76
Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz Augusiak, Christian Gogolin , Janek Ko lody´ nski, Antonio Ac´ ın, and Maciej Lewenstein arXiv: 1602.05407 ICFO - The Institute of Photonic Sciences SIQS Workshop at San Servolo Venice 2016-03-14

Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology 1 / 20

Random states for robust quantum metrology

Micha l Oszmaniec, Remigiusz Augusiak, Christian Gogolin,Janek Ko lodynski, Antonio Acın, and Maciej Lewenstein

arXiv: 1602.05407

ICFO - The Institute of Photonic Sciences

SIQS Workshop at San Servolo Venice2016-03-14

Page 2: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Motivation 2 / 20

Quantum metrology is an emerging quantumtechnology. . .

[that] aims to use strong quantum correlationsin order to develop systems, involving large-scaleentanglement, that outperform classical systemsin a series of relevant applications.”

— http://qurope.eu/projects/siqs

. . . “

[1] LIGO Collaboration, Nature Phys., 7 (2011), 962–965

[2] LIGO Collaboration, Nature Photon., 7 (2013), 613–619

Page 3: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Motivation 2 / 20

Quantum metrology is an emerging quantumtechnology. . .

[that] aims to use strong quantum correlationsin order to develop systems, involving large-scaleentanglement, that outperform classical systemsin a series of relevant applications.”

— http://qurope.eu/projects/siqs

. . . “

[1] LIGO Collaboration, Nature Phys., 7 (2011), 962–965

[2] LIGO Collaboration, Nature Photon., 7 (2013), 613–619

Page 4: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 3 / 20

Phase estimation

Phase estimation

1

V1 e− ihϕ

2

V2 e− ihϕ

N

VN e− ihϕ

N-k

VN−k e− ihϕ

M

⊗ν

=⇒ ϕ

ρ LU encoding POVM estimator

How good isthe estimation?Mean squarederror: ∆2ϕ

?

Page 5: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 3 / 20

Phase estimation

Phase estimation

1 V1 e− ihϕ

2 V2 e− ihϕ

N VN e− ihϕ

N-k VN−k e− ihϕ

M

⊗ν

=⇒ ϕ

ρ LU encoding POVM estimator

How good isthe estimation?Mean squarederror: ∆2ϕ

...

Page 6: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 3 / 20

Phase estimation

Phase estimation (with local unitary optimization)

1 V1 e− ihϕ

2 V2 e− ihϕ

N VN e− ihϕ

N-k VN−k e− ihϕ

M

⊗ν

=⇒ ϕ

ρ LU encoding POVM estimator

How good isthe estimation?Mean squarederror: ∆2ϕ

......

Page 7: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 3 / 20

Phase estimation

Phase estimation (with local unitary optimization)

1 V1 e− ihϕ

2 V2 e− ihϕ

N VN e− ihϕ

N-k VN−k e− ihϕ

M

⊗ν

=⇒ ϕ

ρ LU encoding POVM estimator

How good isthe estimation?Mean squarederror: ∆2ϕ

...

...

...

...

Page 8: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 3 / 20

Phase estimation

Phase estimation (with local unitary optimization)

1 V1 e− ihϕ

2 V2 e− ihϕ

N VN e− ihϕ

N-k VN−k e− ihϕ

M

⊗ν

=⇒ ϕ

ρ LU encoding POVM estimator

How good isthe estimation?Mean squarederror: ∆2ϕ

...

...

...

...

Page 9: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 3 / 20

Phase estimation

Phase estimation (with local unitary optimization)

1 V1 e− ihϕ

2 V2 e− ihϕ

N VN e− ihϕ

N-k VN−k e− ihϕ

M

⊗ν

=⇒ ϕ

ρ LU encoding POVM estimator

How good isthe estimation?Mean squarederror: ∆2ϕ

...

...

Page 10: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 3 / 20

Phase estimation

Phase estimation (without local unitary optimization)

1 V1 e− ihϕ

2 V2 e− ihϕ

N VN e− ihϕ

N-k VN−k e− ihϕ

M

⊗ν

=⇒ ϕ

ρ LU encoding POVM estimator

How good isthe estimation?Mean squarederror: ∆2ϕ

...

...

Page 11: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 3 / 20

Phase estimation

Phase estimation (without local unitary optimization)

1 V1 e− ihϕ

2 V2 e− ihϕ

N VN e− ihϕ

N-k VN−k e− ihϕ

M

⊗ν

=⇒ ϕ

ρ LU encoding POVM estimator

How good isthe estimation?Mean squarederror: ∆2ϕ

...

...

Page 12: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 4 / 20

Cramer Rao bound

Cramer-Rao Bound [3, 4] for unbiased estimators:

∆2ϕ ≥ 1

ν Fcl

({pn|ϕ

})

wherepn|ϕ = probability that M yields outcome n given ϕ

and the classical Fischer information (FI)

Fcl

({pn|ϕ

}):=∑n

1

pn|ϕ

(dpn|ϕ

)2

Moreover: Tight in the limit of many repetitions ν →∞ [5].

[3] H. Cramer, Princeton Univ. Press., 1946

[4] C. R. Rao, Bulletin of the Calcutta Mathematical Society, 37 (1945), 81

[5] O. E. Barndorff-Nielsen and R. D. Gill, J. Phys. A: Math. Gen., 30 (2000), 4481

Page 13: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 4 / 20

Cramer Rao bound

Cramer-Rao Bound [3, 4] for unbiased estimators:

∆2ϕ ≥ 1

ν Fcl

({pn|ϕ

})where

pn|ϕ = probability that M yields outcome n given ϕ

and the classical Fischer information (FI)

Fcl

({pn|ϕ

}):=∑n

1

pn|ϕ

(dpn|ϕ

)2

Moreover: Tight in the limit of many repetitions ν →∞ [5].

[3] H. Cramer, Princeton Univ. Press., 1946

[4] C. R. Rao, Bulletin of the Calcutta Mathematical Society, 37 (1945), 81

[5] O. E. Barndorff-Nielsen and R. D. Gill, J. Phys. A: Math. Gen., 30 (2000), 4481

Page 14: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 4 / 20

Cramer Rao bound

Cramer-Rao Bound [3, 4] for unbiased estimators:

∆2ϕ ≥ 1

ν Fcl

({pn|ϕ

})where

pn|ϕ = probability that M yields outcome n given ϕ

and the classical Fischer information (FI)

Fcl

({pn|ϕ

}):=∑n

1

pn|ϕ

(dpn|ϕ

)2

Moreover: Tight in the limit of many repetitions ν →∞ [5].

[3] H. Cramer, Princeton Univ. Press., 1946

[4] C. R. Rao, Bulletin of the Calcutta Mathematical Society, 37 (1945), 81

[5] O. E. Barndorff-Nielsen and R. D. Gill, J. Phys. A: Math. Gen., 30 (2000), 4481

Page 15: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 5 / 20

Quantifying the usefulness of ρ

How to quantify the usefulness of ρ for a given H =∑N

j=1 h(j)?

Quantum Fischer information (QFI) [6]

F(ρ,H) := supM

Fcl

({pn|ϕ

})

Again: Tight in the limit of many repetitions ν →∞.

Fine print:

local estimation regime [5]

adaptive measurements [7]

LU optimization:

FLU (ρ,H) := supV=V (1)⊗···⊗V (N)

F(V ρV †, H)

[5] O. E. Barndorff-Nielsen and R. D. Gill, J. Phys. A: Math. Gen., 30 (2000), 4481

[6] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett., 72 (1994), 3439–3443

[7] A. Fujiwara, J. Phys. A: Math. Gen., 39.40 (2006), 12489

Page 16: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 5 / 20

Quantifying the usefulness of ρ

How to quantify the usefulness of ρ for a given H =∑N

j=1 h(j)?

Quantum Fischer information (QFI) [6]

F(ρ,H) := supM

Fcl

({pn|ϕ

})

Again: Tight in the limit of many repetitions ν →∞.

Fine print:

local estimation regime [5]

adaptive measurements [7]

LU optimization:

FLU (ρ,H) := supV=V (1)⊗···⊗V (N)

F(V ρV †, H)

[5] O. E. Barndorff-Nielsen and R. D. Gill, J. Phys. A: Math. Gen., 30 (2000), 4481

[6] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett., 72 (1994), 3439–3443

[7] A. Fujiwara, J. Phys. A: Math. Gen., 39.40 (2006), 12489

Page 17: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 5 / 20

Quantifying the usefulness of ρ

How to quantify the usefulness of ρ for a given H =∑N

j=1 h(j)?

Quantum Fischer information (QFI) [6]

F(ρ,H) := supM

Fcl

({pn|ϕ

})

Again: Tight in the limit of many repetitions ν →∞.

Fine print:

local estimation regime [5]

adaptive measurements [7]

LU optimization:

FLU (ρ,H) := supV=V (1)⊗···⊗V (N)

F(V ρV †, H)

[5] O. E. Barndorff-Nielsen and R. D. Gill, J. Phys. A: Math. Gen., 30 (2000), 4481

[6] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett., 72 (1994), 3439–3443

[7] A. Fujiwara, J. Phys. A: Math. Gen., 39.40 (2006), 12489

Page 18: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 5 / 20

Quantifying the usefulness of ρ

How to quantify the usefulness of ρ for a given H =∑N

j=1 h(j)?

Quantum Fischer information (QFI) [6]

F(ρ,H) := supM

Fcl

({pn|ϕ

})

Again: Tight in the limit of many repetitions ν →∞.

Fine print:

local estimation regime [5]

adaptive measurements [7]

LU optimization:

FLU (ρ,H) := supV=V (1)⊗···⊗V (N)

F(V ρV †, H)

[5] O. E. Barndorff-Nielsen and R. D. Gill, J. Phys. A: Math. Gen., 30 (2000), 4481

[6] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett., 72 (1994), 3439–3443

[7] A. Fujiwara, J. Phys. A: Math. Gen., 39.40 (2006), 12489

Page 19: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 5 / 20

Quantifying the usefulness of ρ

How to quantify the usefulness of ρ for a given H =∑N

j=1 h(j)?

Quantum Fischer information (QFI) [6]

F(ρ,H) := supM

Fcl

({pn|ϕ

})

Again: Tight in the limit of many repetitions ν →∞.

Fine print:

local estimation regime [5]

adaptive measurements [7]

LU optimization:

FLU (ρ,H) := supV=V (1)⊗···⊗V (N)

F(V ρV †, H)

[5] O. E. Barndorff-Nielsen and R. D. Gill, J. Phys. A: Math. Gen., 30 (2000), 4481

[6] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett., 72 (1994), 3439–3443

[7] A. Fujiwara, J. Phys. A: Math. Gen., 39.40 (2006), 12489

Page 20: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 5 / 20

Quantifying the usefulness of ρ

How to quantify the usefulness of ρ for a given H =∑N

j=1 h(j)?

Quantum Fischer information (QFI) [6]

F(ρ,H) := supM

Fcl

({pn|ϕ

})

Again: Tight in the limit of many repetitions ν →∞.

Fine print:

local estimation regime [5]

adaptive measurements [7]

LU optimization:

FLU (ρ,H) := supV=V (1)⊗···⊗V (N)

F(V ρV †, H)

[5] O. E. Barndorff-Nielsen and R. D. Gill, J. Phys. A: Math. Gen., 30 (2000), 4481

[6] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett., 72 (1994), 3439–3443

[7] A. Fujiwara, J. Phys. A: Math. Gen., 39.40 (2006), 12489

Page 21: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 6 / 20

How useful are different states?

Standard quantum limit (SQL): F ∈ O(N)

Achieved by product states

Verified by all separable states [8–10]

Heisenberg limit (HL): F ∈ Θ(N2)

Achieve by GHZ state (= N00N state) [11]

Multipartite entanglement is necessary [12, 13] . . .

. . . but not sufficient [14]

[8] G. Toth and I. Apellaniz, J. Phys. A: Math. Theor., 47 (2014), 424006

[9] R. Demkowicz-Dobrzanski, M. Jarzyna, and J. Ko lodynski, in: Progress in Optics, ed. by E. Wolf, vol. 60, Elsevier, 2015,pp. 345–435

[10] V. Giovannetti, S. Lloyd, and L. Maccone, Science, 306 (2004), 1330–1336

[11] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett., 96 (2006), 010401

[12] P. Hyllus et al., Phys. Rev. A, 85 (2 2012), 022321

[13] G. Toth, Phys. Rev. A, 85 (2 2012), 022322

[14] P. Hyllus, O. Guhne, and A. Smerzi, Phys. Rev. A, 82 (1 2010), 012337

Page 22: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 6 / 20

How useful are different states?

Standard quantum limit (SQL): F ∈ O(N)

Achieved by product states

Verified by all separable states [8–10]

Heisenberg limit (HL): F ∈ Θ(N2)

Achieve by GHZ state (= N00N state) [11]

Multipartite entanglement is necessary [12, 13] . . .

. . . but not sufficient [14]

[8] G. Toth and I. Apellaniz, J. Phys. A: Math. Theor., 47 (2014), 424006

[9] R. Demkowicz-Dobrzanski, M. Jarzyna, and J. Ko lodynski, in: Progress in Optics, ed. by E. Wolf, vol. 60, Elsevier, 2015,pp. 345–435

[10] V. Giovannetti, S. Lloyd, and L. Maccone, Science, 306 (2004), 1330–1336

[11] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett., 96 (2006), 010401

[12] P. Hyllus et al., Phys. Rev. A, 85 (2 2012), 022321

[13] G. Toth, Phys. Rev. A, 85 (2 2012), 022322

[14] P. Hyllus, O. Guhne, and A. Smerzi, Phys. Rev. A, 82 (1 2010), 012337

Page 23: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 6 / 20

How useful are different states?

Standard quantum limit (SQL): F ∈ O(N)

Achieved by product states

Verified by all separable states [8–10]

Heisenberg limit (HL): F ∈ Θ(N2)

Achieve by GHZ state (= N00N state) [11]

Multipartite entanglement is necessary [12, 13] . . .

. . . but not sufficient [14]

[8] G. Toth and I. Apellaniz, J. Phys. A: Math. Theor., 47 (2014), 424006

[9] R. Demkowicz-Dobrzanski, M. Jarzyna, and J. Ko lodynski, in: Progress in Optics, ed. by E. Wolf, vol. 60, Elsevier, 2015,pp. 345–435

[10] V. Giovannetti, S. Lloyd, and L. Maccone, Science, 306 (2004), 1330–1336

[11] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett., 96 (2006), 010401

[12] P. Hyllus et al., Phys. Rev. A, 85 (2 2012), 022321

[13] G. Toth, Phys. Rev. A, 85 (2 2012), 022322

[14] P. Hyllus, O. Guhne, and A. Smerzi, Phys. Rev. A, 82 (1 2010), 012337

Page 24: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 6 / 20

How useful are different states?

Standard quantum limit (SQL): F ∈ O(N)

Achieved by product states

Verified by all separable states [8–10]

Heisenberg limit (HL): F ∈ Θ(N2)

Achieve by GHZ state (= N00N state) [11]

Multipartite entanglement is necessary [12, 13] . . .

. . . but not sufficient [14]

[8] G. Toth and I. Apellaniz, J. Phys. A: Math. Theor., 47 (2014), 424006

[9] R. Demkowicz-Dobrzanski, M. Jarzyna, and J. Ko lodynski, in: Progress in Optics, ed. by E. Wolf, vol. 60, Elsevier, 2015,pp. 345–435

[10] V. Giovannetti, S. Lloyd, and L. Maccone, Science, 306 (2004), 1330–1336

[11] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett., 96 (2006), 010401

[12] P. Hyllus et al., Phys. Rev. A, 85 (2 2012), 022321

[13] G. Toth, Phys. Rev. A, 85 (2 2012), 022322

[14] P. Hyllus, O. Guhne, and A. Smerzi, Phys. Rev. A, 82 (1 2010), 012337

Page 25: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 6 / 20

How useful are different states?

Standard quantum limit (SQL): F ∈ O(N)

Achieved by product states

Verified by all separable states [8–10]

Heisenberg limit (HL): F ∈ Θ(N2)

Achieve by GHZ state (= N00N state) [11]

Multipartite entanglement is necessary [12, 13] . . .

. . . but not sufficient [14]

[8] G. Toth and I. Apellaniz, J. Phys. A: Math. Theor., 47 (2014), 424006

[9] R. Demkowicz-Dobrzanski, M. Jarzyna, and J. Ko lodynski, in: Progress in Optics, ed. by E. Wolf, vol. 60, Elsevier, 2015,pp. 345–435

[10] V. Giovannetti, S. Lloyd, and L. Maccone, Science, 306 (2004), 1330–1336

[11] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett., 96 (2006), 010401

[12] P. Hyllus et al., Phys. Rev. A, 85 (2 2012), 022321

[13] G. Toth, Phys. Rev. A, 85 (2 2012), 022322

[14] P. Hyllus, O. Guhne, and A. Smerzi, Phys. Rev. A, 82 (1 2010), 012337

Page 26: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 6 / 20

How useful are different states?

Standard quantum limit (SQL): F ∈ O(N)

Achieved by product states

Verified by all separable states [8–10]

Heisenberg limit (HL): F ∈ Θ(N2)

Achieve by GHZ state (= N00N state) [11]

Multipartite entanglement is necessary [12, 13] . . .

. . . but not sufficient [14]

[8] G. Toth and I. Apellaniz, J. Phys. A: Math. Theor., 47 (2014), 424006

[9] R. Demkowicz-Dobrzanski, M. Jarzyna, and J. Ko lodynski, in: Progress in Optics, ed. by E. Wolf, vol. 60, Elsevier, 2015,pp. 345–435

[10] V. Giovannetti, S. Lloyd, and L. Maccone, Science, 306 (2004), 1330–1336

[11] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett., 96 (2006), 010401

[12] P. Hyllus et al., Phys. Rev. A, 85 (2 2012), 022321

[13] G. Toth, Phys. Rev. A, 85 (2 2012), 022322

[14] P. Hyllus, O. Guhne, and A. Smerzi, Phys. Rev. A, 82 (1 2010), 012337

Page 27: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 6 / 20

How useful are different states?

Standard quantum limit (SQL): F ∈ O(N)

Achieved by product states

Verified by all separable states [8–10]

Heisenberg limit (HL): F ∈ Θ(N2)

Achieve by GHZ state (= N00N state) [11]

Multipartite entanglement is necessary [12, 13] . . .

. . . but not sufficient [14]

[8] G. Toth and I. Apellaniz, J. Phys. A: Math. Theor., 47 (2014), 424006

[9] R. Demkowicz-Dobrzanski, M. Jarzyna, and J. Ko lodynski, in: Progress in Optics, ed. by E. Wolf, vol. 60, Elsevier, 2015,pp. 345–435

[10] V. Giovannetti, S. Lloyd, and L. Maccone, Science, 306 (2004), 1330–1336

[11] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett., 96 (2006), 010401

[12] P. Hyllus et al., Phys. Rev. A, 85 (2 2012), 022321

[13] G. Toth, Phys. Rev. A, 85 (2 2012), 022322

[14] P. Hyllus, O. Guhne, and A. Smerzi, Phys. Rev. A, 82 (1 2010), 012337

Page 28: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 6 / 20

How useful are different states?

Standard quantum limit (SQL): F ∈ O(N)

Achieved by product states

Verified by all separable states [8–10]

Heisenberg limit (HL): F ∈ Θ(N2)

Achieve by GHZ state (= N00N state) [11]

Multipartite entanglement is necessary [12, 13] . . .

. . . but not sufficient [14]

not useful

F /∈ O(N) useful

[8] G. Toth and I. Apellaniz, J. Phys. A: Math. Theor., 47 (2014), 424006

[9] R. Demkowicz-Dobrzanski, M. Jarzyna, and J. Ko lodynski, in: Progress in Optics, ed. by E. Wolf, vol. 60, Elsevier, 2015,pp. 345–435

[10] V. Giovannetti, S. Lloyd, and L. Maccone, Science, 306 (2004), 1330–1336

[11] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett., 96 (2006), 010401

[12] P. Hyllus et al., Phys. Rev. A, 85 (2 2012), 022321

[13] G. Toth, Phys. Rev. A, 85 (2 2012), 022322

[14] P. Hyllus, O. Guhne, and A. Smerzi, Phys. Rev. A, 82 (1 2010), 012337

Page 29: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Phase estimation 6 / 20

How useful are different states?

Standard quantum limit (SQL): F ∈ O(N)

Achieved by product states

Verified by all separable states [8–10]

Heisenberg limit (HL): F ∈ Θ(N2)

Achieve by GHZ state (= N00N state) [11]

Multipartite entanglement is necessary [12, 13] . . .

. . . but not sufficient [14]

not useful

F /∈ O(N) useful

[8] G. Toth and I. Apellaniz, J. Phys. A: Math. Theor., 47 (2014), 424006

[9] R. Demkowicz-Dobrzanski, M. Jarzyna, and J. Ko lodynski, in: Progress in Optics, ed. by E. Wolf, vol. 60, Elsevier, 2015,pp. 345–435

[10] V. Giovannetti, S. Lloyd, and L. Maccone, Science, 306 (2004), 1330–1336

[11] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett., 96 (2006), 010401

[12] P. Hyllus et al., Phys. Rev. A, 85 (2 2012), 022321

[13] G. Toth, Phys. Rev. A, 85 (2 2012), 022322

[14] P. Hyllus, O. Guhne, and A. Smerzi, Phys. Rev. A, 82 (1 2010), 012337

Questions:

How generic is usefulness?

Which types of states are useful?

And for which measurements?

How robust is the usefulness?

What is the role of entanglement?

Page 30: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Random states 7 / 20

Random states

more seriously

Haar measure:µ (H) is the unique uniform measure on SU (H)

Random isospectral states:Fix density matrix σ on some Hilbert space H, then

U σ U † with U ∼ µ (H)

is a random isospectral state.

We will consider:

d-level spins HN := (Cd)⊗N

symmetric (bosonic) subspace SN := span{|ψ〉⊗N : |ψ〉 ∈ Cd}

Page 31: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Random states 7 / 20

Random states

more seriously

Haar measure:µ (H) is the unique uniform measure on SU (H)

Random isospectral states:Fix density matrix σ on some Hilbert space H, then

U σ U † with U ∼ µ (H)

is a random isospectral state.

We will consider:

d-level spins HN := (Cd)⊗N

symmetric (bosonic) subspace SN := span{|ψ〉⊗N : |ψ〉 ∈ Cd}

Page 32: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Random states 7 / 20

Random states

more seriously

Haar measure:µ (H) is the unique uniform measure on SU (H)

Random isospectral states:Fix density matrix σ on some Hilbert space H, then

U σ U † with U ∼ µ (H)

is a random isospectral state.

We will consider:

d-level spins HN := (Cd)⊗N

symmetric (bosonic) subspace SN := span{|ψ〉⊗N : |ψ〉 ∈ Cd}

Early summary of results

Random states of distinguishable particles not useful.

Random symmetric states (bosons) typically are useful.

Exists one fixed measurement to access their usefulness.

Are robust against depolarization and particle loss.

They can be generated with random optical circuits.

Page 33: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Random states 7 / 20

Random states

more seriously

Haar measure:µ (H) is the unique uniform measure on SU (H)

Random isospectral states:Fix density matrix σ on some Hilbert space H, then

U σ U † with U ∼ µ (H)

is a random isospectral state.

We will consider:

d-level spins HN := (Cd)⊗N

symmetric (bosonic) subspace SN := span{|ψ〉⊗N : |ψ〉 ∈ Cd}

Early summary of results

Random states of distinguishable particles not useful.

Random symmetric states (bosons) typically are useful.

Exists one fixed measurement to access their usefulness.

Are robust against depolarization and particle loss.

They can be generated with random optical circuits.

Page 34: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Random states 7 / 20

Random states

more seriously

Haar measure:µ (H) is the unique uniform measure on SU (H)

Random isospectral states:Fix density matrix σ on some Hilbert space H, then

U σ U † with U ∼ µ (H)

is a random isospectral state.

We will consider:

d-level spins HN := (Cd)⊗N

symmetric (bosonic) subspace SN := span{|ψ〉⊗N : |ψ〉 ∈ Cd}

Early summary of results

Random states of distinguishable particles not useful.

Random symmetric states (bosons) typically are useful.

Exists one fixed measurement to access their usefulness.

Are robust against depolarization and particle loss.

They can be generated with random optical circuits.

Page 35: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Random states 7 / 20

Random states

more seriously

Haar measure:µ (H) is the unique uniform measure on SU (H)

Random isospectral states:Fix density matrix σ on some Hilbert space H, then

U σ U † with U ∼ µ (H)

is a random isospectral state.

We will consider:

d-level spins HN := (Cd)⊗N

symmetric (bosonic) subspace SN := span{|ψ〉⊗N : |ψ〉 ∈ Cd}

Early summary of results

Random states of distinguishable particles not useful.

Random symmetric states (bosons) typically are useful.

Exists one fixed measurement to access their usefulness.

Are robust against depolarization and particle loss.

They can be generated with random optical circuits.

Page 36: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Random states 7 / 20

Random states

more seriously

Haar measure:µ (H) is the unique uniform measure on SU (H)

Random isospectral states:Fix density matrix σ on some Hilbert space H, then

U σ U † with U ∼ µ (H)

is a random isospectral state.

We will consider:

d-level spins HN := (Cd)⊗N

symmetric (bosonic) subspace SN := span{|ψ〉⊗N : |ψ〉 ∈ Cd}

Early summary of results

Random states of distinguishable particles not useful.

Random symmetric states (bosons) typically are useful.

Exists one fixed measurement to access their usefulness.

Are robust against depolarization and particle loss.

They can be generated with random optical circuits.

Page 37: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Random states 7 / 20

Random states more seriously

Haar measure:µ (H) is the unique uniform measure on SU (H)

Random isospectral states:Fix density matrix σ on some Hilbert space H, then

U σ U † with U ∼ µ (H)

is a random isospectral state.

We will consider:

d-level spins HN := (Cd)⊗N

symmetric (bosonic) subspace SN := span{|ψ〉⊗N : |ψ〉 ∈ Cd}

Page 38: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Random states 7 / 20

Random states more seriously

Haar measure:µ (H) is the unique uniform measure on SU (H)

Random isospectral states:Fix density matrix σ on some Hilbert space H, then

U σ U † with U ∼ µ (H)

is a random isospectral state.

We will consider:

d-level spins HN := (Cd)⊗N

symmetric (bosonic) subspace SN := span{|ψ〉⊗N : |ψ〉 ∈ Cd}

Page 39: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Random states 7 / 20

Random states more seriously

Haar measure:µ (H) is the unique uniform measure on SU (H)

Random isospectral states:Fix density matrix σ on some Hilbert space H, then

U σ U † with U ∼ µ (H)

is a random isospectral state.

We will consider:

d-level spins HN := (Cd)⊗N

symmetric (bosonic) subspace SN := span{|ψ〉⊗N : |ψ〉 ∈ Cd}

Page 40: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Random states 7 / 20

Random states more seriously

Haar measure:µ (H) is the unique uniform measure on SU (H)

Random isospectral states:Fix density matrix σ on some Hilbert space H, then

U σ U † with U ∼ µ (H)

is a random isospectral state.

We will consider:

d-level spins HN := (Cd)⊗N

symmetric (bosonic) subspace SN := span{|ψ〉⊗N : |ψ〉 ∈ Cd}

Page 41: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Random states 8 / 20

Measure concentration

Levy’s lemma

Let f : SU (H)→ R be L-Lipschitz, then

PrU∼µ(H)

(∣∣∣∣f (U)− EU∼µ(H)

f

∣∣∣∣ ≥ ε) ≤ 2 exp

(−|H| ε

2

4L2

).

We apply this to

F(U) := F(U σ U †, H) with σ,H fixed

and similar functions FLU, Fcl, . . .

Page 42: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Random states 8 / 20

Measure concentration

Levy’s lemma

Let f : SU (H)→ R be L-Lipschitz, then

PrU∼µ(H)

(∣∣∣∣f (U)− EU∼µ(H)

f

∣∣∣∣ ≥ ε) ≤ 2 exp

(−|H| ε

2

4L2

).

We apply this to

F(U) := F(U σ U †, H) with σ,H fixed

and similar functions FLU, Fcl, . . .

Page 43: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Typical QFI of random states 9 / 20

Typical QFI of random states

Page 44: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Typical QFI of random states 10 / 20

Typical QFI of distinguishable particles

Random states of distinguishable particles are not useful for metrology:

Theorem

Pr

U∼µ(HN )

(random state is useful

)≤ exp

(−large in N

)

Page 45: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Typical QFI of random states 10 / 20

Typical QFI of distinguishable particles

Random states of distinguishable particles are not useful for metrology:

Theorem

PrU∼µ(HN )

(FLU(U) /∈ O (N)

)≤ exp

(−Θ

(|HN |N2

))

Page 46: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Typical QFI of random symmetric states 11 / 20

What about symmetric states?

Page 47: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Typical QFI of random symmetric states 12 / 20

Typical QFI of symmetric states

Random (bosonic) symmetric states are useful for metrology:

Theorem

PrU∼µ(SN )

(F(U) /∈ Θ(δ2N2)

)≤ exp

(−Θ(δ3Nd−1)

)

Where δ = dB

(σN ,

1|SN |

)is the Bures distance from the max. mixed state.

Page 48: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Typical QFI of random symmetric states 13 / 20

Robustness against noise

Example (Robustness against depolarization (d = 2))

Provided that δ = dB

(σN ,

1|SN |

)≥ 1/N1/3

the QFI typically scales at least like N4/3.

Theorem (Robustness against loss of k particles)Let Fk be the QFI after k particles were lost, then

PrU∼µ(SN )

(Fk(U) /∈ Θ

(δ22 N

2

kd

))≤ exp

(−Θ

(δ42 N

d−1

k2d

)),

where δ2 := ‖σN − 1|SN |‖HS.

Caveat: If k ∝ N , usefulness is lost, consistent with [15, 16].

[15] B. M. Escher, R. L. de Matos Filho, and L. Davidovich, Nature Phys., 7 (2011), 406–411

[16] R. Demkowicz-Dobrzanski, J. Ko lodynski, and M. Guta, Nat. Commun., 3 (2012), 1063

Page 49: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Typical QFI of random symmetric states 13 / 20

Robustness against noise

Example (Robustness against depolarization (d = 2))

Provided that δ = dB

(σN ,

1|SN |

)≥ 1/N1/3

the QFI typically scales at least like N4/3.

Theorem (Robustness against loss of k particles)Let Fk be the QFI after k particles were lost, then

PrU∼µ(SN )

(Fk(U) /∈ Θ

(δ22 N

2

kd

))≤ exp

(−Θ

(δ42 N

d−1

k2d

)),

where δ2 := ‖σN − 1|SN |‖HS.

Caveat: If k ∝ N , usefulness is lost, consistent with [15, 16].

[15] B. M. Escher, R. L. de Matos Filho, and L. Davidovich, Nature Phys., 7 (2011), 406–411

[16] R. Demkowicz-Dobrzanski, J. Ko lodynski, and M. Guta, Nat. Commun., 3 (2012), 1063

Page 50: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Typical QFI of random symmetric states 13 / 20

Robustness against noise

Example (Robustness against depolarization (d = 2))

Provided that δ = dB

(σN ,

1|SN |

)≥ 1/N1/3

the QFI typically scales at least like N4/3.

Theorem (Robustness against loss of k particles)Let Fk be the QFI after k particles were lost, then

PrU∼µ(SN )

(Fk(U) /∈ Θ

(δ22 N

2

kd

))≤ exp

(−Θ

(δ42 N

d−1

k2d

)),

where δ2 := ‖σN − 1|SN |‖HS.

Caveat: If k ∝ N , usefulness is lost, consistent with [15, 16].

[15] B. M. Escher, R. L. de Matos Filho, and L. Davidovich, Nature Phys., 7 (2011), 406–411

[16] R. Demkowicz-Dobrzanski, J. Ko lodynski, and M. Guta, Nat. Commun., 3 (2012), 1063

Page 51: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Attaining the Heisenberg limit with a fixed measurement 14 / 20

Can we access the “usefulness”?

Page 52: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Attaining the Heisenberg limit with a fixed measurement 15 / 20

Attaining the Heisenberg limit

Finding the right measurement can be tricky.

Which measurement is good usually depends on the state.

Adaptive measurements can be necessary.

Not for random states:

ψN ∼ SN

Theorem (Pure random symmetric states typically attain the HL)

PrU∼µ(SN )

(∃ϕ∈[0,2π] Fcl(U,ϕ) /∈ Θ(N2)

)≤ exp (−Θ(N))

Concretely: ∀ϕ : EFcl ≥ 0.0244N2

Page 53: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Attaining the Heisenberg limit with a fixed measurement 15 / 20

Attaining the Heisenberg limit

Finding the right measurement can be tricky.

Which measurement is good usually depends on the state.

Adaptive measurements can be necessary.

Not for random states:

ψN ∼ SN

Theorem (Pure random symmetric states typically attain the HL)

PrU∼µ(SN )

(∃ϕ∈[0,2π] Fcl(U,ϕ) /∈ Θ(N2)

)≤ exp (−Θ(N))

Concretely: ∀ϕ : EFcl ≥ 0.0244N2

Page 54: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Attaining the Heisenberg limit with a fixed measurement 15 / 20

Attaining the Heisenberg limit

Finding the right measurement can be tricky.

Which measurement is good usually depends on the state.

Adaptive measurements can be necessary.

Not for random states:

ψN ∼ SN

Theorem (Pure random symmetric states typically attain the HL)

PrU∼µ(SN )

(∃ϕ∈[0,2π] Fcl(U,ϕ) /∈ Θ(N2)

)≤ exp (−Θ(N))

Concretely: ∀ϕ : EFcl ≥ 0.0244N2

Page 55: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Attaining the Heisenberg limit with a fixed measurement 15 / 20

Attaining the Heisenberg limit

Finding the right measurement can be tricky.

Which measurement is good usually depends on the state.

Adaptive measurements can be necessary.

Not for random states:

ψN ∼ SN

Theorem (Pure random symmetric states typically attain the HL)

PrU∼µ(SN )

(∃ϕ∈[0,2π] Fcl(U,ϕ) /∈ Θ(N2)

)≤ exp (−Θ(N))

Concretely: ∀ϕ : EFcl ≥ 0.0244N2

Page 56: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Attaining the Heisenberg limit with a fixed measurement 15 / 20

Attaining the Heisenberg limit

Finding the right measurement can be tricky.

Which measurement is good usually depends on the state.

Adaptive measurements can be necessary.

Not for random states:

ψN ∼ SN

Theorem (Pure random symmetric states typically attain the HL)

PrU∼µ(SN )

(∃ϕ∈[0,2π] Fcl(U,ϕ) /∈ Θ(N2)

)≤ exp (−Θ(N))

Concretely: ∀ϕ : EFcl ≥ 0.0244N2

Page 57: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Generating random symmetric states 16 / 20

How can we generate random symmetric states?

Page 58: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Generating random symmetric states 17 / 20

Generation with random circuits

States drawn with a unitary design would be sufficientand they can be generated with random circuits!

1 Take a good set of gates universal for 2-mode linear optics:

V1 :=1√5

(1 2 i2 i 1

)V2 :=

1√5

(1 −2−2 1

)V3 :=

1√5

(1 + 2 i 0

0 1− 2 i

)2 Add a non-trivial non-linear gate

, like VXK := exp (− iπ na nb/3).

3 Combine them to random circuits of length K.

⇒ When K →∞ yields an approximate t-design for any t [17, 18].

! Results for qubits on random circuits efficiently yielding approximate unitarydesigns [18, 19] do not carry over.

Don’t know how K has to depend on N . =⇒ Numerics

[17] J. Bourgain and A. Gamburd, arXiv e-print, (2011), arXiv: quant-ph/1108.6264

[18] F. G. S. L. Brandao, A. W. Harrow, and M. Horodecki, arXiv e-print, (2015), arXiv: quant-ph/1208.0692

[19] R. A. Low, PhD thesis, University of Bristol, 2010, arXiv: quant-ph/1006.5227

[20] R. A. Low, Proc. Royal Soc. A, 465 (2009), 3289–3308

Page 59: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Generating random symmetric states 17 / 20

Generation with random circuits

States drawn with a unitary design would be sufficientand they can be generated with random circuits!

1 Take a good set of gates universal for 2-mode linear optics:

V1 :=1√5

(1 2 i2 i 1

)V2 :=

1√5

(1 −2−2 1

)V3 :=

1√5

(1 + 2 i 0

0 1− 2 i

)

2 Add a non-trivial non-linear gate

, like VXK := exp (− iπ na nb/3).

3 Combine them to random circuits of length K.

⇒ When K →∞ yields an approximate t-design for any t [17, 18].

! Results for qubits on random circuits efficiently yielding approximate unitarydesigns [18, 19] do not carry over.

Don’t know how K has to depend on N . =⇒ Numerics

[17] J. Bourgain and A. Gamburd, arXiv e-print, (2011), arXiv: quant-ph/1108.6264

[18] F. G. S. L. Brandao, A. W. Harrow, and M. Horodecki, arXiv e-print, (2015), arXiv: quant-ph/1208.0692

[19] R. A. Low, PhD thesis, University of Bristol, 2010, arXiv: quant-ph/1006.5227

[20] R. A. Low, Proc. Royal Soc. A, 465 (2009), 3289–3308

Page 60: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Generating random symmetric states 17 / 20

Generation with random circuits

States drawn with a unitary design would be sufficientand they can be generated with random circuits!

1 Take a good set of gates universal for 2-mode linear optics:

V1 :=1√5

(1 2 i2 i 1

)V2 :=

1√5

(1 −2−2 1

)V3 :=

1√5

(1 + 2 i 0

0 1− 2 i

)2 Add a non-trivial non-linear gate

, like VXK := exp (− iπ na nb/3).

3 Combine them to random circuits of length K.

⇒ When K →∞ yields an approximate t-design for any t [17, 18].

! Results for qubits on random circuits efficiently yielding approximate unitarydesigns [18, 19] do not carry over.

Don’t know how K has to depend on N . =⇒ Numerics

[17] J. Bourgain and A. Gamburd, arXiv e-print, (2011), arXiv: quant-ph/1108.6264

[18] F. G. S. L. Brandao, A. W. Harrow, and M. Horodecki, arXiv e-print, (2015), arXiv: quant-ph/1208.0692

[19] R. A. Low, PhD thesis, University of Bristol, 2010, arXiv: quant-ph/1006.5227

[20] R. A. Low, Proc. Royal Soc. A, 465 (2009), 3289–3308

Page 61: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Generating random symmetric states 17 / 20

Generation with random circuits

States drawn with a unitary design would be sufficientand they can be generated with random circuits!

1 Take a good set of gates universal for 2-mode linear optics:

V1 :=1√5

(1 2 i2 i 1

)V2 :=

1√5

(1 −2−2 1

)V3 :=

1√5

(1 + 2 i 0

0 1− 2 i

)2 Add a non-trivial non-linear gate, like VXK := exp (− iπ na nb/3).

3 Combine them to random circuits of length K.

⇒ When K →∞ yields an approximate t-design for any t [17, 18].

! Results for qubits on random circuits efficiently yielding approximate unitarydesigns [18, 19] do not carry over.

Don’t know how K has to depend on N . =⇒ Numerics

[17] J. Bourgain and A. Gamburd, arXiv e-print, (2011), arXiv: quant-ph/1108.6264

[18] F. G. S. L. Brandao, A. W. Harrow, and M. Horodecki, arXiv e-print, (2015), arXiv: quant-ph/1208.0692

[19] R. A. Low, PhD thesis, University of Bristol, 2010, arXiv: quant-ph/1006.5227

[20] R. A. Low, Proc. Royal Soc. A, 465 (2009), 3289–3308

Page 62: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Generating random symmetric states 17 / 20

Generation with random circuits

States drawn with a unitary design would be sufficientand they can be generated with random circuits!

1 Take a good set of gates universal for 2-mode linear optics:

V1 :=1√5

(1 2 i2 i 1

)V2 :=

1√5

(1 −2−2 1

)V3 :=

1√5

(1 + 2 i 0

0 1− 2 i

)2 Add a non-trivial non-linear gate, like VXK := exp (− iπ na nb/3).

3 Combine them to random circuits of length K.

⇒ When K →∞ yields an approximate t-design for any t [17, 18].

! Results for qubits on random circuits efficiently yielding approximate unitarydesigns [18, 19] do not carry over.

Don’t know how K has to depend on N . =⇒ Numerics

[17] J. Bourgain and A. Gamburd, arXiv e-print, (2011), arXiv: quant-ph/1108.6264

[18] F. G. S. L. Brandao, A. W. Harrow, and M. Horodecki, arXiv e-print, (2015), arXiv: quant-ph/1208.0692

[19] R. A. Low, PhD thesis, University of Bristol, 2010, arXiv: quant-ph/1006.5227

[20] R. A. Low, Proc. Royal Soc. A, 465 (2009), 3289–3308

Page 63: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Generating random symmetric states 17 / 20

Generation with random circuits

States drawn with a unitary design would be sufficientand they can be generated with random circuits!

1 Take a good set of gates universal for 2-mode linear optics:

V1 :=1√5

(1 2 i2 i 1

)V2 :=

1√5

(1 −2−2 1

)V3 :=

1√5

(1 + 2 i 0

0 1− 2 i

)2 Add a non-trivial non-linear gate, like VXK := exp (− iπ na nb/3).

3 Combine them to random circuits of length K.

⇒ When K →∞ yields an approximate t-design for any t [17, 18].

! Results for qubits on random circuits efficiently yielding approximate unitarydesigns [18, 19] do not carry over.

Don’t know how K has to depend on N . =⇒ Numerics

[17] J. Bourgain and A. Gamburd, arXiv e-print, (2011), arXiv: quant-ph/1108.6264

[18] F. G. S. L. Brandao, A. W. Harrow, and M. Horodecki, arXiv e-print, (2015), arXiv: quant-ph/1208.0692

[19] R. A. Low, PhD thesis, University of Bristol, 2010, arXiv: quant-ph/1006.5227

[20] R. A. Low, Proc. Royal Soc. A, 465 (2009), 3289–3308

Page 64: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Generating random symmetric states 17 / 20

Generation with random circuits

States drawn with a unitary design would be sufficientand they can be generated with random circuits!

1 Take a good set of gates universal for 2-mode linear optics:

V1 :=1√5

(1 2 i2 i 1

)V2 :=

1√5

(1 −2−2 1

)V3 :=

1√5

(1 + 2 i 0

0 1− 2 i

)2 Add a non-trivial non-linear gate, like VXK := exp (− iπ na nb/3).

3 Combine them to random circuits of length K.

⇒ When K →∞ yields an approximate t-design for any t [17, 18].

! Results for qubits on random circuits efficiently yielding approximate unitarydesigns [18, 19] do not carry over.

Don’t know how K has to depend on N . =⇒ Numerics

[17] J. Bourgain and A. Gamburd, arXiv e-print, (2011), arXiv: quant-ph/1108.6264

[18] F. G. S. L. Brandao, A. W. Harrow, and M. Horodecki, arXiv e-print, (2015), arXiv: quant-ph/1208.0692

[19] R. A. Low, PhD thesis, University of Bristol, 2010, arXiv: quant-ph/1006.5227

[20] R. A. Low, Proc. Royal Soc. A, 465 (2009), 3289–3308

Approximate t-designs

An ε-approximate t-design µε,t(H) approximates µ(H)

For any balanced monomial f : SU(H)→ R of degree t, itholds that∣∣∣∣ E

U∼µ(H)f(U)− E

U∼µε,t(H)f(U)

∣∣∣∣ ≤ ε/|H|tImplies that polynomials (like the QFI) also are close

Measure concentration, albeit weaker, also carries over [20]

Page 65: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Generating random symmetric states 17 / 20

Generation with random circuits

States drawn with a unitary design would be sufficientand they can be generated with random circuits!

1 Take a good set of gates universal for 2-mode linear optics:

V1 :=1√5

(1 2 i2 i 1

)V2 :=

1√5

(1 −2−2 1

)V3 :=

1√5

(1 + 2 i 0

0 1− 2 i

)2 Add a non-trivial non-linear gate, like VXK := exp (− iπ na nb/3).

3 Combine them to random circuits of length K.

⇒ When K →∞ yields an approximate t-design for any t [17, 18].

! Results for qubits on random circuits efficiently yielding approximate unitarydesigns [18, 19] do not carry over.

Don’t know how K has to depend on N . =⇒ Numerics

[17] J. Bourgain and A. Gamburd, arXiv e-print, (2011), arXiv: quant-ph/1108.6264

[18] F. G. S. L. Brandao, A. W. Harrow, and M. Horodecki, arXiv e-print, (2015), arXiv: quant-ph/1208.0692

[19] R. A. Low, PhD thesis, University of Bristol, 2010, arXiv: quant-ph/1006.5227

[20] R. A. Low, Proc. Royal Soc. A, 465 (2009), 3289–3308

Approximate t-designs

An ε-approximate t-design µε,t(H) approximates µ(H)

For any balanced monomial f : SU(H)→ R of degree t, itholds that∣∣∣∣ E

U∼µ(H)f(U)− E

U∼µε,t(H)f(U)

∣∣∣∣ ≤ ε/|H|t

Implies that polynomials (like the QFI) also are close

Measure concentration, albeit weaker, also carries over [20]

Page 66: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Generating random symmetric states 17 / 20

Generation with random circuits

States drawn with a unitary design would be sufficientand they can be generated with random circuits!

1 Take a good set of gates universal for 2-mode linear optics:

V1 :=1√5

(1 2 i2 i 1

)V2 :=

1√5

(1 −2−2 1

)V3 :=

1√5

(1 + 2 i 0

0 1− 2 i

)2 Add a non-trivial non-linear gate, like VXK := exp (− iπ na nb/3).

3 Combine them to random circuits of length K.

⇒ When K →∞ yields an approximate t-design for any t [17, 18].

! Results for qubits on random circuits efficiently yielding approximate unitarydesigns [18, 19] do not carry over.

Don’t know how K has to depend on N . =⇒ Numerics

[17] J. Bourgain and A. Gamburd, arXiv e-print, (2011), arXiv: quant-ph/1108.6264

[18] F. G. S. L. Brandao, A. W. Harrow, and M. Horodecki, arXiv e-print, (2015), arXiv: quant-ph/1208.0692

[19] R. A. Low, PhD thesis, University of Bristol, 2010, arXiv: quant-ph/1006.5227

[20] R. A. Low, Proc. Royal Soc. A, 465 (2009), 3289–3308

Approximate t-designs

An ε-approximate t-design µε,t(H) approximates µ(H)

For any balanced monomial f : SU(H)→ R of degree t, itholds that∣∣∣∣ E

U∼µ(H)f(U)− E

U∼µε,t(H)f(U)

∣∣∣∣ ≤ ε/|H|tImplies that polynomials (like the QFI) also are close

Measure concentration, albeit weaker, also carries over [20]

Page 67: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Generating random symmetric states 17 / 20

Generation with random circuits

States drawn with a unitary design would be sufficientand they can be generated with random circuits!

1 Take a good set of gates universal for 2-mode linear optics:

V1 :=1√5

(1 2 i2 i 1

)V2 :=

1√5

(1 −2−2 1

)V3 :=

1√5

(1 + 2 i 0

0 1− 2 i

)2 Add a non-trivial non-linear gate, like VXK := exp (− iπ na nb/3).

3 Combine them to random circuits of length K.

⇒ When K →∞ yields an approximate t-design for any t [17, 18].

! Results for qubits on random circuits efficiently yielding approximate unitarydesigns [18, 19] do not carry over.

Don’t know how K has to depend on N . =⇒ Numerics

[17] J. Bourgain and A. Gamburd, arXiv e-print, (2011), arXiv: quant-ph/1108.6264

[18] F. G. S. L. Brandao, A. W. Harrow, and M. Horodecki, arXiv e-print, (2015), arXiv: quant-ph/1208.0692

[19] R. A. Low, PhD thesis, University of Bristol, 2010, arXiv: quant-ph/1006.5227

[20] R. A. Low, Proc. Royal Soc. A, 465 (2009), 3289–3308

Page 68: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Generating random symmetric states 17 / 20

Generation with random circuits

States drawn with a unitary design would be sufficientand they can be generated with random circuits!

1 Take a good set of gates universal for 2-mode linear optics:

V1 :=1√5

(1 2 i2 i 1

)V2 :=

1√5

(1 −2−2 1

)V3 :=

1√5

(1 + 2 i 0

0 1− 2 i

)2 Add a non-trivial non-linear gate, like VXK := exp (− iπ na nb/3).

3 Combine them to random circuits of length K.

⇒ When K →∞ yields an approximate t-design for any t [17, 18].

! Results for qubits on random circuits efficiently yielding approximate unitarydesigns [18, 19] do not carry over.

Don’t know how K has to depend on N . =⇒ Numerics

[17] J. Bourgain and A. Gamburd, arXiv e-print, (2011), arXiv: quant-ph/1108.6264

[18] F. G. S. L. Brandao, A. W. Harrow, and M. Horodecki, arXiv e-print, (2015), arXiv: quant-ph/1208.0692

[19] R. A. Low, PhD thesis, University of Bristol, 2010, arXiv: quant-ph/1006.5227

[20] R. A. Low, Proc. Royal Soc. A, 465 (2009), 3289–3308

Page 69: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Generating random symmetric states 18 / 20

Numerics

N = 100, |ψN 〉 =∑N

n=0√xn|n,N − n〉

x0 = xN = 1/2 (N00N)

xn =(Nn

)1

2N(balanced)

x0 = 1 (polarized)

K = 60

1/ Fcl1/ F

Page 70: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Generating random symmetric states 18 / 20

Numerics

N = 100, |ψN 〉 =∑N

n=0√xn|n,N − n〉

x0 = xN = 1/2 (N00N)

xn =(Nn

)1

2N(balanced)

x0 = 1 (polarized)

K = 60

1/ Fcl1/ F

Page 71: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Conclusions 19 / 20

Conclusions

Random states of distinguishable particles not useful.

Random symmetric states (bosons) typically are useful.

Exists one fixed measurement to access their usefulness.

Usefulness is robust against noise and particle loss.

They can be generated with random optical circuits.

Page 72: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Conclusions 19 / 20

Conclusions

Random states of distinguishable particles not useful.

Random symmetric states (bosons) typically are useful.

Exists one fixed measurement to access their usefulness.

Usefulness is robust against noise and particle loss.

They can be generated with random optical circuits.

Page 73: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Conclusions 19 / 20

Conclusions

Random states of distinguishable particles not useful.

Random symmetric states (bosons) typically are useful.

Exists one fixed measurement to access their usefulness.

Usefulness is robust against noise and particle loss.

They can be generated with random optical circuits.

Page 74: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Conclusions 19 / 20

Conclusions

Random states of distinguishable particles not useful.

Random symmetric states (bosons) typically are useful.

Exists one fixed measurement to access their usefulness.

Usefulness is robust against noise and particle loss.

They can be generated with random optical circuits.

Page 75: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | Conclusions 19 / 20

Conclusions

Random states of distinguishable particles not useful.

Random symmetric states (bosons) typically are useful.

Exists one fixed measurement to access their usefulness.

Usefulness is robust against noise and particle loss.

They can be generated with random optical circuits.

Page 76: Random states for robust quantum metrology - cgogolin.de · Random states for robust quantum metrology 1 / 20 Random states for robust quantum metrology Micha l Oszmaniec, Remigiusz

Random states for robust quantum metrology | References 20 / 20

References

Thank you for your attention!slides on www.cgogolin.de

[1] LIGO Collaboration, Nature Phys., 7 (2011), 962–965.

[2] LIGO Collaboration, Nature Photon., 7 (2013), 613–619.

[3] H. Cramer, Princeton Univ. Press., 1946.

[4] C. R. Rao, Bulletin of the Calcutta Mathematical Society, 37 (1945), 81.

[5] O. E. Barndorff-Nielsen and R. D. Gill, J. Phys. A: Math. Gen., 30 (2000),4481.

[6] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett., 72 (1994), 3439–3443.

[7] A. Fujiwara, J. Phys. A: Math. Gen., 39.40 (2006), 12489.

[8] G. Toth and I. Apellaniz, J. Phys. A: Math. Theor., 47 (2014), 424006.

[9] R. Demkowicz-Dobrzanski, M. Jarzyna, and J. Ko lodynski, in: Progress inOptics, ed. by E. Wolf, vol. 60, Elsevier, 2015, pp. 345–435.

[10] V. Giovannetti, S. Lloyd, and L. Maccone, Science, 306 (2004), 1330–1336.

[11] V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett., 96 (2006),010401.

[12] P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek,H. Weinfurter, L. Pezze, and A. Smerzi, Phys. Rev. A, 85 (2 2012), 022321.

[13] G. Toth, Phys. Rev. A, 85 (2 2012), 022322.

[14] P. Hyllus, O. Guhne, and A. Smerzi, Phys. Rev. A, 82 (1 2010), 012337.

[15] B. M. Escher, R. L. de Matos Filho, and L. Davidovich, Nature Phys., 7(2011), 406–411.

[16] R. Demkowicz-Dobrzanski, J. Ko lodynski, and M. Guta, Nat. Commun., 3(2012), 1063.

[17] J. Bourgain and A. Gamburd, arXiv e-print, (2011), arXiv:quant-ph/1108.6264.

[18] F. G. S. L. Brandao, A. W. Harrow, and M. Horodecki, arXiv e-print, (2015),arXiv: quant-ph/1208.0692.

[19] R. A. Low, PhD thesis, University of Bristol, 2010, arXiv:quant-ph/1006.5227.

[20] R. A. Low, Proc. Royal Soc. A, 465 (2009), 3289–3308.

[21] M. Oszmaniec, R. Augusiak, C. Gogolin, J. Ko lodynski, A. Acın, andM. Lewenstein, (2016), arXiv: 1602.05407.

Funded by: the European Research Council (ERC AdG OSYRIS and CoG QITBOX), the Axa Chair in Quantum InformationScience, the John Templeton Foundation, the EU (IP SIQS and QUIC), the Spanish MINECO (SEVERO OCHOA GRANT SEV-2015-0522 and FOQUS FIS2013-46768), and the Generalitat de Catalunya (SGR 874 and 875). M. O.: START scholarshipgranted by Foundation for Polish Science and NCN grant DEC-2013/09/N/ST1/02772; C. G.: MPQ-ICFO and ICFOnest+(FP7-PEOPLE-2013-COFUND); J. K.: EU MSCA IF QMETAPP