am. Chem. Soc., 2005, 127, 3774-3789.4 S. E. Denmark et al., J. Org. Soc., 2005, 70, 5235-52485 S. E. Denmark et al., J. Org. Soc., 2005, 70, 10823-10840.6 S. E. Denmark et al., J. Org. Soc., 2005, 70, 10393-10399.7 M. Hatano et al., Org. Lett., 2007, 9, 4527-4530.

2 Enantioselective synthesis of quaternary stereogenic centres:

1 K. Mikami et al., J. Am. Chem. Soc., 2007, 129, 12950-12951.2 A. H. Mermerian et al., J. Am. Chem. Soc., 2005, 127, 5604-5607.3 S. E. Denmark et al., J. Am. Chem. Soc., 2007, 129, 14684-14865.

Page 144: Recent Advances in Organosilicon Chemistry

144

ReferencesSilyl Enol Ethers contd

3. Enantioselective protonation of silyl enol ethers:

1 T. Poisson et al., Angew. Chem. Int. Ed., 2007, 46, 7090-7093.2 A. Yanagisawa et al., Angew. Chem. Int. Ed., 2005, 44, 1546-1548.

4. Enantioselective synthesis of quaternary stereogenic centres:

1 K. Mikami et al., J. Am. Chem. Soc., 2007, 129, 12950-12951.2 A. H. Mermerian et al., J. Am. Chem. Soc., 2005, 127, 5604-5607.3 S. E. Denmark et al., J. Am. Chem. Soc., 2007, 129, 14684-14865.

5. Silyl enol ethers as oxyallyl cation precursors: W. K. Ching et al., J. Am. Chem. Soc., 2009, 131, 4556-4557.

6. Silyl enol ethers as the ene component of enyne cyclisations: B. K. Corkey et al., J. Am. Chem. Soc., 2007,129, 2764-2765.

7. Alkylation of silyl enol ethers: E. Bélanger et al., J. Am. Chem. Soc., 2007, 129, 1034-1035.

8. Silyl enol ethers and related species in conjugate addition reactions:

1 T. E. Reynolds et al., Org. Lett., 2008, 10, 2449-2452.2 N. Takenaka et al., J. Am. Chem. Soc., 2007, 129, 742-743.

9. Applications of (tristrimethylsilyl)silyl enol ethers:

1 M. B. Boxer et al., J. Am. Chem. Soc., 2007, 129, 2762-2763.2 M. B. Boxer et al., Org. Lett., 2008, 10, 453-455.

Page 145: Recent Advances in Organosilicon Chemistry

145

ReferencesSilyl Enol Ethers contd

10. Silyl enol ethers in Claisen Rearrangements: D. Craig et al., Chem. Commun., 2007, 1077-1079.

Page 146: Recent Advances in Organosilicon Chemistry

146

ReferencesSilanes as reducing agents

Silanes are important reducing agents. For some recent applications:

1 Hydrosilylation of Aldehydes and Ketones

1 Silver-catalysed hydrosilylation of aldehydes: B. M. Wile et al., Chem. Commun., 2006, 4104-4106.

2 Enantioselective hydrosilylation of ketones: (a) L. Zhou et al., Chem. Commun., 2007, 2977-2979; (b) N. S. Shaikh et al., Angew. Chem. Int. Ed., 2008, 47, 2497-2501.

3 Hydrosilylation of ketones: (a) S. Díes-González et al., J. Org. Chem., 2005, 70, 4784-4796;(b) Z. A. Buchan et al., Angew. Chem. Int. Ed., 2009, 48, 4840-4844 (interesting applicationin intramolecular aglycone delivery).

4 New catalysts and mechanistic studies: (a) N. Schneider et al., Angew. Chem. Int. Ed., 2009,48, 1609-1613; (b) S. Rendler et al., Angew. Chem. Int. Ed., 2008, 47, 5997-6000; (c) V.Comte et al., Chem. Commun., 2007, 713-715; (d) V. César et al., Chem. Eur. J., 2005, 11,2862-2873.

2 Amide reduction:

1 Practical synthesis of 2° and 3° amines: S. Hanada et al., J. Org. Chem., 2007, 72, 7551-7559.

2 Chemoselective amide reduction in the presence of ketones and esters: H. Sasakuma et al.,Chem. Commun., 2007, 4916-4918.

3 Dehydration of amides to nitriles:

1 S. Zhou et al., Chem. Commun., 2009, 4883-4885.2 S. Zhou et al., Org. Lett., 2009, 11, 2461-2464.

Page 147: Recent Advances in Organosilicon Chemistry

147

ReferencesSilanes as reducing agents (contd)

4. Reductive amination: O.-Y. Lee et al., J. Org. Chem., 2008, 73, 8829-8837.

5. Conjugate reduction of enones: (a) H. Otsuka et al., Chem. Commun., 2007, 1819-1821; (b) S.Chandrasekhar et al., Org. Biomol. Chem., 2006, 4, 1650-1652; (c) S. Rendler et al., Angew. Chem. Int.Ed., 2007, 46, 498-504.

6. Reduction of alkyl halides: J. Yang et al., J. Am. Chem. Soc., 2007, 129, 12656-12657.

7. Cleavage of alkyl ethers: J. Yang et al., J. Am. Chem. Soc., 2008, 130, 17509-17518.

8. Reduction of propargylic alcohols: Y. Nishibayashi et al., Angew. Chem. Int. Ed., 2006, 45, 4835-4839.

9. Hydrosilylation of alkenes and alkynes:

1. Alkenes: (a) V. Gandon et al., J. Am. Chem. Soc., 2009, 131, 3007-3015; (b) E. Calimano etal., J. Am. Chem. Soc., 2008, 130, 9226-9227; (c) F. Buch et al., Angew. Chem. Int. Ed.,2006, 45, 2741-2745.

2. Alkynes: (a) G. Berthon-Gelloz et al., J. Org. Chem., 2008, 73, 4190-4197; (b) T. Matsuda etal., Chem. Commun., 2007, 2627-2629; (c) B. M. Trost et al., J. Am. Chem. Soc., 2005, 127,17644-17655; (d) C. Menozzi et al., J. Org. Chem., 2005, 70, 10717-10719; (e) C. S. Aricó etal., Org. Biomol. Chem., 2004, 2, 2558-2562; (f) B.-M. Fan et al., Angew. Chem. Int. Ed.,2007, 46, 1275-1277.

Page 148: Recent Advances in Organosilicon Chemistry

148

ReferencesMiscellaneous

1. For recent applications of (Me3Si)3SiH in radical chemistry:

1 L. A. Gandon et al., J. Org. Chem., 2006, 71, 5198-5207.2 A. Postigo et al., Org. Lett., 2007, 9, 5159-5162.3 C. Chatgilialoglu, Chem. Eur. J., 2008, 14, 2310-2320.

2. Silylmetallation:

1 For an overview of the silylmetallation of alkenes: S. Nakamura et al., Chem. Eur. J., 2008,14, 1068-1078.

2 Silylboranes in the synthesis of siloles: T. Ohmura et al., J. Am. Chem. Soc., 2008, 130,1526-1527.

3 Silylboration of alkynes: T. Ohmura et al., Chem. Commun., 2008, 1416-1418.4 Silylzincation of alkynes: G. Auer et al., Chem. Commun., 2006, 311-313.

3. Organo[2-hydroxymethyl)phenyl]dimethylsilanes for Rh-cat. conjugate addition reactions: Y. Nakao et al., J.Am. Chem. Soc., 2007, 129, 9137-9143.

4. Rh-cat enantioselective 1,4-addition of silylboronic esters: C. Walter et al., Angew. Chem. Int. Ed., 2006,45, 5675-5677.

5. Rh-cat. arylation of tertiary silanes: Y. Yamanoi et al., J. Org. Chem., 2008, 73, 6671-6678.

6. Rh-cat. coupling of 2-silylphenylboronic acids with alkynes for benzosilole synthesis: M. Tobisu et al., J.Am. Chem. Soc., 2009, 131, 7506-7507.

7. Si-based benzylic 1,4-rearrangement / cyclisation reaction: B. M. Trost et al., Org. Lett., 2009, 11, 511-513.

Page 149: Recent Advances in Organosilicon Chemistry

149

ReferencesMiscellaneous (contd)

8. Pd-cat. intramolecular coupling of 2-[(2-pyrrolyl)silyl]aryl triflates through 1,2-silicon migration: K. Mochidaet al., J. Am. Chem. Soc., 2009, 131, 8350-8351.

9. Synthesis of tetraorganosilanes by Ag-catalysed transmetallation between chlorosilanes and Grignardreagents: K. Murakami et al., Angew. Chem. Int. Ed., 2008, 47, 5833-5835.

10. Synthesis of (arylalkenyl)silanes by Pd-cat. allyl transfer from silyl-substituted homoallylic alcohols to arylhalides: S. Hayashi et al., J. Am. Chem. Soc., 2007, 129, 12650-12651.

11. Use of cyclopropyl silyl ethers as homoenols: application to the synthesis of 7-ring carbocycles: O. LEpstein et al., Angew. Chem. Int. Ed., 2006, 45, 4988-4991.

12. Accelerated electrocyclic ring-opening of benzocyclobutenes under the influence of a β-silicon atom: Y.Matsuya et al., J. Am. Chem. Soc., 2006, 128, 412-413.

13. Enantioselective synthesis of silanols: K. Igawa et al., J. Am. Chem. Soc., 2008, 130, 16132-16133.