58
Znorganica Chimica Acta, 11 (1974) 47-104 0 Elsevier Sequoia S.A., Lausanne -Printed in Switzerland Invited Review 47 Rate Parameters for Ligand Replacement Processes in Octahedral Complexes of Metals in Oxidation State Three J. 0. EDWARDS,* F. MONACELLI and G. ORTAGGI Zstituto Chimico, University of Rome, Rome, Italy and Department of Chemistry, Brown University, Providence, Rhode Island 02912, U.S.A. Received March 13, 1974 Contents 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. Introduction Errors, Precision, and Accuracy Symbols and Notations A. General B. Reaction Conditions C. Abbreviations D. Rate Constants and Activation Parameters E. Experimental Methods F. Remarks and Comments Metal Oxidation State and Size Acid Hydrolysis (Aquation) Solvolysis Acid-Catalyzed Aquation Base Hydrolysis Leaving Group Effects Isomerization Ligand Isomerization Racemization Ambiguity in Site of Attack Second-Order Anations First-Order Anations Activation Volumes Summary Conclusions Acknowledgements Text References Data Tables Data Table References 1. Introduction The reactivity of octahedral metal complexes has been the subject of a large number of experimental investigations, and the results have been reviewed * To whom correspondence should be addressed at Depart- ment of Chemistry, Brown University, Providence, Rhode Island 02912, U.S.A. several times. The basic problem which justifies such a wide interest is the mechanism of the ligand substitu- tion process occurring at the metal atom. In spite of the large amount of data, there are few cases for which the detailed aspects of the reaction mechanism have been settled. Generally, the usual kinetic approach leaves considerable uncertainty as to the structure of the transition state. In this respect, substitution reactions of octahedral metal complexes are not amenable, as yet, to as ready an analysis as are the nucleophilic displacements on saturated carbon substrates or as are the ligand replacements on ds square planar metal complexes. The most widely used approach to the problem is a comparative analysis of the behavior shown by a suit- ably selected class of compounds. In practice, this “be- havior” is represented by the rate constants measured at a common temperature when the compounds are varied in such a way as to explore the rate changes due to variation of a given structural parameter such as leaving group, chelation, steric hindrance, etc. However, rate constants, being related to the free energy change of the activation process, may be divided into the enthalpic and entropic contributions. Thus, at least in principle, the knowledge of both dH* and d S” (while equivalent as a whole to the corresponding rate constants) is more advantageous. These para- meters and the activation volume dV* give useful information on different, although to some extent re- lated, aspects of the reaction mechanism. We stress the fact that small but detectable differences in rate constants may not be ready for analysis as they presum- ably are related to minor changes in mechanism. Also we are aware of the condition that identical rate con- stants at one given temperature may belong in differ- ently reacting systems as a consequence of the com- pensation of enthalpy terms with entropy terms. There have been, unfortunately, many workers who did not attempt to evaluate activation enthalpies, and even more who neglected to calculate the activation

Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

Embed Size (px)

Citation preview

Page 1: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

Znorganica Chimica Acta, 11 (1974) 47-104 0 Elsevier Sequoia S.A., Lausanne -Printed in Switzerland

Invited Review

47

Rate Parameters for Ligand Replacement Processes in Octahedral Complexes

of Metals in Oxidation State Three

J. 0. EDWARDS,* F. MONACELLI and G. ORTAGGI

Zstituto Chimico, University of Rome, Rome, Italy and

Department of Chemistry, Brown University, Providence, Rhode Island 02912, U.S.A.

Received March 13, 1974

Contents

1. 2. 3.

4. 5. 6. 7. 8. 9.

10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21.

Introduction Errors, Precision, and Accuracy Symbols and Notations A. General B. Reaction Conditions C. Abbreviations D. Rate Constants and Activation Parameters E. Experimental Methods F. Remarks and Comments Metal Oxidation State and Size Acid Hydrolysis (Aquation) Solvolysis Acid-Catalyzed Aquation Base Hydrolysis Leaving Group Effects Isomerization Ligand Isomerization Racemization Ambiguity in Site of Attack Second-Order Anations First-Order Anations Activation Volumes Summary Conclusions Acknowledgements Text References Data Tables Data Table References

1. Introduction

The reactivity of octahedral metal complexes has been the subject of a large number of experimental investigations, and the results have been reviewed

* To whom correspondence should be addressed at Depart- ment of Chemistry, Brown University, Providence, Rhode Island 02912, U.S.A.

several times. The basic problem which justifies such a wide interest is the mechanism of the ligand substitu- tion process occurring at the metal atom.

In spite of the large amount of data, there are few cases for which the detailed aspects of the reaction mechanism have been settled. Generally, the usual kinetic approach leaves considerable uncertainty as to the structure of the transition state. In this respect, substitution reactions of octahedral metal complexes are not amenable, as yet, to as ready an analysis as are the nucleophilic displacements on saturated carbon substrates or as are the ligand replacements on ds square planar metal complexes.

The most widely used approach to the problem is a comparative analysis of the behavior shown by a suit- ably selected class of compounds. In practice, this “be- havior” is represented by the rate constants measured at a common temperature when the compounds are varied in such a way as to explore the rate changes due to variation of a given structural parameter such as leaving group, chelation, steric hindrance, etc.

However, rate constants, being related to the free energy change of the activation process, may be divided into the enthalpic and entropic contributions. Thus, at least in principle, the knowledge of both dH* and d S” (while equivalent as a whole to the corresponding rate constants) is more advantageous. These para- meters and the activation volume dV* give useful information on different, although to some extent re- lated, aspects of the reaction mechanism. We stress the fact that small but detectable differences in rate constants may not be ready for analysis as they presum- ably are related to minor changes in mechanism. Also we are aware of the condition that identical rate con- stants at one given temperature may belong in differ- ently reacting systems as a consequence of the com- pensation of enthalpy terms with entropy terms.

There have been, unfortunately, many workers who did not attempt to evaluate activation enthalpies, and even more who neglected to calculate the activation

Page 2: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

48 J. 0. Edwards, F. Monacelli and G. Ortaggi

TABLE I. Mechanistic Classifications of Langford and Gray.

There are three categories of stoichiometric mechanisms distinguished operationally by kinetic tests.

1. Dissociative (D): intermediate of reduced coordination number, which may be detected by its selective reactivity.

2. Associative (A): intermediate of increased coordination number, which may be detected by departure of the rate ex- pression from strict second+rder kinetics when the reaction is followed in the direction for which the transition state lies after the intermediate.

3. Interchange (I): no kinetically detectable intermediates. There are two major categories of intimate mechanism that may be distinguished operationally if it can be assumed that a group of reactions with related mechanism can be identified.

1. Associative activation (a): the reaction rate is approxi- mately as sensitive (or more sensitive) to variation of the entering group as to variation of the leaving group.

2. Dissociative activation (d): the reaction rate is much more sensitive to variation of the leaving group than to varia- tion of the entering group.

D mechanisms must be dissociative. A mechanisms must be associative. Therefore, we adopt the following as the simplest combined notations designating both stoichiometric and intimate mechanism: A, I,, Id, D.

entropies. One reason for the deliberate omission is that, while it is relatively easy to distinguish among rate constants differing by more than 10% by con- ventional kinetic techniques, the experimentally-based activation enthalpies are less discriminating. Suffice it to say here that, in spite of the lower degree of ac- curacy for the activation parameters, the value of dS* for the base hydrolysis mechanism provided a clear decision between the proposed alternatives that were so long and so unnecessarily debated in the in- organic mechanism literature.

In this review we have collected rate constants plus activation parameters for the ligand substitution and isomerization reactions of metal complexes with the metal always in the oxidation state +3. This choice has been suggested both by the fact that much of the available data concern this class of complexes and be- cause the rates cover a large range encompassing both labile and inert species.

The data reported here are those that appeared in the literature through 1971 and in some cases those that appeared in 1972 and 1973 in the most common periodicals. We have tried to be reasonably complete, however certainly we have missed some relevant arti- cles and we apologize for our incompleteness to the authors of such articles.

Throughout the review the terminology introduced by Langford and Gray’ will be adopted. Their inter- change mechanism - either dissociative (Id) or asso- ciative (Ia) - is in our opinion suitable for our pur- poses being sufficiently flexible to cover most of the cases discussed herein. The definitions on which this

terminology is based are given in Table I. Further details about their description may be found in their text.’

We feel that the numbers collected here will provide a basis for discussion and speculation to chemists interested in this research area. It is not our purpose to attempt a complete analysis of the data; rather we shall present possible approaches to such an analysis. Also we shall probe somewhat more deeply into some specific cases, which, at the moment, appear to be sufficiently clear to us to warrant detailed discussion.

The mechanisms for ligand replacement reactions in octahedral complexes have been discussed often and elsewhere. The background plus many details in this field of research are presented in published books and reviews.l-14

2. Errors, Precision, and Accuracy

It is possible in certain instances to compare rate data on the same reaction as measured by several investi- gators. Taking as example the reaction

Cr(NH3)5ClL+ + H,O+ Cr(NH3&H203+ + Ct

we have found eight articles giving relevant numbers. These numbers are presented in Table II.

Ignoring for the moment the fact that the media are not identical, it can be seen that the variation in rate constants is about a factor of two. This represents a difference of 0.41 kcal moT’ in the free energy of activation. It is immediately apparent that the values of dH* are much more divergent, with the lowest reported value being 20.7 kcal mar’ and the highest being 23.6. Since an energy change of 1.36 kcal mol-’ represents a change of one power of ten in rate - all other things being equal - the variability in dH* shows that the change in rate constant with tempera- ture is less well known than the rate constant itself,

TABLE II. Hydrolysis of Chloropentaamminechromium(II1) Cation.

iu k(25’ C) dH* AS+ Ref.d

0.106 6.8 x 10d 20.7 _= 6.0 x lOA 21.5 _h 6.0 x lo4 21.6 _ 8.0 x 10” 21.8 0.1 9.3 x lo+ 21.8 0.5 6.8 x lo+ 22.2 1.0 3.9 x 10” 22.3 0.2’ 5.6 x 10” 22.4 1.0 7.4 x 10” 23.6

-12.7 34 -10.3 45 -10.0 45 - 8.7 %40 - 8.4 41 - 8. 43 - 8.5 42 - 7.5 44 - 2.8 37

a MeOH-H20 mixture. b EtOH-HZ0 mixture. ’ DzO. d These reference numbers refer to that list which is entitled Data Table References.

Page 3: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

Ligand Replacements in Octahedral Complexes 49

provided of course that the differences appear to result from both random fluctuations and genuine variations. Separation into these two causes of dif- ferences is not yet possible. From the data of Table II, one can see the compensation of d H” and d S* often ascribed to errors but the rate constants show some divergences that we believe are genuine. The variation in dH* values usually leads to a related variation in dS* values. In this case a variation of 4.58 cal mar’ deg-’ is equivalent to a change of one power of ten in the rate constant.

Although it is not our primary concern here, the interrelationship between dH* and dS* is of suf- ficient importance to our discussions of mechanism that some mention be made here. More broad discus- sions of this “compensation effect” are to be found elsewhere.”

There arc a number of different reasons because of which the activation parameters may not be completely reliable quantities; fortunately most of these reasons are easily recognized and can possibly be avoided. For a given reaction, both the entropy and the enthalpy of activation may be obtained from the ln(K/T) versus l/T Eyring plot. The slope of the plot is equal to dH* /R, while the intercept is related to the entropy through the equation

AS* = {Intercept-ln(K/h)}R

where K, h and R are the Boltzmann, the Planck and the ideal gas constants, and T is the absolute tempera- ture, respectively.

The maximum error in ln(K/T) is the sum of the relative errors for both k and T. The latter is usually measured to within fO.l o C in the temperature range from 0” to 100” C where by far most of the kinetic runs have been carried out. This comes out to be a sufficient degree of accuracy in temperature since the relative error dT/T is not larger than 0.0003, thus negligible compared to the relative error in k (4 k/k) which is about 0.05, generally. Thus it may be assumed that

d ln(k/T) = d In k = d k/k = 0.05

A point which deserves more attention is the width of the temperature range which should be employed in order to obtain activation parameters of sufficient

Figure 1. A modified Eyring plot showing the variation of the activation parameters (slope gives AH* and intercept gives AS*) due to the experimental errors.

accuracy. It is obvious that the smaller is the difference between the highest and lowest temperatures studied, the higher is the uncertainty in both slope and inter- cept of the Eyring plot.

Using an empirical basis, let us assume that the un- certainty of the slope of an Eyring plot @AH* /R) as in Figure 1 be one-half of the difference of the slopes of the lines passing through points A and B, and C and D, respectively. It can be shown that dd H* /R is given by the formula

ddH*lR = 24 k TITz k(T,-T, + 24 T)

neglecting dT(T,-T1) compared to T2T1. Most com- monly, the temperature range employed in the kinetic studies of the reactions has a width of 20 degrees. This width plus a +O.l”C error in temperature measure- ment does not justify an accuracy better than +0.5 kcal mar’ for dH* or better than +2.0 cal moT* deg-’ fords*.

Thus if there are no experimental reasons (for instance, analytical limitations) to constrain the study of the temperature effect to such a narrow range, this range should not be less than 30” C.

Another important reason for adopting a wider temperature range is the need for a check of linearity in the Eyring plot. The case of a system reacting by two (or more) different parallel kinetic patterns of the same kinetic order is not infrequent. If the two paths have different activation parameters and if more than two points are obtained, the resultant Eyring plot will show curvature. The curvature may only become ap- parent over a significant temperature range.

Often a critical step in the calculation of dH* in- volves the placement of the straight line which appears, just by inspection, to fit the experimental points of the Eyring (or Arrhenius) plot. It should be recognized that this procedure, although time saving, can seriously decrease the degree of accuracy of the activation parameters. This “subjective effect” may be larger than it is usually believed. One of us (J.O.E.) has had the occasion to test on a statistical basis the degree of uncertainty introduced by a subjective graphical me- thod in the evaluation of activation energies. A set of experimentally derived rate constants and tempera- tures was given to a class of students of chemical kinetics as homework. Each of the students was asked to calculate the activation parameters at 600” by the usual graphical method. The data obtained from the students are presented in Figure 2-I which is a plot of E, (to the closest value of fO.l kcal mar’) against dS* (to the closest +O.l cal mar’ deg-‘). Each circle represents the answer of one (0) two (-0) or three (-C-) students. The calculated enthalpies and entropies are linearly correlated as is to be expected when a subjective error in drawing the slope of the

Page 4: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

50 J. 0. Edwards, F. Monacelli and G. Ortaggi

-12 I----=- -8 4 0 4 8 12 16 20 tant plot of E, (or dH* ) against AS* should be equal, of course, to the temperature chosen for the calculation; the chosen temperature was 600” and the value of the slope turns out to be 607’.

122 -2’3 -24 -20 -16

AS*

Figure 2. Four plots of AH* (or E,) versus AS* for cases where there appears to be variability in activation parameter determination. Line I refers to the student data mentioned on page 11; lines II, III and IV refer to hydrolysis data for trans- Co(en)&$+, Cr(NH3)5ClZf and Co(NHJ)&12+ respectively

Arrhenius plot is made. The error in the slope then introduces an error in the calculation of dH* , even when the rate constant used (and thus the d G* value used) is the same in every case. The slope of the resul-

Suffice it to say here that mathematical procedures such as least squares are to be preferred to more sub- jective procedures such as “eye-balling” the slope.

Data presented in Tables II and III concerning the aquation of the inert complexes Cr(NH3)5C12+, CO(NH~)~C~~+ and trans -Co(en),C12+ offer some striking examples of the consequences of a “subjec- tive linearization” of the Eyring and Arrhenius plots. These reactions have been studied by different workers under different conditions and by different techniques. While the rate constants are reasonably close to each other,* the activation enthalpies for the chloropenta- amminechromium(II1) and the chloropentaammine- cobalt(II1) cations span a 3 kcal marl range, and the

* As mentioned later, some of the rate constants listed were obtained by extrapolation to 25°C from data at different temperatures by using the AH* value calculated by each author. Thus, in some cases, at least in part, the differences in values of k reflect the differences in values of AH*

TABLE III. Activation Parameters and Reaction Conditions for Aquation of the Complexes Co(NH3)&lzf and trans-

-

Complex Reaction Conds.

_

0.1 M HNOZ Hz0 Hz0 0.1 M (K,H)CI~~ 0.002-1.0 (Na,H)N03 EtOH, Hz0 (30% w) DXN, H,O (30% w) ETG, Hz0 (30% w) 0.1 M HNOZ H20 H20, MeOH (20% w) MeOH, Hz0 (39% w) MeOH, Hz0 (60% w) EtOH, Hz0 (18% w) EtOH, Hz0 (36% w) EtOH, Hz0 (54% w) Acetone, Hz0 (20% w) Acetone, Hz0 (40% w) Acetone, Hz0 (60% w) DXN, Hz0 (20% w) DXN, Hz0 (40% w) DXN, Hz0 (60% w) SUC, H,O (10% w) ETG, Hz0 (10% w) Hz0 -0.01 M HN03

k AH* AS*

1.7 x lo4 23.7 -5.5 1.7 22.9 -8.1 2.1 24.8 -1.3 1.7 23.1 -7.4 1.8 22.9 -8.0 1.9 22.6 -9.0 1.1 22.7 -9.5 1.2 22.6 -10.0 1.3 23.3 -7.4 3.1 x 10” 27.5 13.1 3.8 29.4 19.9 2.2 26.4 8.7 1.5 24.5 1.6 0.94 22.3 -6.7 2.4 26.2 8.2 1.7 25.7 5.9 1.6 25.6 5.4 2.3 26.8 10.1 1.6 25.8 6.1 1.4 24.5 1.4 2.3 26.3 8.5 1.9 24.4 1.7 1.5 24.2 0.5 4.2 26.3 9.5 - 25.1 8.7 4.9 27.3 13.3 3.5 26.1 8.6

a These reference numbers refer to the list entitled Data Table References.

Ref.a

q,40 85 86 87 88 89 89 89 89

161 162 162 162 162 162 162 162 162 162 162 162 162 162 156 158 134 163

Page 5: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

Ligand Replacements in Octahedral Complexes

entropies span an 8 cal mol-’ deg’ range. The variations for truns-Co(en)ZCl,+ are considerably larger. Such differences are not likely to be due com- pletely to differing reaction conditions; rather they probably stem in part from arbitrary evaluation of the d H * values.

These data are presented in Figure 2 which shows that dH* (or E,) and dS* are for each complex fairly well correlated by a straight line. This situation is expected when AG* is essentially constant and a random error has crept into the calculation of AH*,

for instance, from an arbitrary choice of the slope of .the plot. The error in AH* must then be compensated for in the evaluation of AS* from AC’ and AH*

The slopes of the lines for the three complexes are about 280°K (i.e., reasonably near to the tempera- ture range of the experiments).

The line from the student data is shown on Figure 2 for comparison. Although the slopes are different in the several cases (600°K for the student data, and about 280°K for the coordination compound data), the hazard in simply putting a straight line to a series of points is clearly revealed. It is our contention that, all too often, the activation parameter data in the mechanism literature suffer from this subjective treat- ment of the rate data. Sadly, the errors in the resultant numbers are sufficiently large to hide interesting and real differences.

Most of the reactions of octahedral coordination compounds are carried out in aqueous solution. The reason is related to the solubility properties of the compounds; they are usually too poorly soluble in non-aqueous solvent systems to allow significant ex- perimental investigation.

It is a fairly common practice to add along with the reagents some “inert” (in this context, non-reac- tive) salt, such as alkali metal nitrates or perchlorates, in order to keep the ionic strength constant. It is questionable how inert such salts are, since although the anionic component of the salt may not behave as a reactant in the ordinary sense (e.g., as a ligand), it may interact with the octahedral substrate, especially when the substrate is cationic, with the formation of ionic associations having kinetic relevance. Perchlo- rates, which have been thought to be more safe to deal with, probably behave like the other mononega- tive ions.16 The general question is, however, far from settled and should be given more attention in the future.

The criterion of “constant ionic strength” has also been criticized”’ ” for those cases where the com- position of the ionic species is changed markedly. This happens often when the kinetic effect under investiga- tion is relatively small, so that for detection of the effect a variation of the concentration over a large interval is required. Actually, when the ionic strength is higher than O.lM, there is little justification for

51

assuming the constancy of activity coefficients at con- stant ionic strength but changing ionic nature. More- over it is possible that under such conditions the ex- perimental results could conform better to simple limiting laws such as the mass action law.

Only a few systems have been studied over a suffi- ciently wide range of ionic conditions (i.e., ionic nature and ionic strength) to allow judgment of the influence on activation parameters. In general, the variation in the parameters seems to be more random (as described above for the subjective evaluation) than rational. Nevertheless, it would be desirable that chemists work- ing the area of coordination compound mechanisms be aware of the possibility of selecting reaction condi- tions which would allow ready comparison of their data with those obtained by other workers.

At present, there are two practices. One is to extra- polate rate constants (and, less often, activation parameters) to zero ionic strength. The other is to carry out experiments at a given constant ionic strength so that all of the kinetically relevant data are referred to that fixed condition. The first practice is perhaps preferable on the basis of the fundamental concepts of physical chemistry, but it necessitates a time-con- suming procedure and leads to data which may not be directly comparable to those obtained at high ionic strength. The second practice is often necessary when, as we pointed out above, the concentration of a re- agent must be varied over a wide range to detect a particular kinetic feature. This happens, for instance, in the study of the anation reactions of complex ca- tions when the interchange rate constants of the ion- pairs have to be measured. In these cases, the extra- polation of the experimental data to zero ionic strength is essentially impossible since the lower practical limit of the ionic strength cannot be set much below OSM.

This ionic strength value may be considered roughly the border between those conditions (of the ionic me- dium) chosen when an extrapolation to zero ionic strength is possible and those when the concentrations must be kept high. It would be desirable that in both cases the experimental conditions were chosen in such a manner as to allow at least an extrapolation of the relevant kinetic data to this common value (0.5M) of ionic strength.

3. Symbols and Notations

A. General

The reactions for which data have been collected in the following tables are in order: solvolytic reactions in aqueous and non-aqueous media, acid-catalyzed aquations, base hydrolyses, isomerizations, and ana- tions and overall second-order ligand substitutions. Most of the notations and symbols used here have obvious meanings since they are those currently em-

Page 6: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

52 J. 0. Edwards, F. Monacelli and G. Ortaggi

ployed in the literature. Some points, however, need explanation.

tetren = tetraethylenepentamine

a) Within each reaction type, the metals follow the order of increasing atomic number; b) In the formula for the complex, the last l&and on the right is the one which is replaced or reacts and is written beginning with the donor atom; c) We have been unable to find a good general criterion for listing all the complexes. We decided to group the compounds of a given metal ion undergoing the same general type of reaction into classes according to the nature of the five inert donor atoms. At least three (out of the five) donor atoms are considered to identify a class. Compounds not belonging to a class as above defined, have been listed in the last part of the table.

cytam tu tmd DXN ETG sue tet-a

tet-b

trans[ 14]diene

= 1,3,5-triaminocyclohexane = thiourea = 1,3-diaminopropane = dioxane = ethylene glycol = sucrose = C-meso-5,7,7,12,14,14_hexa-

methyl-1,4,8,11-tetraazacyclo- tetradecane

= C+-5,7,7,12,16,16_hexame- thyl-1,4,8,1 l-tetraazacyclo- tetradecane

= 5,7,7,12,14,14-hexamethyl- 1,4,8,11 -tetraazacyclo-tetra- deca-4,ll -diene

B. Reaction Conditions In aqueous media, the pH (or pH range) and the

ionic strength ,U (or ionic strength range) are indicat- ed. Negative pH values correspond to hydrogen ion concentrations higher than lM, with the defining equation being pH = -log[H+]. Also the nature of the electrolyte present in the medium is given. Often the reactions are carried out in the presence of mixed electrolytes. Whenever possible shorter notations like (Na,H)C104 for NaC104 + HC104, or (K,Ba/2,La/3) Cl for KC1 + BaClz + LaCL have been used. When no electrolyte other than the complex itself are used, “none ” appears in the column headed Medium; in these cases, the counter ion is specified within brackets, <>, under Comments. When non-electrolytes like methanol or sucrose are added to solvent water, they appear under Medium together with the added electro- lytes (if any). Sometimes the amount of non-electro- lyte is shown as a molar ratio, or as a weight percent (w), or as a volume ratio (v).

C. Abbreviations The following is a list of the less common abbrevia-

tions which have been used for compounds:

bn

pn tet-me

Me-en Et-en n-Pr-en tn dan cyclam

2,3,2-tet tren trien TMS dien

= Butylenediamine = Propylenediamine = (C,C,C’,C’)-tetramethyl-

ethylenediamine = N-methylethylenediamine = N-ethylethylenediamine = N-n-propylethylenediamine = NHz(CH&NHz = NH2CH2C(CH3hCH2NH2 = 1,4,8,11 -tetraazacyclo-

tetradecane = 1,4,8,11 -tetraazaundecane = P,P’,/I”-triaminotriethylamine = triethylenetetramine = sulpholane = diethylenetriamine

D. Rate Constants and Activation Parameters The rate constants given in the column designated

k are at 25’ C if not otherwise denoted aside. The time unit is set, and for the second-order con-

stants the concentration units are mol liter-’ (M-l). When necessary and possible, the values of k at 25’ C have been calculated by use of the enthalpy of activa- tion and the experimental rate constant nearest to 25 “C. Those cases where values of k for other tem- peratures are given correspond to systems studied at only one temperature and have been included either when no other kinetic data are known for the same system or to allow a comparison with data obtained in different studies. In some cases, the rate constant at 25” C has been calculated by using dH*, dS* and the Eyring equation. These values have been listed in parentheses, ().

Enthalpies and entropies of activation are given as kcal mar’ and cal mar’ deg-’ respectively. Some dH* values have been obtained from measurements at only 2 temperatures and/or with a particularly nar- row temperature range and so are felt to be less re- liable than the others. This is indicated under the column Comments by the symbol (2~) and/or by the width of the temperature range explored. The un- certainties in d H* and d S* are not given explicitely in the tables. However, when they are estimated to be higher than 1’ kcal mar’ and 3 cal mar’ deg-‘, the numbers are underlined. The units of dV* are cc mol-’ . Many entropy data have been calculated by us, since in some cases this calculation had not been car- ried out by the authors of the work or they had calcul- ated it in the original article as a pre-exponential factor or equivalent.

In some cases we have found appreciable discrep- ancies between dS* given in the literature and those calculated by us using the rate constant and the activa- tion enthalpy given by the authors. Some of these discrepancies were due to incorrect employment of the activation energy E, (instead of the activation en-

Page 7: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

Ligand Replacements in Octahedral Complexes

thalpy) or to the use of the minute as time unit for k while the Planck constant was expressed on the se- cond scale. In such cases, the dS* values listed are those calculated by us. Whenever the reason for the observed discrepancy remained unexplained, the result of our calculation has been given in parentheses, to- gether with the original value.

The rate constants k1 of the kinetic term k-r [H+]-’ of the aquochromium(II1) complexes have been converted into the corresponding ken rate constants (base hydrolysis) by setting ken = kr/Kw. Consequently, the activation parameters have been corrected for the standard enthalpy and entropy of the process Hz0 P OH- + H+, (AH = 13.3 kcal mar’ andd S = -19.3 cal moT’ deg-‘).

All of the calculations have been carried out with the use of an Olivetti 101 desk computer.

53

E. Experimental Methods

The technique adopted for each kinetic study is indicated by a symbol under the column Method. The following is the list of symbols and corresponding technique used:

A C co D esr K G M nmr nmr(lb)

P PH pH stat Pm R S S fm

S sf

Stj

T Tr

= amperometric method = calorimetric method = calorimetric method = densitometric method = electron spin resonance method = conductometric method = gravimetric method = mass spectrometric method = nuclear magnetic resonance method = nuclear magnetic resonance line broad-

ening method = polarographic method = potentiometric pH measurement = constant pH titration method = polarimetric method = radioactive isotope labelling technique = spectrophotometric method = spectrophotometric method (w. fast

mixing) = spectrophotometric method (w. stop-

ped-flow) = spectrophotometric method

(w. T-jump) = titrimetric method = titrimetric method (w. flow apparatus)

F. Remarks and Comments

In some instances (aside from the activation param- eters and similar types of data in specifically designated columns) in the column headed Comments, short re- marks have been included. These concern, as a rule, clarifications of some aspect of the specific system studied (such as stereochemical course or position of

bond breaking), the nature of the counter ion (where given), and any further observations that we feel are useful for a better understanding of the data and me- chanism. When indicating the dependence of rate parameters on reaction conditions such as reagent concentration, short notations have been adopted. The following is a specific example: kt[H+]t signifies that the rate constant increases (t) with increasing ( t) hydrogen ion concentration.

Other remarks and comments are also found in the table footnotes.

The review has been put together with different sets of tables and references. The tables used to show speci- fic points relative to textual material are placed at appropriate sites, and in many instances the relevant references are cited in the list of Text Reference pre- sented at the end of the text. On the other hand, the tables containing the compilations of literature data are located at the end of the review and are termed Data Tables; the citations for these data are placed in Data Table References. The two types of references (i.e., for text material and for data tables) are number- ed separately. Although this results in some redund- ancy in the references, it is felt to be more flexible and to minimize the possibility of numbering errors.

4. Metal Oxidation State and Size

The emphasis in this review is on coordination com- pounds having the central metal atom in the +3 oxida- tion state. For completeness, however, we give here a brief discussion of the influence of oxidation state on the rates of ligand replacement. We consider that the effect of oxidation state is primarily electrostatic in nature (ion-ion, ion-dipole, etc.).

With few exceptions (e.g., Mn(CN)6s-), rates of replacement for complexes with central metals in +l oxidation state are very fast. The +l hydrated cations (alkali metal cations, Ag+) have water exchange rate constants in the vicinity of 10” with small variation of alkali metal cation rate with size (Cs+ > Rb+ > K+ > Na’ > Li+). This is the expected pattern for rate varia- tion, whether the mechanism be associative or dis- sociative, and little other data with mechanistic implica- tions are available.

For the coordination compounds having metals in the +2 oxidation state, most of the complexes fall into the category termed “labile” by Taube.’ With the newer fast reaction techniques, many ligand replace- ment rates have now been measured. Some relevant reviews are available.9’107’3 The data in the review of Wilkins13 suggest that replacement reactions in octa- hedral nickel(II) complexes follow an interchange mechanism not unlike that observed with complexes of cobalt(II1).

Page 8: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

54

The influence of oxidation state also is seen in the behavior of platinum(IV) complexes. These are so inert towards a dissociative interchange mechanism ‘that more complicated, indirect paths for ligand re- placement predominate. Catalysis by base, by Pt(II1) intermediates, or by Pt(I1) complexes, even though slow, carry the bulk of replacement.

The influence of central atom oxidation state can, to a significant degree in some cases, mask the effects of electronic structure. Both ligand fields and metal oxidation states are important in determining rates of ligand replacements. Their individual and combined influences on the mechanism (as contrasted to the obvious influences on overall rates) could well be the subject of an interesting review. For the present re- view, we shall for practical reasons restrict our atten- tion to octahedral complexes of metals in oxidation state plus three.

If one has two metal ions having different sizes but with the same coordination number and electronic configuration (as, for example, in the complexes of cobalt(II1) and rhodium(III)), an entering ligand is more readily bonded to the larger metal as the leaving group moves away. In terms of the octahedral wedge transition state, the interchanging ligands both can be less far from the “surface” of the metal at the point of a transition state. The value of AH* will be lower and of AS* more negative for the larger cation. The mechanistic conclusion is that one can say that the reaction may have a greater fraction of associative character as size increases.

The predicted change in AS* value with metal ion size is seen in the data for hydrolysis of complexes hav- ing the d6 low spin electronic configuration shown in Table IV. The decrease in AS* from -2 for the cobalt complex to -6 for the rhodium complex and the further decrease to -16 for iridium when trifluoroacetate is the leaving group are believed to result from the in- crease in associative character with metal size. The changes in AH* are barely above the level of experi- mental error. The predicted decrease in AH’ expected from the increase in metal size is presumably com- pensated for by the contribution to activation enthalpy

TABLE IV. Activation Parameters for Hydrolysis in Acid Solution of Trifluoroacetato and Nitrato Complexes.

Complex AH* AS* Ref.a

(NH&ZOO~GF~~+ 26 -2 97 (NH3)sRhO&F3’+ 25 -6 97 (NH&~OZC~F~*+ 24 -16 97 (NH3)&oN03*+ 24.3 1.9 94 (NH3)5RhN03*+ 23.3 -3 160 (NH~)~I~N~~~+ 26.1 -4 160

a These reference numbers refer to the Data Table Refer- ences list.

J. 0. Edwards, F. Monacelli and G. Ortaggi

due to ligand field stabilization which increases in the order Co < Rh < Ir. When nitrate ion is the leaving group, the expected trend in AS* values is again seen and no clear trend in A H* values is apparent.

Another factor that can be important in determining the details of mechanism and that is related to metal ion size is orbital extension. The filled d orbitals of the central metal ion for low spin complexes of Co(III), Rh(II1) and Ir(II1) have different extensions in the space around the metal. Depending on the bonding, non-bonding, and antibonding character, orbital over- lapping will influence the energy of the transition state. Since the number and importance of the several inter- actions possible depends on the nature of the atoms, we cannot discuss it here; suffice it to say that the in- fluence of metal ion size and nature on the orbital length and hence on the efficiency of overlapping will have to be er tions.

5. Acid Hydrolysis

llored in more detailed investiga-

Aquation)

As a reference point, we shall employ the aquation of cobalt(II1) complexes. There are a large number of results which indicate that the mechanism involves dissociative interchange. The published’3334,s,“,9314 data (e.g., for AS* , AV’ , rates with sterically-hinder- ed ligands, lack of discrimination between incoming nucleophiles, and the linear free energy relation be- tween leaving ligand rates and equilibria) can be satisfactorily explained on the basis of this I,, model. The bond between cobalt and the leaving ligand is considerably stretched, and the new bond between metal and entering ligand (here water) is little formed. In most cases, one sees retention of geometric con- figuration during replacement suggesting that the entering water molecule drops into the hole which is in process of formation on departure of ligand. Con- cerning this mechanism, we concur with Rosseinsky” who - in another mechanistic context - has said “Se non & vero, 2 hen trovato”. Roughly translated (provided, of course, that he does not object to our addition of the two accent marks), this means “Even

if not the truth, it is well founded”. At first sight, there seems to be little new in the

collected data on aquation reactions which leads to definitive conclusions. Some representative data for cobalt(II1) and rhodium(II1) are shown in Table V. The reaction in each case is replacement of ligand Y by HzO. The activation enthalpies do not appear ex- ceptional (i.e., not too high or not too low) and the entropies fall not too far from zero. Nevertheless, careful inspection of the numbers indicates that some conclusions are warranted. For example, for each of the six cases where comparison can be made, the value

Page 9: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

Ligand Replacements in Octahedral Complexes

TABLE V. Rates and Activation Parameters for some Octahedral Aquation Reactions.”

55

Rh(III) Co(II1)

Y- k dH* AS* Ref.b k

I. For M(NH3)gY 2+

NOa- 1.2 x 10-5 23.3 -3 160 2.4 x 10” so,*- 1.6 x lo-+ 21.4 -13.3 102 8.9 x 1o-7 CFaCOz- 2.0 x lO-’ 25 -6 97 1.5 x lo-’ I- 6.2 x 1O-9 26.2 - 7.8 181 8.3 x 10” Br- 3.4 x lo* 24.6 - 9.9 187 6.5 x lo-+ CT 3.8 x 1o-a 24.2 -11.1 187 1.7 x lo+

II. For tranr-M(en)zClY+

cl- 5.4 x loa 24.7 -9 190 3.1 x 1o-5 Bi 8.3 x lo+ 27.6 -3 190 1.1 x lo4

a Rate constants have units of see-’ and were taken at 25’ C. b These reference numbers refer to the Data Table References. ’ The data for Co(NH3)JZ+ are complicated by a concurrent redox process.

AH* AS* Ref.b

24.3 + 1.9 94 22.7 -10 102 26 -2 97 19 -16 90’ 23.9 - 3.0 85 22.9 - 8.1 85

27.5 +13.1 161 26.0 +10.6 136

of dS* for the cobalt complex is more positive than for the rhodium complex.

The activation entropies for the solvolysis of com- plexes of the type ML5XZ+ (where M = Cr, Rh or Ir and L = NH3 or HzO) are almost always lower than those for CO(NH~)~X*+ which we have taken as the reference. From the direction of this difference, we can infer that there is more associative character in the replacement mechanisms for Cr, Rh and Ir than for Co. This is in agreement with conclusions in the litera- ture based on other types of mechanistic information.”

As the associative character of the replacement in- creases, there should be a tendency towards decreased enthalpy of activation. All other things being equal, the energy of the bond being formed partially com- pensates for the energetic cost of bond-breaking. The activation enthalpies of the other complexes are usually lower than those for the analogous cobalt complexes, although there certainly are exceptions. The factors influencing rhodium(III) and cobalt(II1) enthalpies are probably balanced, so that the previous generaliza- tion” dH* rr >dH* Rh >dH*,c, must now be accepted with caution even if occasionally true; once again the data in Tables IV and V are interesting in context.

The compilation of data for aquations of complexes is presented in Data Table I below.

One group of ligands (including F, CN- and N3-) appears to be exceptional in terms of activation param- eters for their aquations. A case in point is Cr(H20)5 X2’. The postulated mechanism is

Cr(Hz0)5X2C # Cr(H,O),(OH)(XH)*+ (fast)

Cr(H,0)4(0H)(XH)2C+ Cr(H20)4(OH)2+ + HX (rate)

Cr(H20)4(0H)2+ + H30++Cr(H20)63+ (fast)

(The possibility that Hz0 from solvent participates directly in the rate step to form Cr(H20)5(OH)Z+ cannot be excluded, however we shall ignore this pos- sibility at this point.) The ligand XH should be a bet- ter leaving group than X- and the concurrent con- version of Hz0 to OH- in the coordination sphere should release electron density to the central atom making the loss of XH easier. Therefore, the overall effect of the change in proton position should be a rate enhancement. The ligands X- involved in this mechanism turn out to be the same ligands as those which undergo acid-catalyzed aquation (see below), and this is not surprising as placement of a proton on X- is an important aspect of both mechanisms. Con- version of Hz0 in the coordination sphere to OH- is quite analogous to the base hydrolysis mechanism discussed below.

The evidence for this type of proton tautomerism is not compelling on the basis of our activation param- eter compilation, however the mechanism is a reason- able one. The aquation of Cr(NH3)5F2’ does seem somewhat exceptional.

Considering aquations in general, the activation entropies are not far from zero, and this is not un- reasonable for an interchange mechanism. Neverthe- less, no clear trend between either dH* or dS* and the nature of the leaving group is apparent in this table. It is interesting to note that the values of dH* are practically insensitive to the overall electrostatic charge on the complex. One can speculate that the Coulomb contribution to the metal-ligand interaction energy is hidden among other charge effects, as for example in solvation of ground state and/or transition state.

In principle, the data for aquation of similar cis and trans complexes can be employed to explore the pos-

Page 10: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

DA

TA

TAB

LE

I. A

quat

ion

(Aci

d H

ydro

lysi

s).

Com

plex

p(

m)

PH

Med

ium

k

- (N

a,H

)C10

4 1.

0 10

.7

-22.

6 C

r(H

20)s

(tetre

nI%

)‘+

4 _

HC

lO.,

-8.0

X

lo4

28

.9

1.4

6+

Cr(

HzO

),(tri

enH

3)

2.0

_ H

ClO

z,

I x

lo+!

27

.5

- 2.

9

1.0

o-1.

7 (L

i,H)C

104

Cr(

HzO

),B?’

1.

0 o-

1.3

(Li,H

)C10

4 C

r(H

zO)s

BrZ

+ 2.

0 SO

.6

(Na,

H)C

104

0.4-

0.67

1

(Cr/3

,H)C

lOh

2.06

51

.3

(Na,

H)C

lO.,

0.17

1

HN

03

1.0

1.0

1.0

1.0

1.0

04.7

(L

i,H)C

104

1.07

O

-O.6

(N

a,H

ClO

,

1.0

1.0

2.06

51

.3

(Na,

H)C

lO,

9.2

X 1

0”

26.9

8.

9

1.0

0.4-

3.2

(Li,H

)ClO

., 4.

1 x

lO+

32.4

16

.4

o-3

-0

-0

o-1.

2

o-1.

7 o-

3.1

Tabl

e R

ef.

No.

(Na,

H)C

104

(Li,H

)ClO

,,

(Li,H

)C10

4

(Li,H

)C10

4

(Li,H

)ClO

,, (L

i,H)C

104

2.3

X 1

0-s

3.2

x 10

” 8.

7 X

lo-’

(40”

) 1.

2 x

lo4

6.5

x 1o

-5

5.0

x 1O

P

6.2

X lo

--”

2.8

X lo

-’

4.3

x IO

4 9.

0 x

10”

(30”

) 6

x 10

-s

1.5

x 10

” (3

0”)

8.4

X l

o-’

1.2

x 10

-s

26.1

7.

8 16

.2

-15.

6 -

_

27.2

-

3.5

21.9

-

4.2

21.8

-

5.1

28.7

-

4.4

24.3

-

7.0

23.8

-

3.2

_ _

28.0

16

.1

- _

23.0

-

0.2

27.9

12

.7

S SF

S

S

S

S

S

D;<

CT>

; H

Cl

(but

no

t N

aCl)

is r

epor

ted

to

caus

e th

e im

med

iate

ex

chan

ge

of t

wo

Hz0

m

olec

ules

M

; (2

T,7’

C

ran

ge)

S S

1 33

2 30

9 30 2 3 5

S

4 7 6

325

S 8

S S; C

r(H

20)4

(OH

)(FH

y’

is s

ugge

sted

as

the

re

activ

e sp

ecie

s S S S

8 9

SC

S S S; C

r(H

20b(

OH

) (H

CN

)*+

is s

ugge

sted

as

the

re

activ

e sp

ecie

s S;

Cr(

H20)4

(OH

) (H

CN

)‘+

is s

ugge

sted

as

the

re

activ

e sp

ecie

s S;

Cr(

HzO

)d(O

H)

(NaH

)*+

is s

ugge

sted

as

the

re

activ

e sp

ecie

s

9 10

11

12

13 9 74 7 15

Page 11: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

frun

s-C

r(H

zO)a

Clz

’ 1.

0 H

Cl

8.2

x 10

-s

25.9

trans

-Cr(

H20

)4C

l~+

0.5

l-l.3

7 (N

a,H

)Cl

8.3

x 1t

F _

cis

+ tr

am-

Cr(

H20

)4

(NC

S)SC

N+

1.0

o-1

(Na,

H)C

104

1.1

x 1o

A

19.6

C

r(H

20),(

tetre

nH3)

6f

4 -0

.6

HC

l04

3x10

” 25

.3

Cr(

H,O

)s(C

N)(

NO

)(H

CN

)‘+

cis-

Cr(

H2O

),(N

H,)C

l,+

[run

s-C

r(H

ZOh(

NH

a)C

lz+

1.0

1,2,

3-C

r(H

,O)s

(CN

)(H

CN

)’

2.0

Cr(

NH

3)sO

Hz3

+ 1.

7 C

r(N

Ha)

50H

Z3+

0.40

C

r(N

Hs)

5N3H

3+

8.0-

10.8

2.0

0.33

1.0

1.0

1.0

5-11

1.

0

2.0

1.0

2.0

1.0

3.0 1.0

1.7

0.25

-1.5

_ 4 1.

0 1.

0 1.

0 1.

5 3.

0

1.7

1.0

SO.6

(N

a,H

)C10

4

0.82

(N

a,H

)C10

4

2 (N

a,H

)ClO

.,

O-l.

1 O

-1.0

o-1.

3

0 o-1.

3

20

<o

(Li,H

)ClO

,, (L

i,H)C

104

HC

l04

(Li,H

)C10

4

(Na,

HM

04

(Li,H

)ClO

, H

CIO

., (N

a,H

)C10

4 H

ClO

, H

Cl0

4

- (N

a,H

)C10

4 ~0

.6

HC

l04

- _ H

Cl0

4

O-O

.82

20

o-1

co.5

(Na,

H)C

104

(Na,

H)C

lOd

(Na,

H)C

lO,,

HC

l04

(Na,

H)C

104

(Na,

H)C

lO,,

04.5

(N

a,H

)C10

4

o-o.

5 (N

a,H

)C10

4 -0

.2-1

.0

(Na,

H)C

104

1.3

(Na,

H)C

104

1 H

CIO

, -

HzS

O4

6 x

lo-’

(4

0”

C)

9.1

x lo

-+

- -

S 16

27.5

-

3.0

1.7

x 1o

-5

23.5

-

1.6

7.2

x 10

” 21

.4

- 5.

7 7.

7 x

10-s

21

.6

- 5.

1 7.

4 x

1o-3

14

.7

-19.

0 _

-33

-

1.4x

1F

20

.2

-17.

7 7.

5 x

lo-7

21

.9

-13

4 x

lo-’

23

.6

-9

3.1

x lo

-’

23.4

-

9.8

2.2

x 10

” 27

.1

-3

4.3

x 10

” _

_ - 9.

3 (+

9.7)

- -

9.8

-6

5x

10”

13.3

-2

4 4.

8 x l

o-’

24.4

-6

(8

.2

x 10

”)

12.6

-3

5 2.

7 X l

Od

24.5

-2

1x10

-+

26.9

8.

1 x

lo-’

23

.7

5.3

x l@

18

.6

3.0

x ltr

’ 26

.8

3x10

-+

21.4

2.5 x 1

O-3

19

.7

2.8

x lo

@

22.5

4.8

x 1F

19

.6

5.8

x lo

4 16

5.

47

x 10

-s

22

5.24

x

lo-’

23

.2

1.59

x

lo4

19.1

4.0

- 6.

9 -1

1 1.

7 -

7.4

(-

12)

F46.

3)

ZU

(-3.

9)

-13

-19

-4

0.0

-11.

8

S; S

N2

beha

vior

is

su

gges

ted

S;dS

* =

+l.O

if

the

trans

ition

st

ate

is t

he

sam

e fo

r bo

th

aqua

tion

and

Cr-

S +

Cr-

N

isom

S S S

(2T)

S;

A H

* va

lue

refe

rs

to

Cr-

0 cl

eava

ge

S S S S S S; c

is

to P

ans

isom

. w

as

not

acco

unte

d fo

r

S (2

T,

15’

C r

ange

)

17

18

19

20

21

22

23

24

309 30

3 27

27

S S S; s

ubst

rate

is

a m

ixtu

re

of i

som

ers.

Prod

uct

is

Cr(

HZO

)S(te

trenH

.,)7f

28

331

332

esr

ST

- S; p

rodu

ct

is C

r(H

zO)d

(te

trenH

3)6+

S S S ST

ST

25

26

29

332 31

30

30

32

33

esr

25

ST

26

ST

26

S 27

9 M

;k?

pHt

34

M;

[com

plex

] =

0.05

M

318

S 35

Page 12: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

DA

TA

TAB

LE

I. (C

ont.)

Com

plex

p(

m)

PH

Med

ium

k

AH

’ A

S+

Cr(

NH

3)50

NO

zZ+

Cr(

NH

,),O

CO

CF,

*’

Cr(

NH

&O

CO

CC

lsZ+

C

r(N

H3)

50S0

3+

Cr(

Me-

NH

*)&

1 *+

1.0

0.1

0.1

_ 1.0

0.5 0.1

0.2 1.0

0.10

6 - _ _ 1.

0 0.

1 0.

2 1.0

0.1

0.2

0.1-

0.2

0.06

0.

2 0.

07

0.10

6 1.

3 (N

a,H

)ClO

,, 4.

1 x

lo-’

29

.6

11

1.0

0.01

0 0.

10

0.13

0

(ext

.) 1.

0

1.0-

l .3

(N

a,H

)C10

4 3.

70x

10-l

21.3

7

NaN

OS

9.7

x lo

4 26

.0

l-10.

5 (N

a,H

)(C

104,

OH

) 2.

54

x lo

-’

24.4

14

- 8.

0 x

lo+

21.8

H

ClO

‘, 7.

3s

x 10

” 23

.6

(Na,

H)C

lOd

6.8

x 10

” 22

.2

l-10

(Na,

H)(C

lO~,

OH

) 9.

3 x

lo4

1-2

~Na,

DW

04,(

D20

) 5.

6 X

10d

0.

4 (N

a,H

)C10

4 3.

9 x

lo+

1.3

(Na,

H)C

104

6.8

x 10

” -

MeO

H

: Hz0

6.

0 x

10”

1 :4

..5

(m)

_ Et

OH

: H

Z0

6.0

x lO

A

1 :4

.5

(m)

- 5

x 10

-s

HC

lO‘,

6.X

x

10”

l-10.

0 W

,H)(

CK

kOH

) 1.

0 x

lOA

l-2

(N

a,D

FXM

D20

) 9.

8 x

lo-’

H

ClO

a 7.

8 x

1O-3

(2

6°C

) l-1

0 (N

a,H

)(C

KL

OH

) 1.

0 x

1o-3

l-2

(N

a,H

W0d

D20

) 1.

5 x

1o-3

1.

2-2

(Na,

H)C

lO.,

3.6

x lo

4 2.

5 H

ClO

z,

9.3

x lo

4 l-2

W

a,D

)C10

dD20

) 4.

0 x

lo-

1.5

HC

l04

8.7

x lo

4

slig

htly

K

N03

3.

2 x

1om

5 ac

idic

(N

a,H

)OC

OC

Hz

HC

l04

7.0

x lo

+ 1.

03-1

.72

(Li,H

)CI0

4 8.

7 x

lo4

l-2

(Na,

H)C

104

3.6

x lO

A

- _

1.2

x lo

4 0.

4 (N

a,H

)C10

4 (7

.0

x 10

”)

10.8

-

3.4

- 4.

6 (-

6.8)

-

8.7

- 2.

8 -8

21.8

-

8.4

22.4

-

7.5

22.3

-

8.5

20.7

-1

2.7

21.5

-

10.3

21.6

-1

0.0

22

- 4.

4 23

.9

2.6

20.9

-

6.7

22.3

-

2.1

_ -

20.8

-

2.5

22.4

3.

7 26

.3

- 4.

9 24

.9

- 7.

2 24

.6

- 9.

8 24

.7

- 8.

0

34.4

21.0

20

.2

21.5

(22)

36.3

-3

-2.5

(-

13

.9)

-11.

3

(-13

)

Com

men

t Ta

ble

Ref

. N

o.

SW

36

T

38

P;S

39

- S S; k

ind

ep.

of p

H

but

dep.

on

p P P S;

k t

[H+]

&

(bas

e ca

t.)

S T

q 40

37

43

41

44

42

34

45

T 45

_ S P P S; D

iffic

ultie

s fro

m

solu

bilit

y pr

oble

ms

P P S; (

10”

C r

ange

) S P S,

T;A

H*

andA

S*

are

give

n fo

rp

ext.

to 0

S;

Not

e th

e la

rge

disc

repa

ncy

rela

tive

to

othe

r da

ta

on

the

sam

e co

mpl

ex

S

cl 4

0 37

41

44

37

41

44

326 40

44

46

34

213

S S 48

49

S S T; k

t [H

+]J.

(bas

e ca

t.)

320 50

42

Page 13: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

Cr(

Et-N

H2)

sC1*

+ C

r(A

ll-N

H2)

&lZ

+ ci

s-C

r(N

Ha)

4(H

zO)C

12+

cis-

Cr(

NH

3)4(

H20

)C12

+

cis-

Cr(

NH

3)4(

HzO

)IZ+

ci

s-C

r(N

H3)

4(H

20)1

2+

cis-

Cr(

NH

3)4(

0H)I

C

trans

-Cr(

NH

3)4(

H20

)CIZ

+

trans

-Cr(

NH

3)4(

HzO

)Cl*

+ tru

ns-C

r(N

H3)

4(H

20)B

rZ+

truns

-Cr(

NH

a)4C

h+

trans

-Cr(

NH

3)4C

1Br+

tra

ns-C

r(N

H3)

4ClI+

trans

-Cr(

NH

a)dB

rCl+

tru

ns-C

r(N

H3)

4(0H

)If

Cr(

NH

3)4(

NC

S)N

HsZ

+

twin

s(?)

-Cr(

en)(

HzO

hBrZ

+

trans

(?)-

Cr(

en)(

NH

a)(H

20)B

rz+

Cr(

en)(

H2O

)Klz

+

trans

-Cr(

en)F

z(en

)+

trans

-Cr(

en)(

NC

S)2e

n+

cis-

Cr(

en),(

H20

)C12

+ ci

s-C

r(en

)Z(H

20)B

f+

cis-

Cr(

en)z

(HzO

)NC

S2+

ci.s-

Cr(

en)z

Clz

+ ci

s-C

r(en

)&&

+ ci

s-C

r(en

),Clz

+ ci

s-C

r(en

),Br*

+ ci

s-C

r(en

)2(N

a)2+

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

-0

1.0

2.0

0.3

0.1 1.0

0.01

0 0.

10

0.4

0.4 1.0

(Na,

H)C

104

3.3

x lo

-’

26.0

(N

a,H

)C10

4 2.

9 x

lo-’

26

.0

(Na,

H)C

104

2.0

x lO

A

21.4

H

C10

4 5.

4 x

10”

21.3

l/[H

+]

(Na,

H)C

lOd

8.0

x 10

-s

20.2

ex

t.to

0 O

-l.78

l/[

H+]

ex

t.to

0 12

-14

l/[H

+]

ext.

to 0

O

-l .7

8 l/[

H+]

ex

t. to

0

04.7

o-

o.7

o-1

o-o.

7 12

-14

O-O

.8

SO.5

0.5-

l

l-2

(Na,

H)C

lO.,

1.1

x 10

” 19

.7

-6

S 32

7 (N

a,H

)ClO

d 8.

5 x

lo4

20.2

-

4.9

S 35

2

Na(

C10

4,0H

) 6.

3 17

.0

HC

104

8.6

x 1o

-7

23.4

HC

lO.,

6.5

x lo

-’ 23

.3

(Na,

H)C

104

1.0

x 10

-s

21.6

2 -

7.8

- 9.

5 -

9.4

(-4.

4)

-5

- 6.

7

S S,T;

29

0%

tran

s pr

od.

- S

327 51

q 35

2 35

2

(Na,

H)C

lO.,

(Na,

H)C

104

(Na,

H)C

lOd

(Na,

H)C

104

(Na,

H)C

104

7.4

x 10

-s

9.5

x lo

-5

S 32

7 S

352

4.9

x 10

” 3.

1 x

lOA

3.

3 x

lOA

21.4

20

.9

21.0

20

.2

18.0

S; 2

92

% t

ram

pro

d.

51

S; 2

95

% b

ans

prod

. 51

S

327

(Na,

H)C

104

Na(

C10

4,0H

) N

aOH

(Na,

H)C

104

2.9

x lo

-4

19.5

2.

1 18

.7

3.9

x lo

-’

28.5

S; 1

00%

tr

am p

rod.

51

S

327

S 21

3

4x

lo4

22.6

- 7.

8 -

6.8

(_?4

) -

9.3 5.5

11.9

(7

.8)

- 7.

0 S,

T;

prob

able

co

nfig

. fo

r B

r- an

d a

Hz0

m

olec

ule

31

(Na,

H)C

lO.,

4.0

x l@

19

.2

- 9.

2 33

(Na,

H)C

104

4.1

x 10

” 20

.1

- 7.

0

(Na,

H)C

lOa

24.7

3.

8

24.1

-

0.3

ST;

prob

able

co

nfig

. re

fers

to

the

B

r’s

S,T;

pr

obab

le

conf

ig.

refe

rs

to t

he

Br’

s

ST

31

3.1

x 1o

-5

32

0.24

-1.3

6 (N

a,H

)C10

4

HN

O3

HN

Oa

0.06

4.14

H

ClO

., 0.

75

HC

104

0.10

H

NO

Z 0.

10

HN

Os

- _

none

0.

1 l-2

(L

i,H)C

lOd

0.4

2.12

(N

a,H

)ClO

d

1.2

x 10

3.5

x 1f

P 2.

8 x

10-s

1.

8 x

lo4

1.5

x lo

-+

3.3

x lv

” 3.

5 x

lo”

3.8

x lo

-4

2.8x

1O

-3

1.4x

lo

4

- 1.0

-

1.2

- 3.

7 -1

8 (-

11)

- 9.

5

23.8

-

3.6

(35.

3)

(39.

1)

- -

_ -

20.5

-

5.7

- -

2 173

_ -1

5.3

- -

23.4

-

6.9

T; k

t [H

+]

$ (b

ase

cat.)

42

T;

k t

[H+]

& (b

ase

cat.)

42

S;

295

%

cis

pr

od.

51

- q

352

S 35

2

S; t

he

prod

. is

tra

ns-

C

rF2

(en)

(enH

) A

H*

.l~l;d

S*

&J

S T; (

2T),

100%

ci

s pr

od.

S S T;

100%

ci

s pr

od.

T T; <

Cl->

S;

97

% c

is p

rod.

S

328 63

52

53

54

52

55

56

53

58

Page 14: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

DA

TA

TAB

LE

I. (C

ont.)

Com

plex

r(

m)

PH

Med

ium

k

cis

-Cr(

en)z

(OH

)Cl+

0.

1

cis-

Cr(

en)z

(NC

S)C

l+

0.1-

1.0

fran

s-C

r(en

)z(H

20)B

?+

1.4

trans

-Cr(

en)&

&+

0.1

truns

-Cr(

en)2

Clz

+ 0.

1 tru

ns-C

r(en

)&+

_

trans

-Cr(

en)&

Z+

0.1

truns

-Cr(

en)Z

Brz

+ 0.

1 rr

ans-

Cr(

en)Z

(OH

)Cl+

0.

1

0.1

cis-

Cr(

dipy

)zC

lz+

trans

-Cr(

dipy

),Cl?

+ tra

ns-C

r(tm

d)z(

HzO

)Cl*

+ tra

ns-C

r(tm

d),(H

zO)B

rZt

trans

-Cr(

tmd)

2CIz

+ Pu

ns-C

r(tm

d),B

r,+

&,a

-Cr(

trien

)Ch+

C

r(H

,O)(

tetre

nH)‘

r+

0.5

- 1.0

1.0

0.1

0.3

0.1

4 4

cis

-Cr(

ox)(

a -tr

ienH

)‘+

CrC

la(H

ZO)Z

tu

CrC

ls(H

zO)tu

z C

rC13

tu3

Cr(

acac

)a

truns

-C

r(N

H3)

* (N

CS)

.,-

truns

-Cr(

NH

3)2(

NC

S)~-

1.9

12

12

12

_ - so.1

$0

.1

2.0 1.0

2.0

0.1-

2 0.

1-2

0.1-

2

10.1

-10.

7 en

( Li

C10

4 H

ClO

,, H

N03

H

NO

a 1.

0-2.

9 (L

i,H)N

03

3.7

_ HN

Oa

1-2

(Li,H

)C10

4 9.

8-10

.8

1 en

Li

C10

4 H

NO

s

1.0

(Na,

H)C

l 3.

3-3.

9 H

NO

a

l-3

- - _ l-4

l-4

- 3-4

- l-3

2-5

9-12

HN

OZ

HN

OZ

HN

Oa

HN

O3

(Na,

H)C

104

HC

l04

HC

l04

(Li,H

)N03

H

Cl

HC

l H

Cl

HC

l04

none

M

eOH

: H

z0

(3 :

1 by

V)

_ HC

l04

HC

lO.,

(Na,

H)C

104

NaN

Oa

(Na,

H)C

104

(Na,

H)C

lO,,

(Na,

H)C

104

Na(

C10

4,0H

)

AH

* A

S’

Com

men

t Ta

ble

Ref

. N

o.

3.3

x 10

” _

- S;

96%

ci

s pr

od.

57

8.1

x lo

-’

3.0x

la

d 3.

9 x

10”

2.2

x 10

” 2.

3 x

lo+

3.3

x lti

3.

2x

lo-4

4.

6 x

1O-3

19.6

_

-11.

5 _

- -

22.6

-

4.0

22.6

-

3.8

21.8

-

1.4

_ -

_ -

ST;

98%

ci

s pr

od.

54

S 53

S

55

T 59

T;

<C

l->

60

ST

61

S; 4

% t

runs

pr

od.

53

S; 8

7 %

tra

m

prod

. 57

8.8

x lo

* (5

5”)

2.9

x 1O

-7

1.9x

lo

-’

2.9

x lo

4 1.

0x

1o-5

2.

1 x

1o-5

3.

6 x

lo4

1.9

x lO

A

3.5

x lO

A

- _

T 62

22.8

-1

1.9

23.8

-1

0 21

.1

-13.

1 23

.6

-2.2

23

.9

0.1

22.3

0.

5 20

.6

- 6.

4 22

.5

1

356

353

321

321

321

321 64

33

2

1.4x

l@

20

.1

-9

S T T T T,S

TS

TS

S; p

rod.

is

1,2

,3-C

r (H

20),(

tetre

nHz)

J+

S; p

rod.

is

Cr(

H20

)2

(tetre

nH)4

f S S S S S C

o;

<K+>

C

o;

<K+>

332

2.9

x lu

-4

19.9

-

8.1

2.4

x lo

4 14

.5

-26.

4 2.

6 x

1O-3

15

.0

-20.

1 6.

9 x

lo@

15

.1

-17.

8 8.

0x

lo-6

29

.3

16.4

1.

9x

lOA

26

.6

4.6

1.2

x lo

4 27

.9

8.0

67

65

65

65

66

71

71

6.1

x lo

-’

28.1

7

R

47

3.0

x lo

4 17

.0

-17.

6 s

68

1.2

x 1o

-3

12.3

-3

0.6

S 68

1.

5 x

1o-5

28

.5

14.7

S

69

1.6

x lo

-’

20.1

-1

3.1

S; 1

00%

ci

s pr

od.

330

1.6

x lo

-’

21.6

-

8.4

S 69

1.

7 x

1o-5

27

.7

12.6

S

70

6.2

x lo

4 16

.3

-18.

8 S

70

2.7

x lo

-’

8.4

-38

S 70

Page 15: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

Co(

NH

3)sF

2+

Co(

NH

a)sF

’+

Co(

NH

)&C

l*+

Co(

NH

3)sC

lZ+

Co(

NH

&C

l’+

Co(

NH

3)sC

12+

Co(

NH

&C

l”

Co(

NH

3)&

1*+

Co(

NH

&C

l’+

Co(

NH

3)&

12+

Co(

NH

&B

f+

Co(

NH

3)sB

r2+

CO

(NH

~)~B

?+

1.0

O

-1.0

(N

a,H

)ClO

, 9.

7 x

10-s

-

- 0.

18-1

.2

9-10

.8

K(N

Oz,

CN

) 4.

4 x

104

-8

-47

3.0

O-O

.6

(Mg/

2,

H)C

lOd

1.1

_ _

1.0

HC

lOz,

1.

5 x

1o+2

18

.3

12.8

1.

0 o-

O.3

5 (L

i,H)C

IO,

2.0

x lo

+’

14.7

-

3.2

0.40

0.

7-1.

5 (N

a,H

)C10

4 8.

8 x

10-l

14.5

-

9.6

3.0

1.0

6.8

x 10

-l 1.

1

8.0

-0.2

5 (M

g/2,

H

)ClO

d 0.

3-1.

7 (N

a,H

)C10

4

- K

NC

S

1.0-

1.7

(Na,

H)(

ClO

,,NC

S)

HC

104

2.0-

2.2

HC

104

HzS

O4

HC

lO,

1.0

x 1o

+5

- 8.4

- 10.3

- _30

- 1.

5

1.0

10.4

0.

6

8 x

10”

- -

- 22

.9

_

5.9

x la

d 26

.6

6.7

7.2-

12.4

0.

8-4.

1 1.

1 x

10-4

24

.1

1.4x

la

d 25

.6

0.5

0.1

_ 0.12

- 0.

1 - _ 0.

002-

1.0

- - 0.1

0.01

0.1

0.4-

1.0

(Na,

H)C

104

0.3-

2.0

(Na,

H)C

104

2.0

x lo

4 -

4.2

- 7.

4

(0.6

) -

5.9

x 1o

-9

29.0

1

- no

ne

5.13

Li

C10

4 -

_ HN

O3

- no

ne

- no

ne

8.7

x lO

a 20

.7

-21.

4 8.

7 x

loa

24.4

-

8.4

1.7

x 10

” 23

.7

- 5.

5 1.

7 x

lo+

22.9

-

8.1

2.1

x lo

+ 24

.8

- 1.

3 1.

7 x

l@

23.1

2 -

7.4

6.9-

1.0

(Na,

H)N

OB

-

EtO

H

30%

(w

)

- D

XN

30

%

(w)

1.9

x lo

4 22

.6

- 9.

0 1.

1 x

10”

22.7

-

9.5

1.2

x lo

4 22

.6

- 10

.0

- ET

G

30%

(w

)

2 (K

,H)C

lO,

HN

03

1.3

x lo

-6

23.3

-

7.4

HN

O3

1.8

x lO

A

22.9

-

8.1

4.0

x 10

” 22

.9

- 6.

4 6.

3 x

lo4

24.0

-

1.8

6.5

x l@

23

.9

- 3.

0 7.

4 x

10-6

21

.8

- 8.

9 0.

002-

0.8

1.0-

6.5

(Na,

H)N

03

S R

S SF

SsF;

2T;

14

” C

ran

ge

SW

S~F ;

A S

* is

cal

cd.

from

A

S”

andA

S*

of t

he

reve

rse

reac

tion

SW

SS

F; S

OS’

- pr

obab

ly

S-bo

nded

nm

r(lb

); m

ost

likel

y Fe

-N

bond

ed

S R M;

<C10

4>,

[com

plex

] q

0.1

S R S; k

is

corr

ecte

d fo

r 80

%

Co-

O

rupt

ure

S; k

tp

& (A

H*

and

AS*

ar

e 22

.0

and

-20

atp

= 1.

0,

resp

.)

T;

<NO

a->

T; p

H

give

n is

ini

tial

pH

S K;

<CT>

T

<Clo

d->,

ac

tiv.

1

para

m.

at 2

5”

C

dAH

’/dT=

50

Cal

/mol

e X

’ K

T,

[2]

,<N

O,->

T,

[2]

; kl

DL

(at

diff

. [E

tOH

]),<

NO

s->

T, [

2] R

ate

cons

tant

de

pend

s on

[H

,O],

<NO

,->

T, [

2];

klD

l (a

t di

ff.

[ETG

])

<NO

N->

S;

(2T

, 10

” ra

nge)

S S

=

332 79

80

35

79

81

82

83

84

9 40

85

86

87

89

89

89

89

88

350

q 40

85

T,

[2]

<N

O3-

> 89

369 72

73

74

75

76

77

280 78

Page 16: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

DA

TA

TAB

LE

I. (C

ont.)

Com

plex

p(

m)

PH

Med

ium

k

AH

+

AS”

C

omm

ent

Co(

NH

3)5B

rZ+

Co(

NH

3)5B

rZ+

Co(

NH

3)5B

r *+

Co(

NH

3)sI

Z+

Co(

NH

3)sN

3*+

Co(

NH

3)sN

CS2

+

CO

(NH

~)SN

CS’

+

_ _

MeO

H

50%

(w

)

_ _

DX

N

50%

(w

)

_ _

ETG

50

%

(w)

1.0

3 (N

H4,

H)C

lOd

0.06

44.1

64

1.85

(N

a,H

)C10

4 0.

05

2.5

HC

l04

0.00

2-O

. 1

l-2.7

H

C10

4 0.

12

0.2-

7 H

ClO

, 1.

0 ac

id

(K,H

)NO

z

Co(

NH

3)5o

x +

1.

0 1-

7 C

O(N

H~)

~OPO

~H+

1.0

54

Co(

NH

3)50

P03

Co(

Me-

NH

&C

l’+

Co(

Me-

NH

&C

l’+

Co(

Et-N

H2)

&1

Z+

1.0

0.01

-0.1

0.

01

0.01

0.12

1.0

1.0

0.1

- - 0.1

_ 0.1 1.0

-0.2

_ 1.0

1.0

2 2.0-

2.7

l-2

- - 1.0-

2.0

- 1.0-

2.0

o-7

2 - o-2

(Li,H

)C10

4

LiC

104

I (N

a,H

)NaH

POd

NaC

lO.,

(Na,

H)C

lOd

_ (Na,

H)C

lOd

(Na,

H)C

lOd

(Na,

H)C

lO.,

c N

aZSO

., H

CIO

, N

azSO

a (N

a,H

)C10

4

(K,

F>

+I

(Na,

H)C

lOd

c (N

a,H

)NaH

POA

N

aC10

4 N

aClO

., H

C10

4 H

N03

H

NO

S

Tabl

e R

ef.

No.

1.9x

lo

+ 23

.1

- 7.

1

2.6

x 10

3.9

x lO

A

8.3

x lo

-+’

2.1

x lo

+ 2.

8 x

1o-9

3.6

x lo

-”

1.2x

lo

* 8.

2 x

1p

22.6

-

8.5

21.9

-

9.9

19

-16

33.1

12

.8

26.8

-

7.8

30.1

-

0.7

29.6

4.

5 23

.9

-11.

1

2.4

x lo

-’

3 x

1o-5

2.

2 x

1o-7

2.7

x lO

a 1.

3 x

lo-’

4x

10+

1.5

x lo

-’

1.6~

lo

-’

4.6

x lo

+ 2.

2 x

lo+

1.2

x lo

4

7.0

x lo

-’

8.9

x 1O

-7

1.6~

lo

-’

24.3

1.

9

_ _

23.3

-1

1.2

25

-8

S 97

26

.3

- 1.

6 _

q 98

26

.4

- 3.

5 _

4 98

26

-2

S

97

25.7

-

3.0

_ q

98

32

10.7

S

97

28.4

1

S 96

18

.7

-24

S; (

2T,

13°C

ra

nge)

10

0

1.5

x lo

+ 7.

9 x

1o-9

1.5

x 1v

9 3.

7 x

1o-5

3.

3 x

lo-5

1.

6 x

lo4

24.4

-

4.9

22.7

-1

0

19.3

-2

4.8

26.2

-5

26

.8

- 6.

6

39.6

34

22

.0

- 5.

1 22

.6

- 3.

2 21

.3

- 4.

4

T, [

2];

SN2;

k d

epen

ds

on

[Hz0

1 <N

03->

T,

[2]

; k

depe

nds

on

[H,O

]; <N

Ox-

> T,

[2]

; kJ

D1;

<N

Os-

> S S S;

k =

a

+ b[

NC

S-]

<c10

4->

S,T;

(8

0~T~

97”

C)

S S; T

he

reac

tion

was

ca

rrie

d ou

t un

der

cond

i- tio

ns

whe

re

k m

ay

be

sepa

rate

d fro

m

a co

n-

com

itant

re

dox

proc

ess

S; d

4H?/

dT

= -2

0 ca

l/mol

-l de

g-’

S R R;

[21

S

89

89

89

90

91

40

46

92

93

94

99

95

101

102

103 96

95

95

105

350

350

Page 17: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

Co@

P

r N

Hz)

sCIZ

+

0 01

H

N03

19

x10-

4 20

9

Co(

n

Bu

NH

&Z

1 2+

0

01

HN

03

20x1

04

20 8

C

o(z

Bu

NH

&C

l*+

0

01

HN

Os

37x1

o-4

16 1

u

s C

O(N

HJ)

~(H

~O

)OP

O~

&~

+

10 8

H

CIO

, 1

1x1o

-6

24 4

C

LS

CO

(NH

&H

~O

)OP

O~

H~

~+

0

66-5

7

HC

IO,

36x1

0”

24 9

tran

s C

o(N

H&

&+

01

tr

am

CO

(NH

~)~

CI~

+

10

frun

s C

o(N

H3)

.,(N

CS

)C1+

05

tr

un

s C

o(N

H3)

4(N

02)C

lf

01

tram

C

O(N

H~

)~(N

O~

)BI+

01

C

o(N

H&

(NO

&N

CS

_

Co(

NH

&(O

NO

)z,-

25

tr

am

Co(

py),

(HzO

)C1*

+

-

tran

s C

o(py

),C

lz+

_

fru

ns

Co(

py),

C12

+

trun

s C

o(py

),C

lz+

tr

un

s C

o@

p~&

Cl~

+

tram

C

o(y

~ic

)~C

l~+

C

o(en

)(N

H3)

(NO

z)N

CS

C

IS C

o(en

)(N

H3)

2C12

+

fran

s C

o(en

)(N

H3)

2C12

+

cu

Co(

en)2

(0H

2)23

+

us

Co(

en),

(NH

3)(0

H2)

” C

IS C

o(en

),(H

ZO

)OP

03H

33+

C

IS C

o(en

X(N

H:,)

OP

OgH

33’

CIS

Co(

en)2

(HzO

)C1Z

+

cts

Co(

enh

(NH

3)C

lZ+

C

IS C

o(en

),(N

H:,)

Cl’+

czs

Co(

en),

(NH

,)C

I’+

1 a

s C

o(en

),(N

H3)

B?+

d

I ct

s C

o(en

)z(N

H~

)ON

022f

u

s C

o(en

)2(N

HzO

H)C

12C

cu

C

o(en

)z(N

H20

H)B

rZ+

cz

s C

o(en

),(M

eNH

Z)C

IZf

CIS

Co(

en)z

(MeN

H2)

C1Z

+

cu

Co(

en)z

(MeN

H2)

Bf+

HN

03

HC

l04

HN

03

HN

OZ

H

N03

-

- HC

IO‘,

none

su

e 10

% (

w)

1 8

x 1O

-3

1 5

x 1o

-3

36x1

0A

27x1

0-*

7 2

x 1o

-2

8 2

x lO

-5

17x1

0-4

_ 98~

10~

22 0

25

7

176

19 2

25

8

16 0

25

4

317

- 55

-

56

-183

-

40

- 78

(0 1

) -

24

3 -

67

1 93

-22

1 -

24 9

_ -

ET

G

lo-I

O%

(w

) (9

5 x

10-

6)

30 4

20

5

- _ - - 01

01

08

0 01

40

37

- - m

dep

ofp

1-92

-

l-92

-

l-92

-

- _ H

NO

Z

HN

OZ

0

1-O

5

(Na

H)C

104

HC

104

HC

l04

HC

104

2-3

HN

OX

_

non

e 0

3-2

(Na

H)(

N09

C

lO4)

84xl

F6

25x1

0-5

1 5

x 1o

-5

29x1

0-’

23~

10~

22

x104

75

x10-

6 11

x10-

6 5x

lo

- 3

6 x

lo-’

16~

10~

37

x10-

’ (7

0 x

10-

9)

- - 22 3

28 8

- 24

9

27

1

24 9

23

2

- - - - 48

- -

1.5

_ - 83

-

28

- - 43

-1

8

_ 0 17

0

17

0 50

0

50

01

HC

IO,

HC

104

HC

104

HC

IO.,

non

e H

NO

a

5 5

x 1o

-7

22 6

-1

14

16x1

0”

22 5

-

96

94x1

0+

23 5

-2

7

50x1

0+

19 7

-1

67

2 1x

1o-5

19

6 -1

4 2

2 3

x lo

+

24 4

-

71

35x1

0-7

23 9

-8

S S S R

R

350

350

350 79

79

S

T S

45

f

10%

tr

am

prod

S

S

10

0%

tram

pr

od

S

100%

tr

am

prod

_ S

K

S

<C

l->

T

[2

] k

J [W

C]

? bu

t A

H*

and

AS*

ar

e es

sen

tral

ly c

onst

nt

up

to

40%

su

e <

CT

>

T

[21

130

154

346

333

333

174

176

155

156

158

T

T

T

- S

S

M

M

R

R

100%

C

D p

rod

T

<S

O4’

->

T

<C

D->

-

[2]

act

para

m

mde

p of

p

pH

pres

ence

of

EtO

H

GL

C

ET

G

159

159

159

174

130

130

125

106 79

30

2 12

7 87

108

T

S

(2T

) S

(2

T)

T

<N

O,-

>

T

<N

03->

T

<

N03

->

T

[2]

k A

H?a

nd

AS*

ar

e n

ot s

ensi

tive

to

add

ed E

TG

u

p to

40

%by

w

q 10

7 10

9 10

9 11

9 11

1 10

7 11

0

4 6

x lo

-’ 26

3

07

T

cN03

->

111

Page 18: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

DA

TA

TAB

LE

I. (C

ont.)

Com

plex

P

(m)

PH

Med

ium

k

AH

+

AS’

C

omm

ent

ci.s-

Co(

en),(

EtN

HZ)

B?

cis-

Co(

en)z

(n-P

rNH

z)C

l’+

cis-

Co(

en),(

n-Pr

NH

z)B

r*+

cis-

Co(

en),(

i-PrN

HZ)

Cl”

ci

s-C

o(en

),(i-P

rNH

Z)B

? ci

s -C

o(en

)z(A

llNH

Z)C

l*f

cis-

Co(

en)z

(AllN

Hz)

CIZ

+

-

Tabl

e R

ef.

No.

cis-

Co(

en)2

(A11

NH

z)B

?+

cis

-Co(

enX

(P

r-2

-yny

INH

2)C

lZ+

cis-

Co(

en)z

(Pr-

2-yn

ylN

Hz)

B?’

ci

s-C

o(en

),(C

H20

HC

HzN

Hz)

C12

+

- - _ - 0.1

- - 0.1

0.1

0.1

HC

lO.,

8.1

x lo

-6

25 .S

-5

H

CI0

4 4.

2 X

lO

-7

25.5

-

2.1

HC

l04

7.3

x lo

-’

25.7

-

0.4

none

5.

6 x

lo_7

22

.5

-11.

7 no

ne

1.3

x lo

+ 22

.2

-11.

0

cis-

Co(

en)Z

(CH

aOC

H,C

H2C

H2N

Hz)

C12

+ no

ne

cis-

Co(

en),(

CH

3CH

ClC

H2N

H2)

CIz

C

0.1

HC

l04

cis-

Co(

en)~

(CH

2CIC

H2C

H,N

H2)

C12

+ 0.

1 H

C10

4 as

-Co(

en),(

CH

20H

(CH

2)aN

H2)

Cl

2+

none

ci

.s-C

o(en

)z(C

H20

H(C

H2)

4NH

z)C

lZC

no

ne

cis-

Co(

en),(

CH

ZOH

(CH

&N

H2)

C12

’ no

ne

cis-

Co(

en)2

(@-C

HzN

H2)

CIZ

+ 0.

05

HN

Oa

4.7-

5.7

,/ (N

a,H

)OC

OC

Ha

5.0

x lo

-’

\ (N

a,H

)OC

OH

no

ne

1.5

x lo

-’

3 H

N03

3.

4 x

lo-’

-

none

no

ne

none

no

ne

none

H

NO

a

none

5.

6 x

lo-’

26

.8

2.8

no

ne

1.2

x lo

-’

25.4

-

5.0

none

3.

1 x

lo-’

26

.6

0.9

none

1.

7 x

lOA

21

.8

-11.

8

2.9

X l

o-’

3.2

x 10

” 1.

8 x

10d

1.2

x lo

4 7.

3 x

10”

2.0

x lo

-’

3.3

x lo

-’

3.5

x lo

-’

6.5

x IO

-’

9.8

X lo

4 1.

3 x

lo-’

3.

7 x

lo-’

4.

8 X

lo-’

4.

8 X

lo-’

1.

8 X

lo-’

22.6

-1

1

26.1

-

2.2

24.3

-

6.5

27.5

3.

8 24

.6

- 5.

7 22

.9

- 8.

0 24

.3

- 4.

1 22

.9

- 5.

2

25.4

-

4.0

23.3

-1

8 (-

10)

23.4

-

9.6

22.2

-1

2.4

25.5

-

5.1

25.8

-

3.6

23.7

-

8.5

23.4

-

9.0

23.4

-

9.0

2.4.

5 -1

5 (-

7.2)

T;

[21

T; <

NO

,->

T; A

H*

is i

nsen

sitiv

e to

+ 40

% w

DX

N

and

-+60

%ET

G;A

S*

Iby

a fa

ctor

of

-2

in b

oth

case

s T;

<NO

a->

S; <

NO

,->

T ; <

NO

,->

T;<N

O,->

T;

<N

O,->

T; <

NO

,->

T;(2

]; A

ct.

par.

are

unaf

fect

ed

by+

40%

(w

) ET

G

and-

+ 20

%

(w)

DX

N

T; <

NO

,->

T; <

NO

a->

T; <

ClO

4->

T;

100%

ci

s pr

od.;

<NO

,->

T T T T; <

NO

,->

T;

100%

ci

s pr

od.;

<NO

,- >

T;

100%

ci

s pr

od.;

<NO

,->

T; <

N03

->

T T S,T;

<N

O,->

S,

T;

<NO

,->

S,T;

<N

O,->

T;

[2]

; A

ct.

par.

are

unch

ange

d by

add

ition

of

ETG

(4

0%

by w

.) an

d D

XN

(2

0%

by w

.)

112

107

113

111

114

111

114

111

115

110

111

115

111

116

117

117

117

118

116

116

118

117

117

347

341

347

110

Page 19: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three
Page 20: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three
Page 21: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three
Page 22: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

DA

TA

TAB

LE

I. (C

ont.)

Com

plex

p(

m)

PH

Med

ium

k

AH

+

AS+

C

omm

ent

Tabl

e R

ef.

No.

trans

-Co(

en),(

NO

z)C

lf 0.

1 lr

ans-

Co(

en),(

NO

$I+

0.

1 tr

ans-

Co(

en)2

(N02

)C1+

0.

1 tr

ans

-Co(

en)2

(N02

)C1+

0.

1

trans

-Co(

en)2

(NO

z)C

lf tra

ns-C

o(en

)Z(N

02)B

r+

tran

s-C

o(en

),_(N

CS)

Cl+

tra

ns-C

o(en

),(N

CS)

CI+

tra

ns-C

o(en

),(N

CS)

Cl+

tr

am-C

o(en

),(N

CSj

Cl+

tr

ans-

Co(

en),(

NC

S)C

l+

tran

s-C

o(en

)2(N

CS)

Br+

0.

007

Pan

s-C

o(en

),(N

CS)

Br+

0.

01

0.01

truns

-Co(

en),(

NC

S)B

r+

0.01

truns

-Co(

enh(

OH

),+

0.8

truns

-Co(

en),(

CH

BC

OO

)(O

HC

OC

H3)

2’

2.0

truns

-Co(

en),(

CH

BC

OO

)CIC

0.

012

truns

-Co(

en),(

@-C

OO

)Cl+

0.

012

Co(

en)2

(H20

)C1Z

+ 0.

1

truns

-Co(

Me-

enhC

l,+

truns

-Co(

Et-e

nhC

l*+

truns

-Co(

en)(

tn)C

h+

truns

-Co(

n-Pr

-en)

zC1z

+ lru

ns-C

o(pn

)2C

12+

truns

-Co(

pn)2

(0H

)Cl+

tr

uns

-Co&

l -b

nh&

+ tr

uns-

Co(

m-b

n)$&

+

trans

-C~(

i-bn)

~Cl~

+ C

o(i-b

n),(c

ytam

)Clz

f

cis

-Co(

phen

)2C

12c

0.1

0.1

0.10

0.

10

0.10

0.1

0.00

25

0.10

0.

01

_ 0.1

- 0.00

7 -

- - - - - _ -

- 8.

9 X

1V

19

.6

- 6.

7 su

e 40

%

(w)

4.9

X lO

A

19.3

-

8.9

ETG

40

%

(w)

MeO

H

(30%

by w

.) A

ceto

ne

30%

(w

) - H

CIO

, ET

G

40%

(w

) su

e 40

%

(w)

GLC

40

%

(w)

EtO

H

30%

(w

)

4.4

X I

O-4

19

.0

-10.

1 4.

5 X

l@

18.7

-1

1.1

4.4

X 1

0”

18.8

-1

0.8

5.1

x 10

-3

21.4

-

1 4.

5 X

10-

a 29

.8

7.8

2.4

X l

p 29

.4

5 2.

6 X

lp

29.5

6

2.3

X 1

0”

29.4

5

1.6

X 1

F”

29.1

3

HC

IO,

1 H

N03

Et

OH

40

%

(w)

c H

N03

ET

G

40%

(w

)

( H

NO

X

GLC

40

%

(w)

13.5

-13.

9 N

a(C

104,

0H)

-0.3

-l (N

a,H

)C10

4 H

ClO

, H

ClO

, 4.

7 (

(Na,

H)O

CO

CH

, (N

a,H

)OC

OH

H

N03

HN

O3

HN

03

HN

O,

HN

O3

7-8.

7 N

aOH

H

NO

3 H

NO

, H

N4

HC

lO,

- no

ne

6.8

X 1

o-s

23.1

2.4

X lo

-’

29.5

10

.1

1.4

X lo

-’

28.0

4

1.8

x lo

-’

27.7

4

1.6

X l

o-’

28.5

6

2.3X

lo

-6

30.4

20

(1

8)

1.6

x 10

” 23

.0

1 3.

1 X

10”

26

.8

6.7

1.2X

10

-6

29.3

13

.2

2.7

X lO

-’ 26

.9

11

1.6

X l

o-’

9.6

X 1

0-’

4.3

x 10

-4

1.2

x 10

” 6.

1 x

10-s

1.

3 x

10”

1.5X

lo

” 4.

2 X

lF3

2.

2 x

lo-3

1.

2 X

lO

A

26.5

8.

4 27

.5

15.4

25

.5

11.6

26

.5

12.4

27

.5

14.6

- 25

.5

23.5

25

.5

23.4

_

9.5

9.4

14.8

-

0.5

(2.0

) 0

- _

I k is

a f

unct

ion

of

- [H

z01

but

not

of D

. - - I

S T; [

2]

logk

de

crea

ses

T; 1

21

linea

rly

with

T;

i2j

I

T; [

2]

I (l/

D)

and

is

inse

nsiti

ve

to t

he

natu

re

of t

he

orga

nic

com

- po

nent

S

; 5 5

% t

ram

pr

od.

T; [

2],

logk

de

crea

ses

linea

rly

with

(l/

D)

T; (

21,

logk

de

crea

ses

linea

rly

with

(l/

D)

T;

[2]

M

S,&

; 75

% t

rans

pro

d.

S,T;

80

%

cis

prod

.

ST

T;

[2],k

tpH

f

125

329

323

323

112

ST

161

S,T

161

S 16

1 T

161

S,T

161

T 13

6

S,T

161

S 16

1 S

161

S 12

3

T, <

Cl->

15

3

142

142

142

142

142

q 16

7 16

5 14

0 14

0 14

0 14

0

139

144

144

144

Page 23: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

trans

-Co(

dipy

)z(N

Ozh

+ tra

ns

-Co(

DH

)2C

12-

trans

-CO

MB

ED-

trans

-Co(

DH

k(N

CSk

- tru

ns-C

O(D

H)~

(SO

~)C

I~

fran

s-C

0(D

H)~

(S0~

)B?-

tru

ns-C

O(D

H)~

(SO

~)I*

- C

o(ac

ac)z

(H20

)ON

0 C

o(C

pdox

H)(

Cpd

oxH

z)(N

02)(

N02

H)+

C

o(C

pdox

H)(

Cpd

oxH

Z)(N

Oz)

z C

o(di

en)(

NO

&N

CS

E-C

o(di

en)(

en)C

l’+

o -C

o(di

en)(

en)C

l*+

w-C

o(di

en)(

en)B

? w

-C

o(di

en)(

en)I

’+

fran

s-C

o(da

n)C

lz’

cis-

Co(

tren)

(H,O

)Cl’+

ci

s-C

o(tre

n)(H

zO)B

rZ+

cis-

Co(

tren)

F*+

cis-

Co(

tren)

CIZ

+ ci

s-C

o(tre

n)B

r2+

D,a

<is-

Co(

trien

)(H

zO)C

12+

,8-c

is-C

o(tri

en)(

H20

)C12

+ (s

low

is

omer

) @

is-C

o(tri

en)(

HzO

)Clz

+ (f

ast

isom

er)

p-ci

s -C

o(tri

en)(

HzO

)CIZ

+ ci

s-C

o(tri

en)(

NH

3)C

12+

a <i

s-C

o(tri

en)C

IZ+

D-a

-&s-

Co(

trien

)Clz

f ci

s-C

o(tri

en)C

12+

p-ci

s-C

o(tri

en&

+ D

-/Lci

s-C

o(tri

en)C

lz+

Da-

&-C

o(tri

en)(

OH

)Cl+

tra

ns-C

o(tri

en)(

H20

)Clz

+ fr

ans-

SS-C

o(tri

en)C

12+

/3-c

is-(

RR

,SS)

-Co(

2,3,

2-te

t)Clz

+

2.5

- _ _ - - - 0.5

1.0

1.0

_ 0.01

0.

01

0.01

0.

01

0.10

1.

0 0.

1 _ 0.

1 0.

1 0.

1 0.

1

0.1

0.01

- 0.

01

51

(Na,

H)N

4 -

none

-

none

_

- -

- -

- -

none

-

NaC

104

- (N

a,H

)(C

KLN

O~)

_

(Na,

H)(

CK

LNO

~)

_ - H

CIO

., H

ClO

., H

C10

4 H

C10

4 H

N03

H

ClO

, H

ClO

z,

- no

ne

HC

104

HC

104

l-3

(Na,

H)C

104

l-3

(Na,

H)C

lO.,

l-3

(Na,

H)C

104

HC

l04

- no

ne

HC

lO,

1.3

x lo

-’

2.7

x lo

-4

3.8

x 1K

” 1.

2 x

lo+

(6.0

x

lo-‘

) (8

.4

x lo

-‘)

(9.8

x

lo-‘

) 1.

4 x

lOA

3.

6x

l@

1.1

x lo

-6

3.1

x 1p

3.

3 x

lo+

1.9

x lo

-’

2.4

x lo

-’

1.8

x lo

-’

3 x

lo-3

2.

4 x

lOA

1.

6 x

lOA

9.

0 x

lo4

3.0

x 1o

-3

2.8

x lo

-’

5.2

x lo

-’

2.0x

lo

+

23.5

-1

1.2

23.3

3.

6 23

.9

6.0

31.6

12

.9

23.5

-

8.3

21.5

-

14.2

19

.5

-20.

6 26

.2

12.5

18

.8

-10.

9 25

.4

- 0.

2 26

.9

6.5

24.4

-5

23

.4

-9

25.4

-2

28

.4

7 23

.5

8.8

21.6

-1

1 -

-

22.3

-

6.5

17.3

-1

0.4

15.1

-1

5.0

23.5

-

8.4

26.4

3.

9

8.2

x lO

-’ _

-

0.00

1-1.

0 H

ClO

., 0.

1 H

NO

Z 0.

01

HC

l04

0.00

2-l

o-3

(Na,

H)C

lOd

0.1

l-3

(Na,

H)C

lO.,

0.1

HC

lO.,

0.1

HC

104

0.00

5-l

HN

09

2.4

x 1O

A

1.7

x lo

-’

1.5

x l@

1.

6x

lo4

1.5

x 1o

A

1.5

x l@

1.

5 x

1o-3

3.

8 x

lo-3

2.

0 x

lo+

3.2

x 1O

-3

1.1

x lo

-3

_ _

24.9

-

5.8

- -

20.9

-

5.8

_ -

_ -

20.5

-

2.7

18.8

-

6.5

26.4

3.

9 25

.4

15.3

22

.3

2 (3

)

truns

-R,S

-Co(

2,3,

2-te

t)C&

+ 0.

016

HN

03

1.5

x lo

+ 24

.3

1 tra

ns-R

R,S

S-C

o(2,

3,2-

tet)C

lz+

0.01

4 H

C10

4 2.

9 x

lo-’

25

.9

12

cis

-Co(

cycl

am)C

lz+

1.6x

lo

-’

18.3

-

5.4

trans

-Co(

cycl

am)C

IZ+

trans

-Co(

cycl

am)(

OH

)Cl+

tra

ns-C

o(cy

clam

)(N

C)C

l+

trans

-Co(

cycl

am)(

N02

)Cl+

0.51

0.01

0.

10

0.01

0 0.

010

2.0

i N

a(N

O&

l) H

CIO

., H

N03

7.

0-11

.8

buff

ers

HN

OJ

HN

Os

1.1

x la

d 24

.3

- 4.

3 1.

2 x

lo-z

18

.8

- 4.

2 4.

8 x

lo-’

23

.5

-9

4.3

x l@

20

.6

-9

S P; <

H+>

P;

(2T

), <H

+>

C,G

,T;

<H+>

K

PH

, T

K

pH,

T K

, PH

, T

S C;

colo

rim.

C;

colo

rim.

- S S S S S S SK

s;

<c10

,->

S,K

S,

K

SAP;

SJ

LP,

S&P,

1

Ret

ent

of c

is

conf

. an

d op

t. ac

t.

169

171

171

173

172

172

172

175

345

345

174

123

123

123

123

161

295

150

277

355

150

147

147

147

S,K

T;

[3]

, <C

lOa-

> S,

K

SAP,

S S,

K

SKP,

S&

P,

S,K

SK

S;

B

(RR

,SS)

co

nf.

pres

umed

148 87

14

8 14

7 13

0 14

8 14

7 14

7 14

7 14

7 15

2

S; 1

00%

tr

ans-

R,S

pr

od.

S ; 5

0 +

20 %

tra

ns -R

R,S

S pr

od.

S; 1

00%

ci

s pr

od.

152

152

151

S; 1

00%

tr

ans

prod

. S;

100

%

tran

s pr

od.

S; 1

00%

tr

ams

prod

. S:

100

%

tram

m

od.

168

168

252

I 25

2

Page 24: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

DA

TA

T

AB

LE

I.

(C

ont.

)

Com

plex

_

tran

s-C

o(cy

clam

)(N

02)B

r+

0.01

0 tr

ans-

Co(

cycl

am)(

NC

S)C

l+

0.01

0 tr

ans-

Co(

rac

-L’)(

HzO

)C12

+

0.01

0 tr

am -

Co(

rac

-L’)C

12+

0.

010

tram

-C

o(L

)C12

+

0.01

0 a-

Co(

tetr

en)C

l’+

1.0

CO

(CN

)~O

H~

*-

1.0

Co(

CN

)J-

CO

(CN

)SN

~~

- C

o(C

N),

NC

S3-

C

o(C

N)s

OS

zOz’

M

o(N

CS

&~

- M

oC&

,-

1.0

1.0

1.0

1 .o

Ru

(NH

&C

l*+

Ru

(NH

&B

f+

Ru

(NH

&‘+

cis-

Ru

(NH

3)4C

l,+

cis-

Ru

(en

)z(H

ZO

)C12

t

cis-

Ru

(en

),(H

ZO

)B?’

cis-

Ru

(en

)Z(H

zO)I

Z+

cis-

Ru

(en

)#.Z

l,+

cis-

Ru

(en

)zB

r2+

cis-

Ru

(en

)&+

cis-

Ru

(-pn

)&12

cis

-Ru

(a -

trie

n)(

HzO

)C1*

+

cis-

Ru(

a -t

rien

)Clz

t

0.1

0.1

Ru

(HzO

)Cl5

’- _

Ru

Cb3

- 1.

0 R

uC

le3-

6.

0

0.1

0.1

0.1 0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

PH

M

ediu

m

HN

Oa

HN

03

HN

Oa

HN

Oa

HN

Oa

HC

l04

6.4

N a

ClO

d

- N

aC10

4 6.

0-13

.0

Na(

ClO

+O

H)

13

Na(

ClO

,,,O

H)

13.7

-14.

0 K

(NO

a,O

H)

- N

CS

- 3.

24.5

(

KH

Ph

thal

ate

HzS

04

or K

OH

CH&S

O,H

CH@

SO,H

CH,@

SO,t’

CH,@

SO,H

CH,@

SO,H

CH@

SO,H

CH@

SO,H

cH@

SO,H

CH,@

SO,H

C tI@

SO,H

CH@

SO,H

CH,@

SO,H

CH,+

SO,H

- - H

CI

HC

l

k 5.5

x lo

4 3.

2 X

lo4

3.

4 x

lOA

4.

2 x

lO-3

9.

3 x

lOA

4.

6 x

lOa

1.3

x 1F

(40”

) 6.

2 x

lo-’

5.4x

l@

2.

8 x

lo4

2.6

x lo

+

3.5

x lo

+

1.3

x lO

A

(0”)

7.1

x lo

-’

8.7

x lo

-’

2.5

x lO

-’

7.8

x lC

r+

1.7

x lo

-5

1.4

x lo

-5

2.7

x 10

3.8

X 1

O-5

3.2

x lo

-’

1.0x

lo

-s

3.8

x 1o

-5

2.0

x lO

A

5.85

x l

o4

(3.5

x 1

0”)

6.7

x lo

-*

1.8

x 1K

3

AH

* A

S*

(21.

0)

-3

24.2

-1

1 39

.5

58

28.3

-

25.6

13

26

.4

-5

- _

29.7

12

.5

27.3

-

0.6

31.1

11

.5

21.6

-2

1.1

21.3

-1

1.8

- -

22.6

-1

0.8

22.6

-

10.5

23.9

-

8.5

21.8

-

8.8

20.1

-1

3.0

21.8

-

7.7

24.4

2.

4

19.9

-1

2.0

20.5

-1

0.3

22.1

-

7.2

18.2

-1

7.8

_ _

18.1

-

12.6

21.4

2

_ -

24.6

12

Com

men

t T

able

R

ef.

No.

S 34

8 S

346

S,T

36

0

ST

36

0

S,T

36

0

S,T

12

4 M

17

7

S 17

8

S; (

2-O

17

7

S; W

) 17

7 S

17

9 R

47

S

35

4

S S S S S S S S S S S s R

R

180

181

181

181

181

181

181

181

181

181

181

181

181

q 18

2 q

187

182

Page 25: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

RuC

L,-

Rh(

H,0

)b3+

R

h(N

H,)s

OH

,3+

Rh(

NH

3)50

H,3

+ R

h(N

Hs)

5N3H

3+

Rh(

NH

&C

l’+

Rh(

NH

&C

I’+

Rh(

NH

&C

l*+

Rh(

NH

&C

l’+

Rh(

NH

s)sB

?+

Rh(

NH

s)sB

?+

Rh(

NH

x)sB

?+

Rh(

NH

3)JZ

+ R

h(N

HJ)

$+

Rh(

NH

&I’

+ R

h(N

H3)

50N

Oz*

+ R

h(N

H,)s

OC

OC

F,*’

R

h(N

H3)

50S0

3+

truns

-Rh(

NH

&C

l,+

trans

-Rh(

en)Z

Cl*

+ tr

ams -

Rh(

en)z

Clz

+ tra

ns-R

h(en

)zC

lz+

fran

s-R

h(en

)ZB

rCl+

tram

- R

h(en

)JC

l+

trans

-Rh(

en)z

IC1+

truns

-Rh(

en)&

Br+

trans

-Rh(

enhB

rz+

trans

-Rh(

en)z

Br*

+

trans

-Rh(

enkI

Br’

trans

-Rh(

en)&

+

trans

-Rh(

en)z

Iz

+

Rh(

DH

)*(S

03H

)Br+

R

h(D

Hk(

SOaH

)I+

Rh(

H20

)ClS

Z-

RhC

&*

II(N

H&

OH

~~+

Ir(N

H&

Zl*+

Ir

(NH

,),B

f+

_ 20.7

(A

1/3,

H)C

I04

2.0-

1.3

(Na,

H)C

104

2 H

ClO

, H

&L

none

HC

104

NaC

104

N&

Br

none

N

aC10

4 N

&C

l no

ne

NaC

104

N&

Cl

2 (N

a,H

)C10

4 2-

l (N

a,H

)C10

4 o-

2 (N

a,H

)C10

4 -

NaB

r or

NaI

-

- none

N

aI

(8 X

10-

2)

3.2

X lo

+ 1.

0 x

1o-5

8.

4 x

lo+

2.0

X lO

A

1.42

X

lo-

4.83

X

lo+

1.5

x lO

-’

3.8

X 1

LP

4.87

X

lo4

6.

30

X l

o+

3.40

X

loa

8.31

X

1O

-9

1.95

X

1P

6.2

x lo

-’

1.2X

l@

2.

0 X

10-

7 1.

6X

l@

1.3

X lo

-’

6.4

X lo

4 _ 5.

4 x

lo+

NaB

r 1.

7 X

lO-’

- - N

aI

1.0X

lo

” 4.

8 X

10-

27

33

23.9

24

.6

26.7

20

.4

23.8

22.2

24.2

23

.5

24.4

24

.6

25.4

26

.7

26.2

23

.3

25

21.4

24

.1

23.8

24

.5

24.7

2z

18

- 1 0.

8 5.

0 -2

1.4

-12.

2

-15.

3

-11.

1 -1

3.3

- 9.

6 -

9.9

- 10

.3

- 4.

2 -

7.8

-3

-6

-13.

3 -

9.2

-13

q 18

2 P

183

G‘

184

%

318

; 35

a”

F 18

8 8

185

2 18

6 $ _.

187

189

G

186

8 $ 18

7 3

188

&

186

s 18

7 2

160

fi 97

D

10

2 33

6 19

1 19

2 19

0

12

0.5

0.25

8.

1-9.

2

M

M

M;

[com

pl.]

= 0.

040M

S R

; <C

l->

S T S R;

<Bf>

T S R

; <I

->

T S S S S S S R S ; 1

00 %

tra

m

prod

. ;

k in

sens

itive

to

p S;

100

%

trans

pr

od.;

k in

sens

itive

to

p S S;

100

%

tram

pr

od.;

k in

sens

itive

to

,u

S; 1

00%

tr

am

prod

.; k

inse

nsiti

ve

top

S S; 1

00%

tr

ans

prod

.; k

inse

nsiti

ve

top

S

0.01

~.02

5

0.1

0.2

0.1

0.2

0.1

0.2

1.0

0.1

1.0

0.05

-0.1

0.1

-9

0.20

23

.2

-11.

7

14.0

-3

1.8

21.1

-

7.5

190

191

190

0.20

NaC

l 8.

3 X

1K

9 27

.6

-3

190

0.20

5.6

X lo

-’

20.0

1.

8 X

lo-’

25

.2

-22.

0 -5

19

1 19

0

- 0.1-

0.5

- - N

aI

4.6

X 1

O-5

16

.1

191

-26.

3 (-

24.3

) -3

N

aBr

2.1

X lo

-5

23.1

S;

100

%

tran

s pr

od.;

k in

sens

itive

to

,u

S S; 1

00%

tr

ans

prod

.; k

inse

nsiti

ve

top

T T S S M

R;

<CT>

R

; <B

r->

190

0.20

3.5

X 1

0”

26.2

4.

3 X

1cP

25

.1

191

190

4.4 1

- 0.20

- -

- 1 N

aCl

or N

aBr

OI

NaC

N

HN

03

HN

03

H(C

lO&

l) H

(ClO

.,,C

l) 0.

3-2.

0 (N

a,H

)C10

4 no

ne

none

1.2

X 1

O-s

13

.7

-35.

1 3.

0 X

1O

-5

12.2

-3

8.3

3.9

X 1

o-5

25.2

5.

8 1.

8X

10-3

24

.5

11.1

6.

5 X

lO+

28.2

3.

0 1.

1 x

lo+

22.4

-2

4.3

1.1

X l

o+

22.5

-2

4.1

349

349

193

194

195

188

192

2’

0.05

0.

05

4.0

4.0

0.96

Page 26: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

DA

TA

TAB

LE

I. (C

ont.)

2

Com

plex

P(

m)

PH

Med

ium

k

AH

* A

S*

Com

men

t Ta

ble

Ref

. N

o.

Ir(N

H,)$

+ Ir

(NH

&O

NO

,‘+

Ir(N

H&

0CO

CFj

2+

trans

-Ir(

en)Z

Cl,+

ba

ns-I

r(en

),BrC

I+

trans

-Ir(

en),I

Cl+

0.

5 tru

ns-I

r(en

)zB

rz+

0.5

frun

s-Ir

(enX

IBr+

0.

5 tru

ns-lr

(en)

z12+

0.

5

Ir(H

20X

C13

Ir

(H,O

)sB

r, tru

ns

-Ir(

H20

XC

L-

Ir(H

20)K

L-

Ir(H

20)z

Br4

- Ir

(HzO

)C15

2-

Ir(H

20)C

152-

Ir

Q-

IrC

&-

IrC

163-

- 3.8

- - 3.75

- _ 1.

0 2.

2 1.0

0.1

0.5

0.5

none

2

(Na,

H)C

104

l-2

(Na,

H)C

lO.+

N

a(C

IO,,X

) N

a(C

lO,,B

r)

Na(

ClO

,.X)

Na(

C10

4,X

) N

a(C

104.

X)

Na(

C10

4,X

)

-3

-3

90

-3

-3

<o

-3

-3

0

&S

O4

(4.7

x

10-9

) 28

.9

Hz.

%

(7.3

x

lo-“

) 33

.0

(Na,

H)C

104

8 x

10-q

29

.9

HzS

O.,

(1.4

x

10d)

30

.1

HzS

O4

(6.1

x

104)

28

.8

(Na,

H)C

104

2.9

x lo

-’

28.8

H

zSO

., (2

.5

x 10

-7)

28.8

H

zSO

4 (4

.0

x 10

-5)

24.9

H

C10

4 2.

5 x

10-s

27

.4

(Na,

H)C

104

1.0

x 1o

-5

29.8

1.9

x 1o

-‘o

25.6

6.

9 x

1cP

26.1

5.

1 x

lo+

24

1.4

x 1o

P 29

.2

4.4

x 1o

P 27

.1

1.5

x lo

4 25

.3

8.5

x 1o

-‘o

27.2

6.

3 x

1O-9

27

.1

2.0

x 1o

-9

28.7

-17.

3 -4

-1

6 -6

-9

(-

10

.4)

- 4

(-9.

4)

-9

-5

-3

(-2.

1) 0.3

5.8

4.7

6.5

5.1

8.2

7.9

4.9

12.3

18

.6

R;

<I->

S S S.

T;

X-

= I-

, N

3-,B

r-

S,T

S,T;

X

- =

I-,

Br-

196

S,T;

X

- =

I-J-

19

6 &

T;

X-

= I-

, C

l- 19

6 S,

T;

X-

= C

T,

Bf

196

R

R

S R

R

S,T

R

R

R

S

188

160 91

19

6 19

6

197

197

198

197

197

199

197

197

200

201

DA

TA

TAB

LE

II.

Solv

olys

is

(non

-aqu

eous

so

lven

ts).

Com

plex

.

V(D

MS0

)5(S

SA)3

+ V

(DM

S0)5

(NC

S)2+

P(M

)

- 0.15

AH

* A

S*

: PH

M

ediu

m

k C

omm

ents

Ta

ble

2 R

ef.

s

No.

r, h Q

-

DM

SO

1.7x

1o-3

-

- S.

20

2 D

MSO

1.

5 9

_ -

- SW

20

2 a

NaC

104

8.

Page 27: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

V(D

MSO

),(di

py)3

+ C

r(N

H3)

e3+

cis-

Cr(

ox),(

OH

&-

cis-

Cr(

ox~(

DM

SO)(

OH

2)-

Cr(

NH

&(N

CS)

+-

Cr(

NH

3)z(

NC

S),-

Cr(

NC

S)63

-

cis-

Cr(

en),B

rz+

cis-

Cr(

enb(

DM

SO)B

? tra

m-C

r(en

)zB

r2+

cis-

Co(

en),C

l,+

cis

-Co(

en),C

IBr+

ci

s-C

o(en

),Cl(D

MF)

‘+

cis-

Co(

enhC

l(DM

F)‘+

ci

s-C

o(en

),Cl(D

MSO

)Z+

cis

-Co(

en)lC

I(D

MSO

-&)2

f ci

s-C

o(en

kCl(D

MA

)‘+

cis

-Co(

en),C

l(DM

A)‘

+ ci

s-C

o(tre

n)B

r,+

cb -

Co(

tren)

Brz

+ ci

s-C

o(tre

n)B

rz+

cis

-Co(

tren)

BrZ

+ ba

ns

-Co(

en)2

Clz

+ tra

m-C

o(en

)#&

+

trans

-Co(

en)2

(NO

z)C

1+

tram

-Co(

en)2

(N02

)Brf

- _ _ - - _ 0.1

- - - - - -0

-0

-0

- -0

-0

- - - - - 0.1

-0

-0

-0

- o-1.

5

0.1

0.1

- - - _

- - _ - - _ _ _ _ _ - _ - - - _ - - - - _ - _ - _ - - - _ - _ - - - -

DM

SO

liq N

H3

DM

SO

DM

SO

MeO

H

I M

eOH

: M

eNO

z 1

: l(v

)

t M

eOH

N

aC10

4 D

MSO

D

MSO

D

MSO

D

MF

DM

F D

MSO

D

MA

D

MA

D

MF

DM

SO

DM

F FA

D

MSO

D

MF

NM

F D

MF

c D

MF

KN

CS

bMS0

D

MF

DM

F FA

1 TM

S K

CN

S

c D

MF

KN

CS

1 D

MF

KN

CS

CH

,CO

OH

CH

,CO

OH

CH

,CO

OH

CH

sCO

OH

3.6 X l

r3

4.1

X lO

A

2.0

X l

OA

6.

5 X

lO

-’ 1.

6X

lad

2.1

X l

o-’

(1.8

x

lr’)

- 32

28.5

29

.7

21.7

30

.4

- 24

.2

20.2

21

.9

7.9

12.9

26.4

8.

3 S

204

(2.7

X

1U

s)

21

-9

(1.0

x 10

-4)

19

-13

(3.7

x

10-S

) 22

-5

2.

8 X

lo5

18.2

-1

8.3

2.1

x 1o

-5

19.6

-1

4.2

1.2

x 1o

-5

24.0

+

0.6

6.0

X 1

0”

26.8

12

(7.5

) 9.

6 X

1O

-6

25.9

9.

9(5.

4)

1.2

X l

o-5

24.0

0.

6 1.

4X

1P

21.7

1.

3 1.

9X

1o-3

30

.0

29.5

2.

7 x l

o-*

10.1

-3

1.8

7.7

X l

o-4

17.9

-1

2.7

4.3

X 1

P 22

.1

0.2

2.5

X l

o-’

- -

8.5

X lo

-’

21.2

-1

5.2

1.6X

10

” 23

.5

- 6.

3

2.7

X lo

4 1.

1 X

104

1.

4X

l@

4.1

X lo

-5

8.0

X l

@

1.5

X 1

o-s

2.8

X lo

-

1.2

x lO

A

(84.

5 “)

4.

6 X

lo4

(8

4.5”

) 2.

3 X

lOA

(8

4.5”

) 2.

6 x

lO-’

(84.

5”)

26.3

23

.2

23.6

22

.3

21.5

13.4

1.

2 3.

0 -

3.8

- 0.

6

22.9

-

3.8

19.9

- _ - -

- 8.

0 S

167

-

S nmr

S L co

S 36

6 S

36

6 S

366

S 20

7 S

207

nmr

205

S 20

5 S

205

nmr

206

S; 1

6.6%

tra

m

prod

20

5 S;

16.

6%

tram

pr

od

205

S;K

;kfD

t 20

8 S;

K;k

tDf

208

S;K

;k?D

t 20

8 S;

K;k

tDt

208

S 20

7 S

167

S; 1

6.6%

tr

ans

prod

S nm

r S S;

pro

d.

is C

o(en

k (N

Oz)

NC

S+

S S S S S

202

203 68

68

71

71

205

205

205

209

209

167

364

364

364

364

Page 28: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

74 J. 0. Edwards, F. Monacelli and G. Ortaggi

TABLE VI. Activation Parameters for Aquation of Isomeric Complexes of Type Co(en)zAX”+.a,b,e,d

cis tram

A X AH+ AS+ AH* AS* 6A H” 6AS+

Cl Cl 21.6 - 4.0 27.5 13.1 +5.9 +17.1 Br Cl 22.5 - 0.7 24.6 4.1 +2.1 + 4.8 OH Cl 22.5 7.9 25.6 14.6 +3.1 + 6.7 N3 Cl 21.1 - 4.3 23.1 2.2 +2.0 + 6.5 NCS Cl 20.2 -13.5 29.8 7.8 +9.6 +21.3 NOz Cl 21.8 - 3.4 20.9 -2.2 -0.9 + 1.2 NH3 Cl 24.9 - 4.3 23 -11 -1.9 - 6.7 Cl Br 23.3 4.8 26.0 10.6 -2.7 + 5.8 Br Br 23.2 5.6 25.5 9.4 +2.3 + 3.8 OH Br 22.7 12.1 24.4 14.1 +1.7 + 2.0 NCS Br 22.5 - 4.3 29.5 10 +7.0 +14.4 NH3 Br 22.5 - 9.6 24 -5.1 +1.5 + 4.5

a The reaction is Co(en),AZ”+ + H,O+ Co(en)ZAH,O”f’ + X-. ’ The quantity 6AH* is defined as A H* (tram) less AH* (cis); 6A S* is defined similarly. ’ Units of AH* arc kcal mol-‘, and of AS* are cal mol-’ deg-‘. d Data taken from Data Table References 52, 131, 136, 138, 139, 141, 87, 143, 109, 121, 128, 161 and 165.

sibility of a trans-effect in octahedral systems. In prac- tice, this is not easy. For example, in the isomeric sys- tems cis and tram Co(en)*AX”+ where A is a mono- dentate, non-leaving ligand and X- is the leaving group, one is not simply looking at the truns-effect of A. Rather, one is comparing the effect of A with that effect due to one end of an ethylenediamine ligand. Some data are given in Table VI. It is clear that the values of dS* for the tram complexes are generally more positive than those for cis complexes; a similar trend is seen in the values of AH*. The values of &l H’ decrease for ligand A in the order

NCS > CT > OH- > Br- 2 N3- > NOz- > NH3

and those for 6A S* in the order

NCS > Cl- > OH- 2 N3- > Br- > NOz- > NH3

Our knowledge of the trans-effect in octahedral systems is limited, and it seems possible that the magni- tude of the trans-effect will depend on the nature of the leaving group. Roughly, however, what we see in the above orders is that the values of the 6 are in opposite order to those of the trans-effect, at least for the unions. For the anions, Pal and Vuikzza report the order

Cl- = OH- < Br- < I-

and it has been suggested22b that I- ~1 NO*- for the trans-effect. Making the assumption that NH3 and one end of ethylenediamine have about the same trans-

effect, we may conclude that the trans-effect decreases the value of dH* (still considering anionic ligands) while lowering the value of dS* . This is explicable if

the trans-effect moves the mechanism toward a more associative nature; however, neither the assumption nor the conclusion can be considered definite, partic- ularly in view of the anomalous position of ammonia (which is a neutral ligand rather than anionic). Experi- ments relevant to these points would be welcomed.

It should be stressed here that, as suggested by PO& the observed kinetic trans-effect should be corrected for the thermodynamic trans-effect and this correction might change somewhat the sequence. Also the recent review of Byrd and Wilmarth23d makes a strong case for a D mechanism for octahedra having a strong truns-effect ligand.

The problem of the octahedral trans-effect is impor- tant, and we list here references bearing on this ques- tion that we have found during the course of our litera- ture survey.22*23

6. Solvolysis

Data on formation rates of solvo-complexes (other than aquo, of course) are given in Data Table II. One sees immediately that the amount of data in non- aqueous solvent systems is very much less than in water, and further that the variety of systems studied is such that generalization is almost impossible. The activation parameters cover a wide range, and the values of AS* are seen to be both positive and nega- tive. Whether this is due to experimental uncertainties or to variable nature of the complex-solvent interaction is not known.

Page 29: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

Ligand Replacements in Octahedral Complexes 15

7. Acid-catalyzed Aquation

The cleavage of a metal-ligand bond can be facilit- ated by protonation of the leaving group. Using Co (en kb+ as the substrate example, the postulated mechanism is

Co(en)2Fz+ + H+ e Co(en)zF(FH)Z+ (fast)

Co(en)zF(FH)Z+ + HzO-+ Co(en)2F(H20)2+ + HF (rate)

with the rate-determining step involving the cleavage of the CO-FH bond. The rate has been found to be faster in DzO than in H,O. Since D30+ in DzO is a stronger acid than H30+ in HzO, the isotope experi- ment indicates that proton transfer occurs in a rapid equilibrium prior to the rate step. Acid catalysis is observed when the leaving ligand is basic towards protons; some such ligands are N3-, CN-, F, NOz-, SOd2-, HP0d2-, SO3’-, ox’-, mal’-, COJ2- and various acetates. This much seems certain, but the extent of participation by water in this step is not known.

which ranges from 3.1 X lo-’ to 1.3 X lo3 shows a distinct trend. Since &lG’ varies by seven kcal mar’, we should see some changes in the enthalpy and en- tropy of activation terms. However no clear trend is observed, and any trend must be covered by other factors. It is, therefore, interesting to see the ubiqui- tous d H’ /A S” compensation effect showing up in the values. A plot of 6AH* values against dAS* values forms a rough straight line with slope of 340” K which is uncomfortably close to the 25” C (298°K) of the data.

8. Base Hydrolysis

The dispute over the mechanism for the rapid base hydrolysis such as for example

Co(en)2Clz+ + OH--, Co(en)2Cl(OH)’ + CT

Comparison of the activation parameters in Data Table III with those for the analogous complexes in Data Table I (aquation reactions) shows no consistent difference. We expected that the acid-catalyzed path would be related to the aquation path in some non- complicated way. For instance, were the mechanism essentially dissociative in both cases, the &lS* values would be expected to be near the difference between the protonated ligand and the ligand itself in water solution. Unfortunately although in some instances this situation seems to occur, the lack of entrdpy data for many leaving groups prevents a complete analysis.

centered about the mode of action for hydroxide ion. The rate law is first-order in base. A direct displace- ment such as obtains for base hydrolysis in many organic compounds was favored by some research groups. The alternative mechanism invoked the uni- molecular heterolytic scission of the conjugate base of the complex. Now, there is quite general agreement that this conjugate base mechanism is the preferred one.

Some data which compare rates and activation parameters for acid-catalyzed and normal aquations are present in Table VII. Not even the ratio k,,/k,

We believe, however, that this is a particularly clear example of a reaction whose progress exhibited activa- tion parameters giving a definitive clue as to the actual mechanism, and for the purpose of demonstrating the importance of these parameters, we shall discuss some of the arguments here. Some recent reviews concern- ing this mechanism are available;‘~3’4~‘0”4~24 details of

TABLE VII. Comparison of Activation Parameters for Acid-Catalyzed and Normal Aquationsa

Complex kh k, Wk, AH*,, AH’, 6AH’ AS*,, AS*, 6A.P

Fe(HzO)sN32+ 5.1 20. 0.26 19.6 14.7 4.9 10.5 - 3.2 13.7 Cr(H20)5FZ+ 1.4 x lo4 6.2 x lo-“’ 23 24.5 28.7 - 4.2 -12.4 - 4.4 - 8.0 Cr(H20)5CNZ+ 5.2 x lOA 1.2 x 10-S 43 17.0 27.9 -10.9 -16.4 +12.7 -29.1 Cr(H20)5N32+ 2.3 x lo-’ 4.1 x lo+ 21 23.2 32.4 - 9.2 - 8.3 +16.4 -24.7 Cr(H20)&04* 2.3 x lp 7.5 x lo-’ 0.031 26.5 21.9 + 4.6 - 1.3 - 1.3 +11.7 Co(NH&F’+ 1.1 x lOA 8.7 x lp 1.3 x lo3 29.6 20.7 8.9 22.6 -21.4 44.0 Co(NH&N02’+ 2.6 x lOA 8.2 x lO-” 32 18.4 23.9 - 5.5 -22.7 -11.1 -11.6 CO(NH~)~OCOCH~‘+ 3.2 x lOA 2.7 x lp 1.2 x 10’ 25 25 0 2 -8 +10 Co(NHs)50xHZ+ 2.0 x lo-7 2.2 x loa 9.1 22.7 28.4 - 5.7 -14 + 1 -15 Co(NH&04+ 9.5 x 10-7 8.9 x 1O-7 1.1 28.4 22.7 5.7 9.2 -10 +19.2 Rh(NH&Od+ 1.1 x lOA 1.6 x lOA 0.69 28.5 21.4 7.1 9.9 -13.3 +23.2

a The following are the definitions for symbols in the table: kh = rate for acid-catalyzed aquation; k, = rate for normal aquation; A H* h = enthalpy of activation for acid-catalyzed aquation; AH* a = enthalpy of activation for normal aquation; 6AH” = difference in activation enthalpies (AH* ,-AH* .); AS* - h - entropy of activation for acid- catalyzed aquati0n;A.S’. = entropy of activation for normal aquation; and 6AS * = difference in activation entropies (A S* ,,-A S* .).

Page 30: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

DA

TA

T

AB

LE

II

I. A

cid-

Cat

alyz

ed

Aqu

atio

n.

Com

plex

W

f)

PH

M

ediu

m

k A

H”

AS*

Fe(

HZ

O)S

N32

+

Fe(

H20

)sS

Os+

C

r(H

zO)s

F*+

C

r(H

20)&

NZ

+

Cr(

Hz0

)sN

3*+

C

r(H

20)5

0NO

Z’

Cr(

Hz0

)50P

OzH

gZ+

C

r(H

ZO

)sO

S03

+

cis-

Cr(

H,0

)d(C

N)2

+

Cr(

NH

3)5F

Z+

C

r(N

H&

(ON

O)‘+

C

r(N

H3)

5(0C

OC

Cl~

)2+

~

is-C

r(en

)~F

~’

cis

-Cr(

en)2

F(O

NO

)+

~is

Cr(

en)~

(H~

O)(

ON

0)~

+

cis

-Cr(

en)z

(O

NO

X+

tr

un

s-C

r(en

),C

l(O

NO

)+

tran

s-C

r(en

~B

r(O

NO

)+

rran

~-C

r(en

)~(~

,0)(

0~0)

~+

tr

ans-

Cr(

en)Z

(ON

O)z

t tr

ans-

Cr(

en)z

(DM

SO

)(O

NO

)Z+

tr

ans-

Cr(

en)2

(DM

F)(

ON

O)Z

+

Cr(

mal

)a3-

C

r(M

e-m

al),

3-

cis

-Cr(

HZ

O)z

(ox)

z-

cis

-Cr(

HzO

)z(m

alh

- ci

s -C

r(H

zO)Z

(mal

)z-

tran

s-C

r(H

zO)~

(mal

&-

Co(

NH

,),F

’+

Co(

NH

j)5(

NO

z)‘+

C

o(N

Hs)

5(N

O#+

Co(

NH

&(o

xH)‘+

Co(

NH

a)s(

OS

Oa)

+

cis-

Co(

en)Z

(NO

zh+

ci

s-C

o(en

)2(N

3)2+

1.0

co.3

(L

i,H

)C10

4 1.

0 0.

3-1.

7 (N

a,H

)C10

4 1.

0 o-

1.15

(L

i,H

)C10

4 1.

0 o-

3.1

(Li,

H)C

104

1.0

0.6-

3.15

(N

a.H

)ClO

., 1.

0 o-

2 1.

0 O

-l.1

1

.o

o-1.

3

2.0

_

1.0

0 1.

0 -

0.13

l-

2 0.

01-0

.15

0.8-

2 0.

15

0.15

0.

15

0.15

0.

15

0.15

0.

15

0.15

0.

15

1.0

1.0

2.0

2.0

_ 1.0

0.11

2 -+

O

1.0

0.1

0.1

0.1

1.0

1.0

3.5

-

20.8

2 20

.82

20.8

2 20

.82

20.8

2 20

.82

20.8

2 20

.82

20.8

2 o-

1 o-

1

2-3

0.3-

l - 0 l-

l.7

_ _ l-2

l-2

0.3-

2

7.0

O-2

.3

<o

_

(Na,

H)C

104

(Li,

H)C

lOd

(Li,

H)C

104

(Na,

H)C

104

HC

lOz,

K

N03

(N

a,H

)C10

4 H

C10

4 (N

a,H

)C10

4 (N

a,H

)C10

4 (N

a,H

)C10

4 (N

a,H

)C10

4 (N

a,H

)C10

4 (N

a,H

)CIO

., (N

a,H

)C10

4 (N

a,H

)C10

4 (N

a,H

)C10

4 (N

a,H

)C10

4 (N

a,H

)ClO

,,

(Na,

H)C

104

(Na,

H)C

104

_ HC

IO.,

(K,H

)NO

z,

HC

lO.,

(K,H

)NO

a an

d u

rea

(Na,

H)C

104

(Na,

H)C

104

(Na,

H)C

104

(Na,

H)C

104

(Na,

H)C

104

_

5.1

3.7

1.4x

lo

4 5.

2 x

lo-4

2.

3 x

lo-’

3.2

X 1

0-l

1.7

x 10

” 2.

3 x

lo+

8.

3 x

lOA

1.

5 x

lo-’

5.1

x l@

2x

1o-3

5.

3 x

10-s

1.

6X

lo-2

1.

3 x

10-l

5.

0 x

10-l

2.

8 x

lo-’

3.6

x lo

-’ 9.

6 X

lo-

’ 6.

5 x

lo-’

8.0

x IO

-’ 7.

6 x

lo-’

3.6

x lo

4 5.

9 x

lOA

19.6

10

.5

10.4

_2

1 24

.5

- 12

.4

17.0

-1

6.4

23.2

-

8.3

19.8

9(

5.6)

18

.1

-24.

2 26

.5

- 1.

3 19

.9

- 5.

9 28

4

11.9

-2

4.8

21.6

1.

6 23

-

0.9

20.9

3.

4 20

.1

+

4.9

22

I8

21.0

4.

9 20

.3

3.0

19.8

3.

2 24

.3

17.6

-

_

20.1

3.

8 23

.4

4.2

_ -

2.3

X 1

0”

2.3

x 10

” 6.

5 x

lo-’

1.1

x 10

” 1.

1 x

lo4

4.0

x lo

+

2.6

x lo

-6

23.9

_ 21

.8

24.3

29

.6

38.2

18

.4

- 4.

5 _ -

4.7

0.4

22.6

31

.2

-22.

7

3.2

x IO

4 25

6.

2 x

lo-’

26

5.9

x lo

-+

29

Z(3

) 1

2.0

x lo

-’ 22

.7

-14

9.5

x lo

-’ 28

.4

9.2

1.4x

1o

-5

25.0

3.

1 2.

4 x

lo4

26.1

12

.5

_

Com

men

ts

Tab

le

Ref

. N

o.

SS

F

SS

F ; p

roba

bly

S-b

onde

d S

S

s SW

S

S

S

S S

S

T

S;

lOO

%ci

s pr

odu

ct

S;

100%

ci

s pr

odu

ct

S;

100%

ci

s pr

odu

ct

S; 1

00%

tr

am

prod

uct

S

; 10

0%

fran

s pr

odu

ct

S;

100%

tr

ans

prod

uct

S

; 10

0%

trar

rs p

rodu

ct

S ;

100

% t

ram

pr

odu

ct

S ;

100

% t

rans

pro

duct

S

; on

e m

al*-

is

lost

S

; th

e pr

odu

ct

is tr

ans

- C

r(m

e-m

al)z

(OH

z)z-

S

; on

e ox

*- i

s lo

st

S;

one

mal

’- is

los

t S

S

T

S S

S

S S;

wh

enp

=

1.

0,

AH

* =

22

,AS”

=

-20

S S S S

75

280 9 14

15

21

0 21

1 24

212 37

21

3 32

0 21

4 27

8 27

8 27

8 27

8 q

278

278

278

278

278

217

305

215

216

157

157 83

92

93

97

97

82

96

102

218

218

Page 31: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

L&and Replacements in Octahedral Complexes 77

the experimental results plus other references are sum- marized in these articles.

Let us first consider the direct displacement me- chanism. The mechanism requires both particles in the transition state with a fair degree of reagent orientation. It is expected from known entropies of activation for associative processes that a value of about -15 cal rnor’ deg-’ for AS* would be found.*’

The alternative mechanism, designated SNICB (for substitution, nucleophilic, unimolecular, conjugate base), is postulated to be made up of three steps. With Co(NH3)5Br2+ as substrate, the steps are as follows:

Co(NH3)5Br2+ + OH- # Co(NH3k(NH2)Br+ + Hz0 (fast)

Co(NH3)4(NH2)Br++ Co(NH3),(NH2)‘+ + Bi (rate)

Co(NH3&(NH2)‘+ + H20+Co(NH3)s0H2+ (fast) The first step is a rapid equilibrium (somewhat akin to neutralization of a weak acid). The second step is rate-determining, and it is the unimolecular scission of the intermediate formed in the first step.

A positive AS* value is predicted for the SNICB mechanism. The first step

NH-M-X”+ + OH- P H,O + N-M-X@-*)+

is closely similar to known “neutralization” reac tions in the literature; some of these are given in Table VIII along with the estimated values of AS”,,,. These are positive and large because of the consider- able charge neutralization. The second step, which involves some charge separation concurrent with formation of two particles from one, is expected to have a AS” 2 near to zero as is the case for aquation of Co(NH&X*+ where X- is a large leaving group. Using the two values AS”,,, = 34 (average value from Table VIII) and AS* z = 0, we obtain for AS* an estimated value of +34 cal mar’ deg-‘.

The bulk of the experimental values for AS* in Data Table IV lie between +20 and +40, and there is

TABLE VIII. Some Entropies of Neutralization of Aquo- complexes.a’b~c

Complex K, AH’ion AS’io,, AS”,,

V(Hz0)e3+ 2 x 1c3 10 20 39 Cr(HZ0)63+ 2x10-4 9.4 14 33 Mn(H20),,3’ 9 x 10-l 4.8 15.7 35 Fe(H20)b3+ 6x l@ 12.3 31 50 C0(Hz0)6~+ 2 x 1o-z 10 25 44 Rh(H20)b3+ 4 x lOA 4.3 -1 18 Rh(NH&0Hz3+ 4 X lo-’ 6 -9 10

a K., AHoion, and ASoion are for the process HzO-M-X5”+ P HO-M-X5”-1 + H+

b AS”,, is for the process H20-M-X5” + OH- # HO-M-X5”-’ + HzO.

’ Data from text ref. 25.

Page 32: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

DA

TA

TAB

LE

IV.

Bas

e H

ydro

lysis

.

Com

plex

P

(M)

PH

Med

ium

k

AH

* A

S*

Com

men

ts

Cr(

H*0

)5py

3+

1.0

O-3

C

r(H

*O)&

l*+

1.0

o-1.

7 C

r(H

*O)s

B?+

1.

0 o-

1.3

Cr(

H*O

),Bf+

2.

0 -

(Na,

H)C

104

(Li,H

)C10

4 (L

i,H)C

104

_

Cr(

H*O

)sI*

+ 1.

0 04

.7

(Li,H

)C10

4 C

r(H

*O)s

IZf

1.07

O

-O.6

(N

a,H

)ClO

.,

Cr(

H*0

)512

+ 1.

0 o-

1.7

Cr(

H*O

)sSC

N*+

1.

0 2

Cr(

H*0

)5N

**+

1.0

0.4-

2.15

C

r(H

*0)5

0NO

**+

1.0

O-l.

1 C

r(H

*0)5

0N0*

2+

1.0

O-l.

1 C

r(H

*0)5

0S03

+ 1.

0 o-

1.3

cis

+~~~

wC

~(H

*O)~

(NC

S)SC

N+

1.0

o-1

trans

(?)-

Cr(

H*O

).,C

l*+

0.5

10-3

.7

Cr(

NH

*)sF

*’

0.1

- C

r(N

H,),

F*+

0.1

13

Cr(

NH

,)sF*

’ 0.

11

_

(Li,H

)C10

4 (N

a,H

)C10

4 (L

i,H)C

104

(Li,H

)Cl0

4 (L

i,H)C

104

LiC

lO,

(Na,

H)C

104

(Na,

H)C

I N

a(N

O,,O

H)

NaO

H

EtO

H-H

*O

114.

5 N

a(C

lO.+

,OH

) M

eOH

-H*O

1:

4.5

EtO

H-H

*O

114.

5 N

a(C

104,

0H)

Na(

C10

4,0H

) N

a(C

104,

0H)

9.9

x lo

3 2.

8 x

lo6

9.2

x lo

7 1.

1 x

10”

(30°

C)

(4.0

x

109)

8.

2 x

lo9

(30°

C)

3.4x

lo

9 2.

7 x

10”

2.1

x lo

3 1.

0x

ld

1.4x

10

’ 3.

2 x

lo5

7.3

x 10

” 2.

6 x

10’

2.7

X l

o-+’

3.

2 x

lo-’

6.

3 x

lOA

22.3

34

.5

S 16

.1

25.0

S

; see

bel

ow*

13.8

24

.0

T; s

ee b

elow

* -

- S;

see

bel

ow*

7.3

9.9

ST;

see

belo

w*

- -

S; s

ee b

elow

*

15.6

37

.2

S; s

ee b

elow

* 14

.5

31.0

(28.

7)

S; s

ee b

elow

* 23

.9

36.6

S;

see

bel

ow*

11.6

17

.1

S; s

ee b

elow

* -

_ S;

see

bel

ow*

14.4

14

.9

S; s

ee b

elow

* 11

.6

21.9

S

_ _

S 23

.2

-6.2

T

32.4

20

.6

P 25

.5

3.2

T

Cr(

NH

a)sC

l*+

Cr(

NH

*)5C

I*C

0.

1 0.

11

11.5

-13

_ 1.

8 x

1O-3

2.

5 x

1O-3

5.2

x lo

-’

7.2

x lC

r*

3.7

1.8

x 10

-s

8.1

x 10

” 2.

3 x

10”

210(

40.5

”C)

26.1

16

.5

P 41

27

.7

22.5

T

45

Cr(

NH

*)&

l*+

0.11

-

27.6

23

.6

7 45

Cr(

NH

*)5B

?+

Cr(

NH

*)sI

*+

Cr(

NH

*)sN

**’

Cr(

NH

3)sN

CS*

+ C

r(N

H*)

sNC

S*+

cis-

Cr(

en)*

F*’

0.1

0.1

0.2

0 o-o.

5 0.

010

11.5

-13

211.

5 0.

7-1.

3 _ 7-

13.7

7.

9

_

25.7

22

.5

P 26

.2

26.8

P

24.9

2.

9 S,

(10

” ra

nge)

35

.0

35.6

ST

31

.4

21

S -

- T

cis-

Cr(

en)*

Cl*

+ 0.

10

11.3

-14

cis-

Cr(

en)*

OH

Cl+

0.

10

10.1

-10.

7 tru

ns-C

r(en

hCl*

+ 0.

10

11.3

-14

trans

-Cr(

en)*

OH

Cl+

0.

10

9.8-

10.8

Fe

(OH

*)sC

12+

3.0

CO

.6

Co(

NH

3)sF

*+

O(e

xt)

-

NaO

H

Buf

fer

B(O

H)-

JH*B

O*

Na(

N03

,0H

) N

a(C

104,

0H)

Na(

N03

,0H

) N

a(C

104,

0H)

(Na,

H)C

104

2.7

x lo

-*

-

2.2

-

3.7

x lo

-*

-

<3x

lo-*

-

3.4

x 1o

14

-

1.3

x lo

-2

26.1

T

- S;

96

% c

is

prod

T

- _ 20

.4

S; 8

7 %

tra

m

prod

uct

S; n

ote

unus

ual

k T

Tabl

e R

ef.

No.

325 9 10

11

12

13 9 18

15

20

19

24

331 28

38

33

8 45

41

41

326 46

21

3 21

4 55

57

55

57

73

222

* O

rigin

al

resu

lts

give

n by

rat

e la

w

k =

kr[H

+]-‘.

A

ctiv

atio

n pa

ram

eter

s an

d ra

te

cons

tant

s ar

e co

rrec

ted

for

the

k,,A

H”

and

AS

" of

the

pr

oces

s H

*O

P H

+ +

OK

, k,

=

1.0x

lC

?,A

HO

=

13.3

,A.S

” =

-19.

3.

Page 33: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

Co(

NH

,),F

’+

0.11

Co(

NH

s)sF

*+

0.11

Co(

NH

3)5C

l*+

O

(ext

) C

o(M

H&

Cl’+

0.

1 C

o(N

H3)

sClZ

+

0.05

-0.0

05

Co(

NH

~)&

I’+

O

(ext

) C

o(N

H&

B?+

O

(ext

) C

o(N

Hg)

sB?+

1.

0 C

o(N

H3)

gB?+

0.

05~

.005

C

o(N

H&

B?+

O

(ext

) C

o(N

H,)

,B?+

va

riab

le

Co(

NH

&B

r’+

C

o(N

H&

I’+

C

o(N

H3)

$+

Co(

NH

&I’

+

Co(

NH

3)s1

2+

Co(

NH

&N

Oz’

+

Co(

NH

&N

3’+

C

o(N

H&

NC

S’+

C

o(N

H&

NC

S’+

C

o(N

H&

ON

O’+

C

o(N

H&

ON

O*+

C

o(N

H&

NH

$O#+

C

o(N

H&

(NH

S03

)+

CO

(NH

&O

CO

CH

Clz

*+

Co(

NH

&O

CO

CC

ls*+

C

o(N

H3)

s0C

OC

F3*

+

CO

(NH

~)~

OC

OC

F~

*+

Co(

NH

&O

CO

,+

Co(

NH

3 )5

(ox)

+

Co(

NH

&(m

al)

+

Co(

NH

3)s(

fum

arat

e)+

C

o(N

H3)

sOS

03+

C

o(N

H&

OS

zOz+

C

o(N

H&

OS

zOz+

C

o(N

H&

OP

03

Co(

en)3

3+

cis-

Co(

en),

NH

3N02

’+

cis-

Co(

en)z

NH

3NC

SZ

*

cis-

Co(

en)z

NH

3C12

cis-

Co(

en)z

(NH

zOH

)C12

+

ci~

-Co(

en)~

(NH

~0H

)Br*

’ ci

s-C

o(en

)z(N

HzM

e)C

lz+

ci

s -C

o(en

)Z(N

H2M

e)C

12+

O(e

xt)

0.1

O(e

xt)

1.0

O(e

xt)

O(e

xt)

O(e

xt)

O(e

xt)

0.00

7 0.

1 0.

12

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

O(e

xt)

1.0

>O

.l

0.03

3-0.

1

0.03

3Al.

l

0.10

0.1

0.1

0.10

0.

10

- 12-1

4 11

.7-1

2.7

- 12.0

-13.

4 11

.7-1

2.7

t,P

,itia

l)

13.5

-14.

0 13

.0-1

3.1

12.8

-13.

5

_ 12.3

-14.

0 13

.0-1

4.0

13.6

-14.

0 13

.6-1

4.0

13.3

-12.

7 12

.6-1

3.3

11-1

2.6

>13

12

.5-1

3.0

12.5

-13.

0

9.2-

9.8

11.5

-12

11.5

-12

11.5

-12

9.2-

10.0

MeO

H-H

Z0

114.

5 E

tOk

H20

11

4.5

Na(

C10

4,O

H)

NaO

H

NaO

H

Na(

ClO

.,,O

H)

NaO

H

NaO

H

NaO

H

NaO

H

Na(

ClO

+O

H)

N&

Clo

d,

NH

, - _ N

aOH

N

aC10

4 L

iC10

4,N

aOH

N

aClO

,, N

a(C

lO.,,

OH

) N

a(C

l,O

H)

Na(

Cl,

OH

) N

a(C

l,O

H)

Na(

CI,

OH

) N

a(N

03,0

H)

Na(

Cl,

OH

) N

a(C

I,O

H)

Na(

Cl,

OH

) N

a(C

lO,,,

OH

) N

aOH

,N&

N03

_ N

a(C

104,

0H)

NaO

H

NaO

H

NaO

H

KC

1

NaC

104

NaC

lO,,

NaC

104

KC

1

1.0

x 10

-z

26.4

2.1

x lo

-2

26.5

1.5

27.6

0.

61

-

0.81

28

.7

1.6

26.6

6.

2 27

.6

1.4

-

6.0

23.5

8.

9 27

.0

5.2

(30°

C)

- 10

-

6.3

27.2

17

.4

27.2

3.

70

21

23

28.3

4.

2 x

1OA

37

.4

3.0x

lo

-4

32.6

5.

0 x

lv4

34.0

1.

4 x

1o-3

21

.6

15

28.1

12

28

.8

1.0x

10

2 32

2.

5 x

lO-’

41.2

5.

8 x

1O-3

28

.9

2.2

x lo

-*

23.3

2.

1 x

10-Z

22

.7

1.6

x lo

-*

27

3.3

x lo

4 30

.0

2.5

x l@

31

.7

2.8

x lO

-’ 28

.0

8.0

x lo

-’ 28

.5

4.9

x lc

rZ

26.3

6x

lo

-5

27.6

1.

1 x

l@

30.4

5.

0 x

lo-’

36.8

(1

.1 X

10-

9)

38.6

5.

1 x

1Crs

33

.3

2.9

x l(

r3

30.6

8.1

-

7.0

23.4

48

23

.7

7.3

23.4

13

-

20.9

T

22.7

T

30.7

(34.

8)

- 37

31.6

37

.7

_ 23

36.4

- - 36

.4

38.4

19

(14.

5)

42.6

42

.4

34.7

40

.4

1.9

41.0

43

58

46

28

.8

12.5

10

24

18

32

.2

14.4

18

.3

24.0

14

.4

25.7

36

.0

30

33.5

32.5

- 23

.8

28.7

23

.9

-

T

SW

S

S

; (1

3.4”

ra

nge

) T

SF

S

S

S

S pH s

tat

S S

T S,T

S

,T

S,T

K

pH

sta

t S

S

S

S

S

S - co

o S

S

S

S

S

T

- R

S

T

S;

90%

ci

s pr

od.

T ;

100

% c

is p

rod.

T

T

T

T;

100%

ci

s pr

od.

45

Ir

o;j’

222

G s

223

R

85

3

224

2 i: 22

2 s.

223 85

B

225

E

“a

226

a

227

5

228

h 6

229

6 90

22

2 23

0 91

46

231

228 94

99

99

98

98

23

2 23

3 23

4 23

5 23

5 23

5 99

103

337 95

22

1 23

6 23

7

238

111

111

111

238

;1

Page 34: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

DA

TA

T

AB

LE

IV

. (C

ont.

) g

Com

plex

p(

M)

PH

M

ediu

m

k dH

* dS

* C

omm

ents

T

able

R

ef.

No.

cis-

Co(

en)*

(NH

*Me)

B?’

0.

1 ci

s-C

o(en

)*(N

H*E

t)C

l*+

0.

1 ci

s-C

o(en

)*(N

H*E

t)C

l*+

0.

1

cis-

Co(

enX

(NH

*Et)

CI*

+

cis-

Co(

en)*

(NH

*Et)

Br*

’ ci

s-C

o(en

)*(N

H*-

n-P

r)C

l*+

ci

s-C

o(en

)*(N

H*-

n-P

r)C

I*+

ci

s-C

o(en

)*(N

H*-

n-P

r)B

?+

cis-

Co(

en)*

(NH

*-i-

Pr)

Cl*

+

cis-

Co(

en)*

(NH

*-i-

Pr)

Cl*

+

cis-

Co(

en)*

(NH

*-i-

Pr)

B?+

ci

s-C

o(en

)*(N

H*-

n-B

u)C

l*’

cis-

Co(

en)*

(NH

*-n

-Bu

)Cl*

’ ci

s-C

o(en

)*(N

H*-

All

yl)C

l*+

ci

s-C

o(en

)*(N

H*-

All

yl)B

? ci

s-C

o(en

)*(N

H*C

H*C

H*O

H)C

l*’

cis-

Co(

en)*

(NH

*(C

H*)

~C

H*O

H)C

l*+

ci

s-C

o(en

)*(N

H*(

CH

*)4C

H*O

H)C

l*f

cis-

Co(

en)*

(NH

*(C

H*)

5CH

*0H

)ClZ

+

cis-

Co(

en)*

(NH

*-P

rop-

2-yn

yl)C

l*+

ci

s-C

o(en

)*(N

H*-

Pro

p-2-

ynyl

)Bf+

ci

s-C

o(en

)*(N

H*(

CH

*)sC

OO

Me)

C12

+

cis-

Co(

en)*

(NH

*(C

H*)

sCO

O-)

C1*

+

cis-

Co(

enX

pyC

l*+

ci

s -C

o(en

)* @

-pi

c)C

l*+

ci

s-C

o(en

)*(y

-pic

)Cl*

+

cis-

Co(

en)*

@-C

H30

-py)

Cl*

+

cis-

Co(

en)*

Cl*

+

cis-

Co(

en)*

ClB

r+

cis-

Co(

en)*

BrC

l+

cis-

Co(

en)*

(OH

)F+

ci

s -C

o(en

)* (

OH

)Cl+

ci

s-C

o(en

)*(O

H)B

r+

cis-

Co(

en)*

(OH

)(N

O:)

+

cis-

Co(

en)*

(OH

)(N

O*)

+

cis-

Co(

en)*

(OH

)N3+

ci

s-C

o(en

)*(O

H)(

NC

S)+

ci

s-C

o(en

)*(O

H)(

NC

S)+

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.5

0.1

0.1

0.1

_ _ 0.1

0.1

0.1

0.1

- - 0.00

1-0.

01

0.00

1~.0

1 0.

001-

0.01

0.

10

0.00

1-0.

01

0.00

1-0.

01

0.10

0.

050-

0.10

0.

05

- 0.05

0~.1

11.5

-12

NaC

104

50

11.5

-12

NaC

104

6.5

4.65

-5.6

5 B

uff

er

12

(Na.

H)O

CO

CH

3

9.2-

10.2

11

.5-1

2 11

.5-1

2 9.

2-10

.0

11.5

-12

11.5

-12

8.8-

9.6

11.5

-12

9.2-

10.0

12

.4-1

3.7

11.5

-12

11.5

-12

9.0-

9.6

1 (N

a,H

jOC

OH

K

C1

NaC

104

NaC

104

K(C

l,N

O*)

N

aC10

4 N

aC10

4 K

C1

NaC

104

KC

1 K

CI-

NaO

H

NaC

104

NaC

104

KC

1

13

47

11

13

2.7

x l

o*

17

52

4.2

x lo

* 13

6.

5 6.

4 1.

2 x

lo*

20

2.7

X 1

0-l

2.7

x 10

-l

2.5

x 10

-l

3.3

57

14

1.5

x lo

-’ 1.

6 x

1O

-3

1.3

x 1o

-3

1.3

x 1o

-3

1.2

x 10

” 7.

1 x

lo*

2.6

x l

o3

8.4

x l

o*

1.2

x lo

-’ 12

86

- 11.5

-12

11.5

-12

12.4

-13

11-1

1.5

- - - 11.0

-12.

0 11

.0-1

2.0

11.0

-12.

0 11

.5-1

2.0

11.0

-12.

0 11

.0-1

2.0

13.0

12

.7-1

3.0

12.7

12-1

2.3

NaC

lO.,

NaC

104

bora

x bu

ffer

s bo

rax

buff

ers

- NaO

H

NaO

H

NaO

H

Na(

N03

,0H

) N

aOH

N

aOH

N

aOH

N

aOH

N

aOH

- N

aOH

- 2.5

x l

@

2.8

x 1O

-3

2.3

x 1

O-3

1.

6 x

lo-

* (3

5°C

)

23.7

28

.8

23.5

24

.0

25.4

32

- 23.7

23

.4

- 23.7

23

.4

_ 23.7

- - 23

.4

23.8

_ _ _ - 23

.4

23.7

_ - _ _ _ _ 24

.0

22.5

22

.1

22.7

21

.8

21.9

30

.3

- - - -

- 28.6

24

.8

- 32.1

25

.6

_ 33

- _ 23.7

30

.8

_ _ - - 22.3

29

.0

- - - - - - 35.0

32

.6

29.0

13

.4

19.5

23

.8

_ _ - _ _

T

T

T

T;

100%

ci

s pr

od.

T

T

T;

100%

ci

s pr

od.

T

T

T;

100%

ci

s pr

od.

T

T;

100%

ci

s pr

od.

SS

F

T

T

T;

100%

ci

s pr

od.

S,T

S

,T

S,T

T

T

S

SF

, pH

sta

t S

sF, p

H s

tat

T

T

T

T

T;

37%

ci

s pr

od.

T;

30%

ci

s pr

od.

T;

40%

ci

s pr

od.

T

T;

97 %

cis

pr

od.

T;

96%

ci

s pr

od.

S

T S,T

T

T

111

111

112

238

111

111

238

111

111

238

111

238

239

111

111

238

347

347

347

111

111

361

361

159

4

159

P

159

!z

159

g 24

0 &

24

0 “J

24

0 3

129

240

f

240

f:

236

$

241

9

138

:

242

b 24

1 2 8.

Page 35: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

cis

-Co(

en)Z

(OH

)(O

CO

CH

3)+

cis-

Co(

en),(

OH

)mal

ci

s-C

o(en

)z(N

3)N

3+

cis

-Co(

en)z

(N3)

NC

Sf

cis

-Co(

en)z

(NO

z)C

1+

cis-

Co(

en),(

N02

)N02

+ ci

s-C

o(en

),(N

Oz)

NC

S+

cis-

Co(

enX

(NC

S)N

s’

~i.s

-Co(

en)~

(NC

S)N

0~+

cis-

Co(

en)z

(NC

S)N

CS+

ci

s-C

o(en

)z(O

CO

CH

3)2C

C

o(en

),OA

ZO+

Co(

en)z

ox+

Co(

en)z

ox+

Co(

en)2

mal

+ tra

ns-C

o(N

H&

(NO

z)C

l+

trans

-Co(

NH

3)4(

N02

)BrC

truns

-C

o(N

H3)

4(N

CS)

Clf

trans

-Co(

en)z

(NH

3)N

022+

tra

ns-C

o(en

X(N

H3)

NC

SZ+

tram

-Co(

enX

FZf

trans

-Co(

en)z

Clz

+ tra

ns-C

o(en

)2C

lBr+

tra

ns-C

o(en

)zB

r2+

trans

-Co(

en),B

rCl+

tra

ns-C

o(en

),(O

H)F

+ tra

ns-C

o(en

)2(0

H)C

l+

trans

-Co(

en)z

(OH

)Br+

tru

ns-C

o(en

)Z(N

HB

)NC

S2+

trans

-Co(

en)Z

Fz+

trans

-C

o(en

XC

L+

trans

-C

o(en

ji

(&H

)N02

+ tra

ns-C

o(en

k(O

H)N

OZ+

tra

ns-C

o(en

)2(0

H)N

g+

trans

-Co(

en)z

(OH

)Ng+

tru

ns-C

o(en

)z(O

H)N

CS+

tra

ns-C

o(en

)z(O

H)N

CS’

tra

ns-C

o(en

)z(O

H)O

CO

CH

a+

tran

s -C

o(en

)z(C

N)C

1+

trans

-Co(

en)z

(CN

)Br’

tr

am-C

o(en

)z(N

02)C

l+

tran

s-C

o(en

)2(N

02)Z

f tra

ns-C

o(en

),(N

Oz)

NC

S+

0.01

4 - 0.

05

- 0.00

1-0.

01

0.03

3-0.

10

0.05

0-0.

10

- 0.05

-0.1

0 0.

01-0

.05

0.01

4 1.

0 0.

01-0

.03

3.4

- 0.3

0.3

0.21

0.03

3-0.

10

0.05

0-0.

10

- 0.00

10-0

.010

0.

0010

-0.0

10

- 0.00

10~.

010

0.10

0.

0010

-0.0

10

0.00

10-0

.010

0.

050-

0.10

- 0.

001-

0.01

0.

033-

0.10

0.

05-0

.10

0.05

_ 0.

05-0

.10

- 0.01

4 0.

010

0.00

5 0.

0010

-0.0

10

0.03

3-0.

10

12.0

N

aOH

12

-14

NaO

H

12.7

N

a0I-

i -

-

11.0

-12.

0 N

aOH

12

.5-1

3.0

NaO

H

12.7

-13.

0 N

aOH

_ 12

.7-1

3.0

12.0

-12.

7 12

.0

11.1

-14

12.0

-12.

5 14

- NaO

H

NaO

H

NaO

H

Na(

C10

4,0H

) N

aOH

N

aOH

12-1

4 13

.0-1

3.5

13.0

-13s

12.5

-13.

0 12

.7-1

3.0

- 11.0

-12.

0 11

.0-1

2.0

11.0

-12.

0 N

aOH

13

N

a(N

03,0

H)

11.0

-12.

0 N

aOH

11

.0-1

2.0

NaO

H

12.7

-13.

0 N

aOH

_ 11

-12

12.5

-13.

0 12

.7-1

3.0

12.7

NaO

H

NaO

H

NaO

H

NaO

H

- 12.7

-13.

0 N

aOH

-

-

12.0

N

aOH

12

.0

NaO

H

11.7

N

aOH

11

.0-1

2.0

NaO

H

12.5

-13.

0 N

aOH

NaO

H

Na(

N03

,0H

) N

a(N

03,0

H)

1

Pipe

ridin

e,2,

6-

dim

ethy

lpyr

idin

e-

HN

Os

buff

ers

NaO

H

NaO

H

NaO

H

NaO

H

8.2 x 1

O-3

25

.8

4.3

x lo

4 26

.5

6.6

x 1o

-3

-

2.7

x 1C

r3

-

1.2

22.5

3.

7 x

1o-5

31

.9

4.3

x 10

-4

29.6

6.

0 x

1O-3

-

1.5

x 1o

-3

-

4.6

x lo

-’

29.3

2.

4 x l

o-’

25.6

2.

7 X

lC?

22.0

1.

3 x

1Cr5

33

.4

5.3

x 1o

-3

_

2.8

x 1O

A

29.1

22

.8

1.4

x 10

-l 24

.3

19.2

3.

7 x

lo-’

20

.4

8.2

4.8

29.6

44

7.6

x lo

-’

5.9

x 1o

-3

64

3.2

x lo

3 1.

2x

lo4

1.2x

lo

4 5.

3 x

lo3

9.0

x 1c

r3

5.6

x 10

-l 7.

0 5.

9 x

lo-3

64

3.

2 X

lo3

7.

2 x l

o-6

3.5

x 1o

-5

1.2

x 1o

-3

1.2

x l@

4.

3 x

lo4

7.0

x 10

-s

1.3

x 1o

-3

4.9

67

3.7 1.6x

lo

-“

0.10

-0.0

50

12.7

-13.

0 N

aOH

4.

6 X l

p

15.8

(18.

5)

T; 9

5%ci

s pr

od.

14.9

- - 17

.3

28.2

25

.4

- - 33.6

18

.4

3.6

31.2

-

33.3

34

.3

31.8

38

.0

- -

22.6

33

.3

23.6

39

.3

- -

24.3

40

.0

23.3

10

.3

22.2

14

.8

23.1

22

.8

31.8

38

.0

- -

22.6

33

.3

28.0

11

.9

- -

_ - -

- - -

27.8

21

.4

22.6

20

.6

22.8

26

.3

23.8

23

.9

30.0

24

.7

31.3

31

.2

S S,T;

55

% c

is p

rod.

T;

10

0%

cis

prod

. T;

67

% c

is

prod

. T T;

45-

55

% c

is p

rod.

T;

65-

70

% c

is p

rod.

T T T;

cis

pro

d.

s;

coo

S, P

nl

S; T

he

rate

co

qst.

refe

rs

to t

he

form

atio

n of

cis

- C

o(en

),(O

H)o

x S S;

100

%

trans

pr

od.

S; 1

00%

tr

am

prod

.

S T S ; 3

0 %

tra

ns p

rod.

S T;

95%

tr

ans

prod

. T;

95

% t

rans

pr

od.

S T;

100%

tr

ams

prod

. T;

11

%

trans

pr

od.

T; 6

% t

rans

pro

d.

T;

10%

tr

ans

prod

. S;

30%

tr

ans

prod

. S T;

95

% t

rans

pro

d.

T T S,T

T T T T; 5

% t

rans

pr

od.

T;

100%

tr

ans

prod

. T;

10

0%

tran

s pr

od.

T; 9

4%

tran

s pr

od.

T; 8

5-90

%

tran

s pr

od.

T; 8

5-90

%

tram

pr

od.

243

IF _.

245

%

138

&

242

k 24

0 G

F 23

6 2

241

3 24

2 9 c:

24

1 S’

237

243

B

145

g B

244

5 36

2 s 2 6

363

5 33

3 33

3

346

236

237

128

240

240

128

240

129

240

240

237

128

240

236

241

138

242

241

242

243

164

166

240

236

241

2

Page 36: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

DA

TA

TAB

LE

IV.

(Con

t.)

e

Com

plex

/W

) PH

M

ediu

m

k A

H+

AS*

C

omm

ents

truns

-Co(

en)Z

N3C

lf 0.

0050

11

.7

NaO

H

rran

s-C

o(en

),(N

j)z+

trans

-Co(

en)z

(N3)

NC

S+

trans

-Co(

en),(

NC

S)C

l+

fran

s-C

o(en

)z(N

CS)

NO

Z+

tram

-C

o(en

)z(N

CS)

N3f

tra

ns-C

o(en

),(N

CS)

z+

trans

- C

o(en

)z(O

CO

CH

3)C

l+

fran

s-C

o(en

)z(O

CO

CH

3)2+

tru

ns-C

o(en

)z(O

CO

Ph)C

l+

trans

-Co(

en)2

(OC

OPh

)2+

trans

-Co(

Me-

en),C

l,+

trans

-Co(

Et-e

n),C

l,+

trans

-Co(

d,l

-pnX

C12

+ tra

ns-C

o(d,

l-bn)

zC1z

f tra

ns-C

o(m

eso-

bn)2

C12

+ tra

ns

-Co(

teta

)Cl,+

0.02

5 -

O.O

018~

.002

l 0.

050-

0.10

- 0.

033-

0.10

0.

1 0.

014

0.1

0.00

27

_ - - _ _ 0.20

NaO

H

_ NaO

H

NaO

H

12.4

- 11

.3

12.7

-13.

0 - 12

.5-1

3.0

1.3-

2.3

12.0

2.

0-2.

3 11

.3

-

NaO

H

Na(

ClO

.,,O

H)

NaO

H

Na(

C10

4,0H

) N

aOH

-

- - _ 5.74

.8

_

trans

-C

o (t

runs

-14-

dien

e)C

lz’

0.20

trans

-Co(

cycl

am)C

lz+

0.1

truns

-Co(

cycl

am)(

NO

Z)C

l+

0.3

trans

-Co(

cycl

am)(

N02

)Br+

0.

05

trans

-Co(

cycl

am)(

NC

S)C

l+

0.25

Ru(

NH

&C

l’+

0.00

2

6.0-

6.8

_ 8.4-

9.4

2,6-

lutid

ine

buff

er

HN

OJ2

,6-lu

tidin

e bu

ffer

Li

NO

a B

orax

bu

ffer

7.2-

8.0

_ 11.3

-11.

7

Ru(

NH

~)sC

?+

Ru(

NH

3)5B

rZ+

Ru(

NH

&B

r?+

- - 0.00

1

0.00

2

- -

11-1

2.1

y-co

llidi

ne/H

NO

, bu

ffer

y-

colli

dine

/HN

03

buff

er

NaO

H

+ CH

3-@

S0,N

a

NaO

H

11-1

2.1

11.0

-11.

4 N

aOH

N

aOH

+

CH,+

SO,N

a

Ru(

NH

&I*

+ 11

.0-1

1.3

NaO

H

+ CH

,-@SO

,Na

cis

-Ru(

en)&

’ ct

i-Ru(

en)z

Br2

+ 11

.3-1

2.0

10.0

-

4.1

x 10

-l

(0°C

) 1.

1 x

lo-*

2.

2 x

lo-3

13

2.

0 x

lo4

3.3

x 1K

3 6.

6 x

1o-3

11

5.

1 x

lo-z

7.

8 3.

2 x

lo-*

1.

2 x

lo4

1.6x

lo

4 2.

5 x

1O-3

2.

3 x

lo3

1.0x

lo

4 5.

7 x

lo5

(19.

8”C

) 2.

2 x

lo5

(19.

8”

C)

6.7

x lo

4 7.

6 x

lo*

(26.

9”

C)

1.0x

lo

4 (2

2.3”

C)

8.9

x 10

5.2

26.7

34

.2

5.0

(24.

6”

C)

18

11.7

5.3

Fast

(0

” C

) -

-

Fast

(0

” C

) -

-

- _

_ -

- -

22.6

22

.3

- -

_ -

33.6

44

.2

22.6

22

26

.3

23

24.8

28

_

-

23.3

38

.3

22.6

36

.5

23.6

36

.2

24.2

38

.0

24.0

40

.4

- -

_ -

_ _ - _

_ -

21.1

25

- -

- 22.5

- 21.8

23.7

24

.2

Tabl

e R

ef.

No.

-

S,T;

87

%

tran

s pr

od.

138

ST;

70%

tr

ans

prod

. 13

8 T;

60-

90%

ci

s pr

od.

242

S; 2

6%

tran

s pr

od.

165

T 24

1 T;

70%

ci

s pr

od.

242

T; 4

0 %

tra

ns p

rod.

23

7 SS

F; 8

0 %

tra

ns p

rod.

32

3 T;

10

0%

trun

s pr

od.

243

S SF

323

T 24

5 TF

24

6 TF

24

6 TF

24

3 TF

24

6 TF

24

6 S

247

S S &r;

100%

tra

ns

prod

.

Sap;

100

%

tran

s pr

od.

S ST

247

168

348

348

s

346

P

S S; P

relim

inar

y va

lue

S, T

S, T

180

5 24

8 $ 3 s

248

S, T

S,

T

248

9 9 24

8 8.

Page 37: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

Rh

(NH

&C

l’+

Rh

(NH

a)sC

l’+

Rh

(ND

a)5C

l’+

Rh

(NH

a)sB

r’+

R

h(N

Ha)

sBt+

R

h(N

D3)

sBr2

+

Rh

(NH

a)sI

’+

Rh

(NH

&I*

+

Rh

(ND

&‘+

Rh

(NH

&N

3*+

R

h(N

Ha)

sON

O’+

R

h(N

H&

OS

Oa+

R

h(N

H&

OC

OH

’+

Rh

(NH

&O

CO

CH

3’+

R

h(N

Ha)

s(O

CO

CH

zF)‘+

R

h(N

H&

OC

OC

HF

#+

Rh

(NH

&(O

CO

CF

a)2+

R

h(N

H~

)&K

OC

Cla

)Z+

Ir

(NH

a)sC

I*+

Ir

(NH

3)5B

f+

Ir(N

H,)

,B?’

Ir

(NH

,)sI

Ir(N

H,)

sON

O,‘+

Ir

(NH

3)50

CO

CF

32+

0.00

4

0.04

0 11

.4-1

2.0

0.1

O(e

xt.)

0.

1

0.1

O(e

xt.)

0.

1

0.1

O(e

xt.)

0.

1

0 1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

O(e

xt.)

- O

(ext

.)

O(e

xt.)

1.0

1.0

11.7

-12.

0

- - - - - - - _ -

12.0

-13.

3 N

a(C

104,

0H)

12.8

-13.

0 N

a(C

lO,,,

OH

) 12

.0-1

2.4

Na(

Cl,

OH

) 13

.4-1

3.7

Na(

Cl,

OH

) 13

.4-1

4.0

Na(

Cl,

OH

) 12

.7-1

3.4

Na(

Cl,

OH

) 12

.0-1

2.7

Na(

CI,

OH

) 12

.5-1

3.3

Na(

CI,

OH

) 12

.5-1

2.7

NaO

H

- n

one

12.5

-12.

7 N

aOH

-

NaO

H

13.0

-13.

9 N

a(C

lO.,,

OH

) 1.

9x

1P

31.0

19

12

.0-1

2.7

Na(

CI,

OH

) 5x

10-4

-

-

NaO

H

+

CH

,@-S

O&

0.5

- -

S,

T;

100%

ci

s pr

od.

NaO

H

+

CH

,-@

SO

,Na

1.42

20

.3

10.3

S

, T

; 10

0%

cis

prod

.

Na(

C10

4,0H

) 1.

09 x

lo-

4 27

.5

15.6

N

aOH

4.

1 x

lo-4

27

.9

19.5

N

a(C

104,

0D)

1.8

x 1O

A

25.6

9.

8

Na(

C10

4,0H

) 9.

6 x

lO-’

29.5

22

.1

NaO

H

3.5

x 10

-4

30.0

26

.1

Na(

C10

4,0D

) 1.

6 x

lK-’

26.3

12

.9

Na(

C10

4,0H

) 2.

3 x l

o-’

31.8

27

.0

NaO

H

7.3

x 10

-s

32.2

30

.8

Na(

C10

4,0D

) 3.

1 x

1o-5

29

.0

18.2

3.1

x lo

-’ 34

.0

25.8

1.

8 x

lo-’

27.5

26

1.

3 x

10-3

24

.5

10

3.6

x lO

d 33

.2

28

2.1

x 10

-6

31.9

22

1.

3 x

1o-s

31

.9

26

5X10

A

30.1

22

1.

0 x

1tP

18

.0

-12

3x10

4 26

.4

14

4.8 x l

p 33

.2

19

1.1

x 1o

-9

22.5

-2

4.1

2.2

x 1P

34

.6

22

8.3 X 1

O-9

35

.7

24.2

T

S

S;

DzO

as

sol

ven

t,

10”

ran

ge

T

S

S;

DzO

as

sol

ven

t,

10”

ran

ge

T‘

S

S;

DzO

as

sol

ven

t,

10”

ran

ge

S

S

S

S S

S S

S;

OC

su

gges

ted

S;

OC

su

gges

ted

T

R

S

S

S

S

248

P

_.

% h

248

a B z R

186

3 24

9 2 E

: 33

9 S

186

B

249

%

B

339

a

186

5

249

2 6 33

9 k 2

250

160

102

251

251

251

251

251

251

340

192

9 34

0 25

3,

340

160

251

Page 38: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

84 J. 0. Edwards, F. Monacelli and G. Ortaggi

no clear variation with central metal ion. It is indeed obvious that the values from experiments agree not at all with the estimates for the first mechanism and are in very good agreement with the estimates available for the second mechanism.

Rate constants and activation parameters for the base-catalyzed process for aquocomplexes (M = Cr, Fe) are more frequently expressed in the literature in terms of the rate law

R = k_r[H+]-‘[complex]

In such cases the data reported in Data Table IV have been changed to conform to the rate equation

R = k,[OH-] [complex]

by use of the values K, = 1.0 X 10-‘4Mz, AH” = 13.5 kcal mar’ and AS” = -19.3 cal mar’ deg-’ for the process

Hz0 # OH- + H+

For these aquocomplexes the formation of a con- jugate base through the dissociation of an acidic co- ordinated water is quite obvious and it can be readily seen that when interpreted according to the rate law R = kz[OH-][complex] the experimental data lead to d S* values which fall into the range expected for a conjugate base mechanism. This result lay unrecognized among the data available during the long and heated discussion of the base hydrolysis mechanism.

9. Leaving Group Effects

If the solvation entropy of complexes ML5XZ+ is less dependent on the nature of the leaving ligand X- than is the solvation entropy of the free ligand, then one might expect to see a part of this difference in the dS* values when a substitution mechanism is pre- dominantly dissociative. Taking as examples of X- the halide ions, we would expect to see the lowest value (e.g., the most negative or the least positive) of dS* for F and the highest value for I-. Some data which show this trend are presented in Table IX. These are

.base hydrolysis reactions involving the pentaammine- halo complexes of four different cations.

TABLE IX. Activation Entropies for Base Hydrolysis of some Halocomplexes.”

Complex F cl- Br- I-

Cr(NH3)5XZ+ - 6.2 +16.5 +22.5 +26.8 Co(NH3)gXZ+ +20.4 +34.s +37.7 +42.6 Rh(NH&X*+ - +19.5 +26.1 +30.8 Ir(NHj)5XZ+ _ +19 +22 i24.2

a These data are taken from Data Table IX.

A similar variation of dS* values should appear in the aquation reactions of Data Table I. Although it is not always as clear (as a consequence of the already mentioned scatter of experimental activation data), the expected trend is seen for aquations of Cr(Hz0)5 X2+ (except for F which very likely has a different hydrolysis mechanism), Ru(NH~)~X*+, cis-Ru(en)z (HzO)X*+, and Rh(NH3)5X2+.

We deem it important to reiterate here that ideas presented in this review are not necessarily original with us. The correlation of entropies of activation with ground state entropies of free ions in solution has been discussed often,*’ and the relation of this to solvation is expected. Nevertheless, the generality of this entropy correlation is made clear by the data summarized here.

10. Isomerization

The change in configuration of an octahedral com- plex can be related to the lability of the complex towards ligand substitution. Complexes which are labile to substitution tend to be labile to isomerization as well. Also isomerization rates decrease as crystal field stabilization energy in the ground state increases; for example, isomerization rates for cobalt and chro- mium complexes are measurable but there is little or no evidence for isomerization in the more inert rhodium and iridium complexes.

Isomerization may be a direct consequence of a ligand substitution mechanism; a clear example of this is seen in the mechanistic postulations of Nordmeyer24b for chloropentaaminecobalt(II1) base hydrolysis. In other cases, isomerization may proceed by a mechanism unrelated to a replacement; the “Bailar twist” me- chanism29 is an example.

In Table X, a set of data for hydrolyses of cobalt and rhodium complexes with chloride ion as leaving group is reported. The striking thing about these numbers, mostly collected by Tobe, 3o is that a positive entropy is accompanied by a considerable steric change @runs- reactant goes to cis -product). When the value of d S* is negative, only lrans-product (i.e., retention of con- figuration) is obtained.

It is reassuring therefore to see that the numbers in Data Table V on isomerizations (leaving out oxalate complexes, of course) show predominance of positive entropy values. One can conclude that, in order for an isomerization to occur, considerable loosening of the metal-ligand bonding must take place. Such a loosen- ing is expected to decrease bond force constants for both stretching and bending modes and thus to in- crease the entropy of the reacting system.

It is interesting to observe that for the truns-cis iso- merization of the complexes Co(en),(OH,)X’+, the values of dS* are always positive and fall generally in the range from +lO to +20 cal mot’ deg-’ (see

Page 39: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

DA

TA

TAB

LE

V.

Isom

eriz

atio

n.

Com

plex

PH

M

ediu

m

k dH

* dS

*

0.20

truns

-Cr(

OH

2)4C

l2

+ 0.

20

cis-

Cr(

en)z

(OH

h+

cis-

Cr(

en),(

OH

2h3+

tru

ns-C

r(en

h(O

Hh+

tru

ns-C

r(en

)Z(O

Hz)

23+

trans

Cr(

en)~

(DM

SO)C

l*+

truns

-Cr(

en),(

DM

SO)B

?+

truns

-Cr(

en)Z

(DM

S0)~

3+

rrun

s-C

r(en

)z(D

MSO

)~3+

rr

uns-

Cr(

ox)Z

(OH

)23-

tru

ns-C

r(ox

)2(O

Hz)

OH

Z-

truns

-Cr(

ox)z

(OH

&-

trans

-Cr(

oxh(

OH

2);

truns

-Cr(

ox)2

(OH

2)z-

trans

-Cr(

ox)z

(OH

&

trans

-Cr(

oxh(

OH

z)z-

truns

-Cr(

mal

)Z(O

H)2

3-

truns

-Cr(

mal

)z(O

H2)

OH

*-

trans

-Cr(

mal

)2(O

Hz)

z-

truns

-Cr(

mal

)n(O

H2)

Z-

aBR

-Co(

tetre

n)N

CS*

+

cisC

o(N

H&

(0H

&~~

+ H

z0

cis-

Co(

NH

&(0

H2)

NO

z2+

Hz0

cis-

Co(

en)z

Clz

+ -

Hz0

ci

s-C

o(en

)Xlz

+ _

TMS

cis-

Co(

en)2

Clz

+ -

MeO

H

0.10

0.

01

0.10

0.

01

- - _ 0.10

0.

10

1.0

0.10

0.

10

0.10

1.

0

1.4

0.7

HC

104

0.7

HC

l04

10.9

-11.

4 en

-LiC

IOd

2.0

HC

I 10

.9-l

1.4

en-L

iC10

4 2.

0 - _ - - -1

2 -8

3.

0 1.

8-4.

4

-12

7-9

1.0-

3.0

2.8

2.15

-2.4

HC

l D

MSO

D

MSO

D

MSO

D

MSO

N

a(C

104,

0H)

Na(

ClO

.,,O

H)

(H,N

a)C

lO.,

_ 50 %

(w

)HzO

- A

ceto

ne

50%

(w

)HzO

- D

ioxa

ne

50%

(w)H

~O-

Met

hano

l 5O

%(w

)H20

- Et

hano

l 5O

%(w

)HzO

- Is

opro

pano

l N

a(O

H,C

lO.,)

N

a(O

H,C

lO.,)

(N

a,H

)C10

4 Li

C10

4

Na(

CI0

4,N

CS)

C

H,C

OO

H

6.2

x 1o

-5

(34.

8”C

) 7.

8 x l

o-5

(34.

8”

C)

1.0x

10

” 2.

9 x

1F5

5.1

x lO

A

2.2

x 1P

(2

.6

x 10

4)

(2.5

x

lOA

) (3

.0

X 1

0-6)

(9

.0

x l@

) 1.

9 x

1o-z

2.

0 x

lo-3

5.

9 x

lo4

4.2

x lo

4 6.

5 x

10-s

6.2

x 1O

-5

1.0x

1t

P

7.8

x lo

-’

9.7

x l(r

5

2.5

x lC

? 1.

4 x

10-3

1.

8 x

lOA

1.

8 x

lOA

3x1@

2.7

x lo

4 8.

3 x

10d

(30”

) 1.

9 x

1o-5

(1

.2

x 10

-y

5.3

x 10

-s

- _

S

_ -

S

31.4

19

.4

_ -

26.4

5.

8 -

-

23.2

2.

9 23

-7

22

-1

0 21

.9

1.0

13.8

-2

0.3

14.0

-2

3.9

17.9

-1

3 17

.5

-15.

3 -

-

S S S S S S S S S S S S; o

x on

e en

d di

ssoc

iatio

n S

x 3 26

3 3”

B

26

3 3’

B

262

g 54

b

262

2

54

5 36

7 d

366

6 36

6 5

367 70

70

26

5 26

4 36

8

- -

S 36

8

_ -

S 36

8

- _

S 36

8

- -

S 36

8

17.9

-1

5.1

24.3

9.

9 31

.8

21.5

28

.7

11.3

30.3

6

S S S S; N

Oa-

incr

ease

s k

S; f

ast

exch

ange

of

H o

n N

H

grou

p;

NC

S is

N-

bond

ed;

isom

eriz

atio

n to

th

e ag

.S

form

70

70

70

330

283

24.4

(7

.0)

- -

256

256

(41.

1)

57.8

25

.0

- 6.

4 _

-

S S S S s;

35”

261

267

133

Z

Com

men

ts

Tabl

e h

Ref

. N

o.

.$ s

Page 40: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

DA

TA

TAB

LE

V.

(Con

t.)

Com

plex

cis-

Co(

en)*

Cl*

+

cis-

Co(

en)*

Cl*

cis

-Co(

en)*

Cl*

+ ci

s-C

o(en

)*C

l*+

cis-

Co(

en)*

Br*

+ ci

s-C

o(en

)*(O

H*)

Cl*

’ ci

s -C

o(en

)*

(OH

*)C

l*+

cis-

Co(

en)*

(OH

)*+

cis

-Co(

en)*

(OH

)*+

cis-

Co(

en)*

(NH

*)O

H*’

ci

s -C

o(pn

)*C

l*+

cis

-Co(

pn)*

Cl*

cis-

Co(

pn)*

Cl*

+

tram

-C

o(en

)*C

l*+

trans

-Co(

en)*

Br*

+ W

zns-

Co(

en)*

(OH

)*’

- 1.0

_ TM

S _

DM

A

13.7

N

a(N

O,,O

H)

trans

-Co(

en)*

(OH

)*+

(unc

ontr)

>7

tra

ns-C

o(en

)*(O

H)*

+ 2.

5 14

tr

ans-

Co(

en)2

(OH

)N02

+

- -7

trans

-Co(

en)*

(0H

)NH

3*+

truns

-Co(

en)*

(OH

)NH

3*+

trans

-Co(

en)*

(OH

*)C

l*+

truns

-Co(

en)*

(OH

*)C

l**

trans

-Co(

en)*

(CH

30H

)Cl*

+ tra

ns-C

o(en

)*C

l(DM

F)*f

tra

ns-C

o(en

)*C

l(DM

SO)*

+

trans

-Co(

en)*

(OH

*)B

? fr

uns-

Co(

en)*

(OH

*)O

H*f

tru

ns-C

o(en

)*(O

H*)

*3+

- 0.01

2 0.

01

2.5

(unc

ontr)

(u

ncon

tr)

- _

EtO

H

_ _

n-Pr

OH

7.

26

x lo

+’

24.6

0.10

(u

ncon

tr)

0.01

0.

012

0.01

-0

-0

0.01

_ 0.

050X

J.10

1.07

tra

ns-C

o(en

)*(O

H*X

3+

0.8

PH

Med

ium

k

AH

* A

S+

- M

eOH

2.

2 x

1@

22.8

_ M

eOH

2.

2 x

1o-5

-

3.5

(-3.

3)

-

- Et

OH

_

- -

DM

A

1.92

H

CIO

,, 2.

0 H

NO

* 14

N

a(N

03,0

H)

>7

Na(

ClO

.,,O

H)

-11

Na(

N03

,0H

) _

MeO

H

1.7

x 10

” 9.

2 x

lo-6

(7.4

x

lo-‘

) 2.

6 x

lo-’

3.

6 x

10”

3.6

x lo

4 1.

8 x

lo6

2.38

x

lo-’

22.9

20

.7

22.5

26

.4

- - 28.9

_ 23

.3

1.0

x 1o

-5

23.9

(1.7

x

10-9

) - 7.

6 x

lo4

27.5

24

.5

_

3.4

-12

-

2 _ -

13.5

_

5.4

(-1.

5)

5.9

(-1.

2)

6.8

(0.5

) -

6.4

_ _

Na(

C10

4,0H

) N

a(N

O*,

OH

) se

lf-bu

ffer

ing

mix

ture

s

2.9

x lO

A

27.9

9.

7 1.

8X

lo-6

-

_

1.7

x lo

-’

_ _

10.2

-1

1 2.

0 1.

92

_ _ _

- Na(

N03

,0H

) H

N09

H

C10

4 M

eOH

D

MF

DM

SO

40.3

- 26

.6

26.4

25

.4

23.6

_

50.7

-

11.7

(1?.

8)

3.0

-

2.0

_ 1.3-

1.0

0 -

HN

03

Hz0

H

NO

*

2.1

x lo

+ 4.

3 x

lo+

7.1

x 10

” (1

.2

x 10

”)

1.2

x lo

-*

1.5

x lo

4 8.

5 x

1o-5

(3

7.6”

) 1.

63

x lO

A

3.0

x l@

1.

18~

lo-’

26.4

12

.7

27.5

22

.2

- -

(Na,

H)(

C10

4,N

Og)

6.

92

X l

p -

6.84

X

10”

- -

25.6

4

Com

men

ts

Tabl

e R

ef.

No.

S 26

8

S; V

ery

accu

rate

ra

te

cons

tant

S S;

2.9

<[Li

Cl]<

7.8

S S S nmr

S nmr

S

132

268

269

270

257

133

324

260

324

S 26

8

S 26

8

S 26

7 S

270

S; r

ate

cons

tant

is

dep

ende

nt

254

on

purit

y of

com

plex

S

260

nmr

324

S; i

ntra

mol

, re

arra

ng.

258

S 10

6

nmr

324

S 13

1 $

S 25

7 e

S 26

6 P

S 20

5 S

205

S 13

6 S

131

S; R

ate

cons

tant

is

25

4 de

pend

ent

on

purit

y of

co

mpl

ex

S 25

5 S

125

Page 41: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

trans

/Co(

en)z

(OH

z)N

32+

0.01

rr

ans-

Co(

en)z

(OH

z)N

022+

-

trans

-Co(

en),(

OH

z)N

CS’

+ -

0.28

-2.1

6 tra

ns-C

o(en

)2(0

Hz)

NH

a3+

0.1

1.22

tra

ns-C

o(en

)2(O

Hz)

(OC

OC

H3)

Z+

0.1

1.04

.5

trans

-Co(

dipy

)2(O

Hz)

N0~

2+

2.5

0.2-

2.5

cis,c

is-C

o(en

)(N

Ha)

2(O

H)z

+ -

10.3

tra

ns,c

is-C

o(en

)(N

H~)

2(0H

)z+

_ 10

.3

trans

-Co(

en)(

NH

a)2(

OH

)z’

- 10

.3

trans

-RR

&S-

Co(

2,3,

2-te

t)(O

Hz)

Cl*

+ 0.

014

2.0

2.0

l-3.6

H

Cl0

4 - (N

~,H

)cI~

~ (N

a,H

)C10

4 (N

a,H

)NO

s N

a(C

l,OH

) N

a(C

l,OH

) N

a(C

l,OH

) H

ClO

z,

7.3

x 1o

-5

1.7

x lo

-’

6.5

x lo

-’

1.8

x lo

4 2.

4 x

10-s

3.

4 x

lo4

4.3

x 10

-s

1.0

x 1o

-5

3.5

x 1o

-5

3.8

x 1O

-3

_ _

S 32

.8

S; I

ntra

mol

ecul

ar

rear

- ra

ngem

ent

sinc

e th

e O

H

form

ha

s id

entic

al

rate

26

.8

3.1

S 33

.3

(17.

8)

S 26

.9

11.1

S

32.9

17

.7

S -

- nm

r ; t

ram

, tr

ans

prod

. -

- nm

r; ci

s, c

is p

rod.

_

- nm

r; ci

s, c

is p

rod.

_

- S

138

258

165

106

2.59

16

9 32

4 32

4 32

4 15

2

DA

TA

TAB

LE

VI.

Liga

nd

Isom

eriz

atio

n.

Com

plex

P(

M)

PH

Med

ium

k

dH*

dS*

Com

men

ts

Tabl

e R

ef.

No.

Cr(

OH

z)$S

CN

2+

cis

+ t

rans

-Cr(

H,0

)4(N

CS)

(SC

N)+

Co(

NH

s)sO

NO

’+

Co(

NH

&O

NO

’+

cis-

Co(

NH

s)4(

0H2)

0NO

Z+

cis-

Co(

NH

~)~(

ON

O)O

N02

+

bans

-C

o(en

)Z(N

CS)

ON

O+

Rh(

NH

&O

NO

*+

Ir(N

HX

)50N

02+

1.0 1.0

- - - _ _ - -

1.92

o-1

- - - - - - -

(Na,

H)C

104

(Na,

H)C

lOd

Hz0

H

z0

Hz0

Hz0

Hz0

H

z0

Hz0

4.2

x 1O

-5

8.3

x 10

-s

3.2~

10

-s

3.3

x 10

” 3.

8x10

-6

(30”

) 2.

5 x

lo-4

1.5

x lO

A

9.6

x lo

4 4.

4 x

lo-5

23.5

1.

0

19.6

-

9.8

21.9

-

5.6

22

-5

- -

7.7

-49

22.7

-

8.9

18

-12

19

-14

S;dS

* =

0.3

if aq

uatio

n 18

an

d is

om.

proc

eed

thro

ugh

diff

eren

t tra

nsiti

on

stat

es

S; S

CN

- fro

m

S- t

o N

- 33

1 bo

nded

S

284

S; I

ntra

mol

. re

arra

ng.

285

S 25

6

S; t

he

final

pr

oduc

t is

cis

- 25

6 C

o(N

H&

(NO

z)z+

S

184

S; I

ntra

mol

. m

ech.

28

5 S;

Int

ram

ol.

mec

h.

285

2

Page 42: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

88

TABLE X. Activation Parameters and Steric Courses of the Reactions” mans-(MLACI)“+ + H,O-+ (MLAH20)“+’ + Cl-.

M L A dH* dS* % steric change

co (enk OH 25.6 +14.6 75 co (en)2 Cl 27.5 +13.1 35 co (en)2 Br 24.6 + 4.1 50+5 co (enk NCS 29.8 + 7.8 60flO co SS-trien Cl 25.4 +15.3 100 co RR,SS-2,3,2-tet Cl 25.9 +12 50+20 co (en)2 N3 20.7 - 6 0 co (en)2 NH3 23.0 -11 0 co (en)2 CN 22.0 - 3.4 0 co (en)2 NOz 20.9 - 2.2 0 co cyclam OH 18.8 - 4.2 0 co cyclam Ci 24.3 - 4.3 0 co RS-2,2,2-tet Cl 24.3 + 1 0 Rh en, Cl 24.7 - 9 0 Rh en2 Br 23.2 -11.7 0 Rh en, I 21.1 - 7.5 0

a The values of dH* quoted in this table are generally reli- able to better than 50.5 kcal mol” and the dS* to better than +1.5 cal mol-’ deg-‘. The numbers in this table have been taken from Data Table I wherein original sources are given.

Data Table XIV). We estimate that the contribution to AS* from the dissociation of a water molecule should be near to +7 cal mar’ deg-‘. This seems to suggest that the isomerization proceeds through a dissociative mechanism involving cleavage of the metal-water bond and subsequent rearrangement of the pentacoordinate complex. Owing to the fact that some degrees of freedom not present in the octahedral reactant are acquired by the pentacoordinate inter- mediate, the observed dS* values are in agreement with the dissociation of a bound water.

A dissociative mechanism is also consistent with the postulation that, in the hydroxo complexes Co(en)z (OH)z+ and Co(en),(OH)(NH3)‘+, the isomeriza- tion involves dissociation of one end of the ethylene- diamine chelate link.

TABLE XI. Isomerization Reactions of truns-Cr(AA)2XY.a~b~c

J. 0. Edwards, F. Monacelli and G. Ortaggi

There are some interesting observations on the isomerizations of anionic chromium complexes with oxalato and malonato ligands. The relevant numbers are given in Table XI. The differences in AH* and AS’ are large enough to signal a change in mecha- nism.

One possible explanation is that the oxalate com- plexes isomerize through a cleavage of the chelate ring assisted by solvent water molecules. The negative values of AS* led to the suggestion of water participa- tion and this recently has been supported by the activa- tion volume of the reaction (see Data Table XX).

For malonato complexes, the high values of AH* and the positive values of AS* (when one ligand is water) suggest that the isomerization proceeds through dissociation of a coordinated water molecule or spon- taneous opening of the chelate ring without any parti- cipation of the solvent. However, the observation that tram- Cr (mal), (OH)2- shows activation parameters analogous to the oxalato complexes and the considera- tion that the malonato six-membered ring should be more inert than the five-membered ring indicates that the mechanism involving dissociation of the water molecule is to be preferred.

11. Ligand Isomerization

The change in point of attachment of a ligand at the ligand-metal bond is a matter of considerable interest because the factors which govern the position of bond- ing, as in the case

M-O-N a=E U-N /O

‘0 ‘0

are not at all clear. For thiocyanate ion, isomerization in both directions is accompanied by a positive entropy, suggesting metal to Iigand loosening in the transition state. By way of comparison, isomerization of nitrito complexes to the nitro form (as in the equation above) occurs with a negative value of AS*. This suggests

that the transition state is more restricted in conforma- tion than is the reactant. A configuration such as

OX ma1 mal-ox

Complex dH* dS* dH* AS+ 6AH* 6AS’

Cr(AAMHz0)2- 17.9 -13 31.8 +21.5 13.9 +34.5 Cr(AA),(OH)(H20)*- 14.0 -23.9 24.3 -4 9.9 10.3 +33.a Cr(AA)Z(OHh3- 13.8 -20.3 17.9 -15.1 6 + 5.2

a The symbols are defined as follows: ox = oxalate, ma1 = malonate, AA represents both of the bidentate ligands, and X and Y represent HZ0 and/or OK. ’ The reaction is tram to cis isomerization. ’ Data taken from Data Table Ref. 70.

Page 43: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

L&and Replacements in Octahedral Complexes 89

the prime interaction is between metal atom and nucleophile. This is usually the case (albeit the inter- action may be weak), but there are unquestioned ex- ceptions. For example, the reaction

Co(NH&0COR2+ + OH- # Co(NH&0H2+ + RC02-

can proceed by direct nucleophilic attack on carbonyl carbon as well as by attack at metal or as by SNICB mechanisms. The distinction between the possibilities can be made by an isotope tracer experiment, for the bimolecular reaction of the equation above with la- beled hydroxide ion would yield labeled acetate and unlabeled CO(NH~)~O~~“. The alternative mecha- nisms (&lCB and direct displacement on cobalt) would yield unlabeled acetate and labeled complex. Electronic effects and activation entropies also are helpful in making these mechanistic assignments.

The alkaline hydrolysis of cobalt(II1) carboxylato complexes has a complicated rate law with one rate term of form

for the transition state is possible. The available data are presented in Data Table VI.

12. Racemization

Coordination compounds with three bidentate ligands (or with related configurations) can exist in optically-active forms. Thus, for example, it is possible to have a D-Cr(ox)J3- and L-Cr(oxX3-. The race- mization process (which is a type of isomerization) leads to the d,l-mixture. This process can occur more rapidly, at the same rate, or more slowly than ex- change of ligands with those in the surrounding me- dium. Some data on the racemization process for a variety of complexes are given in Data Table VII.

With one significant exception, the data are too limited to allow worthwhile discussion. The exception is the group of chromium(II1) oxalate complexes. The activation entropies are very close to those for cis-truns

isomerization of chromium(II1) oxalate complexes. This suggests a common mechanism for racemization and isomerization. A possibility might be as follows:

1- FI FI Cr(ox)l + H,O zr? bd2 jr-O-C-C-OH

OH

with the intermediate species able (a) to add water to the carbonyl group of the monodentate oxalate and accomplish hydrolysis, (b) to reform into the opposite optical form, (c) to add another oxalate and accom- plish exchange, etc. These mechanisms have been dis- cussed in some detail in the references given in the Data Table and also in reference 25a.

Some cobalt(II1) racemizations, including Co (ox)~~-, show positive values of dS* , whereas for the chromium complexes negative values have been found. This sharp difference in the entropy of activa- tion values can be explained on the basis of some recent studies of the exchange between water and the bound oxalato ligand.31 Although a definite mecha- nism for reaction of the cobalt(II1) complexes could not be offered, any mechanism such as that suggested for the chromium complexes (equation above) can be ruled out on the basis of the difference in d S* values alone.

Also the negative entropy values for racemizations of Cr(ox),(NN)- and COG+ complexes may involve attack of water at the carbonyl carbon (see next section and Data Table XVII).

13. Ambiguity in Site of Attack

When a nucleophile reacts with a coordination com- pound, it is generally assumed (often implicitly) that

v = k[Co(NH&0COR2+] [OH-]

For this term, the rate constants are similar to those for loss of other ligands from the cobalt coordination sphere and rather small electronic and steric effects are found.32,33 Study of the alkaline hydrolysis of the first displaced benzoato ligand in some trans-Co(en)2 Kxoc,H4x)2+ ions indicated that the Hammett equation is followed with a reaction constant Q of o.745.33c This is significantly less than the value of about +2 expected for OH- attack at carbonyl carbon. Mass spectrometric investigations of the benzoate product from base hydrolysis of Co(en)2(OCOAr)2+ in ‘“0 enriched water showed no enrichment there- in,33e thus the cobalt-xygen bond is cleaved in the reaction. The values of AS* observed for base hydro- lysis of cis- and trans-Co(en)2(OCOCH3)2+ are the +18.4 and +22.4 cal moT’ deg-‘;33g the sign and magnitudes are fully consistent with the SNICB me- chanism.

When the carboxylato ligand has a strong electron- attracting group attached to the carbonyl center, a second rate law term is observed and a new mecha- nism intrudes. The complex CO(NH~)~OCOCF~~+ hydrolyzes with the la:v

v = {k,[OH-] + k2[OH-]2}[Co(NH3)s0COCF32+]

with the new term being second-order in base con- centration. For the first term, values of 22.7 kcal mar’ and +lO cal mar’ deg-’ were obtained for AH* and AS*, respectively; again these are con- sistent with the SNICB path. For the second term, the respective values are 6.8 kcal rnor’ and -37 cal mar’ deg-’ which suggest considerable bond formation. Tracer studies showed that the kl path takes place with cobalt+xygen bond breaking and the k2 path

Page 44: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

DA

TA

TAB

LE

VII

. R

acem

izat

ion.

8

Com

plex

/#

-‘)

PH

Med

ium

k

AH

Cr(

ox)X

3-

Cr(

ox)a

3-

CU

-Cr(

ox)Z

(OH

,),-

cis-

Cr(

ox)z

(OH

z)z-

C

r(ox

),(en

)-

Cr(

ox),(

dipy

)-

Cr(

ox)*

(dip

y)-

Cr(

ox)z

(dip

y)-

Cr(

ox)&

ipy)

- C

r(ox

),(ph

en)-

C

r(ox

)Z(p

hen)

- C

r(ox

)Z(p

hen)

- C

r(ox

),(ph

en)-

C

r(ox

)(en

),+

Cr(

ox)(

bipy

)Zf

Cr(

ox)(

phen

)z+

(+)f

rans

-Co(

dien

h (?

)

I-ci

s-C

o(en

)zC

lz+

0.00

24.0

9 -

(+)-

cis-

Co(

en)2

(NH

3)0H

Z3’

_ 1.

0 (+

)&-C

o(en

)zC

l(OH

z)Zf

0.

012

1.92

(+

)-C

oED

TA-

_ 2-

4

1

co(o

x)33

-

Rh(

ox)a

”-

0.54

0.

4-7.

0 (N

a,H

)ClO

., 8.

7 x

lO-’

23.3

*

Rh(

oxh-

0.

54

0.4-

7.0

(Na,

H)C

104

2.8

X l

o4

26.8

+

5.8

_ -

1.0

0 _

2.5-

l 1.

0 2.

6-7

1.0

_ 0.1

0.9

- 0.1

0.9 1.0

1.0

1.0

1.0

2.0

0 _ 1.0

14

- 1.0

14

0 0 0 0 7.1-

8.27

Hz0

H

ClO

., H

ClO

, (H

,Na)

C10

4 H

z0

HC

I H

z0

HC

l K

OH

H

z0

HC

l K

OH

H

Cl

HC

l H

Cl

HC

l N

aN03

+

HN

OX

, co

llidi

ne

buff

er

MeO

H,

LiC

l H

ClO

., H

ClO

, H

NO

a +

nitra

tes

Hz0

H

Cl

3.1

x lO

A

1.4

x lo

-*

3.3

x 10

4 4.

3 x

lo4

2.1

x 10

” 5.

3 x

lo4

2.1

x l@

2.

3 x

lo”

1.3

x 1o

-3

2.3

x lo

4 3.

0 x

lOA

1.

6 x

1O-3

6.

4 x

lo4

1.7

x 10

-s

3.2

x lo

-’

2.1

x 1o

-5

62

3.6

x lo

-’

2.1

x lo

4 1.

4 x

lo6

4.0

x lo

-r2

2.9

x lo

@

1.8

x lo

-5

1.9x

1O-5

AS*

15.2

- 13

.4

13.4

15

.2

17.8

15

.5

17.1

15

.3

17.4

17

.3

15.2

17

.7

20.5

19

.0

19.8

23

.5

-23.

7 - -2

8 -2

9 -1

9.8

-13.

8 -2

4 -2

1(-1

8)

-19

-17

-17

-21

-13.

7 -1

2.0

- 14

.5

-13.

6 29

22.0

21

.7

26.1

40

.0

25.4

28

.1

- 5.

1

(4.7

) 2.3

20.6

(2

3.5)

6.

0 14

.1

26.5

8.

8

Com

men

ts

Tabl

e R

ef.

No.

PM

27

2 PM

29

7 PM

27

5 PM

21

6 PM

27

2 PM

27

3 PM

27

4 PM

27

4 PM

27

4 PM

27

4 PM

27

4 PM

27

4 PM

27

3 PM

; k

incl

udes

aq

uatio

n 28

1 PM

28

1 PM

28

1 Ph

i; O

K

indu

ces

race

miz

.; 34

1 k

is 2

nd

orde

r (k

&

[OH

-])

rate

co

nsta

nt.

PM

282

PM

106

PM

257

P,;

Intra

mol

. re

arra

ng.

271

PM

272

PM;

’ th

e on

e-en

ded

344

4 di

ssoc

iatio

n is

ex-

P

elud

ed.

The

exch

ange

PM

‘ of

the

m

ore

labi

le

F (c

arbo

nyl)

oxyg

ens

B

hasA

H*

= 16

.3,

344

?

\ A

S”

= -

19.9

PM

34

2 Ph

i; H

+ in

duce

d ra

cem

iza-

g

342

tion,

k

is 2

nd

orde

r (k

,,,,/

$

[OH

-])

rate

co

nsta

nt.

&

a

Page 45: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

Ligand Replacements in Octahedral Complexes 91

with carbon-oxygen bond breaking. The postulated mechanism is

“\‘a era \

(NH,),d+-0----C---OH=--OH--w tNH,),CoO+ + c

b

+H,O

0’ ‘fJ-

fulfilled,3’ for the values of kl change by a factor of 16 on going from Co to Rh and by a factor of 2 on going from Rh to Ir. On the other hand, the overall change in k2 values is less than a factor of two.

Some other possible examples of attack at carbonyl carbon include:

The base hydrolysis of a series of carboxylatopenta- amminerhodium(II1) complexes shows the same general behavior.35 If the R group of RCOO- ligand is H, CH,, CH*F, or CHF,, both the enthalpy and the entropy of activation related to the k1 path are virtual- ly insensitive to the nature of R and are in agreement with the SNICB mechanism. When R is a powerful electron-attracting group like CC& or CF,, both the enthalpy and the entropy of activation values are lower, as can be seen in Table XII.

a) Cr(NH3)50COCF3, aquation,dS* = -25; b) truns-Cr(ox)z(H20)OCOCH32-,‘aquation,

dS” = -18 8. . > c) trans-Cr(ox)z(OH)OCOCH33-, aquation,

AS* = -38.8; d) trans-Cr(ox)z(H20);, isomerization,

AS* = -14; and

This fact together with an observed deviation in an otherwise linear logkl versus pK, plot (where K, is the dissociation constant for the acid RCOOH) sug- gest a change in mechanism from the SNICB to a bimolecular attack on the carbonyl carbon of the carboxylato ligand. The dH* and d S* values of the kz path are consistent with the proposed termolecular mechanism with CO bond breaking.

Also consistent with the above mechanistic hypo- theses are the facts that the k1 term depends on the nature of the metal whereas the k2 term does not so depend; in some instances comparison is not possible. Data relevant to the postulated mechanisms for reac- tions of the type

e) Cr(ox),(NN)-, where NN is en, dipy, phen, or ox, racemization, average AS* = -20.

A carboxylato ligand when bound as a monodentate ligand has two distinct oxygen environments. Thus exchange between the carbonyl carbon and water with- out concomitant hydrolysis is possible. Unless properly accounted for, the isotope data obtained in the hydro- lysis reactions can be misleading. This danger is not so severe, generally, as to vitiate the conclusions given above on the position of bond cleavage.

Although this ambiguity is most often seen with complexes having carboxylato ligands, it is not limited to them. Some other ligands that can show similar electrophilic behavior are acetylacetonate, nitrito, nitro, carbonate, nitrato, phosphato, arsenato, per- rhenato, iodato, etc.

M(NH&0COCF3*+ + OH-+ M(NH3)50H2+ + CF3C02-

are as follows: 14. Second-Order Anations

a) The rate constants at 25” C for the first term (k,) are 1.6 x 10m2, 1.0 X 10e3, and 5 X 104M-’ see-’ for Co, Rh, and Ir, respectively;

b) The rate constants for the second term (kz) are 5.0 X lo-‘, 2.9 x 10-l and 2.7 X 10-‘M-2 se? for the three metals, respectively. The expectations are

The anation process which is the interchange reac- tion involving a solvent molecule as leaving group in the coordination shell and an entering ligand (often an anion, thus anation)

ML5H203+ + X- P ML5X2+ + Hz0

TABLE XII. Activation Parameter? for Base Hydrolysis of Pentaamminerhodium(II1) Carboxylato Complexesb

R

Path I

AH,’ dSl*

Path II

AH** dSz*

CF, 18.0 -13 7.5 -36 cc13 26.4 14 8.4 -39 CHF, 30.1 22 10.5 -32 CH,F 31.9 26 19.1 -17 H 33.2 28 25.6 2 CHs 31.9 22

a The average precision of dH* and AS* values are &OS kcal/mole and +2 cal mol-’ deg’ respectively. b Data of reference 35.

is the reverse of aquation. Since there is no reason to believe that water in the coordination sphere is essen- tially different from other ligands, it seems reasonable to assume that microscopic reversibility holds and that a dissociative interchange mechanism is probable for anation of aquocobali(I11) complexes. Whatever the cause may be, the data given in Data Table VIII are not very convincing as to this point. There is con- siderable variability in the numbers for the same reaction from different research groups, In part, this may be due to the nature of the anation process which is postulated to be a two-step sequence

ML~H~~~+ + x- P (ML~H~~~+ .x-> (fast) {ML5H203+. X-}+MLsX*+ + Hz0 (rate)

with the first step being a rapid ion-pair formation and the second step being the slow interchange. If there

Page 46: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

DA

TA

TAB

LE

VII

I. A

natio

n (I

nter

chan

ge);

2nd-

Ord

er

Rat

e C

onst

ants

, z?

Com

poun

d R

epla

cing

p(

M)

PH

Ioni

c Li

gand

M

ediu

m

V(H

zO),“

+ SC

N-

1.0

SCN

- 1.

0 N

CS-

0.

15

dipy

-

SSA

_

NC

S-

O(e

xt)

H,P

Oz

1.0

NH

z _

CO

NH

2

-OC

OC

H,

0.1

Ok

0.1

oxH

2 2.

0 m

a?

0.1

mal

K

1.0

citra

te

0.1

o -p

htha

late

0.

1 cl

- l(7

)

- _ - - _ _ 0.74

_ 4.

85

KN

03

4.85

K

NO

a C

O.7

(N

a,H

)ClO

., 4.

85

KN

Oa

_ _

4.85

K

NO

, 4.

85

KN

03

- _

trnns

-C

r(H

z0)4

C1(

OH

2)Zt

cl

- l(7

)

trans

-Cr(

en)z

Cl(O

H#+

cl-

0.52

C

T 0.

106

cl-

1.71

N

CS-

0.

106

NC

S-

1.71

N

CS-

_

Cl-

10.9

Cl-

10.2

- <3

1.3

1.3

1.3

1.2

2 - -

cis-

Cr(

en),(

DM

SOX

3+

cl-

o-O

.031

-

cis

-Cr(

en),(

DM

S0)2

3+

Bf

o-o.

45

-

cis

-Cro

x2 (

HzO

),-

oxH

- 0.

5 2.

7

k dH

* dS

* C

omm

ents

Ta

ble

Ref

. N

o.

(Na,

H)C

lO,

(Na,

H)C

lO.,

DM

SO

DM

SO

DM

SO

(Na,

H)C

IOJ

none

- NaC

104

Na(

ClO

+Cl)

Na(

ClO

+Cl)

Na(

ClO

+Cl)

Na(

NC

S,B

r)

(Na,

H)(

ClO

,,NC

S)

HC

I

HC

l

DM

SO

DM

SO

(n-B

u)A

NB

r (N

aH)

(ClO

.. %

)

1.0

X lo

+*

(23”

C

) 1.

1 x

lo+*

2.

1 X

1o+

2 1.

1 x

10-l

2.1

X 1

0-l

1.1

x lo

-5

3.0

x 10

-s

6.2

X l

o-’

_ - 4.7

X lo

+

1.0

X 1

oF

_ - 9.8

X 1

o-’

9.8

X

lo-’

1.6X

lO

-6

3.5

X 1

0-6

1.4

X l

o+

2.4

X lo

-’

1.2

X l

o-5

r13x

X1;

~ (3

5°C

) 1.

7 x

1oF

(35O

C)

_

_ -

ST

1 28

6

7.6

-23.

8 _

-

11.7

-2

5 _

-

25.4

4.

0 20

.3

-11.

2 (2

1.4)

(-

15.0

)

S S

F

1

SS

F

202

SW

20

2

SW

20

2 S

17

S

21

1 S

28

9

21.0

23

.2

29.0

22

.4

24.4

22

.2

22.4

_

- -, 14

.1

_ - 0.

1 - _ _ - -

4.5

7 2

3 -9

- 5.

9 - _

1.9

18

_

24.0

26

.6

25.6

24

.2

21.2

23

.4

-

S; k

obt

aine

d by

usin

g ra

te

cons

ts.

atp

= 1

and

eq.

ratio

at

p =

7 S;

k o

btai

ned

by u

sing

rate

co

nsts

. at

p =

1 an

d eq

. ra

tio

atp

= 7

S S S S S S s

290

290

291

290

292

290

290 27

_ 27

43

34

34

34

34

287

288

_ S

288

(9.6

X

lo-

‘)

19.4

(5

.3

X 1

0-6)

30

_ 21

.7

S 36

7 S

366

S;d

H*

refe

rs

to t

he

varia

- tio

n w

ith

tem

p of

the

ob

serv

: k

mea

sure

d w

hen

[oxH

-] =

O.lM

293

Page 47: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

cis

-Cro

xZ(H

Z0)

2-

ox=

- 0.

5 6.

0 (N

aH)

- 21

.7

_

cis

-Co(

en)&

l(D

MS

O)‘+

C

l-

cis

-Co(

en)z

Br(

DM

F)2

+

cis-

Co(

en),

Br(

DM

A)”

Cl-

N

CS

- O

XH

- so

4*-

HN

3 C

l-

NC

S-

CH

,CO

OH

HN

a H

zSal

H

Sal

- N

CS

- cl

-

cl-

N3-

N

CS

HzP

Od-

Cl-

NH

3 C

l-

ct

Cl-

cl-

Bi

Br-

(C10

4, 3)

1.0

+7

NaC

104

0.40

0.

7-l

.5

(Na,

H)C

104

0.03

-0.4

5 0.

50

NaC

104

0.5

0.7-

1.3

1.0

1.0

0.40

0.

50

1.0

1.0

1.0

1.0

1.0

0 o-1.

2 o-

1.5

0.5-

l .5

0 0.

2-2

0.2-

2 1.

0-1.

7 3.

0

c (Na,

H)C

104

Na2

S04

H

C10

4 (N

a,H

)ClO

., (N

a,H

)C10

4 (N

a,H

)ClO

., H

C10

4 K

NO

a K

NO

S

(Na,

H)(

CIO

,,NC

S)

Na(

ClO

,,Cl)

0.1

2.0

K(C

lO&

l)

0.5

4.0-

4.9

Na(

ClO

a,N

a)

1.0

5.0

Na(

CIO

+N

CS

)

_ -

1.0

- W

,+ %

) C

l

1.0

0.00

1

[CT

] =

4.

1 x

10-3

M

[Cl-

] =

3.

8x

lo-‘M

[C

T]

=

4.0

x 10

-3M

[c

l-]

=

9.15

x

10-2

M

[CT

] =

- N

fLN

O3

- H

N03

- D

MA

- D

MA

- T

MS

- T

MS

- D

MF

7.

1 x

1c3

M

[cl-

] =

- D

MF

5.

3 x

lo-‘M

_

- D

MF

-

- D

MA

9.4

16.6

2

1.3x

1o

+2

13.0

-5

1.

4 x

1O+

3 18

16

6.

4 X

1O

+3

18.0

19

.4

4.0x

lo

3 -

1.1

x lo

4 13

.1

1.0

x 10

4 10

.0

2.8

x lo

3 11

.1

6.8X

1o

+3

- 5.

5 x

1o+

3 12

1.

4x

lo+

4 11

2.

0x

10-Z

-

6.5~

10~

-

(45

o C

) 2.

8 x

10d

24.1

1.

7 x

10-6

26

.9

6.9x

l@

-

(45

a C

) 2.

2x

lo+

-

-

3.9

- 6.

7 5.

4 - -2

-3

_ - -

3.2

5.2

_

7.3

x lo

-’ 14

.7

1.4x

10-’

12

8.5

x lo

-”

34.2

- -37.

7

-49.

3 28.4

(1

4.6)

-

- 25

.9

- 26

.9

- 25

.9

- 28

.4

- 26

.9

- 26

.9

_ 33

.4

- 33

.4

S; d

H*

refe

rs’t

o th

e va

ria-

29

3 b

tion

wit

h t

emp.

of

the

obs.

$’

k m

easu

red

wh

en [

ox%

] =

z.

O

.lM

SF

M

299

d ii‘

SF

M

76

R

S

298

3

S

296

3 S

F

c S’

S S

F

300

SF

M

299

B

f S

FM

29

9 b

SW

35

1 i;

S SF

300

5 SSF

301

S

2 SF

301

F

S

322

8 s

303

S;

(2T

, 10

” ra

nge

) 88

S

30

4 S

30

3

S

81

T

103

T

103

T

113

S

306

S

306

S

306

S

306

S

306

S

306

S

270

S;

Pro

duct

s ar

e ci

s an

d tr

am

270

%

Page 48: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

DA

TA

TAB

LE

VII

I. (C

ont.)

Com

poun

d R

epla

cing

Li

gand

/O

f)

PH

Ioni

c M

ediu

m

cis-

Co(

en),B

r(D

MA

)*+

Br-

_ tra

ns-C

o(D

H)J

(OH

Z)

Bi

1.0

trans

-Co(

DH

),I(O

H2)

H

SOS-

1.

0 rr

uns-

Co(

DH

)2N

02(0

Hz)

B

r- 1.

0 tra

ns-C

o(D

H)2

NO

z(O

Hz)

N

CS-

1.

0 rr

ans-

C0(

DH

)~N

0~(0

H~)

N

3-

1.0

truns

-Co(

DH

)zN

Oz(

OH

,) H

SO3-

1.

0 C

o(D

H)z

(CH

,)(O

Hz)

B

Y

-

C~(

DH

)Z(C

H~)

(OH

X)

NC

S-

-

_ 2.5-

2.9

2.7-

3.1

3.04

.7

3.74

.0

5.1-

5.9

4.1-

4.5

_ -

DM

A

- 18

.4

KN

03

3.0

x lO

A

17.8

K

NO

3 3.

4 x

1o-3

14

.4

KN

OB

1.

6x

lo4

22.5

K

N03

5.

8 x

lo4

19.1

K

N03

5.

7x

104

16.2

K

N03

8.

5 x

1O-3

15

.0

RY

6.

8 x

lo-’

20

.5

NaN

CS

1.5

17.5

Ru(

NH

~)~O

H~~

+ C

l- 0.

26

1.0

(Na,

H)C

I

Ru(

NH

&O

Hz3

+ B

r- 0.

26

1.0

(Na,

H)B

r

Ru(

NH

&O

H2a

+ I-

0.

26

1.0

NaI

cis-

Ru(

en),(

OH

z)23

+ ci

s-R

u(en

)z(O

H2)

23+

cis

-Ru(

en)z

CIO

HzZ

+ ci

s-R

u(en

),BrO

H2*

’ R

h(N

H&

0Hz3

+ R

h(N

Ha)

sOH

z3+

CI-

0.

26

Br-

0.26

C

l- 0.

10

Bi

0.50

C

l- 0.

0125

cl

- 0.

20

0.6

0.6

1.0

0.3

2.6

larg

e ex

cess

la

rge

exce

ss

larg

e ex

cess

la

rge

exce

ss

(Na,

H)C

I (N

a,H

)Br

HC

l H

Br

(Na,

H)(

Cl,C

lO,)

Na(

CI,C

lO.,)

Bf

0.20

0.20

0.20

_ 0.20

0.

20

0.20

0.

20

0.50

0.

20

0.50

4.0

4.0

3.7

Na(

Br,C

lOd)

4.

6 x l

o+

25.3

1.

9

I-

Na(

I,C10

4)

4.3

x lo

4 24

.4

- 1.

4

NC

S-

Na(

NC

SC10

4)

5.0

x lo

+ 23

.8

- 3.

0

cl-

cl-

Bi cl-

Bi

cl-

Bi I-

- 4 4 4 4 4 4 4 <o

<o

CO

_ Na(

CI,C

lO.,)

N

a(B

r,C10

4)

Na(

CI,C

l04)

N

a(B

r,Cl0

4)

Na(

CI,C

104)

N

a(B

r,ClO

a)

Na(

I,C10

4)

trans

-RhC

L,(O

H&

- R

hC15

(0H

$ Ir

Ch(

OH

&

CI-

C

l- CT

H(C

I,C10

4)

3.5

x 10

-4

21.3

H

(CI,C

104)

2.

2 x

lOA

16

.5

(Na,

H)C

lOd

5 x

lo-’

28

.2

k dH

* dS

* C

omm

ents

Ta

ble

Ref

. N

o.

2.1

x lo

@

(54.

7”C

) 1.

3 x

10”

(54.

7”C

) 7.

4 x

104

(54.

7”C

) 2.

5 x 1

O-3

1.

8 x

10”

4.3

x lo

4 1.

9x

lOA

1.

5 x

1o-5

6.

8 x

lOA

_ - - 18.8

-

7.3

S 31

0 19

.6

- 5.

3 S

310

23.4

4.

6 S;

klp

t an

ddH

* &

r 31

0 21

.4

- 3.

7 S

310

27.6

12

.0

S 18

5 25

.5

3.2

S 18

7

_ 25

.2

2.4

x lo

-’

25.3

2.

3 x l

o-’

24.4

3.

5 x

l@

22.0

2.

6 x

lo4

22.3

6.

1 x

lo-’

19

.5

6.0 x l

o--’

18

.6

5.1

x lo

-2

18.0

- _14

-21

--/T

y?

- -1

9 -I

7 - 19(9

.5)

:19o

, _ - - -

5.2

2.0

0.5

0.4

0.6

- 1.

4 0.

3 (-

4.1)

-2

.9

-19.

9 7.3

S; 1

00%

tra

ns

prod

. 27

0 S

307

S 30

7 S

307

S 30

7 S

307

S 30

7 SS

F 29

4 SS

F 29

4

S 31

0

S 31

0

S 31

0

S S S _ S S S S S S S S S S

187

187

4 P

187

$ 31

2 Q

31

3 ?

313

313

313

; w

313

313

B

313

%

:

193

194

$ a 19

8 8.

Page 49: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

L&and Replacements in Octahedral Complexes 95

is so little ion-pairing that the reaction is truly second- order under the conditions chosen, the values obtained by different groups should agree. If, however, the changeover from second-order to first-order has start- ed, agreement on “second-order rate constants” could be poor.

In spite of this variability in results, there are some interesting mechanistic clues in Data Table VIII that may be useful in the general context of this review:

a) The two values of dS* for anation of V(II1) complexes are very negative as is the value for aqua- tion of V(H20)5NCS ” in Data Table I. This is felt to be good evidence for a fair amount of associative behavior in the mechanism of replacement in V(II1) complexes.

b) The two dS* values for anation of CO(NH~)~ OS202+ are so far from other Co(II1) data that some doubt as to the nature of the process investigated is justified.

c) The values of d S * for anation of truns-Co(DH)2 X(H20) from reference 307 are more negative than for most cobalt complexes. Since a significant truns-

effect may obtain in these complexes, one must con- sider the possibility that the trans-effect in these com- plexes is a consequence of a mechanistic shift towards a greater degree of associative character.

15. First-Order Anations

First-order anations can arise from two different types of reaction. If the complex is cationic and the entering ligand is an anion, the two-step sequence

ML,(H,~)~+ + x- P {ML,(H~O).X}*+

{ML5(H20)~X}Z++ML~X2+ + Hz0

wherein the wavy brackets denote an ion-pair, is often postulated.

When the amount of entering anion ligand is suffi- ciently high so that all of the reactant complex is in the form of the ion-pair {ML5H20.X}*+, the kinetics are changed over to first-order in ion-pair and the rate becomes independent of anion concentration (but not necessarily of anion nature). For example, the ion pair {CO(NH~)~(H,O). Cl}“+ has been postulated36 in the reaction for formation of the chloropentaammine com- plex. This mechanism is much favored by inorganic chemists at the present time.

Another path leading to first-order rate constants can obtain in the absence of ion-pairing. This mecha- nism also has two steps, as follows:

ML5(H,0)” + ML5” + Hz0 1

ML5” + X-9 ML5X”-’

Page 50: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

96

Here a five coordinate mtermedlate 1s formed Usmg the steady-state approxlmatlon It can be shown that when k,[X-] % kl[HzO] the rate law 1s

v = kl[ML5(HzO)“]

This first-order anatlon ~111 obtam when X- 1s a much stronger nucleophle, m this case, the observed rate 1s independent of both nature and concentration of nucleophlle (provided of course that it 1s strong) 23d This type of mechamsm seems appropriate for anation of Co(CN)S(H20)”

The results for first-order anatlons are given m Data Table IX In view of the Importance of this type of kinetics to our understandmg of the hgand replace- ment processes m octahedral systems the amount of data IS dlsappomtmg some high quahty data are needed

16 Actwatlon Volumes

The eleven pieces of data m Data Table X are useful for they give conflrmatlon to some of the conclusions dlscussed above The actlvatlon volume for water ex change of Rh(NH3)5(H,0)3+ 1s more negative than for CO(NH~)~(H*O)~+ this 1s reasonable on the basis that replacements m rhodmm(II1) complexes have a greater degree of assoclatlve character than do those of cobalt(III) For Cr(NH3)5(H20)3+ a slmllar behdvlor 1s expected Also the value of dV* for exchange between Cr(H,0),3’ and Hz0 1s sufflclently negative to mdlcate associative character

It IS interesting to note and it IS not unexpected to see that as dV* decreases (becomes more negdtlve) the correspondmg value of d S’ also decreases

The other mslght m these data IS to be found m the values of dV’ for aquatlons of complexes of the type CO(NH~)~X”+ As the charge on the ledvmg hgand becomes more negative charge separation m the transltlon state becomes a more Important factor Ions tend to shrmk the solvent around themselves and this process 1s known as electrostrlctlon In gomg from ground state to a transltlon state with charge separa tlon the contrlbutlon of electrostrlctlon to the value of dV* would be negative (smaller net volume) No charge separation obtains when X 1s Hz0 There 1s some charge separation when X 1s a mononegatlve Ion (CT Bi and N03-) Charge separation 1s very lm- portant when X 1s sulfate ion The values of d V’ for the three cases are +l 2 -8 1 (average of the three values) and -16 9 cm3 mar’ The order IS as predlct- ed on the basis of electrostrlctlon Further evidence that electrostrlctlon 1s a correct (although mcomplete) explanation comes from the observatlon37 that dV* IS vntudlly ldentlcal of dV for the overall reaction This also 1s consistent with bond breakmg bemg very

J 0 Edwards F Monacellr and G Ortaggi

Page 51: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

L&and Replacements in Octahedral Complexes

DATA TABLE X. Activation Volumes.

97

Complex AV+ (cm3/mol)

Reaction Table Ref. No

Cr(H20)b3+ - 9.3 Exchange Cr(H20)5(ONOz)‘+ -12.7 Aquation Cr(NHa)s(OH? - 5.8 Exchange Co(NHz)s(OH#+ 1.2 Exchange Co(NH&CI’+ - 9.7 Aquationa Co(NH3)5Br2+ - 8.6 Aquation” CO(NH~)~(ONOZ)*+ - 5.9 Aquation” Co(NH&OSOs)+ -16.9 Aquationa CoNH3)5BrZf 8.5 Base hydrolysis Rh(NH&(OH#+ - 4.1 Exchange trans-Cr(ox)Z(H20)2- -16 Trans-+cis isomerizatior?

ad V” is virtually coincident with the change of volume of the overall reaction. b d V* becomes -9.8 cm3/mol in the presence of Ca(N0 3 ) 2 and -5.4 in the presence of HClOd.

317 311 318

80 319 319 319 319 226 318 365

important, since the closeness in size of dV* and AV suggests that the leaving group is nearly as free in the transition state as in the final state. The positive (albeit small) value of the activation volume for water exchange is in agreement with such an interpretation.

17. Summary Conclusions

The present compilation is, to the best of our know- ledge, the most complete set of data dealing with rates and mechanisms of octahedral complexes having the central metal in oxidation state three. We hope that the numbers collected and calculated will be use- ful to inorganic chemists. Also it is our opinion that good activation parameter data (specifically, d H* , AS’ and AV* ) can be helpful in elucidating the mechanisms of ligand replacement in complexes and that such data should be obtained carefully (whenever possible) in reaction mechanisms studies.

18. Acknowledgements

We are much indebted to Professor G. Illuminati of the University of Rome for helpful discussions and for providing us a most favorable ambient. Financial support was provided by the Centro di Studio dei Meccanismi di Reazione de1 Consiglio Nazionale delle Ricerche of Italy and the United States Air Force Office of Scientific Research (Grant d/71-1961A). One of us (J.O.E.) was generously granted a Fellow- ship by the John Simon Guggenheim Memorial Foun- dation. Also we thank Mrs. Bert Hanson for her skill, accuracy and thoughtfulness in assisting with the manuscript preparation.

19. Text References

1

2 3

4

5

6

7

8 9

10

11

12

13 14 15

16

C.H. Langford and H. Gray, “Ligand Substitution Pro- cesses,” Benjamin, New York, N.Y. (1965), chapters 1 and 3. H. Taube, Chem. Rev., 50, 69 (1952). J. 0. Edwards, “Inorganic Reaction Mechanisms,” Benjamin, New York, N.Y. (1964), chapter 6. F. Basolo and R.G. Pearson, “Mechanisms of Inorganic Reactions,” Wiley, New York, N.Y., Second edition (1967). D. R. Stranks, in “Modern Coordination Chemistry,” edited by J. Lewis and R.G. Wilkins, Interscience-Wiley, New York, N.Y. (1960), chapter 2. F. Basolo and R.G. Pearson, Adv. Inorg. Radiochem., 3, l-89 (1961). A. McAuley and J. Hill, Quart. Rev. (London), 23,18-36 (1969). N. Sutin, Ann. Rev. Phys. Chem., 17, 119-172 (1966). K. Kustin and J. Swinehart, Progr. Inorg. Chem., 13, 107-158 (1970). “Mechanisms of Inorganic Reactions,” A.C.S. Mono- graph # 49, American Chemical Society, Washington, D. C. (1965). M. M. Jones, “Elementary Coordination Chemistry,” Prentice-Hall, Englewood Cliffs, New Jersey (1964), pages 185-226. a) M.L. Tobe, Rec. Chem. Progr., 27, 79 (1966); b) M.L. Tobe, in “Studies on Chemical Structure and Reactivity,” edited by J. Ridd, Methuen, London (1966), pages 2 15 ff. R.G. Wilkins, Accts. Chem. Res., 3, 408 (1970). C.K. Poon, Inorg. Chim. Acta Rev., 4, 132 (1970). a) 0. Exner, Coil. Czechoslav. Chem. Commun., 29, 1094 (1964); b) J.E. Leffler, J. Org. Chem., 20, 1202 (1955); c) R.C. Petersen, J. Org. Chem., 29, 3133 (1964); d) R.F. Brown, J. Org. Chem., 27, 3015 (1962); e) W.B. Person, J. Am. Chem. Sot., 84, 536 (1962). a) M.G. Burnett, J. Chem. Sot., A, 2486, 2490 (1970); b) L. Heck, Inorg. Nucl. Chem. Letters, 7, 701, 709 (1971).

Page 52: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

98 J. 0. Edwards, F. Monacelli and G. Ortaggi

17 B. Perlmutter-Hayman, Progr. React. Kinetics, 6, 239 (1971).

18

19

20

A.D. Pethybride and J.E. Prue, Progr. Inorg. Chem., 17, 327-390 (1972).

D. R. Rosseinsky, Chem. Rev., 72, 229 (1972).

26 a) CF. Wells, Nature, 205, 693 (1965); b) E. Rabino- with and W.H. Stockmayer, J. Am. Chem. SOL, 64, 335 (1942); c) K. Swaminathan and G.M. Harris, J. Am. Chem. Sot., 88, 4411 (1966); d) A.J. Poe, K. Shaw and M.J. Wendt, Inorg. Chim. Acta, 1, 371 (1967); e) C. Postmus and E.L. King,J. Phys. Chem., 59, 1208 (1955); f) L.H. Sutcliffe and J.R. Weber, Trans. Faraday Sot., 52, 1225 (1956).

27 c.f. a) T.W. Swaddle and G. Guastalla, Inorg. Chem., 7,

28 21 22

23

a) F. Monacelli, Znorg. Chim. Acta, 2, 263 (1968); b) E. Borghi, F. Monacelli and T. Prosperi, Inorg. Nucl. Chem. Letters, 6, 667 (1970); c) D.R. Stranks and T.W. Swaddle, J. Am. Chem. Sot., 93, 2783 (1971); d) T.W. Swaddle and D.R. Stranks, J. Am. Chem. Sot., 94, 8357 (1972).

Reference 4, page 169. a) A.J. Poe and C.P.J. Vuik, 3rd Northeast Regional Meeting (A.C.S.), October 1971; b) D.N. Hague and J. Halpern, Inorg. Chem., 6, 2059 (1967). a) B.P. Cotsoradis and R.D. Archer, Inorg. Chem., 6, 800 (1967); b) L.J. Boucher and J.C. Bailar, Jr., J. Inorg. Nucl. Chem., 27, 1093 (1965); c) R.J. Kline and R.A. Velapoldi, Inorg. Chem., 9, 1312 (1970); d) D.R. Stranks and J.K. Yandell, Inorg. Chem., 9, 751 (1970); e) P.H. Tewari, R. W. Gaver, H.K. Wilcox and W.K. Wil- marth, Irzorg. Chem., 6, 611 (1967); f) H.G. Tsiang and W.K. Wilmarth, Inorg. Chem., 7, 2535 (1968); g) R.S. Murray, D.R. Stranks and J.K. Yandell, Chem. Commun., 604 (1969); h) H.H. Chen, M.-S. Tsao, R.W. Gaver, P.H. Tewari and W.K. Wilmarth, Inorg. Chem., 5, 1913 (1966); i) E. Campi, C. Paradisi, G. Schiavon and M.L. Tobe, Chem. Commun., 682 (1966); j) G. Schiavon, R. Campi, and Q. G. Mulazzani, Annual Meefing, Italian Chemical Society (1967), page 85 of Inorganic Abstracts; k) A.L. Crumbliss and W.K. Wilmarth, J. Am. Chem. Sot., 92, 2593 (1970); 1) J. Halpern, R.A. Palmer and L.M. Blakley, J. Am. Chem. Sot., 88, 2877 (1966); m) L.B. Richards, Ph.D thesis, Univ. of Chicago (1970); n) R.A. Palmer, Ph.D. thesis, Univ. of Chicago (1966); o) P. Moore, F. Basolo, R.G. Pearson, Inorg. Chem., 5, 223 (1966); p) D.W. Carlyle and E.L. King, Inorg. Chem., 9, 2333 (1970); q) T.C. Matts and P. Moore, Chem. Commun., 29 (1969); r) T.C. Matts and P. Moore, J. Chem. Sot., A, 1997 (1969); s) D.E. Bracken, Ph.D. thesis at Univ. of Western Ontario, London, Ontario, Canada (1967); t) H.L. Bott, E.J. Bounsell, and A.J. Poe, J. Chem. Sot., 1275 (1966); u) H.L. Bott and A.J. Poe, 3. Chem. Sot., 205 (1967); v) A.J. Poe and K. Shaw, Chem. Commun., 52 (1967); w) T. Sakurai, J.P. Fox, and L.L. Ingraham, Inorg. Chem., 10, 1105 (1971); x) D. Thusius, J. Am. Chem. Sot.. 93, 2629 (1971); y) J.G. Jones and M.V. Twigg, Inorg. Chem., 8, 2120 (1969); aa) A. J. Poe, K. Shaw, and M.J. Wendt, Inorg. Chim. Acta, 1, 371 (1967): bb) F. Basolo, E.J. Bounsall, and A.J. Poe, Proc. Chem. Sot., 366 (1963); cc) R.A. Bauer and F. Basolo, Inorg. Chem., 8, 2237 (1969); dd) J. E. Byrd and W. K. Wilmarth, Inorg. Chim. Acta Rev., 5, 7 (1971).

29

30 31

32

33

34

35 36

37

1915 (1968); b) T.W. Swaddle, J. Am. Chem. Sot., 89, 4338 (1967); and references therein. a) C.H. Langford, Inorg. Chem., 4, 265 (1965); b) T. W. Swaddle and G. Guastalla, Inorg. Chem., 8, 1604 (1969); c) A. Haim, Inorg. Chem., 9, 426 (1970); d) W.E. Jones, R.B. Jordan and T.W. Swaddle, Inorg. Chem., 8, 2504 (1969). a) N. Serpone and D. G. Bickley, Progr. Inorg. Chem., 17, 391-566 (1972); b) J.C. Bailar, Jr., J. Inorg. Nucl. Chem., 8, 165 (1958). M. L. Tobe, Inorg. Chem., 7, 1260 (1968). I. Lauder, J.A. Broomhead and P. Nimmo, J. Chem. Sot., (A), 645 (1971). F. Basolo, J. G. Bergmann and R.G. Pearson, J. Phys. Chem., 52, 22 (1952). a) F. Aprile, V. Caglioti, V. Carunchio and G. Illuminati, in “Advances in the Chemistry of the Coordination Compounds”, edited by S. Kirschner, page 649, Macmil- lan, New York, N.Y. (1961); b) C.A. Bunton and D.R. Llewellyn, J. Chem. Sot., 1692 (1953); c) F. Aprile, V. Caglioti and G. Illuminati, J. Inorg. Nucl. Chem., 21, 325 (1961); d) V. Carunchio, G. Illuminati, and F. Maspero, 28, 2693 (1966); e) G. Illuminati and F. Mona- celli, J. Inorg. Nucl. Chem., 29, 1265 (1967); f) F. Mona- celli, Inorg. Chim. Acta, I, 271 (1967); and g) V. Carun- chio, G. Illuminati, and G. Ortaggi, Inorg. Chem., 6, 2168 (1967). R.B. Jordan and H. Taube, J. Am. Chem. Sot., 88, 4406 (1966). F. Monacelli, J. Inorg. Nucl. Chem., 29, 1079 (1967). C.H. Langford and W. R. Muir, J. Am. Chem. Sot., 89, 3141 (1967). W.E. Jones and T.W. Swaddle, Chem. Commun., 998 (1969).

21. Data Table References

B. R. Baker, N. Sutin and T.J. Welch, Inorg. Chem., 6, 1948 (1967). J.N. Armor and A. claim, J. Am. Chem. Sot., 93, 867 (1971).

24

25

a) M.L. Tobe, Accts. Chem. Res., 3, 377 (1970); b) F. R. Nordmeyer, Inorg. Chem., 8, 2780 (1969); c) D.A. Buckingham, I. I. Olsen and A.M. Sargeson, J. Am. Chem. Sot., 90, 6654 (1968).

c.f., a) L.L. Schlaeger and F.A. Long, Adv. Phys. Org. Chem., I, 1 (1963); b) J.O. Edwards, J. Chem. Educ., 45, 386 (1968); and c) L. Cattalini, Progr. Inorg. Chem., 13, 295 (1970).

R.F. Childers, Jr., K.G. Vander Zyl, Jr., D.A. House, R.G. Hughes and C.S. Garner, Inorg. Chem., 7, 749 (1968). J.P. Hunt and R.A. Plane, J. Am. Cheni. Sot., 76, 5960 (1954). H. A. E. MacKenzie and A. M. Milner, Tram Faraday Sec., 49, 1437 (1953). J.H. Espenson and D. W. Carlyle, Inorg. Chem., 5, 586 (1966). D.K. Wakefield and W.B. Schaap, Inorg. Chem. 8, 512 (1969).

Page 53: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

Ligand Replacements in Octahedral Complexes

8

9

10

11

12 13 14 15

16

17

18

19 20 21

22 23

24

25

26

27

28

29

30

31

32

33

34

35 36 37

38 39

40

41

42 43 44 45

F. Nordmeyer and H. Taube, J. Am. Chem. SOC., 90, 46 D.L. Gay and G. C. Lalor, J. Chem. Sot. (A), 1179 1162 (1968). (1966). T.W. Swaddle and E.L. King, Znorg. Chem., 4, 532 47 S. Wajda and F. Pruchnik, Nucleonika, 12, 627 (1967); (1965). CA 69:46391f. F. A. Guthrie and E.L. King,Znorg. Chem., 3, 916 (1964). 48 F. Monacelli, Ric. Sci., 37, 781 (1967). A. Adin, J. Doyle and A.G. Sykes, J. Chem. Sot., (A), 1504 (1967).

49 R. Davies, G.B. Evans and R.B. Jordan, Znorg. Chem., 8, 2025 (1969).

J. H. Espenson, Znorg. Chem., 3, 968 (1964). M. Ardon,Znorg. Chem., 4, 372 (1965). J. P. Birk and J. H. Espenson,Znorg. Chem., 7, 991 (1968). T.W. Swaddle and E.L. King, Znorg. Chem., 3, 234 (1964). J. Doyle, A.G. Sykes and A. Adin, J. Chem. Sot. (A), 1314 (1968). C. Postmus and E.L. King, J. Phys. Chem., 59, 1216 (1955). M. Orhanovic and N. Sutin, J. Am. Chem. Sot., 90, 4286 (1968). M. Ardon and N. Sutin, Znorg. Chem., 6, 2268 (1967). T. W. Swaddle, J. Am. Chem. Sot., 89, 4338 (1967). K. M. Jones and J. Bjerrum, Acta Chem. Stand., 19, 974 (1965). E. Deutsch and H. Taube, Znorg. Chem., 7, 1532 (1968). N. Fog& J. Ming, Jen Tai and J. Yarborough, J. Am. Chem. Sot., 84, 1145 (1962). J.E. Finholt and S.N. Deming, Znorg. Chem., 6, 1533 (1967). J. Burgess, B.A. Goodman and J.B. Raynor, J. Chem. Sot. (A), 501 (1968). T.J. Williams and C.S. Garner, Znorg. Chem., 9, 52 (1970). H. B. Johnson and W.L. Reynolds, Znorg. Chem., 2, 468 (1963). C.W. Merideth, W.D. Mathews and E.F. Orlemann, Znorg. Chem., 3, 320 (1964). N. E. Nechaeva, N.F. Zorich and D. P. Zosimovich, Clkr. Kim. Zh., 32, 1273 (1966); CA 66:108739z. D.K. Lin and C.S. Garner, J. Am. Chem. Sot., 91, 6637 (1969). T.J. Williams and C.S. Garner, Znorg. Chem., 8, 1639 (1969). D.M. Tuft?-Smith, R.K. Kurimoto, D.A. House and C.S. Garner, Znorg. Chem., 6, 1524 (1967). R.G. Hughes and C.S. Garner, Znorg. Chem., 7, 1988 (1968). N.V. Duffy and J.E. Earley, J. Am. Chem. Sot., 89, 272 (1967). P.J. Staples, J. Chem. Sot. (A), 2731 (1968). T.C. Matts and P. Moore, J. Chem. Sot. (A), 219 (1969). A.E. Ogard and H. Taube, J. Am. Chem. Sot., 80, 1084 (1958). S. C. Chan and K.Y. Hui,Aust. J. Chem., 20, 893 (1967). T.P. Jones and J.K. Phillips, J. Chem. Sot. (A), 674 (1968). A. W. Adamson and R.G. Wilkins, J. Am. Chem. SOC., 76, 3379 (1954). M. A. Levine, T. P. Jones, W. E. Harris and W. J. Wallace, J. Am. Chem. Sot., 83, 2453 (1961). A. Rogers and P. J. Staples, J. Chem. Sot., 6834 (1965). S. Hashimoto, Bull. Chem. Sot. Japan, 32, 945 (1959). M. Parris and W. J. Wallace, Znorg. Chem., 3, 133 (1964). S.C. Chan and K.Y. Hui, J. Chem. Sot. (A), 1741 (1968).

50 B. Adell, Z. Anorg. Allgem. Chem., 249, 251 (1942).

51 D. W. Hoppenjans, J. B. Hunt und C. R. Gregoire, Znorg. Chem., 7 2506 (1968).

52 J. Selbin and J.C. Bailar, Jr., J. Am. Chem. Sot., 79, 4285 (1957).

53 L.P. Quinn and C.S. Garner, Znorg. Chem., 3, 1348 (1964).

54 J.M. Veigel and C.S. Garner, Znorg. Chem., 4, 1569 (1965).

55 R.G. Pearson, R.A. Munson and F. Basolo, J. Am. Chem. Sot., 80, 504 (1958).

56

57

58

59

60

61

Yu.1. Bratushko and Yu.P. Nazarenko, Zh. Neorg. Khim., 12, 2122 (1967). D.C. Olson and C.S. Garner, Znorg. Chem., 2, 558 (1963). V. Holba, Collection Czech. Chem. Commun., 31, 1453 (1966). D. J. MacDonald and C. S. Garner, J. Znorg. Nucl. Chem., 18, 219 (1961). Yu. I. Bratushko andYu.P. Nazarenko,Zh. Neorg. Khim., II, 128 (1966). A.M. Weiner and J.A. McLean, Jr., Znorg. Chem., 3, 1469 (1964).

62 V. Holba, Z. Physik. Chem., 226, 408 (1964). 63 V. Holba, Chem. Zvesti, Z9, 441 (1965); CA 63:15621d. 64 C.Y. Hsu and C.S. Garner, Znorg. Chim. Acta, I, 17

(1967). 65 Y. Narusawa, M. Kanazawa, S. Takahashi, K. Morinaga

and K. Nakano, J. Znorg. Nucl. Chem., 29, 123 (1967). 66 J. Agget and A.L. Odell, J. Chem. Sot. (A), 1820

(1966). 67 J.M. Veigel, Znorg. Chem., 7, 69 (1968). 68 K.R. Ashley and R.E. Hamm, Znorg. Chem., 5, 1645

(1966). 69 D. Banerjea and M. S. Mohan, J. Znorg. Nucl. Chem., 27,

1643 (1965). 70 M. Casula, G. Illuminati, and G. Ortaggi, Znorg. Chem.,

II, 1062 (1972). 71 A. W. Adamson, J. Am. Chem. Sot., 80, 3183 (1958). 72 A. W. Adamson, J. P. Welker and W.B. Wright, J. Am.

Chem. Sot., 73, 4786 (1951). 73 E.G. Moorhead and N. Sutin, Znorg. Chem., 6, 428

(1967). 74 D. W. Carlyle and J.H. Espenson, Znorg. Chem., 8, 575

(1969). 75 D. W. Carlyle and J.H. Espenson, Znorg. Chem., 6, 1370

(1967). 76 J. F. Below, R. E. Connick and C. P. Coppel,J. Am. Chem.

Sot., 80, 2961 (1958). 77 T.J. Conocchioli and N. Sutin, J. Am. Chem. Sot., 89,

282 (1967). 78 H. W. Dodgen, K. Murray and J.P. Hunt, Znorg. Chem.,

4, 1820 (1965). 79 S.F. Lincoln and D.R. Stranks, Aust. J. Chem., 21, 67

(1968).

99

Page 54: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

100 J. 0. Edwards, F. Monacelli and G. Orlaggi

80 H.R. Hunt and H. Taube, J. Am. Chem. Sot., 80, 2642 (1958).

120 J. Zsako, C.S. Varhelyi and D. Dobocan, 1. Inorg. Nucl. Chem., 31, 1459 (1969).

81 W. Schmidt and H. Taube, Inorg. Chem., 2, 698 (1963). 82 K. Ogino, T. Murakami and K. Saito, Bull. Chem. Sot.

Jap., 41, 1615 (1968).

121

122

83 SC. Chan,J. Chem. Sot., 2375 (1964). 84 T.W. Swaddle and W.E. Jones, Can. J. Chem., 48, 1054

(1970).

123

124

85 A. W. Adamson and F. Basolo, Acta Chem. Stand., 9, 1261 (1955).

M.L. Tobe, J. Chem. Sot., 3776 (1959).

N.K. Chawla, D.G. Lambert and M.M. Jones, J. Am. Chem. Sot., 89, 557 (1967).

B. Bosnich and F. P. Dwyer, Aust. J. Chem., 19, 2051 (1966). Tiee-Leou Ni and C.S. Garner, Inorg. Chem., 6, 1071 (1967).

125

86 K.O. Watkins and M.M. Jones, J. Inorg. Nucl. Chem., 26, 469 (1964). 126

87 S.C. Chan,J. Chem. Sot. (A), 291 (1967). 88 G.R.H. Jones, R.C. Edmondson and J.H. Taylor, J.

InorE. Nucl. Chem., 32, 1752 (1970). 127

128

W. Kruse and H. Taube, J. Am. Chem. Sot., 83, 1280 (1961). I.R. Lantzke and D.W. Watts, Aust. J. Chem., 19, 1821 (1966). S.C. Chan,J. Chem. Sot., 5137 (1963).

F. Basolo, W.R. Matoush and R.G. Pearson, J. Am. Chem. Sot., 78, 4883 (1956). S.C. Chan and O.W. Lau. J. Chem. Sot. (A), 1800 (1966). R. G. Pearson, C. R. Boston and F. Basolo, J. Phys. Chem., 59, 304 (1955). M.E. Baldwin, S.C. Chan and M.L. Tobe, J. Chem. Sot., 4637 (1961). E.W. Davies, J. Phys. Chem., 6.5, 1328 (1961). S.C. Chan, J. Chem. Sot., 418 (1965). W.D. Panasyuk, V.P. Solomko and L.G. Reiter, Zh. Neorg. Khim., 6, 2019 (1961). V.D. Panasyuk and A.V. Arkharov, Ukr. Khim. Zh., 32, 716 (1966); CA 65:12899h. S.C. Chan and M.L. Tobe, J. Chem. Sot., 5700 (1963). R. G. Pearson, R.E. Meeker and F. Basolo, J. Am. Chem. Sot., 78, 2673 (1956). P. J. Staples and M.L. Tobe, J. Chem. Sot., 4803 (1960). M.E. Baldwin and M.L. Tobe, J. Chem. Sot., 4275 (1960). V. D. Panasyuk and A. V. Arkharov, Zh. Neorg. Khim, 13, 776 (1968). S. Asperger and C.K. Ingold, J. Chem. Sot., 2862 (1956). V.D. Panasyuk and A.V. Arkharov, Ukr. Khim. Zh., 33, 544 (1967) CA 68:63063x. W.F. Cain and J. A. McLean, Jr., Znorg. Chem., 4, 1416 (1965). W.D. Panasyuk and V.D. Arkharov, Zh. Neorg. Khim.,

13, 2477 (1968). D.J. Francis and R.B. Jordan, J. Am. Chem. Sot., 91., 6626 (1969). C.G. Barraclough and R. S. Murray, J. Chem. Sot., 7067 (1965). A.M. Sargeson and G. H. Searle, Inorg. Chem., 6, 2172 (1967). A.M. Sargeson and G.H. Searle, Nature, 200, 356 (1963). V. Ricevuto and M.L. Tobe, Znorg. Chem., 9, 1785 (1970). S.K. Madan and J. Peone, Jr., Inorg. Chem., 6, 463 (1967). C.K. Poon and M.L. Tobe, J. Chem. Sot. (A), 1549 (1968). R. Niththyananthan and M.L. Tobe, Znorg. Chem., 8, 1589 (1969). D.M. Palade and M. K. Boreiko, Zh. Neorg. Khim., 23, 3021 (1968).

89

90 91

92

93 94

95

96 97

98

99 100

101

102 103

104 105

106 107 10s

109

110

111

112

V.D. Panasyuk and V. A. Goiub, Zh. Neorg. Khim., 14, 457 (1969). R.G. Yalman, Znorg. Chem., 1, 16, (1962). G.C. Lalor and E. A. Moelwyn Hughes, J. Chem. Sot., 1560 (1963). G. C. Lalor, J. Chem. Sot. (A), 1 (1966).

D. Banerjea, J. Inorg. Nucl. Chem., 29, 2795 (1967). W.E. Jones, R.B. Jordan and T.W. Swaddle, Inorg. Chem., S, 2504 (1969). S.F. Lincoln, J. Jayne and J.P. Hunt, Inorg. Chem., 8, 2267 (1969). C. Andrade and H. Taube,Znorg. Chem., 5, 1087 (1966). F. Monacelli, F. Basolo and R. G. Pearson, J. Inorg. Nucl. Chem., 24, 1241 (1962). N.S. Angerman and R.B. Jordan, Znorg. Chem., 6, 379 (1967). L.L. PO and R.B. Jordan, Inorg. Chem., 7, 526 (1968). H. Taube and F. A. Posey, J. Am. Chem. Sot., 75, 1463 (1953). Ya. A. Fialkov and V. D. Panasyuk, Zh. Neorg. Khim., 2, 1007 (1957). F. Monacelli, Znorg. Chim. Actu, in press. D. Banerjea and T. P. Das Gupta, J. Inorg. Nucl. Chem., 27, 2617 (1965). M. Parris,J. Chem. Sot. (A), 583 (1967). S.C. Chan and K.Y. Hui, Aust. J. Chem., 20, 2529 (1967). D.F. Martin and M.L. Tobe,J. Chem. Sot., 1388 (1962). S.C. Chan and F. Leh, J. Chem. Sot. (A), 129 (1966). V.D. Panasyuk and L.G. Reiter, Ukr. Khim. Zh., 33, 423 (1967). CA 68:436OOs. R. S. Nyholm and M.L. Tobe, J. Chem. Sot., 1707 (1956). V. D. Panasyuk and L.G. Reiter, Zh. Neorg. Khim., 12, 2434 (1967). S.C. Chan, C.Y. Cheng and F. Leh, J. Chem. Sot. (A), 1586 (1967). V.D. Panasyuk and L. G. Reiter, Zh. Neorg. Khim., 10, 2418 (1965).

113

114 115 116 117 118

V.D. Panasyuk and L.G. Reiter, Zh. Neorg. Khim., 11, 606 (1966). S.C. Chan and F. Leh, J. Chem. Sot. (A), 134 (1966). S.C. Chan, J. Chem. Sot. (A), 138 (1966). S.C. Chan and F. Leh, J. Chem. Sot. (A), 1730 (1967). S.C. Chan and F. Leh, J. Chem. Sot. (A), 288 (1967). S.C. Chan and F. Leh, J. Chem. Sot. (A), 1079 (1968).

119 S.C. Chan and F. Leh, J. Chem. Sot. (A), 573 (1967).

129

130

131

132 133 134

135

136 137

138 139

140

141 142

143

144

145

146

147

148

149

150

151

152

153

154 R.G. Linck,Inorg. Chem., 8, 1016 (1969).

Page 55: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

Ligand Replacements in Octahedral Complexes

155 V.D. Panasyuk and S.A. Shevchenko, Vim. Kiivs’k. Univ. Ser. Astron. Fis. ta Khim., 2, 99(1962); CA 62:13898c.

156 V.D. Panasyuk and A.V. Arkharov, Zh. Neorg. Khim., 10, 1562 (1965).

157 M.J. Frank and D.H. Huchital, Znorg. Chem., 11, 776 (1972).

158 V.D. Panasyuk and V. D. Arkharov, Ukr. Khim. Zh., 31, 338 (1965) CA 63:12373g.

159 F. Basolo, J.G. Bergmann, R.E. Meeker and R.G. Pearson,J. Am. Chem. Sot., 78, 2676 (1956).

160 F. Monacelli and S. Viticoli, Znorg. Chim. Acta, in press. 161 R. G. Pearson, C. R. Boston and F. Basolo, J. Am. Chem.

Sot., 75, 3089 (1953). 162 V. N. Vasil’eva and K. B. Yatsimirskii, Zh. Neorg. Khim.,

7, 2520 (1962). 163 S.C. Chan. Aust. J. Chem., 20, 595 (1967). 164 S. C. Chan and M.L. Tobe, J. Chem. Sot., 514 (1963). 165 C.K. Ingold, R. S. Nyholm and M. L. Tobe,J. Chem. Sot.,

1691 (1956). 166 S.C. Chan,J. Chem. Sot., 2716 (1964). 167 C.H. Langford and P Langford, Znorg. Chem., 2, 300

(1963). 168 C.K. Poon and M.L. Tobe, J. Chem. Sot. (A), 2069

(1967). 169

170

171

172

173

174

175

176

177

178

179

180

181

182 183 184

185

186 187

188

V.D. Gomwalk and A. McAuIey, J. Chem. Sot. (A), 1796 (1967). W. A. Baker and F.M. Gaesser, J. Znorg. Nucl. Chem., 25, 1161 (1963). A.Ya. Sychev and A.V. Ablov, Zh. Neorg. Khim., 6, 2288 (1961). G. P. Syrtsova and L. N. Korletyann, Zzv. Sib. Otd. Akad.

Nauk.SSSR,ser. Khim. Nauk,48, (1968); CA:70:31942h. Z. Finta, C.S. Va’rhelyi and J. Zsako, .I. Znorg. Nucl. Chem., 32, 3013 (1970). F.I. Para, Tr. Tret’ei Konf. Molodykh Uchenykh Mol- davii, Estestv.-Tekhn. Nauki, Akad. Nauk Moldavsk SSR, 77 (1964); CA:62-9845h. R.J. Kline and R. A. Velapoldi, Znorg. Chem., 9, 1312 (1970). M.N. Malik and A. McAuIey, 1. Chem. Sot. (A), 917 (1969). A. Haim and W.K. Wilmarth, Znorg. Chem., I, 573 (1962). R. Grassi, A. Haim and W.K. Wilmarth, Znorg. Chem., 6, 237 (1967). D. Banerjea and T. P. Das Gupta, J. Znorg. Nucl. Chem., 29, 1021 (1967). J. A. Broomhead, F. Basolo and R. G. Pearson, Znorg. Chem., 3, 826 (1964). J. A. Broomhead and L. Kane-Maguire, Znorg. Chem., 7, 2519 (1968). M.G. Adamson,J. Chem. Sot. (A), 1370 (1968). W. Plumb and G. M. Harris, Znorg. Chem., 3, 542 (1964). F. Monacelli and E. Viel, Znorg. Chim. Acta, 1, 467 (1967). G.C. Lalor and G.W. Bushnell, J. Chem. Sot. (A), 2520 (1968). S.C. Chan, Ausf. J. Chem., 20, 61 (1967). A. J. PO& K. Shaw and M. J. Wendt, Znorg. Chim. Acta, I, 371 (1967). G.B. Schmidt, Z. Phyzik. Chem. (Frankfurt), 50, 222 (1966).

101

189 G.B. Schmidt, Z. Phyzik. Chem. (Frankfurt), 41, 26 (1964).

190 H. L. Bott, E. J. Bounsall and A.J. PO&, J. Chem. Sot. (A), 1275 (1966).

191 F. Basolo, E.J. Bounsall and A.J. PO&, Proc. Chem. Sot., 366 (1963).

192

193

194

195

196 197

198

199

200

201

202

203

204 205

206

207

208

209

210

211

212

213

214

215

216

217 218 219

G. B. Schmidt; “Exchange Reactions”, Proc. Symp., Upton, N. Y., 219 (1965).

W. Robb and M.M. de V. Steyn, Znorg. Chem., 6, 616 (1967).

W. Robb and G.M. Harris, J. Am. Chem. Sot., 87, 4472 (1965).

E. Borghi and F. Monacelli, Znorg. Chim. Acta, 5, 211 (1971). R. A. Bauer and F. BasoIo,Znorg. Chem., 8, 2237 (1969). W. J. van Ooy and J. P. Houtmann, Radiochimica Acta, 7, 115 (1967). A. A. El-Awady, E. J. Bounsall and C.S. Garner, Znorg. Chem., 6, 79 (1967). J.C. Chang and C.S. Garner, Znorg. Chem., 4, 209 (1965). A. J. P. Domingos, A. M. T. S. Domingos and J. M. Peixoto, J. Znorg. Nucl. Chem., 31, 2563 (1969). I. A. Poulsen and C.S. Garner, J. Am. Chem. Sot., 84, 2032 (1962). C.H. Langford and F.M. Chung, Can. J. Chem., 48, 2969 (1970). H.H. Glaeser and J.P. Hunt, Znorg. Chem., 3, 1245 (1964). G. Thomas, Z. Chem., 5, 144 (1965); CA 63:7875h. I.R. Lantzke and D.W. Watts, J. Am. Chem. Sot., 89, 815 (1967). I.R. Lantzke and D.W. Watts, Aust. J. Chem., 20, 173 (1967). I.R. Lantzke and D.W. Watts, Aust. J. Chem., 20, 2623 (1967). S.K. Madam and J. Peone, Jr., Znorg. Chem., 7, 824 (1968). S. Asperger and M. Pribanic, J. Chem. Sot. (A), 1503 (1968). T.C. Matts and P. Moore, J. Chem. Sot. (A), 1997 (1969). J.H. Espenson and D.E. Binau, Znorg. Chem., 5, 1365 (1966). D. K. Wakefield and W. B. Schaap, Znorg. Chem., 8, 811 (1969). D. Banerjea and C. Chatterjee, Z. Anorg. Allg. Chemie, 361, 99 (1968). K. R. A. Fehrmann and C.S. Garner, J. Am. Chem. Sot., 83, 1276 (1961). D. Banerjea and M.S. Mohan, J. Znorg. Nucl. Chem., 26, 613 (1964). D. Banerjea and C. Chatterjee, J. Znorg. Nucl. Chem., 29, 2387 (19ti7). J.C. Chang, J. Znorg. Nucl. Chem., 30, 945 (1968). P. J. Staples, J. Che&. Sot., 2534 (1964). V.D. Gomwalk and A. McAuIey, J. Chem. Sot. (A), 1692 (1966).

220 H. Ho Chen, Maak-Sang Tsao, R.W. Gaver and W.K. Wilmarth, Znorg. Chem., 5, 1913 (1966).

221 D. Banerjea and B. Chakrawarty, J. Znorg. Nucl. Chem., 26, 1233 (1964).

Page 56: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

102 J. 0. Edwards, F. Monacelli and G. Ortaggi

222

223

224

225

226

S.C. Chart, K.Y. Hui, J. Miller and W. S. Tsang,Z. Chem. Sot., 3207 (1965). D.A. Buckingham, I. I. Olsen and A.M. Sargeson, Znorg. Chem., 7, 176 (1968). G. Bushnell and G.C. Lalor, J. Znorg. Nucl. Chem., 30, 219 (1968). M.B. Davies and G.C. Lalor, .Z. Znorg. Nucl. Chem., 3Z, 799 (1969). C.T. Burris and K.J. Laidler, Trans. Faraday SOL, 51, 1497 (1955).

227

228

229

259 260

261

262

263

264 265

266

267

230 231

232

233

234

235

B. Perlmutter-Hayman and Y. Weissmann, J. Phys. Chem., 68, 3307 (1964).

A. J. Cunningham, D.A. House and H.K.J. Powell, J. Znorg. Nucl. Chem., 33, 572 (1971). M. B. Davies and G.C. Lalor, J. Znorg. Nucl. Chem., 31, 2189 (1969). G.C. Lalor and J. Lang,J. Chem. Sot., 5620 (1963). D. Banerjea and T. P. Das Gupta, J. Inorg. Nucl. Chem., 28, 1667 (1966). R.B. Jordan and H. Taube, J. Am. Chem. Sot., 88, 4406 (1966). R.B. Jordan and H. Taube,J. Am. Chem. Sot., 86, 3890 (1964). D.J. Francis and R.B. Jordan, .Z: Am. Chem. Sot., 89, 5591 (1967). N.S. Angerman and R.B. Jordan, Znorg. Chem., 6, 1376 (1967).

268

269 270

271

272 273

274

275

276

V. Carunchio and G. Ortaggi, Ric. Sci., 37, 1121 (1967). M.E. Farago, B.A. Page and C.F.V. Mason, Znorg. Chem., 8, 2270 (1969). D.T. Haworth, E.F. Neuzil and S.L. Kittsley, J. Am. Chem. Sot., 77, 6198 (1955). D.C. Olson and C.S. Garner, Znorg. Chem., 2, 415 (1963). J.D. Salzmann and E.L. King, Znorg. Chem., 6, 426 (1967). R.E. Hamm, J. Am. Chem. Sot., 75, 609 (1953). K. R. Ashley and R. E. Hamm. Znorg. Chem., 4, 1120 (1965). B. Bosnich, J. Ferguson and M.L. Tobe, J. Chem. Sot. (A), 1636 (1966). W.R. Fitzgerald and D.W. Watts, J. Am. Chem. SOL, 89, 821 (1967). R.C. Brasted and C. Hirayama, J. Am. Chem. Sot., 80, 788 (1958). R.F. Trimble, Jr., J. Am. Chem. Sot., 76, 6321 (1954). W. R. Fitzgerald and D. W. Watts, Aust. J. Chem., 19, 935 (1966). D.W. Cooke, Yong Ae Im and D.H. Busch, Znorg. Chem., 1, 13 (1962). E. Bushra and C.H. Johnson, J. Chem. Sot., 1937 (1939). J. A. Broomhead, N. Kane-Maguire and I. Lauder, Znorg. Chem., 9, 1243 (1970). J.A. Broomhead, J. Znorg. Nucl. Chem., 27, 2049 (1965).

R. E. Hamm, R. Kollrack, G. L. Welch and R.H. Perkins, J. Am. Chem. Sot., 83, 340 (1961). J.L. Welch and R.E. Hamm, Znorg. Chem., 2, 295 (1963). King-Wen Kuo and SK. Madan, Znorg. Chem., IO, 229 (1971). W. W. Fee, J.N.NacB. Harrowfield and C.S. Garner, Znorg. Chem., 10, 290 (1971). D.K. Wakefield and W.B. Schaap, Znorg. Chem., IO, 306 (1971). D.W. Carlyle, Znorg. Chem., ZO, 761 (1971).

J.A. Broomhead, N. Kane-Maguire and J. Lauder, Inorg. Chem., 10, 955 (1971). D.D. Brown and C.K. Ingold, J. Chem. Sot., 2680 (1953). A.A. El-Awady and C. S. Garner, J. Znorg. Nucl. Chem., 32, 3627 (1970). B. Adell, Z. Anorg. Allgem. Chem., 271, 49 (1952). F. Basolo and G.S. Hammaker, Znorg. Chem., I, 1 (1962). W. Kruse and D. Thusius, Znorg. Chem., 7, 464 (1968). V. Holba, Collection Czech. Chem. Commun., 32, 2469 (1967). D.J. MacDonald and C.S. Garner, Znorg. Chem., I, 20 (1962). K. B. Yatsimirskii and E. I. Yasinskene, Zh. Neorg. Khim., I, 438 (1956). R. E. Hamm, R. L. Johnson, R. E. Davis and R. H. Perkins, J. Am. Chem. SOL, 80, 4469 (1958). D. Banerjea and S. D. Chandhari, J. Znorg. Nucl. Chem., 32, 1617 (1970). D. Banerjea and C. Chatterjee, J. Znorg. Nucl. Chem., 31, 3845 (1969). H. Kelm and G.M. Harris, Znorg. Chem., 6, 706 (1967). T. Sakurai, J.P. Fox and L.L. Ingraham, Znorg. Chem., 10, 1105 (1971).

236 J.B. Clarke, K.A. Pilkington and P.J. Staples, J. Chem. Sot. (A), 153 (1966).

237 P.J. Staples,J. Chem. Sot., 3300 (1965). 238 R.W. Hay and P.L. Cropp, J. Chem. Sot. (A), 42

(1969). 239 R.W. Hay and D.J. Barnes, J. Chem. Sot. (A), 3337

(1970). 240 S.C. Chan and M.L. Tobe, J. Chem. Sot., 4531 (1962). 241 A. Rogers and P.J. Staples, J. Chem. Sot., 4749 (1963). 242 P.J. Staples, J. Chem. Sot., 3226 (1963). 243 V. Carunchio, G. Illuminati and G. Ortaggi,Znorg. Chem.,

6, 2168 (1967). 244 S. Sheel, D. T. Meloon and G. M. Harris, Znorg. Chem., I,

170 (1962). 245 F. Aprile, V. Caglioti and G. Illuminati, J. Znorg. Nucl.

Chem., 31, 307 (1961). 246 S.C. Chart, J. Chem. Sot. (A), 142 (1966). 247 J.A. Kernohan and J.F. Endicott, Znorg. Chem., 9, 1504

(1970). 248 J.A. Broomhead and L. Kane-Maguire, Znorg. Chem.,

8, 2124 (1969). 249 G. W. Bushnell, G. C. Lalor and E. A. Moelwyn-Hughes,

J. Chem. Sot. (A), 719 (1966). 250 C.S. Davis and G.C. Lalor, J. Chem. Sot., 2328 (1968). 251 F. Monacelli, J. Znorg. Nucl. Chem., 29, 1079 (1967). 252 K.S. Mok and C.K. Poon,Znorg. Chem., IO, 225 (1971). 253 G.C. Lalor and T. Carrington, J. Chem. Sot. (A), 2509

(1969). 254 J. Bjerrum and S.E. Rasmussen, Acta Chem. Stand., 6,

1265 (1952). 255 J. Ying-Peh Tong and P.E. Yankwich, J. Am. Chem.

Sot., SO, 2664 (1958). 256 R.G. Yalman and T. Kuwana, J. Phys. Chem., 59, 298

(1955). 257 A.M. Sargeson, Aust. J. Chem., 16, 352 (1963). 258 M.N. Hughes, J. Chem. Sot. (A), 1284 (1967).

277

278

279

280

281

282

283

284 285

286 287

288

289

290

291

292

293 294

Page 57: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

L&and Replacements in Octahedral Complexes

295

296

297

298

299

300 301

302

303

304

305

306

307

308

309

310

311

312 313 314

31.5

316 317

318

319

320

321

322

323

324

325

326

327

328

W.V. Miller and S.K. Madan, Znorg. Chem., ZO, 1250 (1971). G.G. Davis and W. Mac F. Smith, Can. J. Chem., 40, 1836 (1962). A.L. Odell, R. W. Olliff and D.B. Rands, J. Chem. Sot. (Dalton), 75.2 (1972). R.F. Bauer and W. Mac F. Smith, Can. J. Chem., 43, 2763 (1965). R.E. Connick and C.P. Coppel, J. Am. Chem. Sot., 81, 6389 (1959). D. Seewald and N. Sutin, Znorg. Chem., 2, 643 (1963). G. Saini and E. Mentasti, Znorg. Chim. Acta, 4, 585 (1970). S.F. Lincoln and A.L. Purnell, Znorg. Chem., 10, 1254 (1971). C.H. Langford and W.R. Muir, J. Am. Chem. Sot., 89, 3141 (1967). T. W. Swaddle and G.B. Guastalla, Znorg. Chem., 8, 1604 (1969). J.C. Chang, J. Znorg. Nucl. Chem., 34, 221 (1972).

W.R. Fitzgerald and D.W. Watts, J. Am. Chem. Sot., 90, 1734 (1968).

329

330

T. P. Dasgupta and M.L. Tobe, Znorg. Chem., 11, 1011 (1972).

K.R. Ashley and S. Kulprathipanja, lnorg. Chem., 11, 444 (1972).

331 L.D. Brown and D.E. Pennington, Znorg. Chem., 10, 2117 (1971).

332 S. J. Ranney and C. S. Garner, Znorg. Chem., 10, 2437 (1971).

333 C. K. Poon and H. W. Tong, J. Chem. Sot. (A), 2151 (1971).

334 C.G. Barraclough, R.W. Boschen, W.W. Fee, W.G. Jackson and P.T. McTigue, Znorg. Chem., 10, 1994 (1971).

335

E. Zinato, C. Furlani, G. Lanna and P. Riccieri, Znorg.

D.N. Hague and J. Halpern, Znorg. Chem., 6, 2059 (1967).

Chem., 11, 1746 (1972).

S. C. Chan and G. M. Harris, Znorg. Chem., 10, 1317 (1971). D.A. Kamp, R.L. Wilder, SC. Tang and C.S. Garner,

M.C. Couldwell and D.A. House, Znorg. Chem., II,

Znorg. Chem., 10, 1396 (1971). J.A. Broomhead and L. Kane-Maguire, Znorg. Chem.,

2024 (1972).

ZO, 85 (1971). L.R. Carey, W.E. Jones and T.W. Swaddle, Znorg. Chem., 10, 1566 (1971). A. J. Poe and K. Shaw, Chem. Comm., 52 (1967). H. L. Bott and A. J. Poe, J. Chem. Sot. (A), 205 (1967). K. Swaminathan and G.M. Harris, J. Am. Chem. Sot., 88, 4411 (1966). M. Cola and A. Perotti, Zst. Lomb. Act. Sci. Lett., Rendi- conti (A), 98, 554 (1964). H. D. Weaver, Jr., J. Am. Chem. Sot., 84, 2289 (1962). D. R. Stranks and T. W. Swaddle, J. Am. Chem. Sot., 93, 2783 (1971). T.W. Swaddle and D.R. Stranks, J. Am. Chem. Sot., 94, 8357 (1972). W.E. Jones and T. W. Swaddle, Chem. Comm., 998 (1969).

336

337

338

339

340

341 __

342

343

344

345

346

347

348

349

D.M. Palade, T.N. Volok, G.V. Chudaeva, L.Z.K.

350 R. Mitzner, P. Blankenburg and N. Depkat, Z. Phys.

Khavina and E.A. Chebysheva, Zh. Neorg. Khim., 15, 2694 (1970).

Chem. (Leipzig), 24.5, 260 (1970).

A.J. Poe and M.V. Twigg, Can. J. Chem., 50, 1089 (1971).

351 R.N. Pandey and W. Mac F. Smith, Can. J. Chem., 50,

G.C. Lalor, G.A. Neita and A.M. Newton, Rev. Latinoamer. Quim., 2, 149 (1972); CA 76, 158853. T.P. Jones and J.K. Phillis, J. Chem. Sot. (A), 1881

194 (1972).

(1971). S.C. Chan and S. F. Chart, J. Znorg. Nucl. Chem., 34, 793 (1972). G.C. Lalor and T. Carrington, J. Chem. Sot., (Dalton), 55 (1972). G.H. Searle and F.R. Keene, Znorg. Chem., 11, 1006

(1972). L. Damrauer and R.M. Milburn, J. Am. Chem. Sot., 93, 6481 (1971). D. J. Francis and R.B. Jordan, Znorg. Chem., 11, 461 (1972). I. Lauder, J.A. Broomhead and P. Nimmo, J. Chem. Sot. (A), 645 (1971). Cs. Varhelyi, J. Zsako and Z. Finta, J. Znorg. Nucl. Chem., 34, 2583 (1972). K.S. Mok, C.K. Poon and H.W. Tong, J. Chem. Sot., (Dalton), 1701 (1972). S.C. Chan and O.W. Lau, J. Znorg. Nucl. Chem., 34, 2361 (1972). C.K. Lui and C.K. Poon, J. Chem. Sot., (Dalton), 216

(1972). G. P. Syrtsova and T. S. Bolgar, Zh. Neorg. Khim., 17, 455 (1972).

J. H. Espenson and S. G. Wolenuk, Jr., Znorg. Chem., 11, 352 W.W. Fee, W.G. Jackson and P.D. Vowles, Aust. J. 2034 (1971). Chem., 25, 459 (1952).

C. Chatterjee and P. Chaudhuri, Indian J. Chem., 9, 1132 (1971).

T.P. Dasgupta, W. Fitzgerald and M.L. Tobe, Znorg. Chem., 11, 2046 (1972). F. Yajima, Y. Koike, T. Sakai and S. Fujiwara, Znorg. Chem., II, 2054 (1972). A. Bakac and M. Orhanovic, Znorg. Chem., IO, 2443 (1971).

353 Yu. I. Bratushko and Yu. P.Nazarenko,Zh. Neorg. Khim., 17, 460 (1972).

354 W. Andruchow and J. Diliddo, Znorg. Nucl. Chem. Lett., 8, 689 (1972).

356 S.Y.J. Ng and C.S. Garner, Znorg. Chim. Acta, 5, 365 (1971).

355 S.K. Madan, W.M. Reiff and J.C. Bailar, Jr., Znorg. Chem., 4, 1366 (1965).

D. W. Hoppenjans, G. Gordon and J.B. Hunt, Znorg. Chem., 10, 754 (1971). SC. Pyke and R.G. Linck, Znorg. Chem., 10, 2445 (1971).

357 Cs. Varhelyi and J. Zsako, Rev. Roum. Chim., 16, 1185 (1971); CA, 76, 28191 f.

358 J. Zsako, Cs. Varhelyi and S. Bleoca, Acta Chim. (Buda- pest), 70, 175 (1971); CA, 76, 20811 n.

103

Page 58: Rate parameters for ligand replacemen processes in octahedral complexes of metal in oxidation state three

104 J. 0. Edwards, F. Monacelli and G. Ortaggi

359 V. Carunchio, A. Messina and G. Ortaggi, unpublished results, partially presented at the Quint0 Convegno Nazion- ale di Chimica Inorganica, Taormina, September 1972.

360 W.K. Chau and C.K. Poon, J. Chem. Sot. (A), 3087 (1971).

361 R. W. Hay, R. Bennett and D.J. Barnes, J. Chem. SOL, (Dalton), 1524 (1972).

362 M.E. Farago and C. F. Mason, J. Chem. Sot. (A), 3100 (1970).

363 V. Carunchio, F. Giannetta and G. Grassini-Strazza, J. Inorg. Nucl. Chem., 33, 3025 (1971).

364 A.W. Chester, J. Inorg. Nucl. Chem., 32, 3398 (1970). 365 E.G. Conze, H. Stieger and H. Kelm, Chem. Ber., 105,

2334 (1972). 366 D.A. Palmer and D.W. Watts, Inorg. Chim. Acta, 6,

197 (1972). 367 D.A. Palmer and D.W. Watts, Inorg. Chim. Acta, 6,

515 (1972). 368 H. Kelm, H. Stieger and G.M. Harris, Chem. Ber., 104,

2743 (1971).