29
Radioactive Ion Beams: where are we now experimentally? M. Huyse K.U. Leuven Moriond, March 2003 Opening page

Radioactive Ion Beams: where are we now experimentally? M. Huyse K.U. Leuven Moriond, March 2003 Opening page

Embed Size (px)

Citation preview

Radioactive Ion Beams: where are we now experimentally?

M. Huyse

K.U. Leuven

Moriond, March 2003

Opening page

The exploration of the chart of nuclei

284 isotopes with T1/2 > 109 yearOur beams till 1989 !

The exploration of the chart of nuclei

<1940495

The exploration of the chart of nuclei

<1940 1940 495 822

Reactors: n on U

The exploration of the chart of nuclei

<1940 1940 1950 495 822 1244

First Isotope Separator On-Line (ISOL) experimentNiels Bohr Institute 1951fast n on U: Kr and Rb isotopes

The exploration of the chart of nuclei

<1940 1940 1950 1960495 822 1244 1515

Selective detection method: decay

The exploration of the chart of nuclei

<1940 1940 1950 1960 1970

495 822 1244 1515 2010

Light-ion induced spallationHeavy-ion induced fusion

The exploration of the chart of nuclei

<1940 1940 1950 1960 1970 1980495 822 1244 1515 2010 2270

Projectile and target fragmentation+

In-flight separation

The present chart of nucleistable+ decay- decay decayp decayspontaneous fission

Around 3000 of the expected 6000 nuclei have been observed

-Explaining complex nuclei from basic constituents-The size of the nucleus: halos and skins-Isospin dependence of the nuclear force-Measuring and predicting the limits of nuclear existence-Doubly-magic nuclei and shell structure far from stability-The end of Mendeleev’s table: superheavies-Understanding the origin of elements-Testing the Standard Model-Applications in materials and life sciences

driver acceleratoror

reactor

thin target high-temperature thick target

fragment separator

experiment• detectors• spectrometers• ...

ion source

mass separator

storage ring

In Flight (IF) Isotope Separator On Line (ISOL)heavy ions

-fusion-fragmentation

light and heavy ions, n, e-spallation-fission-fusion-fragmentation

post accelerator

GeV eventually slowed down

s

meV to 100 MeV/u

ms to several s

good beam quality

gas cell

~ ms

IF versus ISOL

First generation Radioactive Beam Projects in Europe

CRC, Louvain-la-Neuve, Belgiumdelivering ISOL beams since 1989

SPIRAL, Caen, Francedelivering IF beams since 1984delivering ISOL beams since 2001

REX-ISOLDE, Geneva, Switzerlanddelivering ISOL beams since 2001

GSI, Darmstadt, Germanydelivering IF beams since 1990

MAFF, Munich, Germanyunder construction

SPES, Legnaro, Italyproject

First generation Radioactive Beam Projects

Location Start Driver Post-accelerator

Upgradeplanned

CRC, Louvain-la-Neuve, Belgium

1989 cyclotronp, 30 MeV, 200A

cyclotronsK = 44 and

110

 

SPIRAL, GANIL, Caen, France

2001 2 cyclotronsheavy ions up to 95

MeV/u6 kW

cyclotronK = 265

2 - 25 MeV/u

new driver

REX-ISOLDE, CERN, Geneva, Switzerland

2001 PS boosterp, 1.4 GeV, 2 A

linac0.8 - 2.2 MeV/u

energy upgrade

4.3 MeV/u

HRIBF, Oak Ridge, USA

1998 cyclotronp, d, , 50 -100 MeV

10 - 20 A

25 MV tandem  

ISAC, TRIUMF, Vancoucer, Canada

2000 synchrotronp, 500 MeV, 100 A

linac1.5 MeV/u

energy upgrade

6.5 MeV/u

CYCLONE 110

CYCLONE 30

CYCLONE

CYCLONE 44

Ion Source

Target

CYCLONE 30

CYCLONE

CYCLONE 44

Ion Source

Target

Louvain-la-Neuve: focus on nuclear astrophysics

30 MeV p + 13C => 13N + n

13N + p => 14O +

Hot CNO cycle

Louvain-la-Neuve: nuclear physics

c.m.

• d/d (mb/sr)

• 4He(6He,6He)4He

• Ec.m. = 11.6 MeV

6He + 238U

4He + 238U

6Li + 238U

4He + 238U

6He + 238U fusion-fission 6He + 4He elastic scattering

J. L. Sida et al. PRL84 (2000) 2342 R. Raabe et al. PLB458 (1999) 1

E (keV)

Neutron pick-up of 30Mg (T1/2=0.3 s)

30Mg + 2H 31Mg + 1H

10.000 atoms/sec

2.23 MeV/u31Mg

16N (from beam contamination)

REX-ISOLDE - CERN + MINIBALL array

76Kr + 208Pb

500.000 atoms/sec

2.6 - 4.4 MeV/u

Coulomb excitation of 76Kr (T1/2=14.6 h)

SPIRAL - GANIL + EXOGAM array

First results from SPIRAL and REX-ISOLDE

Mass measurements

N=Z

Ge70 Ge72 Ge73 Ge74

Se74

As75

Ge76

Se76 Se77 Se78

Kr78

Br79

Se80

Kr80

Br81

Kr82

Sr84

P

P

P

Ge62 Ge63 Ge64 Ge65

As65

Se65

Ge66

As66

Se66

Ge67

As67

Se67

Ge68

As68

Se68

Ge69

As69

Se69

As70

Se70

Br70

Kr70

Ge71

As71

Se71

Br71

Kr71

As72

Se72

Br72

Kr72

As73

Se73

Br73

Kr73

Sr73

As74

Br74

Kr74

Rb74

Sr74

Ge75

Se75

Br75

Kr75

Rb75

Sr75

As76

Br76

Kr76

Rb76

Sr76

Ge77

As77

Br77

Kr77

Rb77

Sr77

Ge78

As78

Br78

Rb78

Sr78

Y78

As79

Se79

Kr79

Rb79

Sr79

Y79

Br80

Rb80

Sr80

Y80

Kr81

Rb81

Sr81

Y81

Rb82

Sr82

Y82

Rb83

Sr83

Y83 Y84 Y85

34

35

36

37

38

Z = 39

(H. Schatz et al. Phys. Rep. 294 (1998) 167)

possible waiting points

possible rp - process main path

mass excess not yet measured (AME95)

ISOLTRAP measurements2000 - 2002

before 2000

As63 As64

rp-process

Super-allowed Fermi -decay74Rb (T1/2=65 ms)

m = 4.5 keV (m/m = 6 10-8)

0

ISOLTRAP

AME95

CSS2 (GANIL)A.S. Lalleman et al., Hyp. Int. 132 (2001) 315

Rare Isotope Accelerator: RIA

RI-Beam factory: RIKEN

GSI

European Separator On-LineRadioactive Nuclear Beam Facility

• Experimental aim of the second generation facilities figure of merit for the study of exotic nuclei x > 1000

• Technological challenge increase the global selectivity and sensitivity increase the secondary beam intensity

The new generation of Radioactive Beam Facilities

RIA expected yields

1,0E+00

1,0E+02

1,0E+04

1,0E+06

1,0E+08

1,0E+10

Ni Cu Zn Ga

yiel

d (a

t/s)

A=78

79

80

7776

78Ni

RIA expected yields78Ni: 70 at/s

100Sn: 8 at/s

Intensity and Selectivity

secondary = productionNtarget beam x release – transport

x ionization

x transport - storage - post-acceleration

Isecondary/Itotal

Intensity

Purity

Event rate

Icounts(reaction) = Isecondary branching reaction Nsecondary target

x spectrometer

x detector

Icounts(decay) = Isecondary branching

x detector

Peak to background

Rresolving power

(suppression of background, identification of events)

Figures of Merit (in first approximation)

78Ni @ 3-5 MeV/uEx(2+-0+) = 4 MeV

B(E2)=500 e2fm4

(Coulex) 100 mbNsecondatytarget

(58Ni)= 3mg/cm2

Ntarget (238U, = 100 pbarn) = 100 g/cm2

Countrate estimate

“Ideal (realistic?)”

Icounts(2+-0+) (minimum)

10 cts/day

x spectrometer 10 %

Isecondary(78Ni) 375 at/s

post-accelerator 50 %

ionization 50 %

release 50 %

Ibeam (p, 1 GeV) 19 A needed!!

needs pure conditions

modestintensity!

An example: Coulomb excitation of 78Ni at an ISOL system

“Ideal (realistic?)”

Now Gain factor

Ibeam (p, 1 GeV) 100 A direct(5000 A indirect)

10 A 10(> 500)

release 50 % 0.1 % 500

ionization 50 % 10 % 5

post-accelerator 50 % 10 % 5

Isecondary(78Ni) 2000 at/s 58 at/h 105

x spectrometer 10 % 1 % 10

104

beam purity?

78Ni produced at an ISOL system: rates

Now(1) Proposed Gain factor

Ibeam (238U, 1 GeV/u) 1010 at/s 1 1012 at/s 100

in-flight separator 3 - 6 % ( 5%)

30 – 60 % ( 50%) (2) 10

Isecondary(78Ni) 35 at/h 10 at/s (3) 1000

(1) based on the first identification of 78NiC. Engelmann et al., Z. Phys. A352 (1995) 351

* I(238U) = 2 107 at/s* in-flight separator = 1.6%

* I(78Ni) = 0.5 at/day

(2) GSI: Conceptual Design Report

(3) RIA: I(238U) = 2 1013 at/s @ 400 MeV/u I(78Ni) = 70 at/s

! ! !Nsec. target

(IF) = 100 x (ISOL)but

Low energy backgroundand

Doppler correction

78Ni produced at an IF system: rates

Stopping of fragments in a gas cell (I)

100 cm

30 cm0.5 – 1 bar

Delay(ms)1000

100

10

1

0.1

Argon

Helium

0.01 0.1 1 10 E/N(10-17 V . cm2)

G. Savard @ ANL

Heavy-Ion Beam

High-power target

Range bunching

Gas catcher

Low energy beam

• range bunching• stopping of reaction products in buffer gas• electrical fields (AC and DC)

• remove electrons (neutralization)• drag ions towards exit hole

1

10

100

1000

10000

1,E+03 1,E+06 1,E+09 1,E+12 1,E+15

Q (ion-e pairs/cm3s)

Sat

ura

tion

fie

ld (

V/c

m)

Sugaya

Ahmed

Sato

0.1 cm

1 cm

10 cm

50 cm

1

2

3

4

5

heavy-ion ion guide

fission ion guide

Shiptrap

RADRIS

RIA

M. Huyse,- Nucl. Instr. Meth. B

• what is the intensity limit?

Stopping of fragments in a gas cell (II)

He (1 atm)

• laser ionization after the plasma has decayed• increased selectivity!

FragmentationG. Savard ,- @ ANL and GSIG. Bollen ,- @ MSUM. Wada ,- @ RIKEN

Laser ion source at ISOLDE

Energy (eV)

0

4

• efficiency up to 10 %• selectivity: depending on the implementation• applicable for many elements (universal)

high-temperature cavity

laser++

++

+

photo ionssurface ions

Laser Ion Source

• -decay of 78Cu at ISOLDE

78Ni0.2 s

78Cu0.34 s

78Zn1.5 s

78Ga5.5 s

78Ge88 m

78As1.5 h

78Se

N=50

Z=28

1

102

104 relative

J.M. Daugas et al. Phys. Lett. B476 (2000) 213

0+

(2+)

(8+)(6+)

(4+)

78Zn

908 keV

890 keV

730 keV

• p(1 GeV) + Ta-rod neutron• neutron + 238U 78Cu no deep spallation

The problem of selectivity: an example from ISOL

• laser ionization of Cu isotopes• -gated gamma decay spectrum

600 700 800 900 1000Energy (keV)

105

104

103

78Ga

78Cu

730 keV

890 keV

laser on

laser off

700 800 900 Energy (keV)

Production rates:

J.M. Daugas et al. Phys. Lett. B476 (2000) 213

0+

(2+)

(8+)(6+)

(4+)

78Zn

908 keV

890 keV

730 keV

)(

)(10

/4600)(

/6.0)(78

784

78

78

Ga

Cu

satGaP

satCuP

The decay of 78Cu

-200

0

200

400

600

800

1000

1200

30534,6 30534,8 30535 30535,2 30535,4 30535,6 30535,8 30536

Frequency of first transition (cm-1)

Inte

nsity

(arb

. uni

ts)

1+

3-

6-

(1+)

(3-)

(6-)

70Cu4

1

29

6.6(2) s

33(2) s

44.5(2) s0

100

200

(keV)

V. Fedoseev, U. Koster,J. Van Roosbroeck et al., ISOLDE

• laser ionization in a hot cavity• different hyperfine splitting for the different isomers• enhancement of specific isomers

• increase selectivity of laser ion sources• reduce power, pressure and Doppler broadening

Production of isomeric beams: 70Cum1,m2,g

production

ionization

purification

measurement:• identification• reaction / decay / g.s. properties• ...

acceleration / deceleration / storage

• high-power targets• geometrical optimization• radiation safety

• laser ionization (selectivity, isomeric beams)• release optimization, chemistry• gas cell (space-charge limit, laser re-ionization)• charge-state breeding vs. 1+ acceleration

• RF-coolers, traps(intensity limit, high-resolution mass separator)

• -identification• fast tracking of particles

• high-power accelerators

Outlook