r1 DMCN 13163 Review

Embed Size (px)

Citation preview

  • 8/16/2019 r1 DMCN 13163 Review

    1/12

     

    Online Proofing System Instructions

    The Wiley Online Proofing System allows authors and proof reviewers to review PDF proofs, mark corrections, respond

    to queries, upload replacement figures, and submit these changes directly from the PDF proof from the locally saved file

    or while viewing it in your web browser.

    1. For the best experience reviewing your proof in the Wiley OnlineProofing System please ensure you are connected to the internet.

    This will allow the PDF proof to connect to the central Wiley Online

    Proofing System server. If you are connected to the Wiley Online

    Proofing System server you should see the icon with a green check

    mark above in the yellow banner.

    2. 

    Please review the article proof on the following pages and mark anycorrections, changes, and query responses using the Annotation Tools

    outlined on the next 2 pages.

    3. 

    To save your proof corrections, click the “Publish Comments”

    button appearing above in the yellow banner. Publishing your

    comments saves your corrections to the Wiley Online Proofing

    System server. Corrections don’t have to be marked in one sitting,

    you can publish corrections and log back in at a later time to add

    more before you click the “Complete Proof Review” button below.

    4. 

    If you need to supply additional or replacement files bigger than

    5 Megabytes (MB) do not attach them directly to the PDF Proof,

    please click the “Upload Files” button to upload files:

    5. 

    When your proof review is complete and you are ready to submit corrections to the publisher, please click

    the “Complete Proof Review” button below:

    IMPORTANT: Do not click the “Complete Proof Review” button without replying to all author queries found on

    the last page of your proof. Incomplete proof reviews will cause a delay in publication.

    IMPORTANT: Once you click “Complete Proof Review” you will not be able to publish further corrections. 

    Connected Disconnected

    Click Here

    Click Here

  • 8/16/2019 r1 DMCN 13163 Review

    2/12

    USING e-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION

    Once you have Acrobat Reader open on your computer, click on the Comment tab at the right of the toolbar:

    This will open up a panel down the right side of the document. The majority of

    tools you will use for annotating your proof will be in the Annotations section,pictured opposite. We’ve picked out some of these tools below:

    1. Replace (Ins) Tool – for replacing text.

    Strikes a line through text and opens up a text

    box where replacement text can be entered.

    How to use it

      Highlight a word or sentence.

      Click on the Replace (Ins) icon in the Annotations

    section.

      Type the replacement text into the blue box that

    appears.

    2. Strikethrough (Del) Tool – for deleting t ext.

    Strikes a red line through text that is to be

    deleted.

    How to use it

      Highlight a word or sentence.

      Click on the Strikethrough (Del) icon in the

    Annotations section.

    3. Add note to text Tool – for highlighting a section

    to be changed to bold or italic.

    Highlights text in yellow and opens up a text

    box where comments can be entered.

    How to use it

      Highlight the relevant section of text.

      Click on the Add note to text icon in the

    Annotations section.

      Type instruction on what should be changed

    regarding the text into the yellow box thatappears.

    4. Add sticky note Tool – for making notes at

    specific points in the text.

    Marks a point in the proof where a comment

    needs to be highlighted.

    How to use it

      Click on the Add sticky note icon in the

    Annotations section.

      Click at the point in the proof where the comment

    should be inserted.

     

    Type the comment into the yellow box thatappears.

  • 8/16/2019 r1 DMCN 13163 Review

    3/12

    USING e-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION

    5. Attach File Tool – for inserting large amounts of

    text or replacement figur es.

    Inserts an icon linking to the attached file in the

    appropriate place in the text.

    How to use it

      Click on the Attach File icon in the Annotations

    section.

      Click on the proof to where you’d like the attached

    file to be linked.

     

    Select the file to be attached from your computer

    or network.

      Select the colour and type of icon that will appear

    in the proof. Click OK.

    6. Drawing Markups Tools – for drawing

    shapes, lines and freeform annotations on

    proofs and commenting on these marks.Allows shapes, lines and freeform annotations to be

    drawn on proofs and for comment to be made on

    these marks.

    How to use it

    Click on one of the shapes in the Drawing Markups

    section.

    Click on the proof at the relevant point and draw the

    selected shape with the cursor.

    To add a comment to the drawn shape, move the

    cursor over the shape until an arrowhead appears.

    Double click on the shape and type any text in the

    red box that appears.

  • 8/16/2019 r1 DMCN 13163 Review

    4/12

    DEVELOPMENTAL MEDICINE & CHILD NEUROLOGY ORIGINAL ARTICLE

    Evaluation of non-coding variation in GLUT1 deficiency

    YU-CHI LIU1,2,*   JIA WEI AUDREY  LEE1,*   SUSANNAH T BELLOWS1 JOHN A  DAMIANO1

    SAUL A  MULLEN1,3 SAMUEL F  BERKOVIC1 MELANIE BAHLO2 INGRID E SCHEFFER1,3,4

    MICHAEL S HILDEBRAND1 CLINICAL GROUP†1

    1  Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Heidelberg, Vic.; 2  Population Health and Immunity Division, The Walter

    and Eliza Hall Institute, Parkville, Vic.;  3   Florey Institute, Heidelberg, Vic.;  4  Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville,

    Vic., Australia.

    Correspondence to Michael S Hildebrand, Epilepsy Research Centre, 245 Burgundy St Heidelberg, Vic. 3084, Australia. E-mail: [email protected]

    *These authors contributed equally to this work.†Members of the group are listed in Appendix A.

    PUBLICATION DATA

    Accepted for publication 14th April 2016.

    Published online

    ABBREVIATIONS

    CSF Cerebrospinal fluid

    GLUT-1 Glucose transporter-1

    AIM  Loss-of-function mutations in  SLC2A1, encoding glucose transporter-1 (GLUT-1), lead to

    dysfunction of glucose transport across the blood – brain barrier. Ten percent of cases with

    hypoglycorrhachia (fasting cerebrospinal fluid [CSF] glucose  

  • 8/16/2019 r1 DMCN 13163 Review

    5/12

    deficiency, making it difficult to identify genotype – pheno-type correlations, as emphasized by a recent French study of 265 patients.12 Despite this molecular diagnostic suc-cess,   SLC2A1   mutations are not detected in 10% of patients with  16y)

    3.3 – 4.4 (age  50% of pairedserum glucose levela

    5 2.8 – 4.5

    6 3.3 – 4.4

    7 3.0 – 4.5

    8 2.5 – 5.0

    9 2.2 – 5.5

    10 2.8 – 4.0

    11 3.3 – 4.5

    12 2.5 – 5.6

    13 2.5 – 5.5

    14 2.8 – 4.4

    15 2.8 – 5.0

    aOnly paired CSF and serum glucose levels were interpretable for

    this laboratory.

    What this paper adds•   Deep intronic   SLC2A1  mutations may cause GLUT1 deficiency.

    •   Awareness of age-related cerebrospinal fluid (CSF) glucose levels critical in

    GLUT1 deficiency evaluation.

    •   Sequencing of  SLC2A1  is worthwhile when GLUT1 deficiency is suspected.

    2   Developmental Medicine & Child Neurology  2016

    http://www.novocraft.com/http://www.novocraft.com/

  • 8/16/2019 r1 DMCN 13163 Review

    6/12

    UCSC Genome Browser). PCR duplicates were removedusing MarkDuplicates from Picard version 1.117 (http://broadinstitute.github.io/picard/; Broad Institute, Cambridge,

     MA, USA). Variant calling was performed with GATK HaplotypeCaller (version v3.2 – 2) and variant annotation

     with ANNOVAR (http://annovar.openbioinformatics.org/en/latest/; University of Pennsylvania, Philadelphia, PA,USA). Variants were filtered according to the following cri-teria: location in exonic or splicing regions; mutation types(missense, stopgain/loss, coding indels, or potential splicesite mutations); a minor allele frequency   ≤0.01 in the 1000Genomes dataset, Exome Aggregation Consortium database,or the 6500 NHLBI-ESP exomes dataset; and appearancein   C; Fig. 1) and verifiedby Sanger sequencing. This variant was not found in pub-licly available databases including dbSNP, ExAC, the 1000Genomes and the 6500 NHLBI-ESP exomes dataset. Con-sidering its location within a splice site, the potential effect of the mutation on the splicing process was first evaluatedcomputationally. Splice-Site Analyzer Tool software indi-cated that the mutation reduced the similarity score of thesplice site to the consensus splice site sequence from 81.77to 69.29 (http://ibis.tau.ac.il/ssat/SpliceSiteFrame.htm; Tel

     Aviv University, Tel Aviv, Israel), predicting the splicingmachinery may recognize an alternate splice site instead of the mutated site.

    Confirmation of  SLC2A1   intron retentionBecause SLC2A1  is expressed in lymphocytes, we examinedthe effect of the mutation by extracting RNA from venousblood of the proband and his unaffected mother. Oligonu-cleotides were designed to amplify sequence from exon 5to exon 8 (415 base pairs), and this size fragment wasamplified from the cDNA of the mother who was homozy-gous wild-type c.972+5G (Fig. 2). However, when the

    Non-Coding Variation in GLUT1 Deficiency Yu-Chi Liu et al.   3

    http://broadinstitute.github.io/picard/http://broadinstitute.github.io/picard/http://annovar.openbioinformatics.org/en/latest/http://annovar.openbioinformatics.org/en/latest/http://www.ncbi.nlm.nih.gov/nuccore/NM_006516http://www.ncbi.nlm.nih.gov/genehttp://www.mrc-holland.com/http://ibis.tau.ac.il/ssat/SpliceSiteFrame.htmhttp://ibis.tau.ac.il/ssat/SpliceSiteFrame.htmhttp://www.mrc-holland.com/http://www.ncbi.nlm.nih.gov/genehttp://www.ncbi.nlm.nih.gov/nuccore/NM_006516http://annovar.openbioinformatics.org/en/latest/http://annovar.openbioinformatics.org/en/latest/http://broadinstitute.github.io/picard/http://broadinstitute.github.io/picard/

  • 8/16/2019 r1 DMCN 13163 Review

    7/12

            T      a        b        l      e

            I        I      :

          P      h    e    n    o     t    y    p    e    a    n      d      f    a    s     t      i    n    g    c    e    r    e      b    r    o    s    p

          i    n    a      l      f      l    u      i      d      (      C      S      F      )    g      l    u    c    o    s    e    r    e    s    u      l     t    s    o      f    p    a     t      i    e    n     t    s    w      i

         t      h    n    o    v    e      l    v    a    r      i    a    n     t    s      i    n      S      L      C      2      A      1

         P   r   o     b   a   n     d

         V   a   r     i   a   n    t

         E   p     i     l   e   p   s   y

       s   y   n     d   r   o   m

       e

         S   e     i   z   u   r   e    t   y   p   e

         A   g   e   o     f

       o   n   s   e    t

         D   e   v   e     l   o   p   m   e   n    t     /

         i   n    t   e     l     l   e   c    t

         O    t     h   e   r

       c     l     i   n     i   c   a     l

         f   e   a    t   u   r   e   s

         F   a   s    t     i   n   g     C

         S     F

       g     l   u   c   o   s   e     l   e   v   e     l

         (   m   m   o     l     /     L     )

         [   a   g   e   a    t    t   e

       s    t     ]

         L   a     b   o   r   a    t   o   r   y

       r   e     f   e   r   e   n   c   e

       r   a   n   g   e

         (   m   m   o     l     /     L     )

         A   g   e  -   s   p   e   c     i     fi   c

       r   e     f   e   r   e   n   c   e

       r   a   n   g   e

         (     L   e   e   n

       e    t   a     l . ,

         2     0    1     0     )

         (   m   m   o     l     /     L     )

         E     E     G     fi   n

         d     i   n   g   s

         H   e   a     d

       c     i   r   c   u   m     f   e   r   e   n   c   e

         (   c   e   n    t     i     l   e     )

         F   a   m     i     l   y    1 ,

         I     I   :    1

         A     (   c .     9    7     2      +    5     G      >     C     )

         G     L     U     T    1

       e   n   c   e   p     h   a     l   o   p   a    t     h   y

         A    t   y   p     i   c   a     l

       a     b   s   e   n   c   e ,

       n   o   n  -   c   o   n   v   u     l   s     i   v   e

       s    t   a    t   u   s

       e   p     i     l   e   p    t     i   c   u   s

        4   y   e   a   r   s

         D   e     l   a   y   e     d ,

       r   e   g   r   e   s   s     i   o   n ,

       m   o     d   e   r   a    t   e

         i   n    t   e     l     l   e   c    t   u   a     l

         d     i   s   a     b     i     l     i    t   y

         A    t   a   x     i   a ,

         d   y   s   a   r    t     h   r     i   a ,

         h   y   p   e   r  -

       v   e   n    t     i     l   a    t     i   o   n

         i   n     d   u   c   e     d

        t   e    t   a   n   y

        1 .     9

         [    5   y     ]

         2 .     8   –    4 .     0

         2 .    5   –    4 .     0

         G   e   n   e   r   a

         l     i   z   e     d

       s   p     i     k   e   w   a   v   e ,

       p   o     l   y   s   p

         i     k   e

       w   a   v   e ,

         f   r   e   q   u   e

       n    t

       m   u     l    t     i     f   o   c   a     l

         d     i   s   c     h   a

       r   g   e   s

         2     0    t     h   –     3     0    t     h

         F   a   m     i     l   y     2 ,

         I     I   :    1

         B     (   c .    1

         9   –    4     2     0     C      >     T     )

         E   p     i     l   e   p   s   y

       w     i    t     h

       m   y   o   c     l   o

       n     i   c  -

       a    t   o   n     i   c   s

       e     i   z   u   r   e   s

         T   o   n     i   c     /   c     l   o   n     i   c ,

         M   y   o   c     l   o   n     i   c ,

         D   r   o   p   a    t    t   a   c     k   s

         3   y   e   a   r   s

         N   o   r   m   a     l

         2 .    7

         [     3   y     ]

         2 .     8   –    5 .     0

         2 .    5   –    4 .     0

         G   e   n   e   r   a

         l     i   z   e     d

       s   p     i     k   e   w   a   v   e ,

       p   o     l   y   s   p

         i     k   e   w   a   v   e

        5     0    t     h   –     6     0    t     h

         F   a   m     i     l   y     3 ,

         I     I   :    1

         C     (   c .    1

         9   –     2     0    7     T      >     C     )

         E   a   r     l   y  -   o   n

       s   e    t

       a     b   s   e   n   c   e

       e   p     i     l   e   p   s   y

         A     b   s   e   n   c   e

        1     2   m   o   n    t     h   s

         D   e     l   a   y   e     d

         2 .     6

         [    1     6   m   o     ]

         2 .     8   –    4 .    5

         2 .    4   –    4 .     2

         G   e   n   e   r   a

         l     i   z   e     d

       s   p     i     k   e   w   a   v   e

        4     0    t     h   –    5     0    t     h

         F   a   m     i     l   y    4 ,

         I     I     I   :    1

         E   p     i     l   e   p    t     i   c

       e   n   c   e   p     h   a     l   o   p   a    t     h   y

         F   o   c   a     l   m   o    t   o   r

       s   e     i   z   u   r   e   s ,

       g   e   n   e   r   a     l     i   z   e     d

        t   o   n     i   c   c     l   o   n     i   c

       s   e     i   z   u   r   e   s ,

       s    t   a    t   u   s

       e   p     i     l   e   p    t     i   c   u   s

         6   w   e   e     k   s

         D   e     l   a   y   e     d ,

       r   e   g   r   e   s   s     i   o   n ,

       s   e   v   e   r   e

         i   n    t   e     l     l   e   c    t   u   a     l

         d     i   s   a     b     i     l     i    t   y

         N   o   n  -   v   e   r     b   a     l ,

       c   o   m   p     l   e   x

       m   o   v   e   m   e   n    t

         d     i   s   o   r     d   e   r ,

         b   e     h   a   v     i   o   u   r   a     l

         i   s   s   u   e   s

         2 .     9

         [     2   y     ]

         3 .    5

         [    1     3   y     ]

        4 .    4

         [    1    4   y     ]

         3 .     0   –    5 .     0

         2 .    4   –    4 .     2

         G   e   n   e   r   a

         l     i   z   e     d

       s     l   o   w     i   n

       g ,

       n   o     d   e     fi

       n     i    t   e

       e   p     i     l   e   p    t     i     f   o   r   m

         d     i   s   c     h   a

       r   g   e   s

        1     0    t     h

    4   Developmental Medicine & Child Neurology  2016

  • 8/16/2019 r1 DMCN 13163 Review

    8/12

    same amplification was performed for the proband, the wild-type (415 base pairs) fragment and a larger fragment (~ 570 base pairs) were observed (Fig. 2). These resultsrevealed incorporation of intron 7 to 8 sequence in theRNA produced by the mutant allele. This intron inclusionis predicted to lead to a premature stop codon(p.S324+28*).

    Screening for non-coding single nucleotide and copy

    number variantsBased on the findings for Family 1, we searched for non-coding mutations in promoter and intronic regions of SLC2A1   in the 55 remaining probands by Sanger sequenc-ing and multiplex-ligation-dependent probe amplification.

     Two novel single nucleotide variants in deep intronicregions were identified by sequencing in three families(one variant was found in two probands) (Fig. 1) but none

     was found in the promoter regions. We also searched forcopy number variants at the   SLC2A1   locus by multiplex-ligation-dependent probe amplification in the 55 remainingprobands, but none were found (data not shown).

    Intronic variants reduce  SLC2A1  mRNA transcriptRNA from fresh venous blood was obtained from two indi-

     viduals from Family 4 with a deep intronic variant; bloodsamples were not available for transcript analysis fromFamilies 2 and 3. Real-time PCR studies using cDNA derived from patient RNA revealed markedly reducedSLC2A1   mRNA transcript in the proband (who carries

     variant C) compared with her unaffected mother (without  variant C) (Fig. 3). The proband had around half the

    mRNA of her mother, consistent with near-failure of tran-scription from one allele of  SLC2A1.

    Phenotypic analyses of patients with intronic variants The three probands with intronic variants presented with arange of phenotypes (Table II): epilepsy with myoclonic-atonic seizures (Family 2), early-onset absence epilepsy 

     with developmental delay (Family 3), and GLUT1encephalopathy with seizures, developmental delay andregression, complex motor disorder (ataxia, dystonia, andepisodic events), and progressive microcephaly (Family 4).

     The CSF glucose levels (2.6 – 2.9mmol/L) of all three

    Controla   b   c

    c.972+5 G>C   c.19-420 C>T   c.19-207 T>C

    Control   Control

    Figure 1:5 4Novel  SLC2A1 non-coding variants in families. Variant A is the splice site mutation identified by whole exome sequencing in Family 1. Variant

    B was found in Family 2, and variant C in Families 3 and 4.

    587

    M

     o t  h  er –RT 

    M

     o t  h  er +RT 

    P r  o b  an d –RT 

    P r  o

     b  an d +RT 

     p U C 1  8 DNA H

     a el  l  l  l   a d  d  er 

    MUT splice product (~570 bp)

    WT splice product (415 bp)

    458434

    298

    Figure 2:  Transcript analysis in Family 1 confirms intron retention. Reverse transcriptase PCR results showing inclusion of intron 7 to 8 sequence in the

    c.972+5G>C mutant transcript. A pUC18 DNA HaeIII ladder was run. The wild-type fragments are 415 base pairs whereas the mutant fragment is largerdue to retention of intron 7 to 8 sequence in the transcript from one allele. No amplification is observed from the minus reverse transcriptase (RT) con-

     trol samples.

        L     O    W

        R    E     S     O    L    U    T    I     O    N     C     O    L     O    R    F    I     G

         C     O    L     O    R

    Non-Coding Variation in GLUT1 Deficiency Yu-Chi Liu et al.   5

  • 8/16/2019 r1 DMCN 13163 Review

    9/12

    probands were low according to laboratory-specific refer-ence ranges; however, when compared with age-specificreference ranges, the levels were within the normal range

    (Table II).

    3

     The proband from Family 1 has trialled theketogenic diet, however they found it difficult to imple-ment because the patient refused food. Seizures in pro-bands of Families 3 and 4 have been well controlled onanti-epileptic medication. The proband from Family 4 hassevere intellectual disability and is severely restricted dueto autistic features and behavioural problems. A modified

     Atkins or ketogenic diet is now being considered in thesepatients.

    DISCUSSION A critical issue is the variation in the definition of normalCSF glucose levels in different laboratories (Table I).3,10

     Yang et al.10 note that the normal range for CSF glucosehas never been properly defined, and this has led to con-siderable confusion about the lower limits of normal CSFglucose in patients whose presentation falls within theGLUT1 phenotypic spectrum.5,6,9  This is further compli-cated by the need for age-specific reference ranges asclearly delineated by Leen et al.3  When reviewing theseranges for the probands of Families 2 to 4 with intronic

     variants, it is notable that all would be defined as havingnormal fasting CSF glucose for age in contradistinction totheir laboratory-specific ranges (Table II). The proband of Family 4 had three CSF glucose test results, which

    interestingly show marked variability (2.9, 3.3, 4.4). Although testing should be performed in the fasting state,it is possible that adequate fasting is not always achievedand could result in pre-analytical error. The abnormalmRNA transcript levels found in one proband is highly suggestive of GLUT1 deficiency, implying that the morerecent parameters suggesting that CSF glucose lower than3.3mmol/L are more appropriate to consider for investiga-tion of this treatable disease. Even so, 52 of our 56 patientsdid not have mutations, and it remains unclear if theirCSF glucose level reflects normal physiological variationor GLUT1 deficiency. Although genetic heterogeneity may also underlie GLUT1 deficiency, our sequencing of related transporters GLUT3 and MCT1 – 4 did not identify mutations.14

    Sequencing of  SLC2A1  intronic and promoter sequencesrevealed a novel de novo single nucleotide splice site muta-tion in the proband of Family 1 by whole exome analysis,and novel deep intronic variants in the probands of Fami-lies 2, 3, and 4 (Fig. 1).  SLC2A1  splice site mutations have

    been reported in GLUT1 deficiency with abnormal splic-ing of the mRNA transcripts in some cases3,13,15,16

    (Table SIII, online supporting information). These splicesite mutations have been found 1 to 3 base pairs from theintron – exon boundary, whereas our mutation was 5 basepairs from the boundary (Table SIII). Our transcript stud-ies showed that the de novo splice site mutation led to dis-ruption of the original donor splice site and utilization of acryptic splice site further into the intron, resulting inintron inclusion in the transcript (Fig. 2). This transcript islikely to lead to translation of aberrant protein due to apremature stop codon, and consequent GLUT1 trans-

    porter deficiency.Here we show that deep intronic variants can also alterSLC2A1   transcription and are likely to lead to GLUT1deficiency (Fig. 3). To add further support for thepathogenicity of these variants, functional studies such aserythrocyte 3-O-methyl-d-glucose uptake assays could beconsidered. Recurrent, novel variant C (c.19 – 207 T>C),found in Families 3 and 4, is predicted by the Encode pro-

     ject (http://www.genome.ucsc.edu/ENCODE/; StanfordUniversity, Stanford, CA, USA) to be in a region enrichedin H3K27Ac, H3K4me1, and H3K4me3 histone markingscharacteristic of active enhancer elements.17  Alteration of these epigenetic modifications has the potential to change

    chromatin structure and de-regulate gene transcription.18

    For example, binding of transcription factors to intronicenhancer elements has been found to regulate, through his-tone modifications, CFTR expression in cystic fibrosis.19

    In silico predictions suggest that variant B (c.19 – 428C> T), found in Family 2, lies within a gene region

     where DNA-dependent RNA polymerase II subunit A (POLR2A)   –   the largest subunit of RNA polymerase II   – binds. Therefore, variant B could affect POLR2A bindingand enhancer interaction, leading to altered transcriptionof   SLC2A1. This type of effect is not unprecedented inepilepsy as a deep intronic variant in a pseudoexon was

    1.2

    SLC2A1 mRNA

    1

    Mother

    Proband

    0.8

    0.6

       R  e   l  a   t   i  v  e  m   R   N   A

    0.4

    0.2

    0

    Figure 3:  Real-time PCR analysis reveals reduced transcript due to deep

    intronic mutation. Real-time PCR results showing reduction of  SLC2A1

    mRNA transcript in blood due to the presence of variant C in the proband

    from Family 4 compared with her unaffected mother who does not carry

     the variant.

         C     O    L     O    R

    6   Developmental Medicine & Child Neurology  2016

    http://www.genome.ucsc.edu/ENCODE/http://www.genome.ucsc.edu/ENCODE/

  • 8/16/2019 r1 DMCN 13163 Review

    10/12

    discovered that altered the expression of   ALDH7A1   inpyridoxine-dependent epilepsy.20 However, we could not determine the effect of this variant, because blood samplesfrom suitable family members were unavailable for tran-script analysis.

     A molecular diagnosis was not found for most of ourcohort with low CSF glucose levels according to current clinical laboratory reference ranges, despite examination of SLC2A1  coding and non-coding regions. Part of the expla-nation may be that we did not sequence introns 1 and 2comprehensively because of their large size (~ 15 and 12megabases, respectively), and there may be other distantly located non-coding sites important for  SLC2A1  regulation.

    Our findings suggest that, in a patient with clinical andlaboratory features of GLUT1 deficiency, and a normalresult from standard sequencing of  SLC2A1, specific stud-ies looking for smaller intragenic, or contiguous copy number variants and structural variants, should be per-formed, followed by sequencing of intronic regions.

    A C K N O W L E D G E M E N T S We thank the patients and their families for participation in this

    study. Elena Aleksoska (Epilepsy Research Centre) is acknowl-

    edged for performing genomic DNA extractions. This study was

    supported by a National Health and Medical Research Council

    (NHMRC) Program Grant (628952) to SFB and IES, a Practi-

    tioner Fellowship (1006110) to IES and a Career Development 

    Fellowship (1063799) to MSH. MB was supported by an

    NHMRC Senior Research Fellowship (1002098) and NHMRC

    Program Grant (1054618). This work was also supported by Vic-

    torian State Government Operational Infrastructure Support and

     Australian Government NHMRC IRIISS funding to MB and YL.

     Authors report grant funds that contributed to this project as out-

    lined above. IES discloses payments from UCB Pharma, Eisai,

    GSK, Athena Diagnostics, and Transgenomics for lectures and

    educational presentations, and a patent for  SCN1A  testing held by 

    Bionomics Inc. licensed to various diagnostic companies. SFB dis-

    closes payments from UCB Pharma, Novartis Pharmaceuticals,

    Sanofi-Aventis, and Jansen Cilag for lectures and educational pre-

    sentations, and a patent for   SCN1A   testing held by Bionomics

    Inc. licensed to various diagnostic companies.

    S U P P O R T I N G I N F O R M A T I O N

     The following additional material may be found online:

     Table SI: Oligonucleotides used in this study. Table SII: Exome coverage statistics.

     Table SIII: Reported SLC2A1 splice site mutations.

    REFERENCES

    1. Simpson IA, Carruthers A, Vannucci SJ. Supply and

    demand in cerebral energy metabolism: the role of 

    nutrient transporters.  J Cereb Blood Flow Metab  2007;  27 :

    1766 – 91.

    2. De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM,

    Behmand RA, Harik SI. Defective glucose transport 

    across the blood-brain barrier as a cause of persistent 

    hypoglycorrhachia, seizures, and developmental delay.  N 

     Engl J Med  1991;  325: 703 – 09.

    3. Leen WG, Klepper J, Verbeek MM, et al. Glucose

    transporter-1 deficiency syndrome: the expanding clini-

    cal and genetic spectrum of a treatable disorder.  Brain

    2010; 133: 655 – 70.

    4. Pearson TS, Akman C, Hinton VJ, Engelstad K, De

     Vivo DC. Phenotypic spectrum of glucose transporter

    type 1 deficiency syndrome (Glut1 DS).   Curr Neurol 

     Neurosci Rep  2013;  13: 342.

    5. Arsov T, Mullen SA, Damiano JA, et al. Early onset 

    absence epilepsy: 1 in 10 cases is caused by GLUT1

    deficiency.   Epilepsia   2012;   53: e204 – 

    07. doi:10.1111/epi.12007.

    6. Arsov T, Mullen SA, Rogers S, et al. Glucose trans-

    porter 1 deficiency in the idiopathic generalized epilep-

    sies. Ann Neurol  2012; 72 : 807 – 15.

    7. Mullen SA, Marini C, Suls A, et al. Glucose transporter

    1 deficiency as a treatable cause of myoclonic astatic epi-

    lepsy. Arch Neurol  2011; 68: 1152 – 55.

    8. Suls A, Dedeken P, Goffin K, et al. Paroxysmal exer-

    cise-induced dyskinesia and epilepsy is due to mutations

    in SLC2A1, encoding the glucose transporter GLUT1.

    Brain 2008;  131: 1831 – 44.39. Suls A, Mullen SA, Weber YG, et al. Early-onset 

    absence epilepsy caused by mutations in the glucose

    transporter GLUT1. Ann Neurol  2009;  66: 415 – 19.

    10. Yang H, Wang D, Engelstad K, et al. Glut1 deficiency 

    syndrome and erythrocyte glucose uptake assay.   Ann

     Neurol  2011;  70: 996 – 1005.

    11. Klepper J, Scheffer H, Elsaid MF, Kamsteeg EJ, Lefer-

    ink M, Ben-Omran T. Autosomal recessive inheritance

    of GLUT1 deficiency syndrome.   Neuropediatrics   2009;

    40: 207 – 10.

    12. Hully M, Vuillaumier-Barrot S, Le Bizec C, et al. From

    splitting GLUT1 deficiency syndromes to overlapping

    phenotypes. Eur J Med Genet  2015; 58: 443 – 54.

    13. Wang D, Kranz-Eble P, De Vivo DC. Mutational anal-

     ysis of GLUT1 (SLC2A1) in Glut-1 deficiency syn-

    drome. Hum Mutat  2000; 16: 224 – 

    31.14. Hildebrand MS, Damiano JA, Mullen SA, et al. Glucose

    metabolism transporters and epilepsy: only GLUT1 has

    an established role.  Epilepsia  2014;  55: e18 – 21.

    15. Hashimoto N, Kagitani-Shimono K, Sakai N, et al.

    SLC2A1 gene analysis of Japanese patients with glucose

    transporter 1 deficiency syndrome.   J Hum Genet  2011;

    56: 846 – 51.

    16. Woo SB, Lee KH, Kang HC, Yang H, De Vivo DC,

    Kim SK. First report of glucose transporter 1 deficiency 

    syndrome in Korea with a novel splice site mutation.

    Gene 2012; 506 : 380 – 82.

    17. Heintzman ND, Stuart RK, Hon G, et al. Distinct and

    predictive chromatin signatures of transcriptional pro-

    moters and enhancers in the human genome.   Nat Genet 

    2007; 39: 311 – 18.

    18. Gupta J, Kumar S, Li J, Krishna Murthy Karuturi R,

     Tikoo K. Histone H3 lysine 4 monomethylation

    (H3K4me1) and H3 lysine 9 monomethylation

    (H3K9me1): distribution and their association in regu-

    lating gene expression under hyperglycaemic/hyperinsu-

    linemic conditions in 3T3 cells.   Biochimie   2012;   94:

    2656 – 64.

    19. Paul T, Li S, Khurana S, Leleiko NS, Walsh MJ. The

    epigenetic signature of CFTR expression is co-ordinated

     via chromatin acetylation through a complex intronic

    element. Biochem J  2007;  408: 317 – 26.

    20. Milh M, Pop A, Kanhai W, et al. Atypical pyridoxine-dependent epilepsy due to a pseudoexon in ALDH7A1.

     Mol Genet Metab 2012;  105: 684 – 86.

    Non-Coding Variation in GLUT1 Deficiency Yu-Chi Liu et al.   7

    http://dx.doi.org/10.1111/epi.12007http://dx.doi.org/10.1111/epi.12007http://dx.doi.org/10.1111/epi.12007http://dx.doi.org/10.1111/epi.12007

  • 8/16/2019 r1 DMCN 13163 Review

    11/12

    APPENDIX A:CLINICAL GROUP

     The following authors are clinicians who provided patientsfor this study: Monique M. Ryan, Department of Neurol-ogy, Royal Children’s Hospital, and Department of Paedi-atrics, University of Melbourne, Royal Children’s Hospital,Parkville, Victoria; Richard J. Leventer, Department of 

    Neurology, Royal Children’s Hospital; Department of Pae-diatrics, University of Melbourne, Royal Children’s Hospi-tal; and Murdoch Children’s Research Institute, RoyalChildren’s Hospital, Parkville, Victoria; Jeremy L. Free-man, Department of Neurology, Royal Children’s Hospi-tal, Parkville, Victoria; Mark T. Mackay, Department of Neurology, Royal Children’s Hospital, and Department of 

    Paediatrics, University of Melbourne, Royal Children’sHospital, Parkville, Victoria; Michael Hayman, Depart-ment of Neurology, Royal Children’s Hospital, and Mur-doch Children’s Research Institute, Royal Children’sHospital, Parkville, Victoria; Victoria Rodriguez-Casero,Department of Neurology, Royal Children’s Hospital,Parkville, Victoria; Gopi Subramanian, Paediatric Neurol-ogy Unit, John Hunter Children’s Hospital, New LambtonHeights, NSW; Richard Webster, TY Nelson Department of Neurology and Neurosurgery, The Children’s Hospitalat Westmead, Sydney, NSW, Australia. Lynette G. Sadleir,Department of Paediatrics, School of Medicine and HealthSciences, University of Otago, Wellington, New Zealand.

    8   Developmental Medicine & Child Neurology  2016

  • 8/16/2019 r1 DMCN 13163 Review

    12/12

     Author Query Form 

     Journal: DMCN Article: 13163

    Dear Author,

    During the copy-editing of your paper, the following queries arose. Please respond to these by marking up yourproofs with the necessary changes/additions. Please write your answers on the query sheet if there is insufficient space on the page proofs. Please write clearly and follow the conventions shown on the attached corrections sheet.If returning the proof by fax do not write too close to the paper’s edge. Please remember that illegible mark-upsmay delay publication.

     Many thanks for your assistance.

    Query reference Query Remarks

    1 AUTHOR: Please confirm that given names (red) and surnames/family  names (green) have been identified correctly.

    2 AUTHOR: Please provide city location for the manufacturer “Genotek 

    Inc”.

    3 AUTHOR: References [8] and [10] are identical. Hence, reference [10] isdeleted and rest of the references is renumbered. Please check.

    4 AUTHOR: Figure 1 has been saved at a low resolution of 173 dpi. Pleaseresupply at 600 dpi. Check required artwork specifications at http:// authorservices.wiley.com/bauthor/illustration.asp

    5 AUTHOR: If you would like the figures in your article to appear ascolour in print, please complete the Colour Work Agreement form (including payment information) and post/courier to Customer Services(OPI); otherwise, we will publish the figures in colour for the online

     version for free. The form can be requested from the Production Editor at [email protected].