42
Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of Physics and Astronomy SUNY Stony Brook (NY, USA) Bielefeld, December 14th, 2011

Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Random Matrix Theory for theWilson-Dirac operator

Mario Kieburg

Department of Physics and AstronomySUNY Stony Brook (NY, USA)

Bielefeld, December 14th, 2011

Page 2: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Outline

I Introduction in Lattice QCD and in the Random MatrixModel

I The Joint Probability DensitiesI The Eigenvalue DensitiesI Conclusions and Outlook

Page 3: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Introduction

in Lattice QCD

and

in the Random Matrix Model

Page 4: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Action of continuums QCD

The partition function of Nf fermionic flavors

Z =

∫exp

−ıSYM(A)− ı

Nf∑j=1

∫ψj(ıD(A)− mj)ψjd4x

D[A, ψ]

The Yang-Mills action of SU(3)

SYM(A) =1

4g2

∫tr FµνFµνd4x

with the field strength tensor

Fµν = ∂µAν − ∂νAµ + g [Aµ,Aν ]

The four components of the vector potential Aµ ∈ su(3) are3 × 3 matrix valued functions.

Page 5: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

The continuum Dirac-operator

Fermionic fields ψj are Grassmann variables

⇒ Z =

∫ Nf∏j=1

det(ıD(A)− mj

)exp [−ıSYM(A)]D[A]

The Dirac operator

D(A) = γµ(1ı∂µ + gAµ)

Index-theorem:number of zero modes (index)=topological charge

ν =1

32π2

∫εµνλκtr FµνFλκd4x

Page 6: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Lattice QCD

I space-time becomes discrete with lattice spacing aI vector field Aµ ∈ su(3) replaced by Uµ ∈ SU(3)I Minkowski space → Euclidean space (Wick-rotation t → ıt)

The Dirac matrices in the chiral basis

γ0 =

(0 112

112 0

)→ γ0 =

(0 112

112 0

)γk =

(0 σk

−σk 0

)→ γk =

(0 ıσk

−ıσk 0

)γ5 =

(−112 0

0 112

)→ γ5 =

(112 00 −112

)

Page 7: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Fundamental problem on the lattice

Energy in continuum:

E2 = kµkµ + M20

Energy on lattice:

E2 =sin2(kµa)

a2 + M20 .

Doubler Problem:

kµ →

{kµ

π

a− kµ

one momentum=(24 = 16) particles

Page 8: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

The Wilson-Dirac-operator

Main idea:I Make 15 particles in the continuum limit (a → 0) infinitely

heavy.⇒ too inertial, decouple from the systemI Wilson-Dirac operator

DW = D(A) + a∆

∝ γµsin(kµa) +sin2(kµa/2)

a

I Laplace operator ∆I additional effective massI explicitly breaks chiral symmetryI Dirac operator not anymore anti-Hermitian, butγ5-Hermitian

D†W = γ5DWγ5

Page 9: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

The ϵ-regime of QCD

I infrared limit of QCDI lattice volume (space-time volume) V → ∞I large Compton wavelength of Goldstone bosons

≫ box size V 1/4

Saddlepoint approximationI spontaneous breaking of chiral symmetryI global Goldstone bosons = Mesons

e.g. Nf = 2, thenSU(2)-integral = zero momentum modes of the three pions

Page 10: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Partition function in ϵ-regime for Nf flavors

Z ∝∫

SU(Nf)exp[L(U)]dµ(U)

∝∑ν∈Z

∫U (Nf)

exp[L(U)]detνUdµ(U)

Lagrangian of the Goldstone bosons:

L(U) =ΣV2

tr (MRU + U†ML)

−VW6a2[tr (U + U†)]2 − VW7a2[tr (U − U†)]2

−VW8a2tr (U2 + U†2)

I index of the Dirac operator: νI masses for right- and left-handed particles: MR/L = M ± Λ

I lattice spacing: aI low energy constants: Σ, W6, W7, W8

I spacetime volume: V

Page 11: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

a2-terms of the potential:

VW6a2[tr (U + U†)]2 + VW7a2[tr (U − U†)]2 + VW8a2tr (U2 + U†2)

For SU(2):I Sharpe and Singleton (1998)I Bär, Necco and Schaefer (2009)

For general number of flavors:I Bär, Rupak and Shoresh (2004)I Sharpe (2006)

Page 12: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Simplification

exp[VW6a2[tr (U + U†)]2 + VW7a2[tr (U − U†)]2

]=

12π

∫d [m6, λ7]exp

[−m6

2 + λ72

2

]× exp

[√VW6am6tr (U + U†) +

√VW7aλ7tr (U − U†)

]

I m6, λ7 can be considered as additional masses⇒ omitting the squared trace termsI can be introduced later on

Page 13: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Random Matrix Ensemble

DW =

(aA W

−W † aB

)distributed by

P(DW) ∝ exp[−n

2(tr A2 + tr B2)− n tr WW †

]

I Hermitian matrices A (n × n) and B ((n + ν)× (n + ν)) arethe Wilson-terms ⇒ breaking of chiral symmetry

I complex W (n × (n + ν)) matrixI at a = 0: chGUE describing continuum QCD (Shuryak,

Verbaarschot; 1993)I corresponds to W8 > 0

Damgaard, Splittorff, Verbaarschot (2010)

Page 14: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Microscopic LimitPartition function for Nf flavors

Z ∝∫

d [DW]P(DW)

Nf∏j=1

det(DW + mj112n+ν − λjγ5)

I λ: eigenvalues for D5 = DWγ5 with γ5 = diag (11n,−11n+ν)

I spacetime volume V / matrix dimension n → ∞I fixed parameters:

I ΣV diag (MR, ML) = 2n diag (m + λ,m − λ) = diag (MR, ML)

I√

VW8a =√

n/2a = a

Page 15: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Outcome

Z ∝∫

U (Nf)exp[L(U)]detνUdµ(U)

Lagrangian of the Goldstone bosons:

L(U) = tr (MRU + U†ML)− a2tr (U2 + U†2)

Damgaard, Splittorff, Verbaarschot (2010)

Page 16: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

The Joint Probability Densities

Page 17: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Properties of DW and D5

I DW is γ5-Hermitian ⇔ D5 = DWγ5 is HermitianI form invariance:

D5 : V ∈ U (2n + ν), V−1 = V †, compactDW : U ∈ U (n,n + ν), U−1 = γ5U†γ5, non-compact

I diagonalization:

D5 = VxV−1

DW = U

x1 0 0 00 x2 y2 00 −y2 x2 00 0 0 x3

U−1

x , xj , y2 are real diagonal

Page 18: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Diagonalization of DW and D5

I

D5 = VxV−1

x : 2n + ν dim ⇒ pure real spectrum

I Let 0 ≤ l ≤ n

DW = U

x1 0 0 00 x2 y2 00 −y2 x2 00 0 0 x3

U−1

x1: l dim ⇒ real spectrum

x2, y2: n − l dim ⇒ complex conj. eigenvalue pairs x2 ± ıy2

x3: ν + l dim ⇒ real spectrum

Page 19: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Spectral flow of D5 (Example for n = 1 and ν = 2)

Page 20: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Definition of the Joint Probability Density

Let f be arbitrary integrable function invariant underGl(2n + ν,C):∫

f (D5)P(DW)d [DW] =

∫f (x)p5(x)d [x ]

∫f (DW)P(DW)d [DW] =

n∑l=0

∫f (z(l))p(l)

W (z(l))d [z(l)]

=

∫f (z)pW(z)d [z]

where

pW(z) =n∑

l=0

∫p(l)

W (z(l))δ(

z − z(l))

d [z(l)],

z(l) = diag (x1, x2 + ıy2, x2 − ıy2, x3)

Page 21: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Results

For D5 a 2(n + ν) dim Pfaffian:

p5(x) ∝ ∆2n+ν(x)Pf[

g2(xa, xb) xb−1a g1(xa)

−xa−1b g1(xb) 0

]degenerated quark mass mAkemann, Nagao (2011)

For DW a n + ν dim determinant:

pW(z) ∝ ∆2n+ν(z)

× det[

gc(zaR)δ(2)(zaR − z∗

bL) + gr(xaR, xbL)δ(yaR)δ(ybL)

xa−1bL g1(xbL)δ(ybL)

]degenerated source term λγ5Kieburg, Verbaarschot, Zafeiropoulos (2011)

Remark: Vandermonde determinant ∆2n+ν(x) =∏i<j

(xi − xj)

Page 22: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Side remark: Orthogonal Polynomial TheoryA novel mixing of orthogonal and skew-orthogonal polynomials

I orthogonal polynomials from order 0 to ν − 1

⟨pi |pj⟩ ∝ δij

I skew-orthogonal polynomials from order ν

(qν+2i |qν+2j+1) ∝ δij

(qν+2i |qν+2j) = (qν+2i+1|qν+2j+1) = 0

I additional relations

(pi |pj) = (pi |qν+j) = ⟨pi |qν+j⟩ = 0

with

⟨f1|f2⟩ =

∫f1(x)f2(x)g1(x)dx

(f1|f2) =

∫(f1(x1)f2(x2)− f1(x2)f2(x1))G2(x1, x2)d [x ]

I essentially the same system of equations for DW

Page 23: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Side remark: Orthogonal Polynomial Theory

Wish list:I relation to Hermite polynomialsI recursion relationI Christoffel Darboux-like formulaI representation as a matrix integralI Rodrigues formulaI asymptotics in the microscopic limit

Page 24: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

The Eigenvalue Densities

Page 25: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Definition

For D5

ρ5(x1) =

∫p5(x)d [x=1]

⇒ one level density ρ5

For DW

ρR(x1R)δ(y1R) +12ρc(z1R) =

∫pW(z)d [z =1R]

ρL(x1L)δ(y1L) +12ρc(z1L) =

∫pW(z)d [z =1L]

⇒ three level densities ρc and

ρr = 2ρR = ρR + ρL − ρχ

ρχ = ρR − ρL

Page 26: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

In the Microscopic Limit

For a = 0:

ρ(y) = νδ(y) +y2(J2

ν (y)− Jν−1(y)Jν−2(y))

= νδ(y) + ρ(ν)i (y)

For a = 0:two-fold integrals for ρ5, ρc, ρr, ρχ

Akemann, Damgaard, Kieburg, Nagao, Splittorff, Verbaarschot,Zafeiropoulos (2010/11)

Page 27: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

The Density ρc

ρc(z) =

exp[−x2/8a2]√

8πa|y ||z|ρ(ν)i (|z|), a ≪ 1

Θ(8a2 − |x |)16πa2 erf

[|y |√8a

], a ≫ 1

Kieburg, Verbaarschot, Zafeiropoulos (2011)

Page 28: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

The Density ρc

ρc(z) =

exp[−x2/8a2]√

8πa|y ||z|ρ(ν)i (|z|), a ≪ 1

Θ(8a2 − |x |)16πa2 erf

[|y |√8a

], a ≫ 1

along y = 5a axis along imaginary axis

Kieburg, Verbaarschot, Zafeiropoulos (2011)

Page 29: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

The Density ρχ

ρχ(x) =

ρ(ν)GUE

( x4a

), a ≪ 1

νΘ(8a2 − |x |)π√

64a4 − x2, a ≫ 1

Akemann, Damgaard, Splittorff, Verbaarschot (2010/11)

Page 30: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Number of additional real modes Nadd

Nadd =

∫ρr(x)dx

=

[2(ν + 1)]![(ν + 1)!]2

(a2

2

)ν+1

, a ≪ 1(2π

)3/2

a, a ≫ 1

Kieburg, Verbaarschot,Zafeiropoulos (2011)

Deuzeman, Wenger,Wuilloud (2011)

Page 31: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

ρ5 at small Lattice Spacing

ρ5(x) = ρ(ν)GUE

(x − m

4a

)+

|x |√x2 − m2

ρ(ν)i (

√x2 − m2)

= ρχ(x − m) +√

8πa exp[− m2

8a2

]ρc(Re = ım, Im = x)

m = 3, a = 0.2ν ∈ {0,1,2,3,4}

Akemann, Damgaard, Splittorff, Verbaarschot (2010/11)

Page 32: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Lattice Spacing Dependence of ρ5

ρ5(x) =

ρ(ν)GUE

(x − m

4a

)+

|x |√x2 − m2

ρ(ν)i (

√x2 − m2), a ≪ 1

[1 +

cos2 x8a2

], a ≫ 1

m = 3, ν = 1a ∈

{18 ,

14 ,

12 ,1,2

}

Page 33: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Mean Field Limit of ρ5

Scaling:I m → s2mI x → s2xI a → sa

m = 3, ν = 1, a = 0.25s ∈ {1,2,3,4}

Page 34: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Mean Field Limit of ρ5

Scaling:I m → s2mI x → s2xI a → sa

m = 3, ν = 1, a = 0.5s ∈ {1,2,3,4}

Page 35: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Mean Field Limit of ρ5

Scaling:I m → s2mI x → s2xI a → sa

m = 3, ν = 1, a = 1s ∈ {1,2,3,4}

Page 36: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

ν Dependence of ρ5 at large Lattice Spacing

Scaling:I m → s2mI x → s2xI a → sa

m = 3, a ∈ {0.5,1}, s = 4

gap in |x | ≤(m2/3 − 4a4/3)3/2

⇒ gap only if m > 8a2

not Aoki Phase Aoki Phase

Damgaard, Splittorff, Verbaarschot (2010)

Page 37: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Conclusions and Outlook

Page 38: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

SummaryI joint probability densities of DW and D5

I small a ≪ 1:I broadening of ν formerly zero modes by GUEI Gaussian broadening of ρi(y) for DWI additional real modes are strongly suppressed with

increasing ν

I large a ≫ 1:I finite support of size ≈ a2 along and parrallel to the real

axis for DWI ν independence of DW and D5I mean field limit: gap for ρ5 if m > 8a2

Page 39: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

OutlookI non-degenerated massesI higher correlation functionsI comparison with lattice data

Damgaard, Heller, Splittorff (2011)I single eigenvalue distributions

Page 40: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Thank you for your attention!

Collaborators:Gernot AkemannPoul H. DamgaardKim SplittorffJacobus J. M. VerbaarschotSavvas Zafeiropoulos

Page 41: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

Appendix

Page 42: Random Matrix Theory for the Wilson-Dirac operatortonic.physics.sunysb.edu/from_diane/Mario_Kieburg...Random Matrix Theory for the Wilson-Dirac operator Mario Kieburg Department of

The Density ρr

ρr(x) =

a2ν+1

∫ √2

1pν

(x2

a2 , λ2 − 1

)exp

[− x2

16a2λ2]

dλ, a ≪ 1

Θ(8a2 − |x |)(2π)3/22a

, a ≫ 1

Kieburg, Verbaarschot, Zafeiropoulos (2011)