44
Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório Nacional www.on.br

Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Embed Size (px)

Citation preview

Page 1: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Radial gravity inversion constrained by total

anomalous mass excess for retrieving 3D bodies

Vanderlei Coelho Oliveira Junior

Valéria C. F. Barbosa

Observatório Nacionalwww.on.br

Page 2: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Contents• Objective

• Methodology

• Real Data Inversion Result

• Conclusions

• Synthetic Data Inversion Result

3D Gravity inversion method

Do the gravity data have resolution to retrieve the 3D source?

Page 3: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

yxN E

zDep

thD

epth

3D source

ObjectiveEstimate from gravity data the geometry of an isolated 3D source

Gravity dataGravity data

Source’s top

Page 4: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Methodology

Page 5: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

y

x

z

y

x Gravity observations

go NR

3D Source

Dep

thD

epth S

The 3D source has an unknown closed surface S.

Methodology

Page 6: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

x

z

y

x Gravity observations

go NR

3D Source

Dep

thD

epth

Approximate the 3D source by a set of 3D juxtaposed prisms in the vertical direction .

S

y

Methodology

Page 7: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

x

z

y

x Gravity observations

go NR

3D Source

Dep

thD

epth

We set the thicknesses and density contrasts of all prisms

y

Methodology

Page 8: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

x

z

y

x Gravity observations

go NR

3D Source

Dep

thD

epth

y

MethodologyThe horizontal cross-section of each prism is described by

an unknown polygon The polygon sides approximately describe the edges of a

horizontal depth slice of the 3D source.

Page 9: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

y

x Gravity observations

go NR

MethodologyThe polygon sides of an ensemble of vertically stacked prisms represent

a set of juxtaposed horizontal depth slices of the 3D source.

x

z3D Source

Dep

thD

epth S

y

Page 10: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

y

x Gravity observations

go NR

MethodologyThe polygon sides of an ensemble of vertically stacked prisms represent

a set of juxtaposed horizontal depth slices of the 3D source.

x

z

Dep

thD

epth

y

Page 11: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

x

z

Dep

thD

epth

y

Methodology

We expect that a set of juxtaposed estimated horizontal depth slices defines the geometry of a 3D source

Page 12: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

x

z

The horizontal coordinates of the polygon vertices represent the

edges of horizontal depth slices of the 3D source.

MethodologyD

epth

Dep

th

y

jj yx ,

jj yx ,

Page 13: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

The polygon vertices of each prism are described by polar coordinates

Methodology

x

z

Dep

thD

epth

y

with an arbitrary origin within the top of each prism.

Arbitrary origin

11 r ,( )22 r ,( )

33 r ,( )( 44 r , )

( 55 r , )

( 66 r , ) ( 77 r , ) ( 88 r , )

Page 14: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

x

z

De

pth

De

pth

y

11 r ,( )22 r ,( )

33 r ,( )( 44 r , )

( 55 r , )

( 66 r , )( 77 r , ) ( 88 r , )

The vertical component of the gravity field produced by the kth prism at the

Methodology

),,,,,(k1kzdz

km,, iziy

ixf

k

1kz

i th observation point (xi, yi, zi) is given by (Plouff, 1976)

dz

T

M

k

M

kk

11][

TkkkM

kkyxrrm 001 ][

M )2(1

ig =

Page 15: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

The gravity data produced by the set of L vertically stacked prisms at the i th observation

point (xi, yi, zi) is given by

Methodology

L

k

kf1

ig = ),,,,,( 1kzdz

km,, iziy

ix

k

x

z

Dep

thD

epth

y

Page 16: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

MethodologyTHE INVERSE PROBLEM

Estimate the radii associated with polygon vertices

x

z

Dep

thD

epth

y

Arbitrary origin

1r2r3

r4r

5r6r

7r 8r

and the horizontal Cartesian coordinates of the origin.

( xo , yo )

Page 17: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

y

x Gravity observations

MethodologyBy estimating the radii associated with polygon vertices and the

horizontal Cartesian coordinates of the arbitrary origin from gravity data,

x

z3D Source

Dep

thD

epth

y

(xo , yo)

we retrieve a set of vertically stacked prisms

Page 18: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

The Inverse Problem

)(mParameter vector The data-misfit function

The constrained inversion obtains the geometry of 3D source by minimizing :

)(m

2

)( mggo

2

The constrained function

)(m

=

The constrained function (m) is defined as a sum of several

constraints:

Page 19: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Smoothness constraint on the adjacent radii defining the horizontal section of each vertical prism

The Inverse Problem

The first-order Tikhonov regularization on the radii of horizontally adjacent prisms

x

z

Dep

thD

epth

y2r3

r4r

5r6r

7r 8r1r

This constraint favors solutions composed by vertical prisms defined by

approximately circular cross-sections.

1r 2r

Page 20: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

kjr

1kjr

Inverse ProblemSmoothness constraint on the adjacent radii of the

verticallyadjacent prisms

x

z

Dep

thD

epth

y

The first-order Tikhonov regularization on the radii of vertically adjacent prisms

This constraint favors solutions with a vertically cylindrical shape.

jr jrk k+1

Page 21: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Inverse ProblemSmoothness constraint on the horizontal position of the arbitrary origins of the vertically adjacent

prisms

It imposes smooth horizontal displacement between all vertically adjacent prisms.

x

z

Dep

thD

epth

y

),( 00kk yx

),( 00k +1k+1 yx

),( 00kk yx ),( 00

k +1k+1 yx

Page 22: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Inverse ProblemThe estimation of the depth of the bottom of the

geologic body

x

z

Dep

thD

epth

y

dz

zo

The interpretation model implicitly defines the maximum depth to the bottom (zmax) of the estimated body by

1

.

.

L

L . dzz max o z

zmax

How do we choose zmax ?Do the gravity data have resolution to retrieve the 3D source?

Page 23: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Inverse ProblemThe depth-to-the-bottom estimate of the geologic

body1) We assign a small value to zmax, setting up the first interpretation model.

gObserved gravity data

zo

zmax 1

z

x

2) We run our inversion method to estimate a stable solution

Fitted gravity data

s

mt

zmax 1

mt X s-curve

5) We repeat this procedure for increasingly larger

values of zmax of the interpretation model

zmax 2

g Observed gravity data

zo

zmax 2

z

x

Fitted gravity data

g Observed gravity data

zo

zmax 3

z

x

Fitted gravity data

zmax 3

g Observed gravity data

zo

zmax 4z

x

Fitted gravity data

4) We plot a point of the mt X s-curve

3) We compute the L1-norm of the data misfit (s) and the

estimated total-anomalous mass ( mt )

zmax 4

Optimum depth-to-bottom estimate

Page 24: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Inverse ProblemDo the gravity data have resolution to retrieve the

3D source?

Correct depth-to-bottom estimate

mt X s-curve

L1-norm of the data misfit

Est

imat

ed t

otal

-ano

mal

ous

mas

s

s (mGal)

mt

g Observed gravity data

zo

zz

x

Fitted gravity data

The gravity data are able to resolve the source’s bottom.

z

Page 25: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Inverse ProblemDo the gravity data have resolution to retrieve the

3D source?

Minimum depth-to-bottom estimate

s (mGal)

mt

mt X s-curve

L1-norm of the data misfit

Est

imat

ed t

otal

-ano

mal

ous

mas

s

g Observed gravity data

zo

z

z

x

Fitted gravity data

The gravity data are unable to resolve the source’s bottom.

z

Page 26: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

INVERSION OF

SYNTHETIC GRAVITY DATA

Page 27: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Synthetic TestsTwo outcropping dipping bodies with density contrast of 0.5 g/cm³.

Simulated shallow-bottomed body

Simulated deep-bottomed body

Maximum bottom depth of 3 km

Maximum bottom depth of 9 km

Page 28: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Synthetic TestsShallow-bottomed dipping body (true depth to the bottom is 3 km)

The estimated total-anomalous mass ( mt ) x the L1-norm of the data misfit (s)

s (mGal) L1-norm of the data misfit

mt (

kg x

10

12 )

Est

ima

ted

tota

l-an

om

alo

us

ma

ss

mt X s - curve

0 0.2 0.40

5

10

zmax = 1.0 km

zmax = 11.0 km

zmax = 2.0 km zmax = 3.0 km

Page 29: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

s (mGal) L1-norm of the data misfit m

t (kg

x 1

012)

Est

ima

ted

tot

al-a

nom

alou

s m

ass

0 0.2 0.4

zmax = 1.0 km

zmax = 11.0 km

zmax = 2.0 km zmax = 3.0 km

0

5

10

Synthetic TestsShallow-bottomed dipping body (true depth to the bottom is 3 km)

Dep

th (

km)

y(km) x(km)

Initial guessTrue Body

mt X s - curve

Page 30: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Synthetic TestsShallow-bottomed dipping body (true depth to the bottom is 3 km)

True Body Estimated body

Dep

th (

km)

x(km)y(km)

Page 31: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Synthetic TestsDeep-bottomed dipping body (true depth to the bottom is 9.0 km)

The estimated total-anomalous mass ( mt ) x the L1-norm of the data misfit (s)

s (mGal) L1-norm of the data misfit

mt (

kg x

10

12 )

Est

ima

ted

tota

l-an

om

alo

us

ma

ss

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40

5

10

15

20

25zmax = 6.0 km

mt X s - curve

True depth to the bottom

Lower bound estimate of the depth to the bottom

zmax = 9.0 km

Page 32: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

De

pth

(k

m)

x(km)y(km)

True Body

Synthetic TestsDeep-bottomed dipping body (true depth to the bottom is 9.0 km)

0

4.9

9.9

y(km) x(km)

0

4.9

9.9

By assuming two interpretation models with maximum bottom depths of 6 km and 9 km

Initial guess (6 km) Initial guess (9 km)True Body

De

pth

(k

m)

Lower bound estimate of the depth to the bottom (6 km) True depth to the bottom (9 km)

6 km9 km

Page 33: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Synthetic TestsDeep-bottomed dipping body (true depth to the bottom is 9.0 km)

By assuming two interpretation models with maximum bottom depths of 6 km and 9 km

0

4.9

9.9

De

pth

(k

m)

y(km) x(km)

True Body

x(km)y(km)

0

4.9

9.9

True BodyEstimated bodyEstimated body

6 km6 km

Lower bound estimate of the depth to the bottom (6 km) True depth to the bottom (9 km)

9 km6 km

Page 34: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

INVERSION OF

REAL GRAVITY DATA

Page 35: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Application to Real Data

Real gravity-data set over greenstone rocks in Matsitama, Botswana.

Study area

Page 36: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Simplified geologic map of greenstone rocks in Matsitama, Botswana.

(see Reeves, 1985)

Application to Real Data

Page 37: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

20

20 40 60

40

60

80 100 120

80

100

120

140

160N

orth

ing

(km

)

Easting (km)

Gravity-data set over greenstone rocks in Matsitama (Botswana).

Application to Real Data

A

B

Page 38: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

The estimated total-anomalous mass ( mt ) x the L1-norm of the data misfit (s)

Application to Real Data

s (mGal) L1-norm of the data misfit

mt (

kg x

10

12 )

Est

ima

ted

tota

l-an

om

alo

us

ma

ss

mt X s - curve

zmax = 3.0 km

zmax = 10 km zmax = 8 km

Page 39: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Estimated greenstone rocks in Matsitama (Botswana).

Application to Real Data

Dep

th (

km)

Estimated BodyInitial guess

Northing (km)

N

Easting (km)

Page 40: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Application to Real Data

Northing (km) Easting (km)

Northing (km)Easting (km)

Estimated greenstone rocks

in Matsitama (Botswana).

Page 41: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Application to Real Data

Nor

thin

g (k

m)

Easting (km)

The fitted gravity anomaly produced by the estimated greenstone rock in Matisitama

Page 42: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Conclusions

Page 43: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Conclusions The proposed gravity-inversion method

• Estimates the 3D geometry of isolated source

• Introduces homogeneity and compactness constraints via the interpretation model

• To reduce the class of possible solutions, we use a criterion based on the curve of

the estimated total-anomalous mass (mt) versus data-misfit measure (s).

• The solution depends on the maximum depth to

the bottom assumed for the interpretation model.

•The correct depth-to-bottom estimate of the

source is obtained if the minimum of s on the

mt × s curve is well defined

Otherwise this criterion provides just a lower

bound estimate of the source’s depth to the

bottom.

Dep

th (

km)

s (mGal) L1-norm of the data misfit

mt X s - curve

mt (

kg x

1012

)

Est

ima

ted

to

tal-a

no

ma

lou

s m

ass

0

zmax = 3.0 km

0

5

10

0.2 0.4

0

4.9

9.9

Dep

th (

km)

mt (

kg x

1012

)

Est

imat

ed to

tal-a

nom

alou

s m

ass

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40

5

10

15

20

25

s (mGal) L1-norm of the data misfit

zmax = 6 km Lower bound estimate of the

depth to the bottom

mt X s - curve

Page 44: Radial gravity inversion constrained by total anomalous mass excess for retrieving 3D bodies Vanderlei Coelho Oliveira Junior Valéria C. F. Barbosa Observatório

Thank you

for your attention