88
Rare b-hadron decays Christoph Langenbruch 1 1 University of Warwick Warwick EPP seminar December 3 rd , 2015

Rare b-hadron decays - Warwick · 2015. 12. 3. · Rare Decays as probes for New Physics Rare decays: Flavour changing neutral currents (FCNCs) b!qdecays with q= s;dquark In theSM:

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Rare b-hadron decays

    Christoph Langenbruch1

    1University of Warwick

    Warwick EPP seminar

    December 3rd, 2015

  • Introduction 2 / 48

    Rare Decays as probes for New Physics

    � Rare decays: Flavour changing neutral currents (FCNCs)b→ q decays with q = s, d quark

    � In the SM: FCNCs forbidden at tree-level, only W± changes flavourbut: higher order penguin processes are possible

    b st

    W

    Z0, γ

    SM penguin diagram

    b st

    Z0, γ

    NP penguin diagram

    � Loop-suppression → rare processes with B typically 10−5 . . . 10−10� New heavy particles beyond the SM can significantly contribute

    � NP does not need to be produced on-shell→ masses up to O(100 TeV) accessible [A. Buras,arXiv:1505.00618]

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1505.00618

  • Introduction 2 / 48

    Rare Decays as probes for New Physics

    � Rare decays: Flavour changing neutral currents (FCNCs)b→ q decays with q = s, d quark

    � In the SM: FCNCs forbidden at tree-level, only W± changes flavourbut: higher order penguin processes are possible

    b st

    W

    Z0, γ

    SM penguin diagram

    b st

    Z0, γ

    NP penguin diagram

    � Loop-suppression → rare processes with B typically 10−5 . . . 10−10� New heavy particles beyond the SM can significantly contribute

    � NP does not need to be produced on-shell→ masses up to O(100 TeV) accessible [A. Buras,arXiv:1505.00618]

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1505.00618

  • Introduction 3 / 48

    Effective field theory� FCNCs a multi-scale problem:

    ΛNP � mW � mb � ΛQCD? & 1 TeV 80 GeV 5 GeV 0.2 GeV

    � In effective field theory: Operator product expansion [A. Burashep-ph/9806471]

    Heff = −4GF√

    2VtbV

    ∗tq

    ∑i

    CiOi︸︷︷︸+ C′iO′i︸︷︷︸� Wilson coeff. C(′)i encode short-distance physics, O

    (′)i corr. operators

    Well known analogon: β decay

    d u

    e−

    ν̄e

    W−

    d u

    e−

    ν̄e

    GF

    Heff = GF√2 cos θC [ūγµ(1− γ5)d× ēγµ(1− γ5)νe]

    � Integrate out heavy DoF → Contact interaction with effective coupling GF

    Left-handed Right-handed,msmb

    suppressed

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/hep-ph/9806471

  • Introduction 3 / 48

    Effective field theory� FCNCs a multi-scale problem:

    ΛNP � mW � mb � ΛQCD? & 1 TeV 80 GeV 5 GeV 0.2 GeV

    � In effective field theory: Operator product expansion [A. Burashep-ph/9806471]

    Heff = −4GF√

    2VtbV

    ∗tq

    ∑i

    CiOi︸︷︷︸+ C′iO′i︸︷︷︸� Wilson coeff. C(′)i encode short-distance physics, O

    (′)i corr. operators

    Well known analogon: β decay

    d u

    e−

    ν̄e

    W−

    d u

    e−

    ν̄e

    GF

    Heff = GF√2 cos θC [ūγµ(1− γ5)d× ēγµ(1− γ5)νe]

    � Integrate out heavy DoF → Contact interaction with effective coupling GF

    Left-handed Right-handed,msmb

    suppressed

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/hep-ph/9806471

  • Introduction 4 / 48

    Operators

    b→ sγ B → µµ b→ q``b s

    γ

    photon penguin

    O(′)7 = eg2mb(s̄σµνPR(L)b)Fµν 3 3

    b

    s

    `

    `

    electroweak penguin

    O(′)9 = e2

    g2(s̄γµPL(R)b)(µ̄γ

    µµ)

    O(′)10 = e2

    g2(s̄γµPL(R)b)(µ̄γ

    µγ5µ) 33

    3

    b

    s

    `

    `

    (pseudo)scalar penguin

    O(′)S = e2

    16π2mb(s̄PR(L)b)(µ̄µ)

    O(′)P = e2

    16π2mb(s̄PR(L)b)(µ̄γ5µ)

    3

    3

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • b→ sγ 5 / 48

    Operators

    b→ sγ B → µµ b→ q``b s

    γ

    photon penguin

    O(′)7 = eg2mb(s̄σµνPR(L)b)Fµν 3 3

    b

    s

    `

    `

    electroweak penguin

    O(′)9 = e2

    g2(s̄γµPL(R)b)(µ̄γ

    µµ)

    O(′)10 = e2

    g2(s̄γµPL(R)b)(µ̄γ

    µγ5µ) 33

    3

    b

    s

    `

    `

    (pseudo)scalar penguin

    O(′)S = e2

    16π2mb(s̄PR(L)b)(µ̄µ)

    O(′)P = e2

    16π2mb(s̄PR(L)b)(µ̄γ5µ)

    3

    3

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • b→ sγ 6 / 48

    Photon polarisation λγ with B+→ K+π−π−γ

    u u

    b̄ s̄B+ K+π+π−t̄

    W

    γ

    � In SM, photons from b→ sγ decays left-handed (C ′7/C7 ∼ ms/mb)� Can probe λγ with B

    +→ K+π+π−γ decays [M. Gronau et al.,PRD 66 (2002) 054008]� Up-down asymmetry Aud =

    ∫ +10 dcosθ

    dΓdcosθ

    −∫ 0−1 dcosθ

    dΓdcosθ∫ +1

    −1 dcosθdΓ

    dcosθ

    ∝ λγ

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/hep-ph/0205065

  • b→ sγ 7 / 48

    Composition of K+π+π− final state

    ]2c) [MeV/γππM(K4500 5000 5500 6000 6500

    )2 cC

    andi

    date

    s / (

    50

    MeV

    /

    0

    500

    1000

    1500

    2000

    2500

    3000

    LHCb

    ]2c) [MeV/ππM(K1200 1400 1600 1800

    )2 cC

    andi

    date

    s / (

    8 M

    eV/

    0

    50

    100

    150

    200

    250

    300

    350

    LHCb

    � Signal yield NKππγ = 13 876± 153� Final state consists of several resonances:K1(1270)

    +,K1(1400)+,. . .

    � Different res. hard to separate, perform analysis in four mKππ bins

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • b→ sγ 8 / 48

    First observation of γ polarisation

    θcos-1 -0.5 0 0.5 1

    θ d

    N/d

    cos

    ×1/

    N

    0

    0.2

    0.4

    0.6

    0.8

    1

    LHCb

    2c[1.1,1.3] GeV/

    θcos-1 -0.5 0 0.5 1

    θ d

    N/d

    cos

    ×1/

    N

    0

    0.2

    0.4

    0.6

    0.8

    1

    LHCb

    2c[1.3,1.4] GeV/

    θcos-1 -0.5 0 0.5 1

    θ d

    N/d

    cos

    ×1/

    N

    0

    0.2

    0.4

    0.6

    0.8

    1

    LHCb

    2c[1.4,1.6] GeV/

    θcos-1 -0.5 0 0.5 1

    θ d

    N/d

    cos

    ×1/

    N

    0

    0.2

    0.4

    0.6

    0.8

    1

    LHCb

    2c[1.6,1.9] GeV/

    ]2c) [MeV/ππM(K1200 1400 1600 1800

    udA

    -0.1

    -0.05

    0

    0.05

    0.1

    LHCb

    � Perform angular fit of cos θ distribution to determine Aud� Combination results in first obs. of non-zero photon polarisation at

    5.2σ [PRL 112, 161801 (2014)]

    � To determine precise value for λγ , resonance structure of final stateneeds to be resolved

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1402.6852

  • B → µµ 9 / 48

    Operators

    b→ sγ B → µµ b→ q``b s

    γ

    photon penguin

    O(′)7 = eg2mb(s̄σµνPR(L)b)Fµν 3 3

    b

    s

    `

    `

    electroweak penguin

    O(′)9 = e2

    g2(s̄γµPL(R)b)(µ̄γ

    µµ)

    O(′)10 = e2

    g2(s̄γµPL(R)b)(µ̄γ

    µγ5µ) 33

    3

    b

    s

    `

    `

    (pseudo)scalar penguin

    O(′)S = e2

    16π2mb(s̄PR(L)b)(µ̄µ)

    O(′)P = e2

    16π2mb(s̄PR(L)b)(µ̄γ5µ)

    3

    3

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • B → µµ 10 / 48

    The very rare decay B0(s)→ µµ

    s

    µ+

    µ−

    B0s W

    t

    t

    Z0b̄

    s

    µ+

    µ−

    B0s t

    W

    W

    νµ

    � Loop and additionally helicity suppressed

    � Purely leptonic final state: Theoretically and experimentally very clean

    � Very sensitive to NP:Possible scalar and pseudoscalar enhanced wrt. SM axialvector

    B ∝ |VtbVtq|2[(1− 4m2µ

    M2B)|CS − C ′S |2 + |(CP − C ′P ) +

    2mµM2B

    (C10 − C ′10)|2]� SM prediction (accounting for ∆Γs 6= 0) [C. Bobeth et al.,PRL 112, 101801 (2014)]

    B(B0s→ µ+µ−) = (3.66± 0.23)× 10−9

    B(B0→ µ+µ−) = (1.06± 0.09)× 10−10

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1311.0903

  • B → µµ 11 / 48

    First observation of B0s→ µµ

    ]2c [MeV/−µ+µm5000 5200 5400 5600 5800

    )2 cS

    /(S

    +B

    ) w

    eigh

    ted

    cand

    . / (

    40 M

    eV/

    0

    10

    20

    30

    40

    50

    60 DataSignal and background

    −µ+µ →s0B−µ+µ →0B

    Combinatorial bkg.Semileptonic bkg.Peaking bkg.

    CMS and LHCb (LHC run I)

    � Combined analysis of LHCb and CMS Run 1 data, sharing signal andnuisance parameters [Nature 522 (2015) pp. 68-72]

    � First obs. of B0s→ µ+µ− with 6.2σ significance (expected 7.2σ)B(B0s→ µ+µ−) = (2.8+0.7−0.6)× 10−9 compatible with SM at 1.2σ

    � First evidence for B0→ µ+µ− with 3.0σ significance (expected 0.8σ)B(B0→ µ+µ−) = (3.9+1.6−1.4)× 10−10 compatible with SM at 2.2σ

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1411.4413

  • B → µµ 12 / 48

    The ratio R = B(B0→ µµ)/B(B0s→ µµ)

    ]9−[10)−µ+µ→0BB(0 0.2 0.4 0.6 0.8

    LlnΔ2−

    0

    2

    4

    6

    8

    10SM

    ]9−[10)−µ+µ→s0BB(

    0 2 4 6 8

    LlnΔ2−

    0

    10

    20

    30

    40SM

    ]9−[10)−µ+µ→s0BB(

    0 1 2 3 4 5 6 7 8 9

    ]9−[1

    0)− µ

    + µ→

    0B

    B(

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    68.27%

    95.45%

    99.73% 5−10

    ×6.3

    −1

    7−10

    ×5.7

    −1

    9−10

    ×2−1

    SM

    CMS and LHCb (LHC run I)

    a

    b

    c

    R0 0.1 0.2 0.3 0.4 0.5

    Lln∆2−

    0

    2

    4

    6

    8

    10

    SM and MFV

    CMS and LHCb (LHC run I)

    � R = B(B0→µµ)B(B0s→µµ) tests MFV hypothesis� RSM = 0.0295+0.0028−0.0025� R = 0.14+0.08−0.06 compatible at 2.3σ

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • b→ q`` 13 / 48

    Operators

    b→ sγ B → µµ b→ q``b s

    γ

    photon penguin

    O(′)7 = eg2mb(s̄σµνPR(L)b)Fµν 3 3

    b

    s

    `

    `

    electroweak penguin

    O(′)9 = e2

    g2(s̄γµPL(R)b)(µ̄γ

    µµ)

    O(′)10 = e2

    g2(s̄γµPL(R)b)(µ̄γ

    µγ5µ) 33

    3

    b

    s

    `

    `

    (pseudo)scalar penguin

    O(′)S = e2

    16π2mb(s̄PR(L)b)(µ̄µ)

    O(′)P = e2

    16π2mb(s̄PR(L)b)(µ̄γ5µ)

    3

    3

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • b→ q`` 14 / 48

    b→ s(d)`` decays

    b s(d)

    αem

    `+

    `−

    W

    t

    Z0, γ

    SM penguin diagram

    b s(d)

    `+

    `−

    t

    νµ

    W

    W

    SM box diagram

    � b→ s(d)`` decays proceed via penguin and box diagrams� B(B0s → µµ)

    hel. supp.< B(b→ s``) ∼ 10−6 αem.< B(b→ sγ)

    � Plenty of decays due to choice of q = s, d, lepton, hadronic resonance:

    b→ sµµ B+→ K+µ+µ− [JHEP 05(2014) 082] [JHEP 09(2014) 177] [JHEP 06(2014) 133] B+→ K∗+µ+µ− [JHEP 06(2014) 133]B+→ K+π+π−µ+µ− [JHEP 10(2014) 064] B0→ K0µ+µ− [JHEP 05(2014) 082] [JHEP 06(2014) 133],B0→ K∗0µ+µ− [LHCb-PAPER-2015-051to be submitted ] B0s→ φµ+µ− [JHEP 09(2015) 179] B0s→ π+π−µ+µ− [PLB 743(2015) 46]Λ0b→ Λµ+µ− [JHEP 06(2015) 115]

    b→ dµµ B+→ π+µ+µ− [JHEP 10(2015) 034] B0→ π+π−µ+µ− [PLB 743(2015) 46]b→ see B+→ K+e+e− [PRL 113(2014) 151601] B0→ K∗0e+e− [JHEP 04(2015)064]

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1403.8045http://arxiv.org/abs/1408.0978http://arxiv.org/abs/1403.8044http://arxiv.org/abs/1403.8044http://arxiv.org/abs/1408.1137http://arxiv.org/abs/1403.8045http://arxiv.org/abs/1403.8044https://cds.cern.ch/record/2002772http://arxiv.org/abs/1506.08777http://arxiv.org/abs/1412.6433http://arxiv.org/abs/1503.07138http://arxiv.org/abs/1509.00414http://arxiv.org/abs/1412.6433http://arxiv.org/abs/1406.6482http://arxiv.org/abs/1501.03038

  • b→ q`` 15 / 48

    B → V `` differential branching fraction

    !"#$%&$%$"'$(

    J/ψ(1S)

    ψ(2S)C(′)7

    C(′)7 C(′)9

    C(′)9 C

    (′)10

    4 [m(µ)]2 q2

    dΓdq2

    )"*(

    +,"-(*!.#)"'$(

    ',"#%!/01,".(&%,2(

    )/,3$(,4$"('5)%2(

    #5%$.5,6*((

    cc̄

    � q2 = m2(`+`−) provides separation power between Ci → bin in q2� Regions where J/ψ and ψ(2S) dominate are vetoed → control decays

    typically 8 < q2 < 11 GeV2/c4 and 12.5 < q2 < 15 GeV2/c4

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • b→ q`` 16 / 48

    Complication in theory: QCD effects

    d̄ d̄

    b s

    `+

    `−

    W

    t

    Z0, γ

    d̄ d̄

    b s

    `+

    `−

    W

    t

    Z0, γ

    � Hadronic meson in initial and final state→ Predictions require non-perturbative calculation of form factors

    � Predictions of B and angular obs. affected by form factor uncertainty� Ideally measure clean observables where form factors (largely) cancel

    � ACP =Γ(B−→K−µ+µ−)−Γ(B+→K+µ+µ−)Γ(B−→K−µ+µ−)+Γ(B+→K+µ+µ−)

    � Lepton universality, RK =B+→K+µ+µ−B+→K+e+e−

    � AI =Γ(B0→K0µ+µ−)−Γ(B+→K+µ+µ−)Γ(B0→K0µ+µ−)+Γ(B+→K+µ+µ−)

    � Ratios of angular obs., P(′)i basis

    � Recent improvements from lattice (high q2) and LCSR (low q2)[Bharucha et al.,arXiv:1503.05534]

    [Horgan et al.,PRD 89 (2014) 094501

    ] [Horgan et al.,PoS (Lattice2014) 372

    ][Du et al.,arXiv:1510.02349]

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1503.05534http://arxiv.org/abs/1310.3722http://arxiv.org/abs/1501.00367http://arxiv.org/abs/1510.02349

  • b→ q`` | B0→ K∗0µ+µ− 17 / 48

    Golden mode B0 → K∗0[→ K+π−]µ+µ−d

    d

    s̄B0 K∗0

    µ−

    µ+

    W+

    Z0, γ

    B

    K* K*

    z

    K

    ++

    Figure 1. Kinematic variables of

    B̄0d → K̄∗0(→ K−π+) + ¯̀̀ decays:i) the (¯̀̀ )-invariant mass squared q2,

    ii) the angle θ` between ` = `− and B̄

    in the (¯̀̀ ) center of mass (c.m.), iii)

    the angle θK∗ between K− and B̄ in

    the (K−π+) c.m. and iv) the angle φbetween the two decay planes spanned

    by the 3-momenta of the (Kπ)- and

    (¯̀̀ )-systems, respectively.

    V is assumed to be on-shell in the narrow-resonance approximation which restricts the number

    of kinematic variables to four4. Using B̄0d → K̄∗0(→ K−π+) + ¯̀̀ for illustration, they might bechosen as depicted in figure 1.

    The differential decay rate, after summing over lepton spins, factorises into

    3

    d4Γ

    dq2 d cos θ` d cos θK∗ dφ= Js1 sin

    2 θK∗ + Jc1 cos

    2 θK∗ + (Js2 sin

    2 θK∗ + Jc2 cos

    2 θK∗) cos 2θ`

    +J3 sin2 θK∗ sin

    2 θ` cos 2φ+ J4 sin 2θK∗ sin 2θ` cosφ+ J5 sin 2θK∗ sin θ` cosφ

    +(Js6 sin2 θK∗ + J

    c6 cos

    2 θK∗) cos θ` + J7 sin 2θK∗ sin θ` sinφ

    +J8 sin 2θK∗ sin 2θ` sinφ+ J9 sin2 θK∗ sin

    2 θ` sin 2φ, (1)

    that is, into q2-dependent observables5 J ji (q2) and the dependence on the angles θ`, θK∗ and

    φ. No additional angular dependencies can be induced by any extension of the SM operator

    basis [11] as found by [12, 13]. The following simplifications arise in the limit m` → 0: Js1 = 3Js2 ,Jc1 = −Jc2 and Jc6 = 0.

    The differential decay rate d4Γ̄ of the CP-conjugated decay B0d → K0∗(→ K+π−) + ¯̀̀ isobtained through the following replacements

    J j1,2,3,4,7 → J̄ j1,2,3,4,7[δW → −δW ], J j5,6,8,9 → − J̄ j5,6,8,9[δW → −δW ], (2)

    due to `↔ ¯̀⇒ θ` → θ` − π and φ→ −φ. The CP-violating (weak) phases δW are conjugated.The angular distribution provides twice as many observables (J ji and J̄

    ji ) when the decay

    and its CP-conjugate decay are measured separately. This doubles again if the ` = e and µ

    lepton flavours are not averaged. Notably, CP-asymmetries can be measured in an untagged

    sample of B-mesons due to the presence of CP-odd observables (i = 5, 6, 8, 9) [7]. Moreover,

    T-odd observables ∼ cos δs sin δW (i = 7, 8, 9) are especially sensitive to weak BSM phases δW[10, 14] contrary to T-even ones ∼ sin δs sin δW (i = 1, . . . , 6), since the CP-conserved (strong)phase δs is often predicted to be small. Note, that in the SM CP-violating effects in b → s aredoubly-suppressed by the Cabibbo angle as Im[VubV

    ∗us/(VtbV

    ∗ts)] ≈ η̄λ ∼ 10−2.

    4 The off-resonance case has been studied in [9].5 Possibilities to extract q2-integrated Jji from single-differential distributions in θ`, θK∗ or φ can be found in [10].

    � Fully described by three helicity angles ~Ω = (θ`, θK , φ) and q2 = m2µµ

    � Differential decay rate given by

    d4Γ(B0→ K∗0µ+µ−)d~Ω dq2

    =9

    32π

    ∑i

    Ii(q2)fi(~Ω)

    d4Γ̄(B0→ K∗0µ+µ−)d~Ω dq2

    =9

    32π

    ∑i

    Īi(q2)fi(~Ω)

    � Ii(q2) and Īi(q

    2) combinations of K∗0 spin amplitudesdepending on Wilson coefficients C

    (′)7 , C

    (′)9 , C

    (′)10 and form factors

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • b→ q`` | B0→ K∗0µ+µ− 18 / 48

    Angular observables in B0 → K∗0µ+µ−� Access to CP -averages Si and CP -asymmetries Ai

    [W. Altmannshofer et al.,JHEP 01 (2009) 019

    ]Si =

    (Ii + Īi

    )/

    (dΓ

    dq2+

    dΓ̄

    dq2

    )Ai =

    (Ii − Īi

    )/

    (dΓ

    dq2+

    dΓ̄

    dq2

    )� CP -averaged angular distribution in bins of q2

    1

    d(Γ + Γ̄)/dq2d3(Γ + Γ̄)

    d~Ω=

    9

    32π

    [34 (1− FL) sin2 θK + FL cos2 θK

    + 14 (1− FL) sin2 θK cos 2θ` − FL cos2 θK cos 2θ`+ S3 sin

    2 θK sin2 θ` cos 2φ+ S4 sin 2θK sin 2θ` cosφ

    + S5 sin 2θK sin θ` cosφ+43AFB sin

    2 θK cos θ`

    + S7 sin 2θK sin θ` sinφ+ S8 sin 2θK sin 2θ` sinφ

    + S9 sin2 θK sin

    2 θ` sin 2φ]

    � Longitudinal polarisation fraction FL, Forward-backward asymmetry AFB

    � Perform ratios of angular obs. where form factors cancel at leading orderExample: P ′5 =

    S5√FL(1−FL)

    [S. Descotes-Genon et al.,JHEP, 05 (2013) 137

    ]C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/0811.1214http://arxiv.org/abs/1303.5794

  • b→ q`` | B0→ K∗0µ+µ− 19 / 48

    B0→ K∗0µ+µ− selection

    ]2c) [GeV/µ+µ-+K(m5.2 5.3 5.4 5.5 5.6 5.7

    ]4 c/2[G

    eV2 q

    02

    4

    6

    8

    1012

    14

    1618

    20

    � -

    preliminary

    [LHCb-PAPER-2015-051]

    � BDT to suppress combinatorial backgroundInput variables: PID, kinematic and geometric quantities, isolation variables

    � Veto of B0 → J/ψK∗0 and B0 → ψ(2S)K∗0 (important control decays)and peaking backgrounds using kinematic variables and PID

    � Signal clearly visible as vertical band after the full selectionC. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • b→ q`` | B0→ K∗0µ+µ− 20 / 48

    Mass model and B0→ K∗0µ+µ− signal yield

    ]2c) [MeV/−µ+µ−π+K(m5200 5400 5600

    2 cE

    vent

    s / 5

    .3 M

    eV/

    210

    310

    410preliminaryLHCb

    B0→ J/ψK∗0control decay

    ]2c) [MeV/−µ+µ−π+K(m5200 5400 5600

    2 cE

    vent

    s / 5

    .3 M

    eV/

    0

    50

    100

    preliminaryLHCb

    [LHCb-PAPER-2015-051]

    B0→ K∗0µµ signal1.1 < q2 < 6.0 GeV2/c4

    � Signal mass model from high statistics B0 → J/ψK∗0Correction factor from simulation to account for q2 dep. resolution

    � Finer q2 binning to allow more flexible use in theory� Significant signal yield in all bins, q2 integrated Nsig = 2398± 57

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • b→ q`` | B0→ K∗0µ+µ− 20 / 48

    Mass model and B0→ K∗0µ+µ− signal yield

    ]2c) [MeV/−µ+µ−π+K(m5200 5400 5600

    2 cE

    vent

    s / 5

    .3 M

    eV/

    0

    20

    40

    preliminaryLHCb

    ]2c) [MeV/−µ+µ−π+K(m5200 5400 5600

    2 cE

    vent

    s / 5

    .3 M

    eV/

    0

    10

    20

    30

    40

    preliminaryLHCb

    ]2c) [MeV/−µ+µ−π+K(m5200 5400 5600

    2 cE

    vent

    s / 5

    .3 M

    eV/

    0

    10

    20

    30

    preliminaryLHCb

    ]2c) [MeV/−µ+µ−π+K(m5200 5400 5600

    2 cE

    vent

    s / 5

    .3 M

    eV/

    0

    20

    40preliminaryLHCb

    ]2c) [MeV/−µ+µ−π+K(m5200 5400 5600

    2 cE

    vent

    s / 5

    .3 M

    eV/

    0

    20

    40

    60preliminaryLHCb

    ]2c) [MeV/−µ+µ−π+K(m5200 5400 5600

    2 cE

    vent

    s / 5

    .3 M

    eV/

    0

    20

    40

    preliminaryLHCb

    ]2c) [MeV/−µ+µ−π+K(m5200 5400 5600

    2 cE

    vent

    s / 5

    .3 M

    eV/

    0

    20

    40

    60preliminaryLHCb

    ]2c) [MeV/−µ+µ−π+K(m5200 5400 5600

    2 cE

    vent

    s / 5

    .3 M

    eV/

    0

    20

    40preliminaryLHCb

    [LHCb-PAPER-2015-051]

    [0.1, 0.98] GeV2/c4 [1.1, 2.5] GeV2/c4 [2.5, 4.0] GeV2/c4 [4.0, 6.0] GeV2/c4

    [6.0, 8.0] GeV2/c4 [11.0, 12.5] GeV2/c4 [15.0, 17.0] GeV2/c4 [17.0, 19.0] GeV2/c4

    � Signal mass model from high statistics B0 → J/ψK∗0Correction factor from simulation to account for q2 dep. resolution

    � Finer q2 binning to allow more flexible use in theory� Significant signal yield in all bins, q2 integrated Nsig = 2398± 57

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • b→ q`` | B0→ K∗0µ+µ− 21 / 48

    Acceptance effect

    lθcos -1 -0.5 0 0.5 1

    Eff

    icie

    ncy

    0

    0.5

    1

    simulationLHCb

    Kθcos -1 -0.5 0 0.5 1

    Eff

    icie

    ncy

    0

    0.5

    1

    simulationLHCb

    φ-2 0 2

    Eff

    icie

    ncy

    0

    0.5

    1

    simulationLHCb

    [0.1, 1.0] GeV2/c4

    [18.0, 19.0] GeV2/c4

    [LHCb-PAPER-2015-051]

    � Trigger, reconstruction and selection distorts decay angles and q2 distribution

    � Parametrize 4D efficiency using Legendre polynomials Pk

    ε(cos θ`, cos θK , φ, q2) =

    ∑klmn

    cklmnPk(cos θ`)Pl(cos θK)Pm(φ)Pn(q2)

    � cklmn from moments analysis of B0 → K∗0µ+µ− phase-space MC

    � Crosscheck acceptance using B0→ J/ψK∗0 control decay

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • b→ q`` | B0→ K∗0µ+µ− 22 / 48

    Control decay B0→ J/ψK∗0

    ]2c) [MeV/−µ+µ−π+K(m5200 5400 5600

    2 cE

    vent

    s / 5

    .3 M

    eV/

    0

    50

    100310×

    preliminaryLHCb

    lθcos -1 -0.5 0 0.5 1

    Eve

    nts

    / 0.0

    2

    0

    2000

    4000

    preliminaryLHCb

    Kθcos -1 -0.5 0 0.5 1

    Eve

    nts

    / 0.0

    2

    0

    2000

    4000

    6000

    8000 preliminaryLHCb

    [rad]φ-2 0 2

    rad

    πE

    vent

    s / 0

    .02

    0

    2000

    4000preliminaryLHCb

    [LHCb-PAPER-2015-051]

    � black line: full fit, blue: signal component, red: bkg. part� Angular observables successfully reproduced [PRD 88, 052002 (2013)]

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1307.2782

  • b→ q`` | B0→ K∗0µ+µ− 23 / 48

    S-wave pollution

    � S-wave: K+π− not from K∗0(892) but in spin 0 configuration� Introduces two add. decay amplitudes resulting in six add. observables

    1

    d(Γ + Γ̄)/dq2d3(Γ + Γ̄)

    d~Ω

    ∣∣∣∣S+P

    =(1− FS)1

    d(Γ + Γ̄)/dq2d3(Γ + Γ̄)

    d~Ω

    ∣∣∣∣P

    +3

    16πFS sin

    2 θ` + S-P interference

    � FS scales P-wave observables, needs to be determined precisely

    � Perform simultaneous mKπfit to constrain FS

    � P-wave described by rel. Breit-Wigner

    � S-wave described by LASS modelcrosschecked using Isobar param.

    ]2c) [GeV/−π+K(m0.8 0.85 0.9 0.95

    2 cE

    vent

    s / 1

    0 M

    eV/

    0

    20000

    40000

    60000preliminaryLHCb

    [LHCb-PAPER-2015-051]

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • b→ q`` | B0→ K∗0µ+µ− 24 / 48

    B0→ K∗0µ+µ− Likelihood fit� Full 3 fb−1 allows first simultaneous determination of all eight

    CP-averaged observables in a single fit� Allows to quote correlation matrix to include in global fit� Perform maximum likelihood fit to the decay angles and mKπµµ in q

    2

    bins, simultaneously fitting mKπ to constrain FS

    logL =∑i

    log[�(~Ω, q2)fsigPsig(~Ω)Psig(mKπµµ)

    + (1− fsig)Pbkg(~Ω)Pbkg(mKπµµ)]

    +∑i

    log[fsigPsig(mKπ) + (1− fsig)Pbkg(mKπ)

    ]� Psig(Ω) given by 1d(Γ+Γ̄)/dq2

    d3(Γ+Γ̄)

    d~Ω

    ∣∣∣S+P

    � Pbkg(Ω) modelled with 2nd order Chebychev polynomials.� Feldman-Cousins method [G. Feldman et al., PRD 57 3873-3889]

    to ensure correct coverage at low statistics

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/physics/9711021

  • b→ q`` | B0→ K∗0µ+µ− 25 / 48

    B0→ K∗0µ+µ− likelihood projections [1.1, 6.0] GeV2/c4

    lθcos -1 -0.5 0 0.5 1

    Eve

    nts

    / 0.1

    0

    20

    40

    60preliminaryLHCb

    Kθcos -1 -0.5 0 0.5 1

    Eve

    nts

    / 0.1

    0

    50

    100 preliminaryLHCb

    [rad]φ-2 0 2

    πE

    vent

    s / 0

    .1

    0

    20

    40

    60preliminaryLHCb

    ]2c) [MeV/−µ+µ−π+K(m5200 5400 5600

    2 cE

    vent

    s / 5

    .3 M

    eV/

    0

    50

    100

    preliminaryLHCb

    ]2c) [GeV/−π+K(m0.8 0.85 0.9 0.95

    2 cE

    vent

    s / 1

    0 M

    eV/

    0

    50

    100

    preliminaryLHCb

    [LH

    Cb

    -PA

    PE

    R-2

    01

    5-0

    51

    ]

    � Efficiency corrected distributions show good agreementwith overlaid projections of the probability density function

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • b→ q`` | B0→ K∗0µ+µ− 26 / 48

    B0→ K∗0µ+µ− systematic uncertainties

    Source FL S3–S9 A3–A9 P1–P′8

    Acceptance stat. uncertainty < 0.01 < 0.01 < 0.01 < 0.01Acceptance polynomial order < 0.01 < 0.02 < 0.02 < 0.04

    Data-simulation differences 0.01–0.02 < 0.01 < 0.01 < 0.01Acceptance variation with q2 < 0.01 < 0.01 < 0.01 < 0.01

    m(K+π−) model < 0.01 < 0.01 < 0.01 < 0.03Background model < 0.01 < 0.01 < 0.01 < 0.02

    Peaking backgrounds < 0.01 < 0.01 < 0.01 < 0.01m(K+π−µ+µ−) model < 0.01 < 0.01 < 0.01 < 0.02

    Det. and prod. asymmetries – – < 0.01 < 0.02

    � Systematic uncertainties determined using high statistics toys

    � Measurement is statistically dominated (and will still be in Run 2)

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • b→ q`` | B0→ K∗0µ+µ− 27 / 48

    B0→ K∗0µ+µ− Results: FL, S3, S4, S5

    ]4c/2 [GeV2q0 5 10 15

    LF

    0

    0.2

    0.4

    0.6

    0.8

    1

    LHCb

    SM from ABSZ

    ]4c/2 [GeV2q0 5 10 15

    3S

    -0.5

    0

    0.5LHCb

    SM from ABSZ

    ]4c/2 [GeV2q0 5 10 15

    4S

    -0.5

    0

    0.5LHCb

    SM from ABSZ

    ]4c/2 [GeV2q0 5 10 15

    5S

    -0.5

    0

    0.5LHCb

    SM from ABSZ

    [LH

    Cb

    -PA

    PE

    R-2

    01

    5-0

    51

    ]

    prelim.prelim.

    prelim.prelim.

    [1503.05534][1411.3161][1503.05534][1411.3161]

    [1503.05534][1411.3161][1503.05534][1411.3161]

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1503.05534http://arxiv.org/abs/1411.3161http://arxiv.org/abs/1503.05534http://arxiv.org/abs/1411.3161http://arxiv.org/abs/1503.05534http://arxiv.org/abs/1411.3161http://arxiv.org/abs/1503.05534http://arxiv.org/abs/1411.3161

  • b→ q`` | B0→ K∗0µ+µ− 28 / 48

    B0→ K∗0µ+µ− Results: AFB, S7, S8, S9

    ]4c/2 [GeV2q0 5 10 15

    FBA

    -0.5

    0

    0.5

    LHCb

    SM from ABSZ

    ]4c/2 [GeV2q0 5 10 15

    7S

    -0.5

    0

    0.5LHCb

    ]4c/2 [GeV2q0 5 10 15

    8S

    -0.5

    0

    0.5LHCb

    ]4c/2 [GeV2q0 5 10 15

    9S

    -0.5

    0

    0.5LHCb

    prelim.

    prelim.

    prelim.prelim.

    [LH

    Cb

    -PA

    PE

    R-2

    01

    5-0

    51

    ]

    [1503.05534][1411.3161]

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1503.05534http://arxiv.org/abs/1411.3161

  • b→ q`` | B0→ K∗0µ+µ− 29 / 48

    B0→ K∗0µ+µ− CP asymmetries: A3, A4, A5, A6s

    ]4c/2 [GeV2q0 5 10 15

    3A

    -0.5

    0

    0.5LHCb

    ]4c/2 [GeV2q0 5 10 15

    4A

    -0.5

    0

    0.5LHCb

    ]4c/2 [GeV2q0 5 10 15

    5A

    -0.5

    0

    0.5LHCb

    ]4c/2 [GeV2q0 5 10 15

    6sA

    -0.5

    0

    0.5LHCb

    [LH

    Cb

    -PA

    PE

    R-2

    01

    5-0

    51

    ]

    prelim.prelim.

    prelim.prelim.

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • b→ q`` | B0→ K∗0µ+µ− 30 / 48

    B0→ K∗0µ+µ− CP asymmetries: A7, A8, A9

    ]4c/2 [GeV2q0 5 10 15

    7A

    -0.5

    0

    0.5LHCb

    ]4c/2 [GeV2q0 5 10 15

    8A

    -0.5

    0

    0.5LHCb

    ]4c/2 [GeV2q0 5 10 15

    9A

    -0.5

    0

    0.5LHCb

    [LH

    Cb

    -PA

    PE

    R-2

    01

    5-0

    51

    ]

    prelim.prelim.

    prelim.

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • b→ q`` | B0→ K∗0µ+µ− 31 / 48

    P ′5

    ]4c/2 [GeV2q0 5 10 15

    5'P

    -1

    -0.5

    0

    0.5

    1

    LHCb

    SM from DHMV

    prelim.

    [LHCb-PAPER-2015-051]

    [1407.8526]

    � Tension seen in P ′5 in [PRL 111, 191801 (2013)] confirmed� [4.0, 6.0] and [6.0, 8.0] GeV2/c4 local deviations of 2.8σ and 3.0σ

    � Compatible with 1 fb−1 measurement

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1407.8526http://arxiv.org/abs/1308.1707

  • b→ q`` | B0→ K∗0µ+µ− 31 / 48

    P ′5

    ]4c/2 [GeV2q0 5 10 15

    5'P

    -1

    -0.5

    0

    0.5

    1

    LHCb

    SM from DHMV

    prelim.

    [LHCb-PAPER-2015-051]

    [1407.8526]

    � Tension seen in P ′5 in [PRL 111, 191801 (2013)] confirmed� [4.0, 6.0] and [6.0, 8.0] GeV2/c4 local deviations of 2.8σ and 3.0σ

    � Compatible with 1 fb−1 measurement

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1407.8526http://arxiv.org/abs/1308.1707

  • b→ q`` | B0→ K∗0µ+µ− 32 / 48

    Compatibility with the SM

    )9C(Re3 3.5 4 4.5

    2 χ∆

    0

    5

    10

    15

    LHCb

    SM

    prelim. [LH

    Cb

    -PA

    PE

    R-2

    015-

    051]

    � Perform χ2 fit of measured Si observables using [EOS] software

    � Varying Re(C9) and incl. nuisances according [F. Beaujean et al.,EPJC 74 (2014) 2897]� ∆Re(C9) = −1.04± 0.25 with global significance of 3.4σ

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://project.het.physik.tu-dortmund.de/eos/http://arxiv.org/abs/1310.2478

  • b→ q`` | B0s→ φµ+µ− 33 / 48

    The rare decay B0s → φ[→ K+K−]µ+µ−

    s

    s

    B0s φ

    µ−

    µ+

    W+

    Z0, γ

    1

    10

    210

    310

    ]2c) [GeV/−µ+µ−

    K+K(m 5.3 5.4 5.5

    ]4

    c/2

    [G

    eV

    2q

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    LHCb [JH

    EP

    09(2

    015)

    179]

    � Dominant b→ sµ+µ− decay for B0s , analogous to B0→ K∗0µ+µ−� K+K−µ+µ− final state not self-tagging→ reduced number of angular observables: FL, S3,4,7, A5,6,8,9

    � Signal yield lower due to fsfd ∼14 ,

    B(φ→K+K−)B(K∗0→K+π−) =

    34

    � Clean selection due to narrow φ resonance, S-wave negligible

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1506.08777

  • b→ q`` | B0s→ φµ+µ− 34 / 48

    B0s→ φµ+µ− mass model

    ]2c [MeV/)−µ+µ−K+m(K5300 5400 5500

    2 cE

    vent

    s / 1

    0 M

    eV/

    50

    100LHCb

    −µ+µφ→0sB

    ]2c [MeV/)−µ+µ−K+m(K5300 5400 5500

    2 cE

    vent

    s / 1

    0 M

    eV/

    5000

    10000

    15000 LHCbφψ/J →0sB

    [JHEP 09 (2015) 179]

    � Signal mass model (double CB) taken from B0s→ J/ψφq2 dep. resolution accounted for with scale factor from simulation

    � Background described using Exponential

    � Signal yield Nφµµ = 432± 24 (q2-integrated)� B0s→ J/ψφ yield NJ/ψφ = 62 033± 260

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1506.08777

  • b→ q`` | B0s→ φµ+µ− 35 / 48

    B0s→ φµ+µ− differential branching fraction

    ]2c [MeV/)−µ+µ−K+m(K5300 5400 5500

    2 cE

    vent

    s / 1

    0 M

    eV/

    10

    20LHCb

    4c/2 < 2 GeV2q0.1 <

    ]2c [MeV/)−µ+µ−K+m(K5300 5400 5500

    2 cE

    vent

    s / 1

    0 M

    eV/

    5

    10

    15

    20

    25

    LHCb4c/2 < 5 GeV2q2 <

    ]2c [MeV/)−µ+µ−K+m(K5300 5400 5500

    2 cE

    vent

    s / 1

    0 M

    eV/

    10

    20

    30LHCb

    4c/2 < 8 GeV2q5 <

    ]2c [MeV/)−µ+µ−K+m(K5300 5400 5500

    2 cE

    vent

    s / 1

    0 M

    eV/

    5

    10

    15

    20 LHCb4c/2 < 12.5 GeV2q11 <

    ]2c [MeV/)−µ+µ−K+m(K5300 5400 5500

    2 cE

    vent

    s / 1

    0 M

    eV/

    10

    20LHCb

    4c/2 < 17 GeV2q15 <

    ]2c [MeV/)−µ+µ−K+m(K5300 5400 5500

    2 cE

    vent

    s / 1

    0 M

    eV/

    5

    10

    15 LHCb4c/2 < 19 GeV2q17 <

    ]2c [MeV/)−µ+µ−K+m(K5300 5400 5500

    2 cE

    vent

    s / 1

    0 M

    eV/

    10

    20

    30 LHCb4c/2 < 6 GeV2q1 <

    ]2c [MeV/)−µ+µ−K+m(K5300 5400 5500

    2 cE

    vent

    s / 1

    0 M

    eV/

    10

    20

    30

    40 LHCb4c/2 < 19 GeV2q15 <

    [JHEP 09 (2015) 179]

    � B0s→ J/ψφ used for normalisation� Differential branching fraction:

    dB(B0s→ φµ+µ−)dq2

    =1

    q2max. − q2min.× NφµµNJ/ψφ

    × �φµµ�J/ψφ

    × B(B0s→ J/ψφ)× B(J/ψ→ µ+µ−)

    ��φµµ�J/ψφ

    from (corrected) simulation, many effects cancel in ratio

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1506.08777

  • b→ q`` | B0s→ φµ+µ− 36 / 48

    B0s→ φµ+µ− differential branching fraction

    ]4c/2 [GeV2q5 10 15

    ]4

    c-2

    GeV

    -8 [

    10

    2q

    )/d

    µµ

    φ→

    s0B

    dB

    ( 0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    SM pred.SM (wide)SM LQCDDataData (wide)

    LHCb

    [JH

    EP

    09(2

    015)

    179]

    � In 1 < q2 < 6 GeV2/c4 diff. B more than 3σ below SM prediction� Confirming deviation seen in 1 fb−1 analysis [JHEP 07 (2013) 084]� Most precise measurement of relative and total branching fraction

    B(B0s→ φµ+µ−)B(B0s→ J/ψφ)

    = (7.41+0.42−0.40 ± 0.20± 0.21)× 10−4,

    B(B0s→ φµ+µ−) = (7.97+0.45−0.43 ± 0.22± 0.23± 0.60)× 10−7,

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1506.08777http://arxiv.org/abs/1305.2168

  • b→ q`` | B0s→ φµ+µ− 37 / 48

    B0s→ φµ+µ− angular analysis

    � Non-flavour specific final state → reduced number of accessibleobservables 4 CP averages, 4 CP asymmetries

    1

    d(Γ + Γ̄)/dq2d3(Γ + Γ̄)

    d~Ω=

    9

    32π

    [34(1− FL) sin2 θK + FL cos2 θK + 14(1− FL) sin2 θK cos 2θ`

    − FL cos2 θK cos 2θ` + S3 sin2 θK sin2 θ` cos 2φ+ S4 sin 2θK sin 2θ` cosφ+A5 sin 2θK sin θ` cosφ

    +A6 sin2 θK cos θ` + S7 sin 2θK sin θ` sinφ

    +A8 sin 2θK sin 2θ` sinφ+A9 sin2 θK sin

    2 θ` sin 2φ]

    � ub. ML fit in m(K+K−µ+µ−) and {cos θ`, cos θK , φ} in bins of q2� Angular background modelled with 2nd order Chebyshev polynomials

    � Same acceptance method used as for B0→ J/ψK∗0cross-checked using B0s→ J/ψφ

    � Feldman-Cousins method due to very limited statistics

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • b→ q`` | B0s→ φµ+µ− 38 / 48

    B0s→ φµ+µ− angular analysis

    ]4c/2 [GeV2q5 10 15

    LF

    -0.5

    0.0

    0.5

    1.0

    1.5LHCb

    ]4c/2 [GeV2q5 10 15

    3S

    -1.0

    -0.5

    0.0

    0.5

    1.0LHCb

    SM pred.SM (wide)DataData (wide)

    ]4c/2 [GeV2q5 10 15

    4S

    -1.0

    -0.5

    0.0

    0.5

    1.0LHCb

    ]4c/2 [GeV2q5 10 15

    7S

    -1

    -0.5

    0

    0.5

    1LHCb

    [JHEP 09 (2015) 179]

    � Good agreement of angular obs. with SM predictions

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1506.08777

  • b→ q`` | B0s→ φµ+µ− 39 / 48

    B0s→ φµ+µ− angular analysis

    ]4c/2 [GeV2q5 10 15

    5A

    -1

    -0.5

    0

    0.5

    1LHCb

    ]4c/2 [GeV2q5 10 15

    6A

    -1

    -0.5

    0

    0.5

    1LHCb

    ]4c/2 [GeV2q5 10 15

    8A

    -1

    -0.5

    0

    0.5

    1LHCb

    ]4c/2 [GeV2q5 10 15

    9A

    -1

    -0.5

    0

    0.5

    1LHCb

    [JHEP 09 (2015) 179]

    � Good agreement of angular obs. with SM predictions

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1506.08777

  • b→ q`` | b→ sµ+µ− branching fractions 40 / 48

    B → K(∗)µ+µ− branching fraction measurements� Number of signal events in full 3 fb−1 data sample

    B0 → K0Sµ+µ− B+ → K+µ+µ B0 → K∗0µ+µ− B+ → K∗+µ+µ−Nsig 176± 17 4746± 81 2361± 56 162± 16

    � Normalise with respect to B0 → J/ψK0S(K∗0) and B+ → J/ψK+(K∗+)� Differential branching fractions

    ]4c/2 [GeV2q0 5 10 15 20

    ]2/G

    eV4 c ×

    -8 [

    102 q

    /dBd 0

    1

    2

    3

    4

    5

    LCSR Lattice Data

    LHCb

    −µ+µ+ K→+B

    ]4c/2 [GeV2q0 5 10 15 20

    ]2/G

    eV4 c ×

    -8 [

    102 q

    /dBd 0

    1

    2

    3

    4

    5

    LCSR Lattice Data

    −µ+µ0 K→0BLHCb

    [JH

    EP

    06(2

    014)

    133]

    [JH

    EP

    06(2

    014)

    133]

    � Compatible with but lower than SM predictions

    Light cone sum rules (LCSR):[

    P. Ball et al.,PRD 71 (2005) 014029

    ] [A. Khodjamirian et al.,JHEP 09 (2010) 089

    ]Lattice:

    [R. Horgan et al.,PRD 89 (2014) 094501

    ] [C. Bouchard et al.,PRD 88 (2013) 054509

    ]� dB(B0 → K∗0µ+µ−)/dq2 with 3 fb−1 in preparation

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1403.8044http://arxiv.org/abs/1403.8044http://arxiv.org/abs/hep-ph/0412079http://arxiv.org/abs/1006.4945http://arxiv.org/abs/1310.3722http://arxiv.org/abs/1306.2384

  • b→ q`` | b→ sµ+µ− branching fractions 40 / 48

    B → K(∗)µ+µ− branching fraction measurements� Number of signal events in full 3 fb−1 data sample

    B0 → K0Sµ+µ− B+ → K+µ+µ B0 → K∗0µ+µ− B+ → K∗+µ+µ−Nsig 176± 17 4746± 81 2361± 56 162± 16

    � Normalise with respect to B0 → J/ψK0S(K∗0) and B+ → J/ψK+(K∗+)� Differential branching fractions

    ]4c/2 [GeV2q0 5 10 15 20

    ]2/G

    eV4 c ×

    -8 [

    102 q

    /dBd 0

    5

    10

    15

    20LCSR Lattice Data

    LHCb

    −µ+µ*+ K→+B

    ]4c/2 [GeV2q0 5 10 15 20

    ]-2

    GeV

    4 c × -7

    [10

    2q

    /dBd

    0

    0.5

    1

    1.5

    LHCb

    Theory BinnedLHCb

    [JH

    EP

    06(2

    014)

    133]

    [JH

    EP

    08(2

    013)

    131]

    B0→ K∗0µ+µ−

    � Compatible with but lower than SM predictions

    Light cone sum rules (LCSR):[

    P. Ball et al.,PRD 71 (2005) 014029

    ] [A. Khodjamirian et al.,JHEP 09 (2010) 089

    ]Lattice:

    [R. Horgan et al.,PRD 89 (2014) 094501

    ] [C. Bouchard et al.,PRD 88 (2013) 054509

    ]� dB(B0 → K∗0µ+µ−)/dq2 with 3 fb−1 in preparation

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1403.8044http://arxiv.org/abs/1304.6325http://arxiv.org/abs/hep-ph/0412079http://arxiv.org/abs/1006.4945http://arxiv.org/abs/1310.3722http://arxiv.org/abs/1306.2384

  • Global b→ s fits 41 / 48

    Global fits to b→ s data[W. Altmannshofer et al.,EPJC 75 (2015) 382

    ] [S. Descotes-Genon et al.,arXiv:1510.04239

    ]

    Angular observablesBranching fractionsCombined

    � Combine exp. information from rare b→ s processes in global fit of Cib→ sγ, B(B0s→ µ+µ−), Ang.(B0→ K∗0µ+µ−), Ang.+B(B0s→ φµ+µ−), B(B0,+ → K0,+(∗)µ+µ−), . . .B-fact. LHCb+CMS LHCb 3 fb−1 LHCb 1 fb−1 (3 fb−1) LHCb 3 fb−1 (1 fb−1)

    � Tension can be reduced with ∆Re(C9) ∼ −1, significances around 4σ� Consistency between angular observables and branching fractions

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1411.3161http://arxiv.org/abs/1510.04239http://arxiv.org/abs/1411.4413https://cds.cern.ch/record/2002772http://arxiv.org/abs/1305.2168http://arxiv.org/abs/1506.08777http://arxiv.org/abs/1403.8044http://arxiv.org/abs/1304.6325

  • Global b→ s fits 42 / 48

    NP or hadronic effect?

    b s

    µ−

    µ+

    Z ′

    Possible NP

    b s

    d̄ d̄

    c̄c

    γ

    `+

    `−cc̄ loop

    � Possible explanations for shift in C9� NP e.g. Z ′ [Gauld et al.] [Buras et al.][Altmannshofer et al.] [Crivellin et al.] Leptoquarks

    [Hiller et al.] [Biswas et al.][Buras et al.] [Gripaios et al.]

    � hadronic charm loop contributions

    � q2 dependence: cc̄ loops rise towards J/ψ, NP q2-independent

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1308.1959http://arxiv.org/abs/1309.2466http://arxiv.org/abs/1308.1501http://arxiv.org/abs/1501.00993http://arxiv.org/abs/1408.1627http://arxiv.org/abs/1409.0882http://arxiv.org/abs/1409.4557http://arxiv.org/abs/1412.1791

  • Global b→ s fits 42 / 48

    NP or hadronic effect?

    [W. Altmannshofer et al.,arXiv:1503.06199

    ] [S. Descotes-Genon et al.,arXiv:1510.04239

    ]

    � Possible explanations for shift in C9� NP e.g. Z ′ [Gauld et al.] [Buras et al.][Altmannshofer et al.] [Crivellin et al.] Leptoquarks

    [Hiller et al.] [Biswas et al.][Buras et al.] [Gripaios et al.]

    � hadronic charm loop contributions

    � q2 dependence: cc̄ loops rise towards J/ψ, NP q2-independent

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1503.06199http://arxiv.org/abs/1510.04239http://arxiv.org/abs/1308.1959http://arxiv.org/abs/1309.2466http://arxiv.org/abs/1308.1501http://arxiv.org/abs/1501.00993http://arxiv.org/abs/1408.1627http://arxiv.org/abs/1409.0882http://arxiv.org/abs/1409.4557http://arxiv.org/abs/1412.1791

  • B+→ π+µ+µ− 43 / 48

    The b→ dµ+µ− decay B+→ π+µ+µ−

    u

    u

    B+ π+

    µ−

    µ+

    W+

    Z0, γ

    )2) (MeV/c-µ+µ+π(m5200 5400 5600 5800 6000

    )2 cC

    andi

    date

    s / (

    30

    MeV

    /

    0

    10

    20

    30

    40

    50

    60

    70

    LHCb-µ+µ+π→+B-µ+µ+K→+B

    ν+µ0

    D→+B-µ+µ0,+ρ→0,+B

    -µ+µ0f→s0B

    Combinatorial

    [JHEP 10 (2015) 034]

    � b→ dµ+µ− transition in SM sup. by∣∣∣VtdVts ∣∣∣2 ∼ 125 wrt. b→ sµ+µ−

    � Measure diff. branching fraction and ACP (O(−0.1) in the SM)� Assuming SM, measure |Vtd/Vts|, |Vtd|, |Vts| using B+→ K+µ+µ−|Vtd|2 = B(B

    +→π+µ+µ−)∫Fπdq2

    and |Vts|2 = B(B+→K+µ+µ−)∫FKdq2

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1509.00414

  • B+→ π+µ+µ− 43 / 48

    The b→ dµ+µ− decay B+→ π+µ+µ−

    u

    u

    B+ π+

    µ−

    µ+

    W+

    Z0, γ

    )2) (MeV/c-µ+µ+K(m5200 5400 5600 5800 6000

    )2 cC

    andi

    date

    s / (

    10

    MeV

    /

    0

    100

    200

    300

    400

    500

    600

    LHCb-µ+µ+K→+BX-µ+µ+K→+B

    Combinatorial

    [JHEP 10 (2015) 034]

    � b→ dµ+µ− transition in SM sup. by∣∣∣VtdVts ∣∣∣2 ∼ 125 wrt. b→ sµ+µ−

    � Measure diff. branching fraction and ACP (O(−0.1) in the SM)� Assuming SM, measure |Vtd/Vts|, |Vtd|, |Vts| using B+→ K+µ+µ−|Vtd|2 = B(B

    +→π+µ+µ−)∫Fπdq2

    and |Vts|2 = B(B+→K+µ+µ−)∫FKdq2

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1509.00414

  • B+→ π+µ+µ− 44 / 48

    B+→ π+µ+µ− diff. B, ACP and CKM matrix elements

    )4c/2 (GeV2q0 10 20

    )4 c-2

    GeV

    -9 (

    102 q

    dB/d

    0

    0.5

    1

    1.5

    2

    2.5LHCb APR13 HKR15 FNAL/MILC15

    LHCb

    )4c/2 (GeV2q0.2 0.4 0.6 0.8 1

    )4 c/2C

    andi

    date

    s / (

    0.0

    5 G

    eV

    0

    2

    4

    6

    8

    10

    LHCb

    [JHEP 10 (2015) 034]

    � Good agreement with but slightly lower than SM predictionsAPR13 [PRD 89 (2014) 094021] HKR15 [PRD 92 (2015) 074020] FNAL/MILC15 [PRL 115 (2015) 152002]

    � B = (1.83± 0.24± 0.05)× 10−8 and ACP = −0.11± 0.12± 0.01� |VtdVts | = 0.24

    +0.05−0.04, |Vtd| = 7.2+0.9−0.8 × 10−3 and |Vts| = 3.2+0.4−0.4 × 10−2

    � New lattice predictions from MILC collaboration [D. Du et al.,arXiv:1510.02349]→ CKM elements from RDs competitive with B(s) oscillation meas.→ Combined 2σ tension of B(B+→ K+(π+)µ+µ−) with SM prediction

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1509.00414http://arxiv.org/abs/1312.2523http://arxiv.org/abs/1506.07760http://arxiv.org/abs/1507.01618http://arxiv.org/abs/1510.02349

  • B+→ π+µ+µ− 45 / 48

    Test of lepton universality in B+ → K+`+`−� RK = B(B

    +→K+µ+µ−)B(B+→K+e+e−) = 1±O(10−3) in the SM, not affected by cc̄ loops

    1

    10

    210

    310

    410

    ]2c) [MeV/−µ+µ+K(m4800 5000 5200 5400 5600

    ]4 c/2 [

    GeV

    2 q

    0

    5

    10

    15

    20

    25

    LHCb (a)

    1

    10

    210

    310

    ]2c) [MeV/−e+e+K(m4800 5000 5200 5400 5600

    ]4 c/2 [

    GeV

    2 q

    0

    5

    10

    15

    20

    25

    LHCb (b)

    [PR

    L11

    3,15

    1601

    (201

    4)]B+ → K+µ+µ− B+ → K+e+e−

    ψ(2S)K+

    J/ψK+

    ψ(2S)K+

    J/ψK+

    radiative tails radiative tails

    � Experimental challenges for B+ → K+e+e− mode1. Trigger 2. Bremsstrahlung

    � Use double ratio to cancel systematic uncertainties

    RK =(NK+µ+µ−NK+e+e−

    )(NJ/ψ (e+e−)K+NJ/ψ (µ+µ−)K+

    )(�K+e+e−�K+µ+µ−

    )(�J/ψ (µ+µ−)K+�J/ψ (e+e−)K+

    )� Use B+→ J/ψK+ as cross-check

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1406.6482

  • B+→ π+µ+µ− 46 / 48

    Test of lepton universality in B+ → K+`+`−

    ]2c) [MeV/−e+e+K(m5000 5200 5400 5600

    )2 cC

    andi

    date

    s / (

    40

    MeV

    /

    0

    5

    10

    310×

    LHCb

    (a)

    ]2c) [MeV/−e+e+K(m5000 5200 5400 5600

    )2 cC

    andi

    date

    s / (

    40

    MeV

    /

    0

    10

    20

    30

    40 LHCb

    (d)

    ]4c/2 [GeV2q0 5 10 15 20

    KR

    0

    0.5

    1

    1.5

    2

    SM

    LHCbLHCb

    LHCb BaBar Belle

    B+ → J/ψ (→ e+e−)K+ B+ → K+e+e−

    triggered on e triggered on e

    [arx

    iv:1

    406.

    6482

    ]

    � Use theoretically and experimentallyfavoured q2 region ∈ [1, 6] GeV2

    � RK = 0.745+0.090−0.074(stat.)± 0.036(syst.),compatible with SM at 2.6σ

    � Bq2∈[1,6] GeV2(B+ → K+e+e−) =(1.56+0.19−0.15

    +0.06−0.04)× 10−7

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1406.6482

  • Lepton universality 47 / 48

    Lepton universality and lepton flavour violation� Due to the cleanness of the SM prediction, RK received a lot of attention[

    Glashow et al.PRL 114 (2015) 091801

    ] [Hiller et al.PRD 90 (2014) 054014

    ] [Crivellin et al.PRL 114 (2015) 151801

    ]� Including RK in global fits increases tension with SM hypothesis

    � Naturally motivates RK∗ =B(B0→K∗0µ+µ−)B(B0→K∗0e+e−) and Rφ =

    B(B0s→φµ+µ−)B(B0s→φe+e−)

    � Also motivates searches for lepton flavour violation[

    Glashow et al.PRL 114 (2015) 091801

    ]“Lepton non-universality generally implies lepton flavour violation”

    � B(B→ K(∗)µ±e∓) [B(B→ K(∗)µ±τ∓)] could be O(10−8) [O(10−6)]� Other anomalies

    [One Leptoquark to Rule Them All: A Minimal Explanationfor RD∗, RK and (g − 2)µ,M. Bauer et al., arXiv:1511.01900

    ]Explain RK and h→ µτ [

    A.

    Crivellin

    etal.

    PR

    L1

    14

    (20

    15

    )1

    51

    80

    1 ]

    [ R.

    Alo

    nso

    etal.

    arXiv:1

    50

    5.0

    51

    64 ]

    RK , RD∗ and B−→ τ−ν̄

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1411.0565http://arxiv.org/abs/1408.1627http://arxiv.org/abs/1501.00993http://arxiv.org/abs/1411.0565http://arxiv.org/abs/1511.01900http://arxiv.org/abs/1501.00993http://arxiv.org/abs/1505.05164

  • Conclusions 48 / 48

    Conclusions

    � Rare B decays are an excellent laboratory to search for BSM effects

    � LHCb an ideal environment to study these decays

    � Most measurements in good agreement with SM predictions,setting strong constraints on NP

    � However, several interesting tensions in rare b→ s`` decays:P ′5 in B

    0→ K∗0µ+µ−, B(B0s→ φµ+µ−), RK� Consistent NP explanations exist

    � But unexpectedly large hadronic effectscan not yet be excluded

    � Looking forward to the additionaldata from Run 2

    � 5-6 fb−1 at√s = 13 TeV expected

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • Backup 49 / 48

    Complementarity of flavour and direct searches

    Figure by D. Straub

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • Backup 50 / 48

    The LHC as heavy flavour factory

    bb̄ polar angles

    � bb̄ produced correlated predominantly in forward (backward) direction→ single arm forward spectrometer (2 < η < 5)

    � Large bb̄ production cross sectionσbb̄ = (75.3± 14.1)µb [Phys.Lett. B694 (2010)] in acceptance

    � ∼ 1× 1011 produced bb̄ pairs in 2011, excellent environment to studyB0 → K∗0µ+µ− and other rare decays

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1009.2731

  • Backup 51 / 48

    The LHCb detector: Tracking

    Tracking system

    Vertexdetector

    Interactionpoint

    PV

    SVL ∼ 7 mmB0

    IP

    µ+

    µ−π−

    K+

    p p

    B0 → K∗0µ+µ− signature

    � Excellent Impact Parameter (IP) resolution (20µm)→ Identify secondary vertices from heavy flavour decays

    � Proper time resolution ∼ 45 fs→ Good separation of primary and secondary vertices

    � Excellent momentum (δp/p ∼ 0.5− 1.0%) and inv. mass resolution→ Low combinatorial background

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • Backup 52 / 48

    The LHCb detector: Particle identification and Trigger

    Muon system

    RICH1

    RICH2 K/π separation [arxiv:1211.6759]

    � Excellent Muon identification �µ→µ ∼ 97% �π→µ ∼ 1-3%� Good Kπ separation via RICH detectors �K→K ∼ 95% �π→K ∼ 5%→ Reject peaking backgrounds

    � High trigger efficiencies, low momentum thresholdsMuons: pT > 1.76 GeV at L0, pT > 1.0 GeV at HLT1B → µµX: �Trigger ∼ 90%

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1211.6759

  • Backup 53 / 48

    Data taken by LHCb

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • Backup 54 / 48

    Moments analysis

    ]4c/2 [GeV2q0 5 10 15

    FBA

    -0.5

    0

    0.5

    LHCb

    SM from ABSZLikelihood fitMethod of moments

    ]4c/2 [GeV2q0 5 10 15

    5'P

    -2

    -1

    0

    1

    2

    LHCb

    SM from DHMVLikelihood fitMethod of moments

    prelim.

    prelim.

    [LHCb-PAPER-2015-051]

    � Angular terms fi(~Ω) are orthogonal→ can determine obs. via their moments M̂i = 1∑

    e we

    ∑ewefi(

    ~Ωe)

    � 10-30% less sensitive than Maximum Likelihood fit [F. Beaujean et al.,PRD 91 (2015) 114012]but allows narrow 1 GeV2/c4 wide q2 bins

    � Consistency of the results checked using toys

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1503.04100

  • Backup 55 / 48

    Amplitude fit and Zero-crossing points

    ]4c/2 [GeV2q2 3 4 5 6

    FBA

    -0.5

    0

    0.5LHCb

    Likelihood fitMethod of moments

    Amplitude fit

    ]4c/2 [GeV2q2 3 4 5 6

    5S

    -0.5

    0

    0.5LHCb

    Likelihood fitMethod of moments

    Amplitude fit

    prelim.prelim.

    [LHCb-PAPER-2015-051]

    � Zero-crossing points sensitive tests of SM, form factor uncertainties cancel

    � Perform q2 dependent amplitude fit with AnsatzAL,R0,‖,⊥ = α+ βq2 + γ 1q2 in the region 1.1 < q2 < 6 GeV2/c4

    � Resulting zero crossing points in good agreement with SM predictionsq20(AFB) ∈ [3.40, 4.87] GeV2/c4 @ 68% CL,q20(S4) < 2.65 GeV

    2/c4 @ 95% CL,

    q20(S5) ∈ [2.49, 3.95] GeV2/c4 @ 68% CL

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • Backup 56 / 48

    Search for hidden sector boson in B0→ K∗0µ+µ−

    b

    d

    Vtb Vtss

    d

    µ−

    µ+

    t

    W+

    χ

    B0 K∗0

    ) [MeV]−µ+µ(m1000 2000 3000 4000

    Can

    dida

    tes

    / 10

    MeV

    5

    10

    15

    20Prompt

    DisplacedLHCb

    ω φ ψJ/ (3770)ψ(2S)+ψ

    200

    [PRL 115 (2015) 161802]

    � Search for hidden sector boson in B0→ K∗0χ with χ→ µ+µ−

    � Scan m(µ+µ−) distribution for an excess of χ signal candidates

    � Search for prompt and displaced (τ(µ+µ−) > 3στ(µ+µ−)) χ vertices

    � Narrow resonances (ω, φ, J/ψ, ψ(2S), ψ(3770)) are vetoed

    � Normalisation to B0→ K∗0µ+µ− in 1.1 < q2 < 6.0 GeV2/c4

    � No excess → Upper limits on B(B0→ K∗0χ(→ µ+µ−)) set at 95% CL

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1508.04094

  • Backup 56 / 48

    Search for hidden sector boson in B0→ K∗0µ+µ−

    b

    d

    Vtb Vtss

    d

    µ−

    µ+

    t

    W+

    χ

    B0 K∗0

    ) [MeV]−µ+µ(m1000 2000 3000 4000

    -210

    -110

    1LHCb

    =1000psτ

    =100psτ

    =10psτ

    ))−µ

    +µ(

    χ*0

    K →0

    B(B

    2)[

    1.1,

    6.0]

    GeV

    −µ

    *0K

    →0B(

    B

    ))−

    µ +µ(

    χ*0

    K → 0

    B(B

    -910

    -810

    -710

    [PRL 115 (2015) 161802]

    � Search for hidden sector boson in B0→ K∗0χ with χ→ µ+µ−

    � Scan m(µ+µ−) distribution for an excess of χ signal candidates

    � Search for prompt and displaced (τ(µ+µ−) > 3στ(µ+µ−)) χ vertices

    � Narrow resonances (ω, φ, J/ψ, ψ(2S), ψ(3770)) are vetoed

    � Normalisation to B0→ K∗0µ+µ− in 1.1 < q2 < 6.0 GeV2/c4

    � No excess → Upper limits on B(B0→ K∗0χ(→ µ+µ−)) set at 95% CL

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1508.04094

  • Backup 57 / 48

    Exclusion limits for specific models

    ) [MeV]−µ+µ(m400 600 800 1000

    2 θ

    -810

    -710

    -610

    -510

    -410

    LHCb

    Theory

    Theory

    CH

    AR

    M

    ) [MeV]−µ+µ(m1000 2000 3000 4000

    0.5

    1

    1

    2

    )=10 T

    eVh(

    m [PeV

    ], β 2

    )tanχ(

    f

    )=1

    TeV

    h(m

    [Pe

    V],

    β2

    )tan

    χ(f

    hadrons) = 0→χ(B hadrons) = 0.99→χ(B

    LHCb

    [PRL 115 (2015) 161802]

    Resulting 95% CL exclusion limits for specific models

    � Axion model [M. Freytsis et al., PRD 81 (2010) 034001]Exclusion regions for large tanβ, large m(h)

    � Inflaton model [F. Bezrukov et al., PLB 736 (2014) 494]Constraints on mixing angle θ between Higgs and inflaton fields

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1508.04094http://arxiv.org/abs/0911.5355http://arxiv.org/abs/1403.4638

  • Backup 58 / 48

    B → K(∗)µ+µ− isospin

    � Isospin asymmetry AI =B(B0→K(∗)0µ+µ−)− τ0

    τ+B(B+→K(∗)+µ+µ−)

    B(B0→K(∗)0µ+µ−)+ τ0τ+B(B+→K(∗)+µ+µ−)

    � SM prediction for AI is O(1%)

    ]4c/2 [GeV2q0 5 10 15 20

    IA

    -1

    -0.5

    0

    0.5

    1

    LHCb −µ+µ K →B

    ]4c/2 [GeV2q0 5 10 15 20

    IA

    -1

    -0.5

    0

    0.5

    1

    LHCb −µ+µ K →B *

    [JH

    EP

    06(2

    014)

    133]

    � Results with 3 fb−1 consistent with SM� p-value for deviation of AI(B → Kµµ) from 0 is 11% (1.5σ)

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1403.8044

  • Backup 59 / 48

    Reminder: B0 → K∗0µ+µ− angular observables (1 fb−1)

    ]4c/2 [GeV2q0 5 10 15 20

    LF

    0

    0.2

    0.4

    0.6

    0.8

    1

    Theory BinnedLHCb

    LHCb

    ]4c/2 [GeV2q0 5 10 15 20

    FB

    A

    -1

    -0.5

    0

    0.5

    1

    LHCb

    Theory BinnedLHCb

    [JHEP 08 (2013) 131]

    � Angular observables in good agreement withSM prediction [C. Bobeth et al. JHEP 07 (2011) 067]

    � Zero crossing point of AFB free from FF uncertainties

    � Result q20 = 4.9± 0.9 GeV2 consistent with SM predictionq20,SM = 4.36

    +0.33−0.31 GeV

    2 [EPJ C41 (2005) 173-188]

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1304.6325http://arxiv.org/abs/1105.0376http://arxiv.org/abs/hep-ph/0412400

  • Backup 60 / 48

    Less form factor dependent observables P ′i (1 fb−1)

    � Less FF dependent observables P ′i introduced in [JHEP 05 (2013) 137]

    � For P ′4,5 = S4,5/√FL(1− FL) leading FF uncertainties cancel for all q2

    � 3.7σ local deviation from SM prediction [JHEP 05 (2013) 137] in P ′5

    ]4c/2 [GeV2q0 5 10 15 20

    '4

    P

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    SM Predictions

    Data

    LHCb

    ]4c/2 [GeV2q0 5 10 15 20

    '5

    P

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    SM Predictions

    Data

    LHCb

    3.7σ

    [PRL 111, 191801 (2013)]

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1303.5794http://arxiv.org/abs/1303.5794http://arxiv.org/abs/1308.1707

  • Backup 61 / 48

    Study of rare B0(s) → π+π−µ+µ− decays I

    s

    s

    B0s f0

    µ−

    µ+

    W+

    Z0, γ

    d

    d

    B0 ρ0

    µ−

    µ+

    W+

    Z0, γ

    � Contributions from� B0s → f0µ+µ−: b→ s transition similar to B0 → K∗0µ+µ−� B0 → ρ0µ+µ−: b→ d transition, |Vtd/Vts|2 suppressed in SM

    � SM predictions show large variation

    � BSM(B0s → f0µ+µ−) = 0.6× 10−9 − 5.2× 10−7[PRD 79 014013], [PRD 81 074001], [PRD 80 016009]

    � BSM(B0 → ρ0µ+µ−) = (5− 9)× 10−8[PRD 56 5452-5465], [Eur.Phys.J.C 41 173-188]

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/0811.2648http://arxiv.org/abs/1002.2880http://journals.aps.org/prd/abstract/10.1103/PhysRevD.80.016009http://arxiv.org/abs/hep-ph/9706247http://arxiv.org/abs/hep-ph/0412400

  • Backup 62 / 48

    Study of rare B0(s) → π+π−µ+µ− decays II

    ]2) [GeV/c-µ+µ-π+πM(5.2 5.4 5.6 5.8

    )2

    Eve

    nts

    /(2

    0 M

    eV

    /c

    10

    210

    310

    +π ψ J/→s

    0B

    +π ψ J/→

    0B

    0 K*(892)ψ J/→

    0B

    φ ψ J/→ s0

    B

    ’η ψ J/→ s0

    B+

    Kψ J/→+

    B

    Combinatorial+π

    +π ψ J/→

    +cB

    Total fit

    LHCb

    ]2) [GeV/c-µ+µ-π+πM(5.2 5.4 5.6 5.8

    )2

    Eve

    nts

    /(2

    0 M

    eV

    /c

    10

    20

    30

    40

    LHCb

    -µ +µ -π +π →s

    0B

    -µ +µ -π +π →

    0B

    -µ +µ

    0 K*(892)→

    0B

    -µ +µ’ η → s

    0B

    Combinatorial

    Total fit

    Resonant decay Signal decay

    [PL

    B74

    3(2

    015)

    46]

    � Observation of B0s → π+π−µ+µ− with 7.6σ� Evidence for B0 → π+π−µ+µ− with 4.8σ� Branching fractions compatible with SM predictions

    B(B0s → π+π−µ+µ−) = (8.6± 1.5stat. ± 0.7syst. ± 0.7norm.)× 10−8

    B(B0 → π+π−µ+µ−) = (2.11± 0.51stat. ± 0.15syst. ± 0.16norm.)× 10−8

    � Motivated work in theory [Wang et al., arxiv:1502.05104], [arxiv:1502.05483]

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1412.6433http://arxiv.org/abs/1502.05104http://arxiv.org/abs/1502.05483

  • Backup 63 / 48

    The rare decay B0 → K∗0e+e−

    d

    d

    s̄B0 K∗0

    e−

    e+

    W+

    Z0, γ!"#$%&$%$"'$(

    J/ψ(1S)

    ψ(2S)C(′)7

    C(′)7 C(′)9

    C(′)9 C

    (′)10

    4 [m(µ)]2 q2

    dΓdq2

    )"*(

    +,"-(*!.#)"'$(

    ',"#%!/01,".(&%,2(

    )/,3$(,4$"('5)%2(

    #5%$.5,6*((

    cc̄

    4[m(`)]2

    � Analyse B0→ K∗0e+e− at very low q2: [0.0004, 1.0] GeV2/c4,accessible due to tiny e mass

    � Determine angular observables FL, A(2)T , A

    ReT , A

    ImT

    sensitive to C7 and C′7

    � Experimental challenges: Trigger and Bremsstrahlung

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • Backup 63 / 48

    The rare decay B0 → K∗0e+e−

    d

    d

    s̄B0 K∗0

    e−

    e+

    W+

    Z0, γ

    ]2c/ [MeV)−e+e−π+K(m4800 5000 5200 5400

    ) 2 cC

    an

    did

    ate

    s /

    (30

    Me

    V/

    0

    5

    10

    15

    20

    25

    30DataModel

    −e+e0*K → 0B−e+e)X0*K(→B

    Combinatorial

    LHCb

    [arxiv:1501.03038]

    � Analyse B0→ K∗0e+e− at very low q2: [0.0004, 1.0] GeV2/c4,accessible due to tiny e mass

    � Determine angular observables FL, A(2)T , A

    ReT , A

    ImT

    sensitive to C7 and C′7

    � Experimental challenges: Trigger and Bremsstrahlung

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1501.03038

  • Backup 64 / 48

    Angular analysis of B0 → K∗0e+e− decays

    lθ cos-0.5 0 0.5

    Can

    dida

    tes

    / (0.

    2)

    0

    10

    20

    30

    40

    50 LHCb

    Kθ cos-1 -0.5 0 0.5 1

    Can

    dida

    tes

    / (0.

    2)

    0

    5

    10

    15

    20

    25

    30

    35

    40 LHCb

    [rad]φ∼0 1 2 3

    rad

    ) π

    Can

    dida

    tes

    / (0.

    1

    0

    5

    10

    15

    20

    25

    30

    35 LHCb

    [arxiv:1501.03038]

    obs. result

    FL +0.16± 0.06± 0.03A

    (2)T −0.23± 0.23± 0.05

    AReT +0.10± 0.18± 0.05AImT +0.14± 0.22± 0.05

    [JHEP 05 (2013) 043]

    obs. SM prediction

    FL +0.10+0.11−0.05

    A(2)T +0.03

    +0.05−0.04

    AReT −0.15+0.04−0.03AImT (−0.2+1.2−1.2)× 10−4

    � Results are in good agreement with SM predictions

    � Constraints on C(′)7 competitive with radiative decays

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1501.03038http://arxiv.org/abs/1212.2263

  • Backup 65 / 48

    B0 → K∗0µ+µ− angular observables

    � Four-differential decay rate for B0 → K∗0µ+µ−d4Γ(B0 → K∗0µ+µ−)dq2 d cos θ` d cos θK dφ

    =9

    32π

    [Is1 sin

    2 θK + Ic1 cos

    2 θK

    + (Is2 sin2 θK + I

    c2 cos

    2 θK) cos 2θ`

    + I3 sin2 θK sin

    2 θ` cos 2φ+ I4 sin 2θK sin 2θ` cosφ

    + I5 sin 2θK sin θ` cosφ

    + (Is6 sin2 θK + I

    c6 cos

    2 θK) cos θ` + I7 sin 2θK sin θ` sinφ

    + I8 sin 2θK sin 2θ` sinφ+ I9 sin2 θK sin

    2 θ` sin 2φ]

    � Ii(q2) combinations of K∗0 spin amplitudes sensitive to C(′)7 , C

    (′)9 , C

    (′)10

    � CP-averages Si = (Ii + Īi)/d(Γ+Γ̄)

    dq2 , CP-asymmetries Ai = (Ii − Īi)/d(Γ+Γ̄)

    dq2

    � For m` = 0: 8 CP averages Si, 8 CP-asymmetries Ai

    � Simultaneous fit of 8 observables not possible with the 2011 data set→ Angular folding φ→ φ+ π for φ < 0 cancels terms ∝ sinφ, cosφ

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • Backup 65 / 48

    B0 → K∗0µ+µ− angular observables

    � Four-differential decay rate for B0 → K∗0µ+µ−d4Γ(B0 → K∗0µ+µ−)dq2 d cos θ` d cos θK dφ

    =9

    32π

    [Is1 sin

    2 θK + Ic1 cos

    2 θK

    + (Is2 sin2 θK + I

    c2 cos

    2 θK) cos 2θ`

    + I3 sin2 θK sin

    2 θ` cos 2φ+(((((((

    (((I4 sin 2θK sin 2θ` cosφ

    +((((

    ((((((

    I5 sin 2θK sin θ` cosφ

    + (Is6 sin2 θK + I

    c6 cos

    2 θK) cos θ` +((((((((

    (I7 sin 2θK sin θ` sinφ

    +((((

    ((((((

    I8 sin 2θK sin 2θ` sinφ+ I9 sin2 θK sin

    2 θ` sin 2φ]

    � Ii(q2) combinations of K∗0 spin amplitudes sensitive to C(′)7 , C

    (′)9 , C

    (′)10

    � CP-averages Si = (Ii + Īi)/d(Γ+Γ̄)

    dq2 , CP-asymmetries Ai = (Ii − Īi)/d(Γ+Γ̄)

    dq2

    � For m` = 0: 8 CP averages Si, 8 CP-asymmetries Ai

    � Simultaneous fit of 8 observables not possible with the 2011 data set→ Angular folding φ→ φ+ π for φ < 0 cancels terms ∝ sinφ, cosφ

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • Backup 66 / 48

    Ii(q2) depend on K∗0 spin amplitudes AL,R0 , A

    L,R‖ , A

    L,R⊥

    Is1 =(2 + β2µ)

    4

    [|AL⊥|2 + |AL‖ |2 + (L→ R)

    ]+

    4m2µq2

  • Backup 67 / 48

    K∗0 spin amplitudes AL,R0 , AL,R‖ , A

    L,R⊥

    AL(R)⊥ = N

    √2λ

    {[(Ceff9 + C

    ′eff9 )∓ (Ceff10 + C′eff10 )

    ] V(q2)mB +mK∗

    +2mbq2

    (Ceff7 + C′eff7 )T1(q

    2)

    }AL(R)‖ = −N

    √2(m2B −m2K∗)

    {[(Ceff9 −C′eff9 )∓ (Ceff10 −C′eff10 )

    ] A1(q2)mB −mK∗

    +2mbq2

    (Ceff7 −C′eff7 )T2(q2)}

    AL(R)0 = −

    N

    2mK∗√q2

    {[(Ceff9 −C′eff9 )∓ (Ceff10 −C′eff10 )

    ][(m2B −m2K∗ − q2)(mB +mK∗)A1(q2)− λ

    A2(q2)

    mB +mK∗

    ]+ 2mb(C

    eff7 −C′eff7 )

    [(m2B + 3mK∗ − q2)T2(q2)−

    λ

    m2B −m2K∗T3(q

    2)]}

    � Wilson coefficients C(′)eff7,9,10

    � Seven form factors (FF) V (q2), A0,1,2(q2), T1,2,3(q

    2)encode hadronic effects and require non-perturbative calculation

    � Low q2 ≤ 6 GeV2→ ξ⊥,‖ (soft form factors)

    � Large q2 ≥ 14 GeV2→ f⊥,‖,0 (helicity form factors)

    � Theory uncertainties:� FF from non-perturbative calculations� Λ/mb corrections (“subleading corrections”)

    For

    completeness

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • Backup 68 / 48

    Analysis strategy

    ]2c) [MeV/−µ+µ−π+(Km5200 5400 5600

    ]2 c)

    [MeV

    /− µ+ µ(

    m

    0

    1000

    2000

    3000

    4000

    1

    10

    210

    310

    410

    LHCb

    Signal band

    J/ψ , ψ(2S) band

    Resonant decays

    � Veto of B0 → J/ψK∗0 and B0 → ψ(2S)K∗0 (valuable control channels!)� Suppression of peaking backgrounds with PID

    Rejection of combinatorial background with BDT

    1 Determine the differential branching fraction in q2 bins

    2 Determine angular observables in multidimensional likelihood fit

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

  • Backup 69 / 48

    B0 → K∗0µ+µ− signal yield (2011)

    ]2c) [MeV/−µ+µ−π+(Km5200 5400 5600

    )2 cC

    andi

    date

    s / (

    10

    MeV

    /

    0

    20

    40

    60

    4c/2 < 2 GeV20.1 < q

    LHCb

    Signal

    Combinatorial bkg

    Peaking bkg

    ]2c) [MeV/−µ+µ−π+(Km5200 5400 5600

    )2 cC

    andi

    date

    s / (

    10

    MeV

    /

    0

    20

    40

    60

    4c/2 < 4.3 GeV22 < q

    LHCb

    ]2c) [MeV/−µ+µ−π+(Km5200 5400 5600

    )2 cC

    andi

    date

    s / (

    10

    MeV

    /

    0

    20

    40

    60

    4c/2 < 8.68 GeV24.3 < q

    LHCb

    ]2c) [MeV/−µ+µ−π+(Km5200 5400 5600

    )2 cC

    andi

    date

    s / (

    10

    MeV

    /

    0

    20

    40

    60

    4c/2 < 12.86 GeV210.09 < q

    LHCb

    ]2c) [MeV/−µ+µ−π+(Km5200 5400 5600

    )2 cC

    andi

    date

    s / (

    10

    MeV

    /

    0

    20

    40

    60

    4c/2 < 16 GeV214.18 < q

    LHCb

    ]2c) [MeV/−µ+µ−π+(Km5200 5400 5600

    )2 cC

    andi

    date

    s / (

    10

    MeV

    /

    0

    20

    40

    60

    4c/2 < 19 GeV216 < q

    LHCb

    � Fit of Nsig in q2 bins

    � Use B0 → J/ψK∗0 as normalisation channel� SM prediction [C. Bobeth et al. JHEP 07 (2011) 067]

    � Data somewhat low but large theory uncertainties due to FF

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1105.0376

  • Backup 69 / 48

    B0 → K∗0µ+µ− differential decay rate

    ]2c) [MeV/−µ+µ−π+(Km5200 5400 5600

    )2 cC

    andi

    date

    s / (

    10

    MeV

    /

    0

    20

    40

    60

    4c/2 < 2 GeV20.1 < q

    LHCb

    Signal

    Combinatorial bkg

    Peaking bkg

    ]2c) [MeV/−µ+µ−π+(Km5200 5400 5600

    )2 cC

    andi

    date

    s / (

    10

    MeV

    /

    0

    20

    40

    60

    4c/2 < 4.3 GeV22 < q

    LHCb

    ]2c) [MeV/−µ+µ−π+(Km5200 5400 5600

    )2 cC

    andi

    date

    s / (

    10

    MeV

    /

    0

    20

    40

    60

    4c/2 < 8.68 GeV24.3 < q

    LHCb

    ]2c) [MeV/−µ+µ−π+(Km5200 5400 5600

    )2 cC

    andi

    date

    s / (

    10

    MeV

    /

    0

    20

    40

    60

    4c/2 < 12.86 GeV210.09 < q

    LHCb

    ]2c) [MeV/−µ+µ−π+(Km5200 5400 5600

    )2 cC

    andi

    date

    s / (

    10

    MeV

    /

    0

    20

    40

    60

    4c/2 < 16 GeV214.18 < q

    LHCb

    ]2c) [MeV/−µ+µ−π+(Km5200 5400 5600

    )2 cC

    andi

    date

    s / (

    10

    MeV

    /

    0

    20

    40

    60

    4c/2 < 19 GeV216 < q

    LHCb

    ]4c/2 [GeV2q0 5 10 15 20

    ]-2

    GeV

    4 c × -7

    [10

    2q

    /dBd

    0

    0.5

    1

    1.5

    LHCb

    Theory BinnedLHCb

    [JHEP 08 (2013) 131]

    � Fit of Nsig in q2 bins

    � Use B0 → J/ψK∗0 as normalisation channel� SM prediction [C. Bobeth et al. JHEP 07 (2011) 067]

    � Data somewhat low but large theory uncertainties due to FF

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1304.6325http://arxiv.org/abs/1105.0376

  • Backup 70 / 48

    B0 → K∗0µ+µ− angular observables I

    ]4c/2 [GeV2q0 5 10 15 20

    LF

    0

    0.2

    0.4

    0.6

    0.8

    1

    Theory BinnedLHCb

    LHCb

    ]4c/2 [GeV2q0 5 10 15 20

    FB

    A

    -1

    -0.5

    0

    0.5

    1

    LHCb

    Theory BinnedLHCb

    ]4c/2 [GeV2q0 5 10 15 20

    3S

    -0.4

    -0.2

    0

    0.2

    0.4 LHCb

    Theory BinnedLHCb

    ]4c/2 [GeV2q0 5 10 15 20

    9A

    -0.4

    -0.2

    0

    0.2

    0.4

    LHCb

    LHCb

    � Results [JHEP 08 (2013) 131] in good agreement withSM prediction [C. Bobeth et al. JHEP 07 (2011) 067]

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1304.6325http://arxiv.org/abs/1105.0376

  • Backup 71 / 48

    Angular analysis of B+ → K+µ+µ− and B0 → K0Sµ+µ−

    u(d)

    u(d)

    µ−

    µ+

    W+

    Z0, γ

    ]2c) [MeV/−µ+µ+K(m5200 5400 5600

    )2 cC

    andi

    date

    s / (

    10

    MeV

    /

    0

    100

    200

    300

    400

    500

    LHCb4c/2 < 6.0 GeV2q(a) 1.1 <

    B+ → K+µ+µ−

    ]2c) [MeV/−µ+µ S0K(m

    5200 5400 5600

    )2 cC

    andi

    date

    s / (

    10

    MeV

    /

    0

    5

    10

    15

    20

    25

    LHCb4c/2 < 6.0 GeV2q(c) 1.1 <

    B0 → K0Sµ+µ−

    [JHEP 05 (2014) 082]

    � NB+→K+µ+µ− = 4746± 81 and NB0→K0Sµ+µ− = 176± 17 in 3 fb−1

    � Experimental challenge: K0S reconstruction

    � Differential decay rate for B+ → K+µ+µ−1

    Γ

    dΓ(B+ → K+µ+µ−)d cos θ`

    =3

    4(1− FH)(1− cos2 θ`) +

    1

    2FH +AFB cos θ`

    1

    Γ

    dΓ(B0 → K0Sµ+µ−)d| cos θ`|

    =3

    2(1− FH)(1− | cos θ`|2) + FH

    � Flat parameter FH sensitive to (Pseudo)scalar contributions, small in SM

    � Forward backward asymmetry AFB zero in SM

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1403.8045

  • Backup 72 / 48

    Angular analysis of B+ → K+µ+µ− and B0 → K0Sµ+µ−

    ]4c/2 [GeV2q0 5 10 15 20

    HF

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    LHCb

    ]4c/2 [GeV2q0 5 10 15 20

    FBA

    -0.2

    -0.1

    0

    0.1

    0.2

    LHCb

    ]4c/2 [GeV2q0 5 10 15 20

    HF

    0

    0.5

    1

    1.5LHCb

    � 2D fit in cos θ` and m(Kµ+µ−)

    � [JHEP 05 (2014) 082] in goodagreement with SM prediction

    B+ → K+µ+µ− B+ → K+µ+µ−

    B0 → K0Sµ+µ−

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1403.8045

  • Backup 73 / 48

    B+ → K+π+π−µ+µ− and B+ → φK+µ+µ−

    ]2c) [MeV/-µ+µ-π+π+Km(5200 5300 5400 5500

    )2 cC

    andi

    date

    s / (

    10 M

    eV/

    0

    10

    20

    30

    40

    50

    60

    LHCb < 6.002q1.00 <

    ]2c) [MeV/-µ+µ+Kφm(5200 5300 5400 5500 5600

    )2 cC

    andi

    date

    s / (

    10 M

    eV/

    0

    2

    4

    6

    8

    10

    12

    14

    16LHCb

    -µ+µ+Kφ →+B(a)

    [JHEP 10 (2014) 064]

    B+ → K+π+π−µ+µ− B+ → φK+µ+µ−

    � First observation of these modes withNsig(B

    +→ K+π+π−µ+µ−) = 367+24−23 and Nsig(B+→ φK+µ+µ−) = 25.2+6.0−5.3

    � Normalise to B+ → ψ(2S)(→ J/ψπ+π−)K+ and B+ → J/ψφK+� Determine branching fractions

    B(B+ → K+π+π−µ+µ−) =(4.36 +0.29−0.27 (stat)± 0.20 (syst)± 0.18 (norm)

    )× 10−7

    B(B+ → φK+µ+µ−) =(0.82 +0.19−0.17 (stat)± 0.04 (syst)± 0.27 (norm)

    )× 10−7

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1408.1137

  • Backup 74 / 48

    B+ → K+π+π−µ+µ− cont.

    ]4c/2 [GeV2q0 5 10 15

    )4 c-2

    GeV

    -810×

    (2 q/d

    Bd

    0

    1

    2

    3

    4

    5

    6

    7

    8 LHCb

    ]2c) [MeV/-π+π+Km(1000 1500 2000 2500

    )2 cC

    andi

    date

    s / (

    35 M

    eV/

    0

    10

    20

    30

    40

    50

    60 LHCb-µ+µ-π+π+ K→+B

    (a)

    [JHEP 10 (2014) 064]

    � Performed measurement of dB(B+ → K+π+π−µ+µ−)/dq2

    � Significant contribution from B+ → K+1 (1270)µ+µ− expected� Low statistics → no attempt to resolve contributions to K+π+π− final state

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1408.1137

  • Backup 75 / 48

    CP-asymmetry ACP

    )2 (MeV/c-µ+µ+Km5200 5400 5600

    )2E

    vent

    s / (

    10.

    6 M

    eV/c

    0

    50

    100

    150

    200

    250 LHCb (a)

    )2 (MeV/c-µ+µ-Km5200 5400 5600

    )2E

    vent

    s / (

    10.

    6 M

    eV/c

    0

    50

    100

    150

    200

    250 LHCb (b)

    )2 (MeV/c-µ+µ+Km5200 5400 5600

    )2E

    vent

    s / (

    10.

    6 M

    eV/c

    0

    50

    100

    150

    200

    250

    300LHCb (c)

    )2 (MeV/c-µ+µ-Km5200 5400 5600

    )2E

    vent

    s / (

    10.

    6 M

    eV/c

    0

    50

    100

    150

    200

    250

    300LHCb (d)

    [JHEP 09 (2014) 177]

    B+ → K+µ+µ− prelim. B− → K−µ+µ− prelim.

    � Direct CP-Asymmetry ACP

    ACP =Γ(B̄ → K̄(∗)µ+µ−)− Γ(B → K(∗)µ+µ−)Γ(B̄ → K̄(∗)µ+µ−) + Γ(B → K(∗)µ+µ−)

    � ACP tiny O(10−3) in the SM� Correct for detection and production asymmetry using B → J/ψK(∗)AK(∗)µµraw = ACP +Adet + κAprod, ACP = AK

    (∗)µµraw −AJ/ψK

    (∗)raw

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1408.0978

  • Backup 76 / 48

    CP-asymmetry ACP cont.

    ]4/c2 [GeV2q0 5 10 15 20

    CP

    A

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    0.2

    LHCb

    ]4/c2 [GeV2q0 5 10 15

    CP

    A

    -0.3

    -0.25

    -0.2

    -0.15

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    LHCb

    [JHEP 09 (2014) 177]

    ACP (B+ → K+µ+µ−) prelim. ACP (B0 → K∗0µ+µ−) prelim.

    � Measured ACP in good agreement with SM predictionACP (B+ → K+µ+µ−) = 0.012± 0.017(stat.)± 0.001(syst.)

    ACP (B0 → K∗0µ+µ−) = −0.035± 0.024(stat.)± 0.003(syst.)

    � Most precise measurement

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    http://arxiv.org/abs/1408.0978

  • Backup 77 / 48

    Prospects for rare decays in 2018 and beyond

    C. Langenbruch (Warwick), Warwick EPP 2015 Rare b-hadron decays

    IntroductionbsBbqB 0 K *0 + - B 0s + - bs + - branching fractions

    Global bs fitsB + + + - Lepton universalityConclusionsBackup