21
CS348b Lecture 10 Pat Hanrahan, Spring 2016 Reection Models I: Ideal Materials Today Types of reection models The BRDF and reectance The reection equation Ideal reection and refraction Fresnel effect Ideal diffuse Next lecture (Thursday) Glossy and specular reection models Rough surfaces and microfacets

Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

CS348b Lecture 10 Pat Hanrahan, Spring 2016

Reflection Models I: Ideal Materials

Today

■ Types of reflection models

■ The BRDF and reflectance

■ The reflection equation

■ Ideal reflection and refraction

■ Fresnel effect

■ Ideal diffuse

Next lecture (Thursday)

■ Glossy and specular reflection models

■ Rough surfaces and microfacets

Page 2: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

CS348b Lecture 10 Pat Hanrahan, Spring 2016

Reflection Models

Definition: Reflection is the process by which light incident on a surface interacts with the surface such that it leaves on the incident side without change in frequency.

Properties

■ Spectra and Color

■ Polarization

■ Directional distribution

Page 3: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

Gonio-reflectometer

CS348b Lecture 10 Pat Hanrahan, Spring 2016

Page 4: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

CS348b Lecture 10 Pat Hanrahan, Spring 2016

The BRDF

Bidirectional Reflectance-Distribution Function

( ) 1( ) r i rr i r

i

dLfdE srω ω

ω ω→ # $→ ≡ & '( )

( , )r rdL x ω

( , )i iL x ω

idωiθ

rφiφ

N

Page 5: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

The Reflection Equation

CS348b Lecture 10 Pat Hanrahan, Spring 2016

2

( , ) ( , ) ( , )cosr r r i r i i i iH

L x f x L x dω ω ω ω θ ω= →∫

( , )r rL x ω

( , )i iL x ω

idωiθ

rφ iφ

N

Page 6: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

CS348b Lecture 10 Pat Hanrahan, Spring 2016

Properties of BRDF’s

1. Linearity

From Sillion, Arvo, Westin, Greenberg

Page 7: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

CS348b Lecture 10 Pat Hanrahan, Spring 2016

Properties of BRDF’s

2. Reciprocity principle

( ) ( )r r i r i rf fω ω ω ω→ = →

Page 8: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

CS348b Lecture 10 Pat Hanrahan, Spring 2016

Properties of BRDF’s

3. Isotropic vs. anisotropic

( , ; , ) ( , , )r i i r r r i r r if fθ ϕ θ ϕ θ θ ϕ ϕ= −

( , , ) ( , , ) ( , , )r i r r i r r i i r r i r r if f fθ θ ϕ ϕ θ θ ϕ ϕ θ θ ϕ ϕ− = − = −

Reciprocity and isotropy

Page 9: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

CS348b Lecture 10 Pat Hanrahan, Spring 2016

Properties of BRDF’s

4. Energy Conservation iΩ

d�r

d�i

=

R⌦r

Lr

(!r

) cos ✓r

d!rR

⌦iLr

(!o

) cos ✓i

d!i

1

Page 10: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

CS348b Lecture 10 Pat Hanrahan, Spring 2016

Types of Reflection Functions

Ideal Specular

■ Reflection Law

■Mirror

Ideal Diffuse

■ Lambert’s Law

■Matte

Specular

■ Glossy

■ Directional diffuse

Page 11: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

Law of Reflection

CS348b Lecture 10 Pat Hanrahan, Spring 2016

r iθ θ=

rθiθiϕ rϕ

( )mod2r iϕ ϕ π π= +

N RI

ˆ ˆ ˆ ˆ ˆ ˆ( ) 2 cos 2( )θ+ − = = − •R I N I N Nˆ ˆ ˆ ˆ ˆ2( )= − •R I I N N

Page 12: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

Ideal Reflection (Mirror)

CS348b Lecture 10 Pat Hanrahan, Spring 2016

,(cos cos )( , ; , ) ( )

cosi r

r m i i r r i ri

f δ θ θθ ϕ θ ϕ δ ϕ ϕ π

θ−

= − ±

, ( , ) ( , )r m r r i r rL Lθ ϕ θ ϕ π= ±

, ,( , ) ( , ; , ) ( , )cos cos

(cos cos ) ( ) ( , )cos coscos

( , )

r m r r r m i i r r i i i i i i

i ri r i i i i i i

i

i r r

L f L d d

L d d

L

θ ϕ θ ϕ θ ϕ θ ϕ θ θ ϕ

δ θ θδ ϕ ϕ π θ ϕ θ θ ϕ

θ

θ ϕ π

=

−= − ±

= ±

rθiθ

( , )i i iL θ ϕ ( , )r r rL θ ϕ

Page 13: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

Recall: Snell’s Law

CS348b Lecture 10 Pat Hanrahan, Spring 2016

sin sini i t tn nθ θ=

ˆ ˆ ˆ ˆi tn n× = ×N I N T

N

T

I

iϕ tϕ

t iϕ ϕ π= ±

Page 14: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

Recall: Law of Refraction

CS348b Lecture 10 Pat Hanrahan, Spring 2016

N

T

I

/i tn nµ =

ˆ ˆ ˆµ γ= +T I N

2 2 2ˆ ˆ ˆ1 2µ γ µγ= = + + •T I N

( )( ){ }{ }

12

12

22

2 2

ˆ ˆ ˆ ˆ1 1

cos 1 sin

cos coscos cos

i i

i t

i t

γ µ µ

µ θ µ θ

µ θ θ

µ θ θ

= − • ± − − •

= ± −

= ±

= −

I N I N

1γ µ← = −

( )22 ˆ ˆ1 (1 ) 0µ− − • <I N

Total internal reflection:

Page 15: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

CS348b Lecture 10 Pat Hanrahan, Spring 2016

Experiment

Reflections from a shiny floor

Reflection is greater at glancing angles

From Lafortune, Foo, Torrance, Greenberg, SIGGRAPH 97

Page 16: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

Fresnel Reflectance

CS348b Lecture 10 Pat Hanrahan, Spring 2016

Dielectric (Glass n=1.5)

5( ) (0) (1 (0))(1 cos )F F Fθ θ= + − −Schlick Approximation

F(0)=0.04

Page 17: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

Fresnel Reflectance

CS348b Lecture 10 Pat Hanrahan, Spring 2016

Metal (Aluminum)

Gold F(0)=0.82 Silver F(0)=0.95

Page 18: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

Reflection from Metals

CS348b Lecture 10 Pat Hanrahan, Spring 2016

Measured Reflectance

Reflectance of Copper as a function of wavelength and angle of incidence

λ

ρ

Light spectra

Copper spectraθ

Page 19: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

Cook-Torrance Reflection Model

CS348b Lecture 10 Pat Hanrahan, Spring 2016

Measured Reflectance

Reflectance of Copper as a function of wavelength and angle of incidence

λ

ρ

Light spectra

Copper spectraθ

Approximated Reflectance

( ) (0)(0) ( / 2)( / 2) (0)F FR R RF F

θπ

π

# $−= + & '−( )

Cook-Torrance approximation

Page 20: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

CS348b Lecture 10 Pat Hanrahan, Spring 2016

Ideal Diffuse Reflection

Assume light is equally likely to be reflected in any output direction

, ,

,

,

( ) ( )cos

( )cos

r d r r d i i i i

r d i i i i

r d

L f L d

f L d

f E

ω ω θ ω

ω θ ω

=

=

=

∫∫

( )cos cosr r r r r r r rM L d L d Lω θ ω θ ω π= = =∫ ∫,

, ,r d dr

d r d r d

f EM L f fE E E

π ρπρ π

π= = = = ⇒ =

cosd d s sM E Eρ ρ θ= =Lambert’s Cosine Law

,r df c=

Page 21: Re ection Models I: Ideal Materialsgraphics.stanford.edu/courses/cs348b-16-spring-content/lectures/10... · Re!ection Models I: Ideal Materials Today ■Types of re!ection models

CS348b Lecture 10 Pat Hanrahan, Spring 2016

“Diffuse” Reflection

Theoretical

■ Bouguer - Special micro-facet distribution

■ Seeliger - Subsurface reflection

■Multiple surface or subsurface reflections

Experimental

■ Pressed magnesium oxide powder

■ Almost never valid at high angles of incidence

Paint manufactures attempt to create ideal diffuse