34
R&D For Accelerating Structures H. Padamsee

R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

  • View
    218

  • Download
    3

Embed Size (px)

Citation preview

Page 1: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

R&D For Accelerating Structures

H. Padamsee

Page 2: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

TESLA

Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

Page 3: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

2002

9-cell

Page 4: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz
Page 5: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

0 5 10 15 20 25 30109

1010

Denis Kostin, DESY, MHF/SL

Module 5 cavities. Vertical test results. C45 AC60 AC61 AC65 AC66 AC79 AC78 AC62

Q0

Eacc [MV/m]

Q

Why do RF Losses increase above Eacc = 20 MV/m?

Page 6: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

30 MV/m

100 m

Single Cells

Page 7: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

Need to UnderstandSC materials and surface science

• Why do rf losses increase with surface roughness?

• Why do rf losses decrease with simple baking of 140 C and 48 hours

• Why does sc quench below rf critical field ≈ 50 MV/m?

Page 8: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

Possible Benefits from higher Q

• Double luminosity with 1.6 x AC power (eg double rep rate, increase Q to 5 x 1010

• Decrease number of klystrons from 680 to 330 by doubling rf pulse length, increase Q to 5 x1010 => increase reliability

• Reduce AC power of 800 GeV TESLA at 35 MV/m

Page 9: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

BCS Contribution still important

2 K

Page 10: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

T = 2 K, Rs = 14 n, Q = 2 x1010

Lower mean free path, Q = 3 x1010

Lower Temperature

T = 1.7 K, Q = 1.2 x10 11

T= 1.5 K , Q = 4.3 x1011

TESLA Q = 1010

Need to Shield Earth’s magnetic field to 0.5 mOerstedHow to achieve this in an accelerator cryostat?

T 1.8 K, Q 5 x 1010

Page 11: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

Saclay CAVITY C117 F = 1.3 GHz, T = 1.6 K

1E+08

1E+09

1E+10

1E+11

1E+12

0 5 10 15 20 25 30

Eacc (MV/m)

Q0

CEA Saclay, GECS, Jan. 1999

Q0 > 2. 1011 !!

Surface Resistance

Extremely low residual resistance experimentally obtained

Page 12: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

Lower CostOld vs. New Fabrication Methods

Hydroforming

Spinning

Half-Cells Ebeam Welding

Page 13: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

Better Material Control Methods Needed for 20,000 cavities

Page 14: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

1.8 meter 11.4 GHz

Page 15: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

J. Wang

1995

Eacc = 65-75 MV/m

Page 16: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

SLAC DS2 1.8 m long structure - Cell 8, Downstream Side AFTER RF

R. Kirby/SLAC

Sustainedspark

Individualsparks

Page 17: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

Pits are harmful to small irisG. Loew and J. Wang

Page 18: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

1.8 meter 11.4 GHz 1 meter TESLAStanding Wave

20 cm Standing Wave CavityVg ≈ 0%

3%

Vg = 3 - 5%

Page 19: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

Juicy R&D topics in physics of RF breakdown

• What is the trigger?

• field emission from microparticles? gas evolution from ion bomardment?

• How to keep the overall emission current low at operating gradient?

• How to get low spark rate ?

Page 20: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

Digital Video of Spark1 mm

Page 21: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

20 um

?

CERN Diamond Machined Copper cathode, HPR No intentional contaminants

Augerlater

Page 22: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

QuickTime™ and aDV - NTSC decompressor

are needed to see this picture.

Sustained Spark

Page 23: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

50 microns

20 microns

170 MV/m

SEM

Page 24: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

Electrons

Gas Distribution- starts by surface desorption-or melting of emitter tips- builds up by ion bombardment- may be ultimately dominated by cathode material

Page 25: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

Electrons Ions

Ions

50 microns

Page 26: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

2.25 RF Periods

Many Questions Remain

How does the plasma ball move around when fed with stored energy?

Page 27: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

Compare Nb/Cu with Bulk Nb

Page 28: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

Nb-3-Sn - Best Performance

Page 29: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

HTS - YBCOLow Field & High Field Surface

Resistance

Page 30: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

MgB2

Page 31: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

A Comparison of Superconductors @ 1 GHz

XMgB2 - estimate

R = 4 X 10-8

Page 32: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

Linac Cavity Input Coupler: TTF3

The TTF3 coupler

tested to 1.8 MW peak, 1.3 ms pulse length, 4.68 kW average power

(TW); coupling is adjustable from Qext = 106 to Qext = 2107

Page 33: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

NLC Couplers100 MW

Lots of sparking

near coupler cell

Is it the same?

Page 34: R&D For Accelerating Structures H. Padamsee. TESLA Niobium, one meter length, rf = 1.3 GHz Copper, 53 cm, rf = 11.4 GHz

The TTF4 coupler is supposed to be multipactor-free

Linac Cavity Input Coupler: TTF4