28
50 th AIAA Aerospace Sciences Meeting Nashville, Tennessee January 9-12, 2012 Rd ti fD f t i G i Sili Reduction of Defects in Germanium-Silicon Martin. P. Volz 1 , Arne Cröll 2 , Konstantin Mazuruk 3 1 NASA, Marshall Space Flight Center, EM31, Huntsville, AL 35812, USA 2 Kristallographisches Institute, University of Freiburg, Hebelstr. 25, D-79104, Freiburg, Germany 3 University of Alabama in Huntsville, Huntsville, AL 35762, USA https://ntrs.nasa.gov/search.jsp?R=20120004020 2020-07-25T17:01:49+00:00Z

Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

50th AIAA Aerospace Sciences MeetingNashville, TennesseeJanuary 9-12, 2012

R d ti f D f t i G i SiliReduction of Defects in Germanium-Silicon

Martin. P. Volz1, Arne Cröll2, Konstantin Mazuruk3

1NASA, Marshall Space Flight Center, EM31, Huntsville, AL 35812, gUSA2Kristallographisches Institute, University of Freiburg, Hebelstr. 25, D-79104, Freiburg, Germanyg y3University of Alabama in Huntsville, Huntsville, AL 35762, USA

https://ntrs.nasa.gov/search.jsp?R=20120004020 2020-07-25T17:01:49+00:00Z

Page 2: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

RDGS Flight Investigation

• “Reduction of Defects in Germanium-Silicon” (RDGS) is a NASA Materials Science Flight Investigation

• RDGS is a collaborative investigation between NASA and the European Space Agency (ESA)

• The RDGS experiments will be conducted in the Low Gradient Furnace (LGF) in the Materials Science Laboratory on the International Space Station (ISS)the Materials Science Laboratory on the International Space Station (ISS)

MSL Low Gradient Furnace

Materials Science Laboratory

Page 3: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Overview of Investigation

This investigation involves the comparison of results achieved from th t f t l th f

Floatzone

DetachedBridgman

NormalBridgman

three types of crystal growth of germanium and germanium-silicon alloys:Fl t th

feedrod

meltzone

melt melt

•Float zone growth•Bridgman growth•Detached Bridgman growth

crystal

zone

crystalcrystalcrystal crystal

An understanding of the de-wetting process that enables detached Bridgman growth and of the roles of thermo- and solutocapillary

ti i d t i i th h t i ti f fl t G Siconvection in determining the characteristics of float zone Ge-Si crystals are the prerequisite objectives of this investigation. The fundamental objective is a quantitative comparison of the defects i d d b i h f h h f hinduced by various growth factors among the three types of growth methods.

Page 4: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Why Study Germanium-Silicon Alloys?

• Technological applications X ray and neutron optics (gradient crystals) X-ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric converters High-speed, high frequency electronic devices (HBTs,

HBFETs) as alternative to GaAs

• Characterization methods for silicon and germanium are gwell-established and are applicable to the alloy crystals.

• Relatively well known material properties and material tparameters

• The vapor pressure of silicon and germanium melts can be neglected; they are non-toxic materials.eg ected; t ey a e o to c ate a s

Page 5: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Technological Challenges of Ge1-xSix

• Large separation of solidus and liq id s c r es leads to strong

Phase diagram Ge-Si

liquidus curves leads to strong segregation

• Lattice mismatch (4%) leads to

T [°

C]

increased stress, cracks, high dislocation densities, polycrystalline growth

• The reactivity of liquid silicon leads to a reaction with crucible materials (sticking) as well as

Si concentration [at%]materials (sticking) as well as contamination of the melt and the crystals

Page 6: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Principles of Detached Bridgman Growth

Advantages

No sticking of the crystal

Sufficient condition for detachment :1,2

Bridgmangrowth

DetachedBridgman

z

g y to the ampoule wall

Reduced stress

: growth angle

Reduced dislocations

No heterogeneous nucleation by the ampoule

melt melt

: growth angle:wetting angle Reduced contamination

crystalcrystalgap

TTm

Page 7: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Growth Angle and Wetting Angle

lg

Growth angle : Wetting angle :

lg

feedrod

melt

lg

slgtrijunction

meltzone

slgtrijunction

sl

meltzone

substrate

sgsl

sgcrystallg

arccos sg sl

(Young equation)

lgsg

sllgsgarccos2

222

: surface energy liquid-gasf lid li id

lg

(Young equation)

gg: surface energy solid-liquid: surface energy solid-gas

sl

sgW.Bardsley, F.C. Frank, G.W. Green, D.T.J. Hurle:J. Crystal Growth 23 (1974), 341

Page 8: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Gas Pressure Below Meniscus

Page 9: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Schematic Diagram of Detached Solidification

M P Volz K Mazuruk Journal ofM. P. Volz, K. Mazuruk, Journal of Crystal Growth 321 (2011) 29-35

Page 10: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Calculation of Meniscus Shapes

2

2

3 122 22

( )

d z dzdr dr P Bz r

dd

Young-Laplace Equation

11 dzdz rdrdr

2m H CP P P ghr 0 ,mP rP

P : Dimensionless pressure differential

20 0g rB

Hr,

across the meniscus

B = 3.248; Ge, r0 = 6 mmB = 4.651; InSb, r0 = 5.5 mm

B Bond number; ratio of gravity force to surface tension force

cos ,rs

sin ,z

s

sin P Bzs r

Set of 3 coupled differential equations

z(0) = 0; (0) = 90° -

(1) 90° (1) 1

Boundary Conditions

: growth angle: contact or wetting angle(1) = – 90°; r(1) = 1 : contact or wetting angle

Page 11: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Gap Width vs. Pressure Differential (Ge at 1g)

+ > 180°+ < 180°

0.95

1.00

0.90= 14.3°B = 3 248

0.80

0.85

= 140° = 152°

r B = 3.248

0 70

0.75

152 = 164° = 172°

-5 -4 -3 -2 -1 0 1 2 3 4 50.70

P

Page 12: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Meniscus Shapes vs. P for = 140°

1.4

1.0

1.2

P = 1.2 P = 2.4

= 14.3°B = 3.248

0.8

z

P = 2.6 P = 2.78

0.4

0.6

0 0

0.2

0.75 0.80 0.85 0.90 0.95 1.000.0

r

Page 13: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Gap Width vs. Pressure Differential (Ge at g = 1 x 10-6 g0)

1.0+ > 180°

+ < 180°

0.8= 14.3°

0.6

r

B = 3.248 x 10-6

0.4

r

= 140° = 152° = 164° = 172°

0 0

0.2 172

-4 -2 0 2 40.0

P

Page 14: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

“Attached” Germanium

Page 15: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Partially Attached GeSi

M. P. Volz, M. Schweizer, N. Kaiser, S. D. Cobb, L. Vujisic, S. Motakef, F. R. Szofran, JCG 237-239 (2002) 1844-1848

Page 16: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Detached Ge in pBN Ampoule

Page 17: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

In-situ Pressure Control Setup

W. Palosz, M. P. Volz, S. Cobb, S. Motakef, F. R. Szofran, JCG 277 (2005) 124-132

Page 18: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Ge Grown with Controlled P

W. Palosz, M. P. Volz, S. Cobb, S. Motakef, F. R. Szofran, JCG 277 (2005) 124-132

Page 19: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Propagation of Defects in Detached/Attached Crystals

E3E2

M1

M2 M4E1 E4M3

M. Schweizer, S. D. Cobb, M. P. Volz, J. Szoke, F. R. Szofran, JCG 235 (2002) 161-166

Page 20: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Etch Pit Densities in Detached/Attached Crystals

M. Schweizer, S. D. Cobb, M. P. Volz, J. Szoke, F. R. Szofran, JCG 235 (2002) 161-166

Page 21: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Etch Pit Density Variation With Attachment

M. Schweizer, S. D. Cobb, M. P. Volz, J. Szoke, F. R. Szofran, JCG 235 (2002) 161-166

Page 22: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

X-Ray Synchrotron Topography of Detached Ge

45

50 Axial wafer

25

30

35

40

UMC3-7

5

10

15

20

UMC3-5

Grown crystal

220 fl ti t h

-15

-10

-5

0

Seed

UMC3-2

220 reflection topograph (l = 0.69 Å) recorded from a detached-grown UMC3 crystal wafer cut parallel to the growth axis (S – scratch,

-35

-30

-25

-20

12

g (SB – subgrain boundary,D – dislocation).

12 mm

M. P. Volz, M. Schweizer, B. Raghothamachar, M. Dudley, J. Szoke, S. D. Cobb, F. R. Szofran, JCG 290 (2006) 446-451

Page 23: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Double Crystal Rocking Curve Maps of Detached Ge

Attached grown crystal(UMC6)

Detached grown crystal(UMC3)

CDouble Crystal X-rayRocking Curve Maps (FWHM)

EPD Measurements

X-ray Topographs

-8440 -8400 -8360 -8320

(arc seconds)

M. P. Volz, M. Schweizer, B. Raghothamachar, M. Dudley, J. Szoke, S. D. Cobb, F. R. Szofran, JCG 290 (2006) 446-451

Page 24: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Rotating Magnetic Fields for Ge1-xSix Growth

A rotating magnetic field is available on the LGF furnace and is expected to be utilized for the RDGS experiments. There are several potential uses for

• Mix GeSi alloys prior to growth

the RMF which include the following:

• Affect (flatten) the melt/crystal interface shape• Intentionally cause periods of flow instability or demarcations in the

crystals• Suppress thermal or solutal convection• Affect the transport of dissolved gas from the melt/crystal interface

- Calculations suggest that RMF produces radially inward flow atCalculations suggest that RMF produces radially inward flow at the melt /crystal interface, so that rejected gas is convected away form the detached free surface (J. S. Walker, M. P. Volz, F. R. Szofran, S. Motakef, J. Mat. Synth. Proc. 9, (2001) 73-81)y ( ) )

Page 25: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Bridgman Growth in a Rotating Magnetic Field

RMF Pulse

Silica ampoule

pBN crucible

Magnet

Furnace

Ge melt

FurnaceGe crystal

Silica pedestal

1 mm

12 mm

M. P. Volz, J. S. Walker, M. Schweizer, S. D. Cobb, F. R. Szofran, JCG 282 (2005) 305-312

12 mm

Page 26: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Effect of RMF on Interface Shape

0 8

0.9

0 6

0.7

0.8

efle

ctio

n ra

tio

0.4

0.5

0.6

Inte

rface

de

0.3

0

0 20000 40000 60000Tm

Influence of a RMF on the growth interface shape. The RMF decreases the concavity and induces a w-shape.

m

Ratio of the interface deflection with a RMF on to the interface deflection with a RMF off.

M. P. Volz, J. S. Walker, M. Schweizer, S. D. Cobb, F. R. Szofran, JCG 282 (2005) 305-312

Page 27: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Flight Experiment Objectives

1. Determine the influence of containment on processing defects and impurity incorporation in germanium-silicon crystals.

2. Test the theory of detachment by evaluating the following parameters: pressure difference across the meniscus, growth angle, contact angle, and Bond number (ratio of gravitational and capillary forces).

3. Determine the influence of thermo- and solutocapillary convection along the free melt at the meniscus on the compositional segregation.

4. Control time-dependent STDC (Surface Tension Driven Convection) by the use of rotating magnetic fields. Examine the influence of the RMF on the heat and mass transport and the interface curvature.

5. Quantitatively compare the defect structure and impurity levels of microgravity-grown normal and detached Bridgman and float-zone g y g gcrystals to determine the optimum growth process.

Page 28: Rd ti fDf t i G iReduction of Defects in Germanium-SiliconX-rayandneutronoptics(gradientcrystals)ray and neutron optics (gradient crystals) High-efficiency solar cell material Thermoelectric

Acknowledgements

The authors gratefully acknowledge support from the NASA International Space Station Research Project.Th f ll i l h t ib t d t th U S ti f th RDGSThe following personnel have contributed to the U.S. portion of the RDGS investigation:

Marshall Space Flight CenterDr Martin Volz (NASA PI)

Visiting Scientists (Germany)Dr Arne Cröll (ESA PI)Dr. Martin Volz (NASA PI)

Dr. Frank SzofranDr. Sharon CobbDr. Shari FethDr Witold Palosz

Dr. Arne Cröll (ESA PI), Dr. Natalie Kaiser (Salk)Dr. Peter DoldDr. Markus Schweizer

Dr. Witold PaloszMs. Penny PettigrewUniversity of Alabama in HuntsvilleDr. Konstantin Mazuruk

Visiting Scientists (Hungary)Dr. Janos Szoke

Cape SimulationsDr. Shariar MotakefDr. Ljubomir VujisicU i it f Illi i

Technical SupportC. Bahr/D. Lovell/J. Quick, Qualis Corp.P. Carpenter/C. Cochrane, USRAS G ll T MUniversity of Illinois

Dr. John WalkerS. Gallop, Tec-Masters