33
document.xls DESIGN Page 1 DESIGN OF RCC RETAININGWALL : - All cells in red colour are meant for data input 8 kN 195 mm 500 2030 mm to wall frictio 22.5 0 1030 mm face angle 90 0 3530 mm 0.287 4830 curtailment height If there is no curtailmen 2500 mm 22.5 0 6830 mm 95.71 0 to 0.287 4000 5830 mm design ground Heel side Toe side 1200 q 22.5 0 400 500 90 0 300 0.287 800 500 2150 900 850 150 150 4200 6.04 224.67 Safe bearing capacity of soil SBC = 250 DESIGN OF RCC RETAININGWALL : - 1.MATERIAL DATA Grade of steel Fe = 415 Grade of concrete M = ### Back fill soil properties:- Unit wt of concrete g = 25 Unit wt of soil g = 18 Angle of internal friction f = 35 0 Angle of surcharge = 0 0 cover foundation 75 mm sub structure 40 mm Length of retaining wall 30 m Safe bearing capacity of soil SBC = 250 2.DESIGN CO-EFFICIENTS Permissible tensile stress for steel = 200 = 8.33 Modular ratio m = 10 d = q = ka1 = d = q = ka2= d = q = ka3 = kN/m 2 kN/m 2 kN/m 2 kN/m 2 kN/m 2 a kN/m 2 sst N/mm 2 Permissible comp stress in bending for concrete scbc N/mm 2 b c a d d

Rcc Retwall

Embed Size (px)

DESCRIPTION

RCC

Citation preview

DESIGNDESIGN OF RCC RETAININGWALL : -All cells in red colour are meant for data input8 kN195 mm5002030mmtowall frictiond =22.501030mmface angleq =9003530mmka1 =0.2874830mmcurtailment heightIf there is no curtailment, give 02500mmd =22.506830 mmq =95.71059313750toka2=0.28740005830mmdesign ground levelHeel sideToe side1200qd =22.504005002000mmq =900300ka3 =0.287800500215090085015015042006.04kN/m2224.67kN/m2Safe bearing capacity of soilSBC=250kN/m2DESIGN OF RCC RETAININGWALL : -1.MATERIAL DATAGrade of steelFe=415Grade of concreteM=" 1 " 0comp stressBack fill soil properties:-12Unit wt of concreteg=25kN/m2155Unit wt of soilg=18kN/m2155Angle of internal frictionf=350206.67Angle of surchargea=00258.33coverfoundation75mm3511.67sub structure40mmLength of retaining wall30mSafe bearing capacity of soilSBC=250kN/m22.DESIGN CO-EFFICIENTS4013.33Permissible tensile stress for steelsst=200N/mm2Permissible comp stress in bending for concretescbc=8.33N/mm2Modular ratiom=10Neutral axis factork = 1 / ( 1 + sst / m scbc)=0.294Lever arm factorj = 1 - k/3=0.902Factor of moment of resistanceQ = 0.5 scbc k j=1.1053.CALCULATION OF COEFFICENT OF ACTIVE EARTH PRESSUREActive earth pressure co-efficient using Coulomb's theoryka=sin 2 ( q - f )sin 2 q sin ( q + d ) ( 1 + k ) 2Whereq =Angle that the face of wall makes with the horizontal line in clockwise directionVertical face of retaining wall=90.000Inclined face of retaining wall90+tan-1(400/4000)=95.70Vertical face of base slab=90.0001/2k =sin ( f + d ) sin ( f - a )sin ( q + d ) sin ( q - a )Sl.noParametersq0f0d0a0kkaka1Vertical face of retaining wall903522.500.7240.244say0.2872Inclined face of retaining wall95.713522.500.7430.287say0.2873Vertical face of baseslab903522.500.7240.244say0.2872.CALCULATION OF COEFFICENT OF PASSIVE EARTH PRESSUREActive earth pressure co-efficient using Coulomb's theorykp=sin 2 ( q - f )sin 2 q sin ( q + d ) ( 1 - k ) 2Whereq =Angle which the face of wall makes withthe horizontal line in clockwise directionVertical face of abutment=90.000Vertical face of base slab=90.0001/2k =sin ( f + d ) sin ( f + a )sin ( q + d ) sin ( q + a )Sl.noParametersq0f0d0a0kkp1Vertical face of abutment903522.500.7249.518.7842Vertical face of baseslab903522.500.7249.514.STABILITY CHECK AT FOUNDATION LEVELa) Dead load of retaining wallConsidering 1m length of retaining wall and ignoring soil over toe slabSl.noDescribtionbdgWeightCg @ toeMomentmmkN/m3kNmkNm1Crash barrier and bracket8.001.30510.442Stemrectangular portion0.506.032575.381.2594.22triangle portion0.500.404.002520.001.6332.673Base slabrectangular portion4.200.502552.502.1110.25triangle portiona. toe slab0.50.850.30253.190.571.81b. heel slab0.52.150.30258.062.7722.31c. under stem1.200.30259.001.45013.054Soil over toe slabrectangular portion1.001.201821.600.50010.80triangle portion0.50.850.30182.300.2830.654Soil over heel slabPortion a2.306.0318249.643.050761.41Portion b0.402.031814.621.70024.85Portion c0.500.404.001814.401.7725.44Portion d0.502.150.30185.813.48320.22Total WDL=484.48Total MDL=1128.10Distance of Resultant Force from the toeLADL=MDL / WDL=2.33mEccentricity w.r.t center of base slabeDL=B/2 - LADL=2.10-2.33=-0.23mb. Active earth pressureHeight of earthfill upto foundation levelH=6.83mActive earth pressure intensitypa=ka1 g H=35.29kN/m2Horizontal component of active earth pressurePa=0.5 pa H cosd=106.20KNThis force acts at 0.42H from foundation levelLAa=0.42x6.830=2.87mc. Live load surchargeEquavalent height of live load surchargehLL=1.2m of soilIntensity of pressure due to live load surchargepLL=g hLL=21.60kN/m2Horizontal component of Live load surchargePLL=ka1 pLL Hcosd=37.32kNThis force acts at 0.5 H from foundation levelLALL=0.5x6.830=3.42md. Passive earth pressureHeight of earthfill upto foundation levelH=0.00mPassive earth pressure intensitypa=ka1 g H=0.00kN/m2Horizontal component of active earth pressurePa=0.5 pa H cosd=0.00KNThis force acts at 0.33H from foundation levelLAa=0.33x0.000=0.00md.Summary of Forces and MomentsSl.noDescribtionForce kNLever armMoment kNmVerticalHorizontalfrom toe mResistingOverturning1Dead load of retaining wall484.482.331128.102Active Earth pressure106.202.87304.643Passive Earth pressure0.000.0003Live load surchargeHorizontal load37.323.42127.44Total484.48143.521128.10432.08e. Check for slidingTotal horizontal forces causing slidingHs==143.52Total horizontal forces aginst slidingHR=0.5 x vertical loads=0.5x484.48=242.24kNFactor of safety against sliding=HR / Hs=242.24/143.52=1.69> 1.5 Hence safef. Check for over turningTotal over turning momentMO=432.08kNmTotal resisting momentMR=1128.10kNmFactor of safety against over turning=MR / MO=1128.10/432.08=2.61> 2 Hence safeg. Check for safe bearing capacity at the foundation levelTaking moment about the center of base slabSl.noDescribtionForce kNDist from cg ofMomentVHbase slab mM kNm1Dead load of retaining wall484.48-0.23-110.692Active Earth pressure106.202.87304.643Passive Earth pressure0.000.000.003Live load surchargeHorizontal load37.323.42127.44Total484.48143.52321.39Eccentricity w.r.t cg of base slabe=M /V=0.66mTowards toeSV6eStress at toe or heel=1+BB484.486x0.66Stress at toe=1+=224.67kN/m24.204.20484.486x0.66Stress at heel=1-=6.04kN/m24.204.20230090010006.04125.76172.61kN/m2kN/m2kN/m2224.67kN/m27.DESIGN OF TOE SLABi) Moment calculationCritical section for bending moment is at the face of stem.a) Bending moment due to soil pressure at the face of stem224.67+172.612 x224.67+172.611.000M1=x1.000x2224.67+172.613=103.66kNmb) Bending moment due to self weight of concrete0.500+0.8002 x0.500+0.8000.850+0.15M2=x0.850x25x20.500+0.80030.15x0.8x0.15x252=7.72kNmc) Bending moment due to self weight of earthM3=1.00x1.20x0.5x18+=10.86kNm0.5x0.85x0.3x0.4333333333Net moment at the face of stemM=103.66-7.72-10.86=85.09kNmii ) Design of section1/2Eff. Depth requireddreq=85.09x10 6=278mm1.105x1000Eff. Depth availabled=800-75-8=717mm> dreq Hence safeMain steel requiredAstreq=85.09x10 6=658mm2200x0.902x717Minimum steel=0.15 % cross sectional area=0.15x1000x800=1200mm2100Main steel required=1200mm2Provide16dia bars @230mm c/c andlarger diaProvide12dia bars @230mm c/cMain steel providedAstpro=1366mm2hence okay% of main steel providedp=1366x100=0.19%1000x717> 0.15% Hence O.KDistribution steel per face=0.06 % of cross sectional area (or) 0.125 times of Main steel required=0.06x800x1000=480mm2100or=0.125x1200=150mm2required=480mm2Provide10dia barsSpacing requiredSr=1000x78.5=164mm480Provide10dia bars @115mm c/c at both top and bottomAst Provided=1000x78.5=683.0mm2115=Hence O.KCompression face steel=0.06% of cross sectional area (or)=480mm20.25 times of main steel required=300mm2Provide12dia bars @230mm c/cCompression steel provided =492mm2hence okayiii ) Check for shearThe critical section for shear is taken at a distance of effective depth fromthe face of stem=0.717m from the face of stem300Depth of toeslab at critical section=500+x283=600mm850Eff. Depth availabled=600-75-8=517mm224.67-6.04Intensity of pressure at=6.04+x3.917critical section4.200=209.94kN/m2a) Shear force at critical section: -224.67+209.94Shear force due to soil pressure=0.283=61.50kN2Self weight of toe portion=0.500+0.6000.283x25=3.89kN2soil weight over toe=0.28x1.200x18.000.50x0.28x0.30x18.00=6.88kNNet shear forceV'=61.50-3.89-6.88=50.73kNb) Bending moment at critical section: -Bending moment due to soil pressure224.67+209.942 x224.67+209.940.283M1=x0.283x2224.67+209.943=8.80kNmBending moment due to self weight of concrete0.500+0.6002 x0.500+0.6000.283M2=x0.283x25x20.500+0.6003=0.53kNmBending moment due to self weight of soilM3=0.28x1.20x18.00x0.1415+0.50x0.28x0.30x18.00x0.1886666667=1.01`Net momentM=8.80-0.53-1.01=7.26kNmAngle between top and bottomedges of toe slabtanb=300/850=0.350.250.50Design shear forceV=V'-M tanbd=50.73-7.26x0.35=45.77kN0.517Actual shear stresstv=45.77x10 3=0.09N/mm2pt20253035401000x5170.150.180.190.20.20.20.250.220.230.230.230.23% of main steel providedp=1366x100=0.26%0.50.30.310.310.310.321000x5170.750.350.360.370.370.38Permissible shear stress in concrete=0.23N/mm210.390.40.410.420.42O.K1.250.420.440.450.450.461.50.450.460.480.490.498.DESIGN OF HEEL SLAB1.750.470.490.50.520.52i) Moment calculation20.490.510.530.540.55Critical section for bending moment is at the face of stem.2.250.510.530.550.560.57a) Bending moment due to soil pressure at the face of stem2.50.510.550.570.580.66.04+125.762 x6.04+125.762.3002.750.510.560.580.60.62M1=x2.300x30.510.570.60.620.6326.04+125.763=121.53kNmb) Bending moment due to self weight of concrete0.250.230.500+0.8002 x0.500+0.8002.1500.150.500.31M2=x2.150x25x+0.260.23520.500+0.8003+0.800x0.150x25.00x0.1502=42.15kNmc) Bending moment due to over burden soilM3=2.300x6.03x18x1.150+0.5x2.150x0.300x18.0x1.583+=296.28kNmNet moment at the face of stemM=121.53-42.15-296.28=-216.9kNmii ) Design of section1/2Eff. Depth requireddreq=216.9x10 6=443mm1.105x1000Eff. Depth availabled=800-75-10=715mm> dreq Hence safeMain steel requiredAstreq=216.9x10 6=1682mm2200x0.902x715Minimum steel=0.15 % cross sectional area=0.15x1000x800=1200mm2100Main steel required=1682mm2Provide20dia bars @230mm c/c andlarger diaProvide12dia bars @230mm c/cMain steel providedAstpro=1858mm2hence okay% of main steel providedp=1858x100=0.26%1000x715> 0.15% Hence O.KDistribution steel per face=0.06% of cross sectional area (or) 0.125 times of Main steel required=0.06x800x1000=480mm2100or=0.125x1682=210mm2required=480mm2Provide10dia barsSpacing requiredSr=1000x78.5=164mm480Provide10dia bars @115mm c/c at both top and bottomCompression face steel=0.06% of cross sectional area (or)=480mm20.25 times of main steel requiredProvide12dia bars @230mm c/cCompression steel provided =492mm2hence okayiii ) Check for shearThe critical section for shear is at the face of stem=2.300m from the end of heel300Depth of heelslab at criticalsection=500+x2150=800mm2150Eff. Depth availabled=800-75-10=715mm224.67-6.04Intensity of pressure at=6.04+x2.300critical section4.200=125.76kN/m2a) Shear force at critical section: -6.04+125.76Shear force due to soil pressure=2.300=151.57kN2Self weight of heel portion=0.500+0.8002.150x 25 =37.94kN2+0.80x0.15x25Over burden soil=2.300x6.0x18.0+0.5x2.150x0.300x18.0=255.45kNNet shear forceV'=151.57-37.94-255.45=-141.81kNb) Bending moment at critical section: -Bending moment due to soil pressure6.04+125.762 x6.04+125.762.300M1=x2.300x26.04+125.763=121.53kNmBending moment due to self weight of concrete0.500+0.8002 x0.500+0.8002.1500.15M2=x2.150x25x+20.500+0.8003+1.800x0.150x25.00x0.15042.43kNmBending moment due to over burden soil2.000M3=2.300x6.03x18.0x1.1500.5x2.150x0.30x18.0x1.583=296.28kNmNet momentM=121.53-42.4-296.28=-217.19kNmAngle between top and bottompt2025303540edges of heel slabtanb=300/2150=0.140.150.180.190.20.20.20.250.220.230.230.230.23Design shear forceV=V'-M tanb0.50.30.310.310.310.32d0.750.350.360.370.370.38=141.81-217.19x0.14=99.43kN10.390.40.410.420.420.7151.250.420.440.450.450.461.50.450.460.480.490.49Actual shear stresstv=99.43x10 3=0.14N/mm21.750.470.490.50.520.521000x71520.490.510.530.540.55% of main steel providedp=1858x100=0.26%2.250.510.530.550.560.571000x7152.50.510.550.570.580.6Permissible shear stress in concrete=0.23N/mm22.750.510.560.580.60.62O.K30.510.570.60.620.639.DESIGN OF STEMA ) At bottom0.250.23a) Active earth pressure0.500.315000.260.233H1 =2030Pa1852.6H2 =4000Pa22532.6400500H3 =8004200Active earth pressure intensitypa1=ka2 g H1=10.49kN/m2pa2=ka2 g (H1 + H2)=31.16kN/m2Horizontal component of active earth pressurePa1=0.5 pa1 H1 cos d=9.84kNPa2=0.5pa2 (H1+H2) cos d=86.79kNLever arm from the start of batter forPa1=L1=0.42H1=0.853mLever arm from the bottom of stem forPa2=L2=0.42(H1+H2 )=2.533mMoment due to active earth pressure at the start of batterM1a=Pa1 L1=8.39kNmMoment due to active earth pressure at the base of stemM2a=Pa2 L2=219.79kNmShear force due to active earth pressure at the batterV1a=Pa1=0.85kNShear force due to active earth pressure at the base of stemV2a=Pa2=86.79kNFluid pressure force=4.80x6.032 / 2=87.266kNFluid pressure moment=87.266x6.03/3=175.405kNm< active earth pressure OKb. Live load surchargeEquivalent height of live load surchargehLL=1.2m of soilIntensity of pressure due to live load surchargepLL=g hLL=21.60kN/m2Horizontal component of Live load surchargePLL=ka2 pLL(H1+H2)cosd=32.95kNThis force acts at 0.5 (H1+H2) from foundation levelLALL=0.5x6.0=3.015mMoment due to live load surcharge at the base of stemM2l=PLL LALL=99.33kNmShear force due to live load surcharge at the base of stemV2l=PLL=32.95kNMoment Due to Eccentricity of Selfweight of wallWeight(kN)L.A(w.r.t centre of section)mMoment1Straight portion6.0x 0.5x 250.450-0.25=0.2015.075kNm=75.382Taper portion0.5 x0.40x 4.0x 250.45-0.633=-0.183-3.6666666667kNm=20.03Crash barrier=8.000.45-0.195=0.2552.04kNmTotal Moment13.45kNmMoment due Eccentricity of selfweightM2k=13.45kNmTotal momentM=M2a+M2l+M2k=219.79+99.33+13.45=332.58kNmTotal shearV=V2a + V2l=86.79+32.95=119.73kNii ) Design of section1/2Eff. Depth requireddreq=332.58x10 6=549mm1.105x1000Eff. Depth availabled=900-40-10=850mm> dreq Hence safeMain steel requiredAstreq=332.58x10 6=2169mm2200x0.902x850Minimum steel=0.12 % cross sectional area=0.12x1000x900=1080mm2100Main steel required=2169mm2Provide20dia barsSpacing requiredSr=1000x515.2=238mm2169+Provide20dia bars @230mm c/c &providebeyond curtailmentProvide16dia bars @230mm c/cMain steel providedAstpro=515.2x1000=2240mm2230% of main steel providedp=2240x100=0.26%1000x850> 0.12% Hence O.KDistribution steel per face=0.06 % of cross sectional area (or) 0.125 times of main steel required=0.06x900x1000=540mm2100or=0.125x2169=271mm2required=540mm2Provide10dia barsSpacing requiredSr=1000x78.5=145mm540Provide10dia bars @115mm c/cAstpro=683mm2hence okayCompression ReinforcementCompression reinforcement required=0.25x2169=542mm2required=542mm2Provide10dia barsSpacing requiredSr=1000x78.5=145mm542Provide10dia bars @115mm c/cpt20253035400.150.180.190.20.20.2Astpro=78.5x1000=683mm20.250.220.230.230.230.23115hence okay0.50.30.310.310.310.320.750.350.360.370.370.38iii ) Check for shear10.390.40.410.420.42Actual shear stresstv=119.73x10 3=0.14N/mm21.250.420.440.450.450.461000x850.01.50.450.460.480.490.491.750.470.490.50.520.52% of main steel provided=0.26%20.490.510.530.540.552.250.510.530.550.560.57Permissible shear stress in concrete=0.23N/mm22.50.510.550.570.580.6O.K2.750.510.560.580.60.6230.510.570.60.620.63B ) At the batter pointa) Active earth pressure0.250.23Moment due to active earth pressure at the batter pointM1a=8.39kNm0.500.31Shear force due to active earth pressure at the batter pointV1a=0.85kN0.260.234b. Live load surchargeHorizontal component of Live load surchargePLL=ka1 pLLH1=12.59kNThis force acts at 0.5 H1 from batter levelLALL=0.5x2.030=1.015mMoment due to live load surcharge at the batter levelM1l=PLL LALL=12.78kNmShear force due to live load surcharge at the batter levelV1l=PLL=12.59kNTotal momentM=M1a+M1l=8.39+12.78=21.16kNmTotal shearV=V1a+V1l=0.85+12.59=13.44kNii ) Design of section1/2Eff. Depth requireddreq=21.16x10 6=138mm1.105x1000Eff. Depth availabled=500-40-8=452mm> dreq Hence safeMain steel requiredAstreq=21.16x10 6=260mm2200x0.902x452Minimum steel=0.12 % cross sectional area=0.12x1000x500=600mm2100Main steel required=600mm2Provide16dia barsSpacing requiredSr=1000x201.1=335mm600Provide16dia bars @230mm c/cProvide stem bottom main steel spacing as far as possibleMain steel providedAstpro=201.1x1000=874mm2230% of main steel providedp=874x100=0.19%1000x452> 0.12% Hence O.KDistribution steel per face=0.06 % of cross sectional area (or) 0.125 times of main steel required=0.06x500x1000=300mm2100or=0.125x600=75mm2required=300mm2Provide8dia barsSpacing requiredSr=1000x50.3=168mm300Provide8dia bars @115mm c/con both facesCompression ReinforcementProvide10dia bars @115mm c/csame as stem bottom compression faceiii ) Check for shearpt2025303540Actual shear stresstv=13.44x10 3=0.03N/mm20.150.180.190.20.20.21000x4520.250.220.230.230.230.230.50.30.310.310.310.32% of main steel provided=0.19%0.750.350.360.370.370.3810.390.40.410.420.42Permissible shear stress in concrete=0.21N/mm21.250.420.440.450.450.46O.K1.50.450.460.480.490.491.750.470.490.50.520.52C ) At curtailment point:-3.530mfrom TopIf no curtailment is given, dont cosider part C20.490.510.530.540.55a) Active earth pressure2.250.510.530.550.560.57height of earth fillh=3.530m2.50.510.550.570.580.6Active earth pressure intensitypa=ka1 g h=18.24kN/m22.750.510.560.580.60.62Horizontal component of active earth pressurePa=0.5 pa h cosd=29.74kN30.510.570.60.620.63Moment due to active earth pressureM1=Pa x0.42h=44.09kNmShear force due to active earth pressureV1=29.74kN0.150.20.250.23b. Live load surcharge0.190.213Horizontal component of Live load surchargePLL=ka1 pLLh=21.89kNThis force acts at 0.5 h from curtailment pointLALL=0.5x3.530=1.765mMoment due to live load surchargeM2=PLL LALL=38.63kNmShear force due to live load surchargeV2=PLL=21.89kNMoment Due to Eccentricity of Selfweight of wallWeight(kN)L.A(w.r.t centre of section)mMoment1Straight portion3.5x 0.5x 250.33-0.25=0.083.309375kNm=44.132Taper portion0.5*0.15x 3.0x 250.33-0.550=-0.225-1.27828125kNm=5.73Crash barrier=9.300.33+0.024=0.3493.25kNmTotal Moment5.28kNmMoment due Eccentricity of selfweightM3=5.28kNmTotal momentM=M1+M2+M3=44.09+ 38.6+ 5.3=88.00kNmTotal shearV=V1+V2=29.74+21.89=51.63kNii ) Design of section1/2Eff. Depth requireddreq=88.00x10 6=282mm1.105x1000Eff. Depth availabled=650-40-10=600mm> dreq Hence safeMain steel requiredAstreq=88.00x10 6=813mm2200x0.902x600Minimum steel=0.12 % cross sectional area=0.12x1000x650=780mm2100Main steel required=813mm2Provide20dia bars(bottom main steel should be extended beyond curtailement)Spacing requiredSr=1000x314.2=386mm813Provide20dia bars @230mm c/cMain steel providedAstpro=314.2x1000=1366mm2230hence okay% of main steel providedp=1366x100=0.23%1000x600> 0.15% Hence O.KDistribution steel per face=0.06 % of cross sectional area (or) 0.125 times of main steel required=0.06x650x1000=390mm2100or=0.125x813=101.63mm2required=390mm2Provide10dia barsSpacing requiredSr=1000x78.5=201mm390Provide10dia bars @115mm c/c on both facesCompression Reinforcement=0.25*813=203.2588126109mm2pt20253035400.150.180.190.20.20.2Provide10dia bars @115mm c/csame as stem bottom compression face0.250.220.230.230.230.23Ast provided=654mm2hence okay0.50.30.310.310.310.32iii ) Check for shear0.750.350.360.370.370.38Actual shear stresstv=51.63x10 3=0.09N/mm210.390.40.410.420.421000x6001.250.420.440.450.450.461.50.450.460.480.490.49% of main steel provided=0.23%1.750.470.490.50.520.5220.490.510.530.540.55Permissible shear stress in concrete=0.22N/mm22.250.510.530.550.560.57O.K2.50.510.550.570.580.62.750.510.560.580.60.6230.510.570.60.620.630.150.20.250.230.230.223

&F&A&RPage &Pbcaa0000bddangle of wall friction varying from 1/2 to 2/3 of phiangle of wall friction varying from 1/2 to 2/3 of phiangle of wall friction varying from 1/2 to 2/3 of phiweight of hand rails or crash barriercg distance of crash barrierpassive earth pressure will be taken, if the depth of foundation is more than 2m

sch500a116 dia @230 c/ca212 dia @230 c/ccoverb10 dia @115 c/cfoundation75 mml2j2c20 dia @230 c/csub structure40 mm2030d12 dia @230 c/cDevelopment length40toe10 dia @115 c/cLength of retaining wall30 m1030f8 dia3 Noskig20 dia @230 c/ch16 dia @230 c/ci16 dia @230 c/cj110 dia @115 c/c6830mgj28 dia @115 c/ctok10 dia @115 c/c58304000l110 dia @115 c/chl28 dia @115 c/cl1m8 dia @345 c/c2500ij1toe sideheel sideg+hedc+dc300800fa1500a1+a2a2b5004008501509001502150100023004200Type of bardia of bar mmSpacing mmLength of each bar mmNo of barsTotal length mUnit weight kg/mTotal weight kgShape of the bara1162301767131231.481.58366a1a2a2122304478130582.140.89518250250250b1011530290361090.440.626769256404050c202303287131430.622.471064d122304594130597.240.89532b2087c950e101153029029 + 3969.280.62601250250f8303022 x 3181.810.397129850250g202305920131775.542.471916d1200h162304268130554.851.588778072087i162302332131305.491.58483250250j11011530290361090.440.62676j281153030213393.930.39154e29850gk1011566832611744.260.621081250250800l11011530290361090.440.62676l281153030213393.930.39154f298504013m8345H&V73288x221417.1520.39553250250325Steel quantity807703807Up to 16 dia7418kg300more than 16 dia2980kg395.3hi25064014902521807640300j129850250250j22985025025029850l1250250l229850k2502502501490m4000420to8208080703300

&F&A&RPage &P

CRASHCROSS SECTIONAL DETAILS OF CRASH BARRIER AND BRACKET50175501755050010002502500500toe200250300100Consider 1m length of crash barrier and bracketSl.noDescribtionbdAreaCg @ toeMomentmmmmmm2mmmm31Bracket0.5025010012500383479166725020050000425212500002Crash barrier0.00501000046701751000175000363634375000.5050500125002583229167505002500025062500000.501752502187516736458331752504375013860156250.5050250625033208333Total346875108828125cg @ toe of crash barrier=108828125/346875=314mmcg @ heel of crash barrier=500-314=186mmweight of crashbarrier and bracket =346875x25=8.67kN/m1000000