48
EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst Rutherford Backscattering Spectrometry 1

R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

  • Upload
    dominh

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

Page 1: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

EMSE-515

Fall 2005

F. Ernst

Rutherford Backscattering Spectrometry

1

Page 2: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

2

Bohr’s Model of an Atom

• existence of central core established by single collision,large-angle scattering of alpha particles (4He2+)

! basis of Rutherford back-scattering spectrometry (RBS)

Page 3: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

3

Principle of RBS

• exposed specimen surface to beam of (light) MeV particles

• elastic collisions with (heavy) atoms of target

! Coulomb scattering in a central-force field

• can be described by classical mechanics

• but: specimen will eventually stop beam particles

! su!cient penetration of the target requires beam particleswith kinetic energy in the MeV range

! accelerator!

Page 4: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

4

NEC 5SDH Accelerator

Page 5: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

NEC 5SDH Accelerator

• 1.7 MV tandem pelletron

• 3.4 MeV protons

• 5.1 MeV alpha particles

• N ions with energies in excess of 7.0 MeV

• detectors

! Si surface barrier detector

! NaI(Ti) scintillator

! liquid nitrogen-cooled Si(Li) detector

5

Page 6: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

NEC 5SDH Accelerator

• detectors enable detection of

! scattered ions

! characteristic gamma rays

! characteristic x-rays

• can be used for the following experimental techniques:

! RBS

! PIXE (particle induced X-ray emission)

! NRA (nuclear reaction analysis)

! sample temperatures from 77 to 1000 K

6

Page 7: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

7

Detection of Scattered Particles

• semiconductor nuclear particle detector

• resolve rate and kinetic energy of scattered particles

• most systems use a surface-barrier, solid state detector

! Schottky-barrier diode

! reverse-biased

! incident particle generates electron–hole pairs

! collected to electrodes

! voltage pulse, proportional to particle energy

! collect counts in voltage bins of multichannel analyzer

Page 8: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

8

Surface Barrier, Solid State Detector

Page 9: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

9

Surface Barrier, Solid State Detector

Page 10: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

10

Resulting Spectrum Properties

• statistics of electron-hole pair generation

• noise in output signal

• limited energy resolution

• typical energy resolution: 10 . . . 20 keV

• backscattering analysis with 2.0 MeV 4He particles can re-solve isotopes up to about mass 40 (clorine isotopes, forexample)

• mass resolution decreases with increasing atomic mass ofthe target

• example: 181Ta and 201Hg cannot be distinguished

Page 11: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

11

Experimental Setup for RBS

Page 12: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

12

Experimental Setup for RBS

• beam of mono-energetic particles (4He)

• in vacuum

• backscattering

! energy transfer to (stationary) target atoms

! primary particle looses kinetic energy

• amount depends on masses of incident particle and targetatom

• energy loss provides “signature” of target atoms

Page 13: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

13

Characteristics of RBS

• multi-element depth concentration profiles

• fast, non-destructive analysis (no sample preparation orsputtering required)

• matrix independent (una!ected by chemical bondingstates)

• quantitative without standards

• high precision (typically ±3 %

• high sensitivity

! e. g. 1011 Au/cm2 on Si

! depends on Z and sample composition

Page 14: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

14

Characteristics of RBS

• depth range: between 0 and 1 mm

• depth resolution !2 nm near the surface

• spatial definition:

" beam spot size 0.5 . . .2.0 mm

" map or raster option to 7 cm#7 cm

Page 15: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

15

Typical Applications of RBS

• absolute thickness of films, coatings, and surface layers(in atoms/cm2)

• surface/interface contaminant detection(oxide layers, adsorbates, etc.)

• interdi!usion kinetics of thin films (metals, silicides, etc.)

• elemental composition of complex materials(phase identification, alloy films, oxides, ceramics, etc.)

• quantitative dopant profiles in semiconductors

• process control monitoring

! composition

! contaminant control

Page 16: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

16

Kinematics of Elastic Collisions

Page 17: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

17

Kinematics of Elastic Collisions

• RBS: elastic Coulomb scattering

! calculate energy transfer in the framework of classical me-chanics

• applying the conservation principle of energy and momen-tum

• energy:M12v2 = M1

2v2

1 +M22v2

2

v: velocity of beam particle before collision;v1: velocity of beam particle after collision;v2: velocity of target particle after collision;M1: mass of beam particle;M2: mass of target particle.

Page 18: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

18

Kinematics of Elastic Collisions

• momentum:

p = p1 + p2

!! M1v = M1v1 +M2v2

p: momentum of beam particle before collision;p1: momentum of beam particle after collision;p2: momentum of target particle after collision.

• components parallel and normal to the axis (direction ofthe incident beam):

M1v = M1v1 Cos[!]+M2v2 Cos[!]

" 0 = M1v1 Sin[!]+M2v2 Sin[!]

Page 19: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

19

Kinematics of Elastic Collisions

• for the ratio of particle velocities, these expressions yield

v1v=±!M2

2 !M21 Sin[!]2 +M1 Cos[!]M1 +M2

,

where the plus sign holds for

M1 < M2

• ratio of the projectile energies for M1 < M2 is known as“kinematic factor” KM2

Page 20: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

20

Kinematic Factor

• KM for a scattering angle ! = 170! as a function of thetarget mass M2 for di!erent beam particles:

Page 21: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

21

Kinematic Factor

• the sensitivity for small di!erences !M2 becomes a maxi-mum for ! = 180!

" ! = 180! is the preferred position for the detector

# “back-scattering”

• in practice (to accommodate the detector size):detector at ! $ 180!

Page 22: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

22

Example of RBS Spectra

• !1 ML of di!erent noble metals:

" 63, 65Cu

" 107, 109Ag

" 197Au

" ! = 170"

• 2.5 MeV 4He ions

Page 23: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

23

Example of RBS Spectra

Page 24: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

24

Discussion

• RBS can detect less than one monolayer of heavy elements!

• peaks representing the elements

! well separated

! easy to identify

• determination of absolute coverage?

" requires knowledge on absolute cross-section (see below)

• limits of mass resolution # separation of isotope peaks

Page 25: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

25

Discussion

• Cu:

! 63Cu (K = 0.777) and 65Cu (K = 0.783)

! energy di!erence !E1 = 17 keV for 2.5 MeV 4

" somewhat larger than detector resolution (#15 keV)

$ Cu isotopes are resolved

• Ag:

! 107Ag and 109Ag

! !E1 = 6 keV

" smaller than energy resolution of detector

! Ag isotopes not resolved

Page 26: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

26

Scattering Cross Section

• probability of scattering is equal to fraction of sample area“blocked” by scatters

• important concept for scat-tering problems:

scattering cross section

! e!ective “ target area”presented by each scatter(atom)

Page 27: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

27

Scattering Cross Section

• scattering cross section can be considered for specifickinds of scattering events, for example:

! elastic scattering " !el

! inelastic scattering " !inel

• thin samples:

! target areas of individual scatters do not overlap

" N scatterers block area N · !! fraction of “rays” removed from incident beam:

N!A

= N!xAx

= "!x

x: sample thickness; " # N/Ax: number density of scatterers.

Page 28: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

28

Impact Parameter

• scattering is generally anisotropic

• depends on impact parameter b

Page 29: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

29

Di!erential Scattering Cross-Section

• scattering angle ! decreases with increasing b

• for increasing b, ! ! 0 (forward scattering)

• angular distribution of scattered particles?

• important concept:

di!erential scattering cross section:

d"d!

Page 30: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

30

View Along Incident Beam Direction

Page 31: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

31

Di!erential Scattering Cross Section

• interpretation of di!erential scattering cross section:

! piece of area d! o!ered by the scatterer for scatteringinto a particular increment d! in solid angle

! d! varies with the location of d!, characterized by thescattering angle ":

d!d!

= d!d!["]

• relation between increment in scattering angle " and incre-ment in solid angle:

d! = 2# Sin["]d"

Page 32: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

32

Di!erential Scattering Cross-Section

• relation between increment in scattering angle ! and incre-ment in solid angle:

d! = 2" Sin[!]d!

• in backscattering spectrometry, the detector solid angle!D is small – typically < 10!2 sterad

• therefore, one often uses an average di!erential cross-section:

#[!] = 1!D

!

!D

d#d!

d!,

where # is usually called “scattering cross-section”

Page 33: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

33

Di!erential Scattering Cross-Section

Page 34: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

34

Quantification

• consider thin target of thickness t with N atoms/cm3, thus

Ns = Nt

target atoms per unit area

• total number of incident particles: Q

• number of particles detected by the detector positioned atscattering angle !: QD[!]

! to infer Ns from QD, one needs to know "[!], the “scatter-ing cross-section:”

QD[!] = "[!] ·!D ·Q ·Ns

Page 35: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

35

Quantification

• !["] can be calculated from the force that acts during thecollision

• since high-energy particles penetrate up to the core ofthe target atom, this force mainly corresponds to an un-screened Coulomb repulsion between the two positivelycharged nuclei

• one-body formulation of this problem:

! scattering by a central force

! conservation of kinetic energy

! impact parameter b

! rotational symmetry

Page 36: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

36

Quantification

• particles with impact parameters between b and b+db aredeflected into an annular region spanned by scattering an-gles between ! and ! + d!

Page 37: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

37

Quantification

• the area of this region is

d! = 2! Sin["]d"

• recall definition of the scattering cross-section:

d# = #["]d!

! annular area enclosing scattering angles [", " + d"] is re-lated to annular area

d# = 2!bdb

by

2!bdb = "#["] · 2! Sin["]d"

Page 38: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

38

Central Force Scattering

• geometry of RBS:

Page 39: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

39

Central Force Scattering

• central force!

! scattered particle travels on a hyperbolic trajectory

• elastic scattering by a central force ! conservation of

" kinetic energy

" magnitude of the momentum (direction generallychanges)

# total change in momentum,

!p $ p1 %p,

is along the z& axis

Page 40: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

40

Conservation of Momentum

Page 41: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

Central Force Scattering

• for this geometry,

!p/2M1v

= Sin!!

2

"!" !p = 2M1v Sin

!!2

"

• Newton’s second law:

F = p " dp = Fdt

• the force F is the Coulomb repulsion between the scatteredparticle and the target particle:

F = 14"#0

Z1Z2e2

r2

#0: electric constant; Z1,2: atomic numbers; e: electron charge;r : distance.

Page 42: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

42

Central Force Scattering

• since the angular momentum is conserved under a centralforce,

M1vb = M1r2d!dt

! dtd!

= r2

vb

• inserting this result and the expression for the Coulombforce into the above equation for !p yields

!p = 14"#0

Z1Z2e2

r2

!Cos[!] r

2

vbd!

= 14"#0

Z1Z2e2

vb

!Cos[!]d!

Page 43: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

43

Central Force Scattering

• this implies

!p = 14!"0

Z1Z2e2

vb(Sin[#2]! Sin[#1])

• according to the geometry of the scattering process,

#1 = !#0, #2 = +#0, 2#0 + $ = !

• it follows that

Sin[#2]! Sin[#1] = 2 Sin!!

2! $

2

"

• combining this with the above equation for !p yields

!p = 14!"0

Z1Z2e2

vb

#2 Sin

!!2! $

2

"$= 2

4!"0

Z1Z2e2

vbCos

!$2

"

Page 44: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

44

Central Force Scattering

• this yields a relationship between the impact parameter band the scattering angle !:

b = 14"#0

Z1Z2e2

M1v2 Cot!!

2

"= 1

4"#0

Z1Z2e2

2ECot

!!2

"

• using the previous equation

2"bdb = !$[!] · 2" Sin[!]d!,

the scattering cross-section can be expressed as

$[!] = ! bSin[!]

dbd!

Page 45: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

45

Central Force Scattering

• inserting the geometrical relationships

Sin[!] = 2 Sin!!

2

"Cos

!!2

"

d Cot!!

2

"= ! d!

2 Sin[!/2]2

yields the cross-section originally derived by Rutherford:

"[!] =#

14#$0

Z1Z2e2

4E

$21

Sin[!/2]4

Page 46: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

46

Central Force Scattering

• the closest approach d of the scattered particle to the tar-get particle is given by equating its kinetic energy to itspotential energy at a distance d away from the core of thetarget particle:

d = 14!"0

Z1Z2e2

E

• inserting this into the Rutherford expression for the scat-tering cross-section yields

#[$] = (d/4)2

Sin[$/2]4

• for $ = ! this yields

#[!] = (d/4)2

Page 47: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

47

Central Force Scattering

• for 2 MeV He ions (Z1 = 2 incident on Ag (Z2 = 47) thisyields a closest particle–scatterer distance of

d = 6.8 · 10!5 nm

" much (!) smaller than the Bohr radius(radius of a hydrogen atom, 5 · 10!2 nm)

• the cross-section for scattering to ! = " is

#[!] = 2.98 · 10!10 nm2 = 2.89 · 10!28 m2 # 2.89 barn

1 barn := 10!28 m2

Page 48: R utherford Backscatt ering Spectrometr y - Lunds … · EMSE-515-F05-08 EMSE-515 Fall 2005 F. Ernst R utherford Backscatt ering Spectrometr y 1

EMSE-515-F05-08

48

Conclusion

• conclusions for materials scientists:

The use of an unscreened cross-section is justified.

RBS is a powerful, quantitative method.

• conclusion for physicists and philosophers:

THE WORLD IS “EMPTY!”