23
Radiative Charmonium Physics - J.Dudek Radiative Charmonium Physics Jo Dudek Jefferson Lab / Old Dominion University Lattice ‘07 - Regensburg

Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

  • Upload
    donhan

  • View
    217

  • Download
    4

Embed Size (px)

Citation preview

Page 1: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

Radiative Charmonium Physics

Jo Dudek

Jefferson Lab / Old Dominion University

Lattice ‘07 - Regensburg

Page 2: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

outline

radiative transitions ground state → ground state

two-photon decays ground state decays

excited state transitions

more sophisticated two-point fitting

all quenched, so no precision, but demonstration of new methods

(cc)1 ! (cc)2 !

(cc)[JP+] ! !!

Page 3: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

experimental situation

real photon transitions (Q2=0)

good data on

ccJ → J/y g E1

y(3686) → ccJ g E1

some data onccJ → J/y g M2, E3

y(3686) → ccJ g M2, E3

one datum on J/y → hc gnew data on y(3770) → ccJ g E1

part of the final program at CLEO& future program of PANDA @ GSI

0!+

1!!

0++

1++

2++

1+!

3097

2980

3686

3638

3415

3510

35553525

3770

E1,M2,E3

E1,M2

E1

M1

M1

E1M1'

E1 E1

E1

E1

!!

!!

!!

!!

DD

hc

J/y

y '

y '

hc

hc'

cc2

cc0

cc1

Page 4: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

previous calculations

much studied in potential modelssolve a Schrödinger (or ‘relativised’) equation

use the wavefunctions to compute matrix elements

fairly successful description of data but has limitations, e.g. explicit frame-dependence of matrix elements

also studied in QCD sum-rules

with considerable sensitivity to parameters (mc in particular)

! 1mc"2! + V (r)! = En!

V (r) = !!

r+ br

!!|Vi(0)|"" #!

d3r !!!(#r)(ri + . . .)!"(#r)

Page 5: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

lattice technique

fairly straightforward application of three-point correlatorssimilar to pion, proton form-factor, N↔D ... calculations

compute three-point functions with sequential-source technologycompletely specify the sink (operator & momentum)can insert any momentum

obtain correlators at various values of photon Q2

!0, t0 !

!

!y

ei!q·!y!y, t

!

!x

e!i!pf ·!x !!f!("x, tf)

Page 6: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

radiative transitions

usually expressed in terms of multipolescovariant expressions can be derived

e.g. cc0 → J/y g

the multipole form-factors can be obtained from the three-point functions as an overconstrained linear problem

need the E’s and Z’s from two point function fitsdeals with all the data at a given Q2 simultaneously - in principle can simultaneously extract excited state transitions

!!c0("p!)|V µ(0)|#("p", r)" = !!1(Q2)

!E1(Q2)

"!(Q2)!µ("p!, r)! !("p!, r) · p"

#p" · p! pµ

! !m2! pµ

"

$%

+C1(Q2)!

Q2m!!("p!, r) · p"

"p" · p!(p" + p!)µ !m2

" pµ! !m2

! pµ"

# $

P = Zf Zi

4Ef Eie!Ef tf e!(Ei!Ef )t

!(pf , pi; t) =!

n

P (pf , pi; t) · Kn(pf , pi) · fn(Q2)!

"""#

!(a; t)!(b; t)!(c; t)

...

$

%%%&=

!

"""#

P (a; t)K1(a) P (a; t)K2(a) . . .P (b; t)K1(b) P (b; t)K2(b)P (c; t)K1(c) P (c; t)K2(c)

.... . .

$

%%%&

!

"#f1(Q2)[t]f2(Q2)[t]

...

$

%& ,

Page 7: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

first results

quenched, anisotropic latticeas = 0.1 fm, x = 3.0, 123x48

domain wall fermions (L5=16)charm quark mass tuning is not perfect (5% low)

ground state to ground state transitions only

Page 8: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

J/ψ→ηc γ transition

statistically most precise channel, but very sensitive to the hyperfine splitting which is not correct on this quenched lattice (δmlat. ≈ 80 MeV, δmexpt. ≈ 117 MeV)

the Crystal Ball experimental value needs confirmation

physical

lattice

phase space ( |q|3 )

!(! ! "c#) =

! |!q|3(m!+m"c )2

6427 |V (0)|2 V (Q2) = V (0)e!

Q2

16!2

Page 9: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

χc0→J/ψ γ E1 transition

not used in the fit

PDG

CLEOlat.

E1(Q2) = E1(0)!1 + Q2

!2

"e! Q2

16"2

Page 10: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

1P→1S transitions

fit form inspired by potential models with spin-dependent corrections

χc0 ! J/ψγE1

β = 542(35) MeV

ρ = 1.08(13) GeV

!c1 ! J/"#E1

$ = 555(113) MeV

% = 1.65(59) GeV

hc ! !c"E1

# = 689(133) MeV

$ ! "

simplest quark model has all β equal and ρ(χc0) = 2 β, ρ(χc1) = √2 ∙ ρ(χc0), ρ(hc) →∞

E1(Q2) = E1(0)!1 + Q2

!2

"e! Q2

16"2

Page 11: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

two-photon decays

e.g. hc → ggnot obvious how to get this, no QCD ‘interpolating field’ for a photonfrom suggestion of Ji & Jung PRL86, 208, return to the LSZ reduction for the matrix element:

to first order in QED perturbation theory this is

using free photon propagators, most of the integrals produce momentum conserving delta functions, with one left over

for photons that are not ‘too’ time-like this can be rotated into Euclidean spacetime

!!(q1,"1)!(q2,"2)|M(p)" =

! limq!1!q1

q!2!q2

!"µ(q1,"1)!"!(q2,"2) q#21 q#22

!d4xd4y eiq!

1.y+iq!2.x"0|T

"Aµ(y)A!(x)

#|M(p)#

(!e2) limq!1!q1

q!2!q2

!(1)"µ !(2)"! q#21 q#22

!d4x d4w d4z eiq!

1.x Dµ"(0, z)D!#(x, w)"0|T"j"(z)j#(w)

#|M(p)#

e2 !(1)!µ !(2)!!

!d4y e"iq1.y !0|T

"jµ(0)j!(y)

#|M(p)"

Page 12: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

0 10 20 30 40ti

0

0.01

0.02

0.03

0.04

0.05

t = 4 t = 16 t = 32 tf = 37

0 10 20 30 40t

0.1

0.15

0.2

0.25

F(0

, Q

2)

tf = 37

Q2 = -2.10 GeV

2

Q2 = 0.60 GeV

2

Q2 = 2.68 GeV

2

Q2 = 4.43 GeV

2

two-photon decays

blue piece is exactly the V-M vector current three-point function (VVM)‘extra’ time integral sums the QCD vector states in the right way to make a photon of energy w1

we can get the matrix element by computing VVM(t, ti) for multiple source positions ti and summing them with an exponential prefactor

limtf!t"#

e2 !(1)µ !(2)!

ZM (p)2EM (p)e

!EM (p)(tf!t)

!!

dtie!!1(ti!t)"0|T

" !d3!x e!i"p."x"M (!x, tf )

!d3!y ei "q2."yj#(!y, t)jµ(!0, ti)

#|0#

appears to be possible to capture the whole integral for t away from the lattice walls

integrand

ti

Page 13: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

0 10 20 30 40ti

0

0.01

0.02

0.03

0.04

0.05

t = 4 t = 16 t = 32 tf = 37

0 10 20 30 40t

0.1

0.15

0.2

0.25

F(0

, Q

2)

tf = 37

Q2 = -2.10 GeV

2

Q2 = 0.60 GeV

2

Q2 = 2.68 GeV

2

Q2 = 4.43 GeV

2

two-photon decays

summing the integrand gives plateaus in tdone this way one is computing forall possible w1 & hence Q12 at once

but it is expensive - Lt times the costof a three-point function

limtf!t"#

e2 !(1)µ !(2)!

ZM (p)2EM (p)e

!EM (p)(tf!t)

!!

dtie!!1(ti!t)"0|T

" !d3!x e!i"p."x"M (!x, tf )

!d3!y ei "q2."yj#(!y, t)jµ(!0, ti)

#|0#

-2 0 2 4

Q2

2 / GeV

2

0

0.1

0.2

F(Q

12,

Q22

)

Q1

2 = -2.0 GeV

2

Q1

2 = -1.0 GeV

2

Q1

2 = 0.0 GeV

2

Q1

2 = +1.0 GeV

2

Q1

2 = +2.0 GeV

2

-2 -1 0 2

Q1

2 / GeV

2

0.1

0.15

0.2

0.25

0.3^ F(Q

12,0

)

1 -2 -1 0 2Q

1

2 / GeV

2

2.2

2.4

2.6

2.8

3

3.2

µ(Q

12)

/ G

eV

1

mesonsource

vectorcurrentinsertiontime

Page 14: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

cheap two-photon decays

cheaper method puts the timeslice sum in the sequential source

but must specify w1 for each calculation & can’t view integrand

-4 -2 0 2 4

Q2 / GeV

2

0

0.1

0.2

0.3

0.4

0.5

F(0

, Q2 )

one pole fitpf = (100)

pf = (110)

PDG

-6 -4 -2 0 2 4

Q2 / GeV

2

0

0.2

0.4

G(0

, Q2 )

one pole fitpf = (100)

pf = (110)

PDG

hc→gg* cc0→gg*

in this case the calculation done with clover quarks on quenched isotropic lattices, a=0.047 fm, 243x48

b

b new Belle

Page 15: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

excited states

recall there is good experimental data on y(3686) → ccJ gthe y(3686) is an excited state in the vector channel:

need a reliable excited state extraction procedure

variational method in a large operator basis?

3097

3686

3770 near deg. states are tough to fit

1!!

even worse ona cubic lattice

3097

3686

3770

T!!1 = (1, 3, 4 . . .)!!

3!!

Page 16: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

excited states

first results are promising

3000A1 T1 T2 E A2

0, 4 ... 1, 3, 4 ... 2, 3, 4 ... 2, 4 ... 3 ...

spin-1spin-2spin-3

! !!"Dk !

! !!"Dj!"Dk !

! !!

3!!3750

3097

3686

3770

dim=1 dim=3 dim=3 dim=2 dim=1!0|(! !"#Dk !)T2 |J$ = ZJ · KJ

T2

!0|(! !"#Dk !)E |J$ = ZJ · KJ

E

a! 0

quenched aniso clover results

Page 17: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

charmonium radiative physics

first calculations of transitions and two-photon decays are promisingmethods seem to be sound...

... but

small volumes (may not be important)quenchedlimited ma improvement

relevant to final CLEO analysesnew J/y → hc g number coming soon

angular analysis of ccJ → J/y g (M2, E3)

methods for excited state transitions being investigatedvariational methods seem to be well constrained in spectrum case

anisotropy is a powerful tool for excited state extraction

anisotropic dynamical NF=2+1 clover lattices being generated under USQCD

Page 18: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

variational method results

! !!"Dk !

! !!"Dj!"Dk !

! !!

3000

3250

3500

3750

4000

4250

4500

4750

5000

5250

5500

A1 T1 T2 E A2

1sm, us

γjγ5 sm, us

ρ×∇sm, us

a1×Dsm

ρ×∇sm, us

a1×Dsm, us

a0×Dsm, us

ρ×∇sm, us

a1×Dsm, usa1×Dsm, us

0, 4 ... 1, 3, 4 ... 2, 3, 4 ... 2, 4 ... 3 ...

J++

3000

3250

3500

3750

4000

4250

4500

4750

5000

5250

5500

A1 T1 T2 E A20, 4 ... 1, 3, 4 ... 2, 3, 4 ... 2, 4 ... 3 ...

a1×∇sm

γj sm, usγ0γj sm

ρ×Dsm, usa1×∇sm, us

ρ×Dsm, usρ×Dsm

a1×∇sm, us

ρ×Dsm, us

a1×∇sm

a0×∇sm, usπ×Busπ(2)×Bus

J--

3000

3250

3500

3750

4000

4250

4500

4750

5000

5250

5500

A1 T1 T2 E A2

no ops

γ5 sm, us a0(2)×∇sm

b1×∇smρ×Bsm, us

b1×∇smρ×Bsm

π×Dsmb1×∇smρ×Bsm, us

0, 4 ... 1, 3, 4 ... 2, 3, 4 ... 2, 4 ... 3 ...

γ4γ5 sm, us

b1×∇sm, usρ×Bsm, us

J-+

3000

3250

3500

3750

4000

4250

4500

4750

5000

5250

5500

A1 T1 T2 E A2

γ0 sm

γiγj sm, us

π×∇sm

b1×Dsm b1×Dsm

a0(2)×Dsm, us

a1×Bsm, us

b1×Dsmb1×Dsm

0, 4 ... 1, 3, 4 ... 2, 3, 4 ... 2, 4 ... 3 ...

a1×Bsm, us a1×Bsm, us a1×Bsm

J+-

Page 19: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

(a) (b) (c)

Page 20: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

χc1→J/ψ γ transition

derived the covariant multipole decomposition

E1(Q2) - electric dipole - experimentally measured at Q2 = 0M2(Q2) - magnetic quadrupole - experimentally measured (via photon angular dependence) at Q2 = 0

C1(Q2) - longitudinal - goes to zero at Q2 = 0

this lattice δm(χc1 - J/ψ) close to experiment, so small phase-space ambiguity

!A(!pA, rA)|jµ(0)|V (!pV , rV )" = i4!

2!(Q2)"µ!"#(pA # pV )#$

$

!

E1(Q2)(pA + pV )"

"

2mA[""( !pA, rA).pV ]"!( !pV , rV ) + 2mV ["(!pV , rV ).pA]""!(!pA, rA)#

+ M2(Q2)(pA + pV )"

"

2mA[""( !pA, rA).pV ]"!( !pV , rV ) # 2mV ["(!pV , rV ).pA]""!(!pA, rA)#

+C1(Q2)

$

q2

"

# 4!(Q2)""!(!pA, rA)""(!pV , rV )

+ (pA + pV )"

%

(m2A # m2

V + q2)[""(!pA, rA).pV ] "!(!pV , rV ) + (m2A # m2

V # q2)["(!pV , rV ).pA] ""!( !pA, rA)&#

'

.

Page 21: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

χc1→J/ψ γ transition

no Q2 < 0 points owing to kinematical structure of matrix element

0 1 2 3 4 5 6

Q2 (GeV

2)

-0.25

-0.2

-0.15

-0.1

-0.05

0

a tM

2(Q2 )

spat. pf = (000) χc1 snk.

spat. pf = (100) χc1 snk.

0 1 2 3 4 5 6

Q2 (GeV

2)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

a tE

1(Q2 )

spat. pf = (000) χc1 snk.

spat. pf = (100) χc1 snk.

PDG phys. massPDG lat. massCLEO phys. massCLEO lat. mass

E1 M2

Page 22: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

principal effective masses

Page 23: Radiative Charmonium Physics - Jefferson Lab · 0.25 2 F(0, Q) t f = 37 Q2 = -2.10 GeV2 Q2 = 0.60 GeV2 Q2 = 2.68 GeV2 Q2 = 4.43 GeV2 two-photon decays ... Radiative Charmonium Physics

Radiative Charmonium Physics - J.Dudek

reconstructed diagonal correlators