question bank complex numberp1_answ.rtf

Embed Size (px)

Citation preview

  • 8/17/2019 question bank complex numberp1_answ.rtf

    1/31

    1. METHOD 1

     z  = (2 – i)(z  + 2) M1  = 2z  + 4 – iz   – 2iz (1 – i) = – 4 + 2i

    z  = i1

    i24

    +−

     A1

    z  = i1i1

    i1i24

    ++

    ×−+−

    M1= – 3 – i A1

     

    METHOD 2

    let z  = a + ib

    2i

    i

    +++ba

    ba

     = 2 – i M1a + ib = (2  – i)((a + 2) + ib)a + ib = 2(a + 2) + 2bi  – i(a + 2) + ba + ib = 2a + b + 4 + (2b – a – 2)iattempt to equate real and imaginary parts M1

    a = 2a + b + 4(⇒  a + b + 4 = 0)and b = 2b – a – 2(⇒   – a + b – 2 = 0) A1

    Note: Award A1 for two correct equations.

    b = – 1;a = – z  = – 3 – i A1

    [4]

     

    2. (a) (cos θ  + i sin θ ) = cos

     θ  + cos

    2 θ (i sin θ ) + cos θ (isin θ )

    2 + (isin θ )

    (M1)

      = cos θ   – 3 cos θ  sin2 θ  + i( cos2 θ sin θ   – sin θ ) A1

     

    (!) from "e Moi#re’s theorem(cos θ  + i sin θ ) = cos θ  + i sin θ  (M1)cos θ  + i sin θ  = (cos

     θ   – 3 cos θ  sin2 θ ) + i( cos2 θ  sin θ   – sin θ )

    equating real parts

    cos θ  = cos θ  

     – 3 cosθ  sin

    2 θ  M1

      = cos θ   – 3 cos θ (1 – cos2 θ ) A1

      = cos θ   – 3 cos θ  + cos θ 

      = 4 cos θ   – 3 cos θ   A$

    Note: "o not award mar%s if part (a) is not used.

    IB Questionbank Mathematics Higher Level 3rd edition 1

  • 8/17/2019 question bank complex numberp1_answ.rtf

    2/31

    (c) (cos θ  + i sin θ )& =

    cos& θ  + & cos

    4 θ  (i sin θ ) + 10 cos

     θ (i sin θ )

    2 + 10 cos

    2 θ (i sin θ )

    + &cos θ  (i sin θ )4 + (i sin θ )

    &(A1)

    from "e Moi#re’s theorem

    cos 5θ  = cos& θ   – 10 cos θ sin2 θ  + & cos θ sin4 θ  M1  = cos

    & θ   – 10 cos θ  (1 – cos2 θ ) + &cos θ (1 – cos2 θ )2  A1

      = cos& θ   – 10 cos θ  + 10 cos& θ  + & cos θ   – 10 cos θ  + & cos& θ 

    ∴ cos &θ  = 1' cos& θ   – 20 cos θ  + & cos θ   A$

    Note: f compound angles used in (!) and (c) t*en mar%s can !eallocated in (c) only.

     

    (d) cos &θ  + cos θ  + cos θ 

    = (1' cos& θ   – 20 cos θ  + & cos θ ) + (4 cos θ   – 3 cos θ ) + cos θ  = 0 M1

    1' cos& θ   – 16 cos θ  + cosθ  = 0 A1cos θ  (1' cos

    4 θ   – 16 cos2 θ  + ) = 0

    cos θ  (4 cos2 θ   – 3)(4 cos2 θ   – 1) = 0 A1

    2

    1;

    2

    3;0cos   ±±=∴   θ 

     A1

    2

    π;

    3

    π;

    6

    π±±±=∴θ 

     A2

    IB Questionbank Mathematics Higher Level 3rd edition  

  • 8/17/2019 question bank complex numberp1_answ.rtf

    3/31

    (e) cos &θ  = 0

    &θ  = ...

    ...;2

    7π;

    2

    5π;

    2

    3π;

    2

    π   

      

    (M1)

    θ  = ...

    ...;10

    7π;

    10

    5π;

    10

    3π;

    10

    π  

      

     

    (M1)

    Note: *ese mar%s can !e awarded for #erifications later in t*e question.

    now consider 1' cos& θ   –  20 cos

     θ  + & cos θ  = 0 M1

    cos θ  (1' cos4 θ   – 20 cos2 θ  + &) = 0

    cos2θ  = 32

    )5)(16(440020   −±

    , cos θ  = 0 A1

    cos θ  = 32

    )5)(16(440020   −±±

    32)5)(16(440020

    10πcos   −+±=

     since ma- #alue of cosine ⇒  angleclosest to ero /1

    855

    8.4

    )5(42545.4

    10π

    cos  +

    =−+

    = A1

    8

    55

    10

    7πcos

      −−=

     A1A1[22]

     

    3. (a) A =22 )32(1   −+

    M1

      = 3488−  A1

      = 322   −  A1

    IB Questionbank Mathematics Higher Level 3rd edition 3

  • 8/17/2019 question bank complex numberp1_answ.rtf

    4/31

    (!) METHOD 1

    3

    πr!"

    4

    π #r! 21   −=−=   z 

     A1A1

    Note: Allow 3

    πn$4

    π

    .

    Note: Allow degrees at t*is stage.

    4

    π

    3

    π%&'A   −=

      =)

    12

    π(ccet

    12

    π−

     A1

    Note: Allow for final A1.

    METHOD 2

    attempt to use scalar product or cosine rule M1

    22

    31%&'Acos  +=

     A1

    12π

    %&'A   = A1

    [6]

     

    4. (a) using t*e factor t*eorem z  + 1 is a factor (M1)z 

     + 1 = (z  + 1)(z 

    2  – z  + 1) A1

     

    (!) (i) METHOD 1

    z  = – 1 ⇒  z  + 1 = (z  + 1)(z 2  – z  + 1) = 0 (M1)

    sol#ing z 2  – z  + 1 = 0 M1

    z  = 2

    3i1

    2

    411   ±=

    −±

     A1t*erefore one cu!e root of – 1 is γ  A$

    METHOD 2

    γ2 =

    2

    3i1

    2

    3i12

    +−= 

      

      

       +

    M1A1

    γ = 4

    31

    2

    3i1

    2

    3i1   −−=

    +−×

    +−

     A1= –1 A

    IB Questionbank Mathematics Higher Level 3rd edition !

  • 8/17/2019 question bank complex numberp1_answ.rtf

    5/31

    METHOD 3

    γ =

    i

    23i1

    e=+−

     A1

    γ = e

    iπ   – 1 A1

     

    (ii) METHOD 1

    as γ is a root of z 2  – z  + 1 = 0 t*en γ2  – γ + 1 = 0 M1/1

    ∴ γ2 = γ  – 1 A$

    Note: Award M1 for t*e use of z 2  – z  + 1 = 0 in any way.

     Award /1 for a correct reasoned approac*.

     

    METHOD 2

    γ2 = 2

    3i1+−

    M1

    γ  – 1 = 23i1

    12

    3i1   +−=−

    +

     A1

     

    (iii) METHOD 1

    (1 – γ)' = ( – γ2)' (M1)  = (γ)

    12 A1

      = (γ)4 (M1)

      = ( –1)4

      = 1 A1

    METHOD 2

    (1 – γ)'

    = 1  – 'γ + 1&γ2  – 20γ + 1&γ4  – 6γ& + γ' M1A1

    Note: Award M1 for attempt at !inomial e-pansion.

    use of any pre#ious result e.g. = 1 – 6γ + 1&γ 2 + 20 – 15γ + 'γ 2 + 1M1

    = 1 A1Note: As t*e question uses t*e word *hence’" other metho$s tht

    $o not se re,ios res-ts re r$e$ no mr/s.

    IB Questionbank Mathematics Higher Level 3rd edition "  

  • 8/17/2019 question bank complex numberp1_answ.rtf

    6/31

    (c) METHOD 1

     A2 =  

       

     

     

     

      +=

       

     

     

     

     

       

     

     

     

     

    2

    2

    10

    1

    10

    11

    0

    1

    γ  

    γ  γ  γ  

    γ  

    γ  

    γ  

    γ  

     A1

     A2  –   A + I  =

        

     

     

     

     

    +−

    −++−

    111

    0

    11

    1

    2

    2

    γ  γ  

    γ  γ  γ  γ  

    M1from part (!)

    γ2  – γ + 1 = 0

    )1(1

    11   2 +−=−+   γ  γ  

    γ  γ  γ  

     = 0 A1

    )1(1111   222   +−=++   γ  γ  γ  γ  γ    = 0 A1

    *ence  A2  –  A + I  = 0 A$

     

    METHOD 2

     A2 =

        

     

     

     

     

    −−

    +−

    2

    3i10

    12

    3i1

     A1A1A1

    Note: Award 1 mar% for eac* of t*e nonero elements e-pressed in t*is form.

    #erifying  A2  –  A + I  = 0

     

    (d) (i)   A2 =  A  –  I 

    ⇒   A =  A2  –  A M1A1  =  A  – I   –  A  A1  = – I   A$

    Note: Allow ot*er #alid met*ods.

     

    (ii)   I  =  A  –   A2

     A –1

     =  A –1

     A  –  A –1 A2 M1A1⇒   A –1 = I   –   A  A$

    Note: Allow ot*er #alid met*ods.[20]

    IB Questionbank Mathematics Higher Level 3rd edition #  

  • 8/17/2019 question bank complex numberp1_answ.rtf

    7/31

    5. METHOD 1

    since b $ 0 (M1)⇒  arg(b + i) = 0 A1

    b

    1

     = tan 0 M1A1b = 3  A2 32

     

    METHOD 2

    arg(b + i)2 = '0 ⇒  arg(b2  – 1 + 2bi) = '0 M1

    )1(

    22 −bb

     = tan '0 = 3 M1A1323   2 −−   bb  = 0 A1

    )3)(13(   −+ bb  = 0since b $ 0 (M1)

    b = 3  A1 32[6]

     

    6. (a) z  =3i1

    2

    1642±−=

    −±−

    M1

     –1 +⇒=   θ ie3i   r 

     r  = 2 A1

    θ  = arctan 3

    π2

    1

    3=

    −  A1

     –1 – 3i  = r eiθ  ⇒  r  = 2

    θ  = arctan 3

    π2

    1

    3−=

    −  A1

    3

    2πi

    e2=⇒α   A1

    32π

    ie2  −

    =⇒ β   A1

    IB Questionbank Mathematics Higher Level 3rd edition %  

  • 8/17/2019 question bank complex numberp1_answ.rtf

    8/31

    (!)

     A1A1

     

    (c) cos nθ  + i sin nθ  = (cos θ  + i sin θ )n

    et n = 1eft *and side = cos 1θ  + i sin 1θ  = cos θ  + i sin θ 

    /ig*t *and side = (cos θ  + i sin θ )1 = cos θ  + i sin θ 

    5ence true for n = 1 M1A1 Assume true for n = k  M1

    cos k θ  + i sin k θ  = (cos θ  + i sin θ )k 

    ⇒  cos(k  + 1)θ  + i sin(k  + 1)θ  = (cosθ  + i sin θ )k (cos θ  + i sin θ ) M1A1= (cos k θ  + i sin k θ )(cos θ  + i sin θ )= cos k θ  cosθ   – sin k θ  sin θ  + i(cos k θ  sinθ  + sin k θ  cosθ ) A1= cos(k  + 1)θ  + i sin(k  + 1)θ   A1

    5ence if true for n = k  true for n = k  + 15owe#er if it is true for n = 1⇒  true for n = 2 etc& /1⇒  *ence pro#ed !y induction

     

    (d)

    34π

    i

    34π

    i

    i2π

    2

    3

    e2

    e4

    e8==

    −β 

    α 

     A1

    = 3

    4πsini2

    3

    π4cos2   +

    (M1)

    =3i1

    2

    3i2

    2

    2−−=−−

     A1A1

     

    (e) a = 6e

    i2π A1

     β  = 6e

     –i2π A1

    7ince e2π

     and e –2π

     are t*e same α = β 

    /1

    IB Questionbank Mathematics Higher Level 3rd edition '  

  • 8/17/2019 question bank complex numberp1_answ.rtf

    9/31

    (f) EITHER

    α = – 1 +  3i  β  = –1 – 3i

    α8 = –  1  –   3i  β 8 = – 1 + 3i  A1

    αβ 8 = (

     –1 +

    3i ) ( –1 +

    3i ) = 1

     – 2

      3i  

     – 3 = 2 – 2

    3i M1A1

     βα8 = ( –1 – 3i )( –1 – 3i ) = 1 + 2 3i   – 3 = –2 + 2   3i  A1⇒  αβ 8 +  βα8 = – 4 A1

    OR

    7ince α8 = β  and β (  = α

    αβ 8 =3

    4πi

    3

    2πi

    3

    2πi

    e4e2e2   =× M1A1

     βα8 =3π4

    i3π2

    i3π2

    ie4e2e2−−−

    =×  A1

    αβ 8 + βα8 =    

     

     

     

    +

      −3

    4πi

    3

    4πi

    ee4

    =   

       −++

    3

    4πsini

    3

    π4cos

    3

    4πsini

    3

    π4cos4

     A1

    =4

    21

    83π4

    cos8   −=−×= A1

     

    (g) αn =

    i2e2

    n

    nM1A1

    *is is real w*en n is a multiple of /1

    i.e. n = )  w*ere )  ∈  +

    [31]

     

    7. (a) z  =θ 

    θ 

    i

    2i

    e

    e2

    1

    (M1)

    z  =

    θ ie21

     A1 32

     

    (!) z    21

    = A2

    z  1 A

    IB Questionbank Mathematics Higher Level 3rd edition *

  • 8/17/2019 question bank complex numberp1_answ.rtf

    10/31

    (c) 9sing  = r 

    a

    −1 (M1)

     =

    θ 

    θ 

    i

    i

    e2

    11

    e

    − A1 32

     

    (d) (i)  =θ 

    θ 

    θ 

    θ 

    cis2

    11

    cis

    e2

    11

    e

    i

    i

    −=

    −(M1)

    )sini(cos2

    11

    sinicos

    θ θ 

    θ θ 

    +−

    +

    (A1)

     Also  = eiθ  + ...e4

    1

    e2

    1   3i2i

    ++  θ θ 

     = cis θ  +...cis3

    4

    1cis2

    2

    1++   θ θ 

    (M1)

     =   

       ++++ 

      

       +++   ...3sin

    4

    12sin

    2

    1sini...3cos

    4

    12cos

    2

    1cos   θ θ θ θ θ θ 

     A1

    IB Questionbank Mathematics Higher Level 3rd edition 1,  

  • 8/17/2019 question bank complex numberp1_answ.rtf

    11/31

    (ii) a%ing real parts

        

     

     

     

     

    +−

    +=+++

    )sini(cos2

    11

    sinicose...3cos

    4

    12cos

    2

    1cos

    θ θ 

    θ θ θ θ θ 

     A1

    =     

     

     

     

     

       

       +−

    +−×

       

       −−

    +

    θ θ 

    θ θ 

    θ θ 

    θ θ 

    sini21

    cos21

    1

    sini21

    cos21

    1

    sini21

    cos21

    1

    )sini(cose

    M1

    =

    θ θ 

    θ θ θ 

    22

    22

    sin41

    cos21

    1

    sin21

    cos21

    cos

    +   

       −

    −−

     A1

    =)cos(sin

    41

    cos1

    21cos

    22 θ θ θ 

    θ 

    ++−

          −

     A1

    =)cos45(2

    )1cos2(4

    4)1cos44(

    2)1cos2(

    θ 

    θ 

    θ 

    θ 

    −−

    =÷+−

    ÷−

     A1

    = θ 

    θ 

    cos45

    2cos4

    −−

     A1A$ 30[25]

     

    8. iz 1 + 2z 2 = ⇒  z 2 = 2

    3i

    2

    11 +−   z 

    z 1 + (1 – i)z 2 = 4

    ⇒  z  1 + (1 – i)   

       +−

    2

    3i

    2

    11 z 

     = 4 M1A1

    ⇒  z 1 i

    2

    3i

    2

    1

    2

    3i

    2

    11

    21   −++−   z  z 

     = 4

    ⇒  i

    23

    25i

    21

    21

    11   +=−   z  z 

    ⇒  z 1  – iz 1 = & + i A1

    IB Questionbank Mathematics Higher Level 3rd edition 11

  • 8/17/2019 question bank complex numberp1_answ.rtf

    12/31

    EITHER

    et z 1 = -  + i.  (M1)

    ⇒   -  + i.   –  i -   –  i2.  = & + i:quate real and imaginary parts M1

    ⇒   -  + .  = &   –x + . =   2.  = 6

      .  = 4 ⇒   -  = 1 i.e. z 1 = 1 + 4i A1A1

    z 2 = 2

    34i)i(1

    2

    1++−

    M1

    z 2 = 2

    3i2i

    2

    1   2 +−−

    z 2 =

    i2

    1

    2

    7−

     A1

     

    OR

    z 1 = i1i35

    −+

    M1

    z 1 =

       

         −+=

    +−++

    2

    3i85

    i)i)(11(

    i)i)(135(

    M1A1

    z 1 = 1 + 4i A1

    z 2 = –  21

    i(1 + 4i) + 2

    3

    M1

    z 2 = 2

    3i2i

    2

    1   2 +−−

    z 2 =i

    2

    1

    2

    7−

     A1

    [9]

     

    9. METHOD 1

    20 + 10bi = (1 – bi)( –7 + i) (M1)20 + 10bi = ( –7 + b) + (; +

  • 8/17/2019 question bank complex numberp1_answ.rtf

    13/31

    METHOD 2

    =10

    i7

    i)i)(11(

    )ii)(12(   +−=

    +−++bb

    bb

    (M1)

    10

    i7

    1

    i322

    2 +−=

    ++−b

    bb

     A1

    :quate real and imaginary parts (M1)

    10

    7

    1

    22

    2

    −=+−b

    b

     :quation A

    10

    13

    2  =

    + bb

     :quation

    rom equation A

    20 – 10b2 = –7 – 7b2

    b2 = 2<

    b = 3 A1

    rom etion %30b = ; + ;b2

    b2  – 10b + = 0

    y factorisation or using t*e quadratic formula

    b = 3

    1

     or A17ince is t*e common solution to !ot* equations b = /1

    [6]

     

    10. (a) sin (2n + 1) -  cos -   – cos (2n + 1) -  sin -  = sin (2n + 1) -   – -  M1A1= sin 2n-   A$

    IB Questionbank Mathematics Higher Level 3rd edition 13

  • 8/17/2019 question bank complex numberp1_answ.rtf

    14/31

    (!) if n = 1 M157 = cos - 

    /57 =  x

     x x

     x

     x

    sin2

    cossin2

    sin2

    2sin=

     = cos -  M1so 57 = /57 and t*e statement is true for n = 1 /1assume true for n = k  M1

    Note: nly award M1 if t*e word true appears."o not award M1 for *-et n = k ’ on-9.:seent mr/s re in$een$ent o< this M1&

    so cos -  + cos  -  + cos & -  + ... + cos(2k   – 1) -  =  xkx

    sin2

    2sin

    if n = k  + 1 t*encos -  + cos  -  + cos & -  + ... + cos(2k   – 1) -  + cos(2k  + 1) -  M1

    = x

    kx

    sin2

    2sin

     cos (2k  + 1) -   A1

    =  x

     x xk kx

    sin2

    sin)12cos(22sin   ++

    M1

    =  x

     x xk  x xk  x xk 

    sin2

    sin)12cos(2sin)12cos(cos)12sin(   +++−+

    M1

    =  x

     x xk  x xk 

    sin2

    sin)12cos(cos)12sin(   +++

     A1

    =  x

     xk 

    sin2)22sin(   +

    M1

    =  x

     xk 

    sin2

    )1(2sin   +

     A1so if true for n = k  t*en also true for n = k  + 1

    as true for n = 1 t*en true for all n ∈  + /1

    Note: inal /1 is independent of pre#ious wor%.

    IB Questionbank Mathematics Higher Level 3rd edition 1!

  • 8/17/2019 question bank complex numberp1_answ.rtf

    15/31

    (c)   2

    1

    sin2

    4sin=

     x

     x

    M1A1sin 4 -  = sin - 

    4 -  = -  ⇒   -  = 0 !ut t*is is impossi!le

    4 -  = π – -   5π

    =⇒  x  A1

    4 -  = 2π +  -   3π2

    =⇒  x A1

    4 -  = π  –   -   5π3

    =⇒ x A1

    for not including any answers outside t*e domain /1

    Note: Award t*e first M1A1 for correctly o!taining 6 cos  -   –  4 cos -   –  1 = 0

    or equi#alent and su!sequent mar%s as appropriate including t*e

    answers arccos   

     

     

        ±

    − 451

    "2

    1

    .[20]

     

    11. 6i =

       

       +   π22

    πi

    e8n

    (M1)

    or n = 0

    i31

    e2i)8(   = (M1)

      = 6

    πsini2

    6

    πcos2   +

     A1

      = 3  + i A1

    or n = 1

    65π

    sini26π5

    cos2i)8( 31

    +=M1

      = –  3  + i A1

    or n = 2

    23π

    sini22π3

    cos2i)8( 31

    +=M1

      = – 2i A1[8]

    IB Questionbank Mathematics Higher Level 3rd edition 1"  

  • 8/17/2019 question bank complex numberp1_answ.rtf

    16/31

    12. &zz(  + 10 = (' – 18i)z 8 M1et z  = a + ib& 10 + 10 = (6 – 18i)(a  –  bi) (= 'a  –  'bi –  16ai – 18b) M1A1:quate real and imaginary parts (M1)⇒  'a  –  16b = '0 and 'b + 16a = 0

    ⇒  a = 1 and b = –  A1A1z  = 1 – 3i A1

    [7]

     

    13. 2 + i is a root ⇒  2 – i is root 1

    > -   –  (2 + i)> ? -   –  (2 – i)? re

  • 8/17/2019 question bank complex numberp1_answ.rtf

    17/31

    (!) b is a root/ (b) = 0

    b& = 1 M1

    b&  – 1 = 0 A1

    (b – 1)(b4 + b

     + b

    2 + b + 1) = 0

    b  1 11 + b + b2 + b + b4 = 0 as s*own. A$

     

    (c) (i) u + v  = b4 + b

     + b

    2 + b = – 1 A1

    uv  = (b + b4)(b

    2 + b

    ) = b

     + b

    4 + b

    ' + b

    < A1

    3ow b& = 1 (A1)

    5ence uv  = b + b

    4 + b + b

    2 = – 1 A1

    5ence u + v  = uv  = – 1 A$

     

    (ii) (u  – v )2 = (u2 + v 2) – 2uv  (M1)= ((u + v )

    2  – 2uv ) – 2uv   (= (u + v )2  – 4uv ) (M1)A1

    $i#en u  – v  @ 0

    u  – v  = uvvu 4)(2 −+

    =)1(4)1( 2 −−−

    = 41+  A1

    = 5  A$

    Note: Award A0 unless an indicator is gi#en t*at u – v = –  5  is in#alid.[13]

    IB Questionbank Mathematics Higher Level 3rd edition 1%  

  • 8/17/2019 question bank complex numberp1_answ.rtf

    18/31

    16. (a) z  =4

    1

    i)1(   −

    et 1 – i = r (cos θ  + i sin θ )2=⇒ r   A1

    θ  = 4π−  A1

    z  =

    41

    4

    πisin

    4

    πcos2   

     

      

        

      

        

      −+ 

      

      −

    M1

    =

    41

    π24

    πsiniπ2

    4

    πcos2   

     

      

        

      

        

       +−+ 

      

       +−   nn

    =   

      

        

       +−+ 

      

       +−

    16π

    sini2π

    16π

    cos2 81

    nn

    M1

    =   

      

        

      −+ 

      

      −

    16π

    sini16π

    cos2 81

    Note: Award M1 a!o#e for t*is line if t*e candidate *as forgotten toadd 2π and no ot*er solution gi#en.

    =   

      

        

      + 

      

      

    167π

    sini167π

    cos2 81

    =

      

     

     

     

        

      + 

      

      

    1615π

    sini16

    15πcos2 8

    1

    =   

      

        

      −+ 

      

      −

    16π

    sini16π

    cos2 81

     A2

    Note: Award A1 for 2 correct answers. Accept any equi#alent form.

    IB Questionbank Mathematics Higher Level 3rd edition 1'  

  • 8/17/2019 question bank complex numberp1_answ.rtf

    19/31

    (!)

     A2

    Note: Award A1 for roots !eing s*own equidistant from t*e origin and one in eac* quadrant. A1 for correct angular positions. t is not necessary to see written e#idence of angle !ut must agree wit* t*e diagram.

     

    (c)    

        

      

      + 

      

      

       

      

        

      + 

      

      

    =

    167πsini16π7cos2

    1615π

    sini16

    π15cos2

    8

    1

    81

    1

    2

     z 

     z 

    M1A1

    = 2

    πsini

    2

    πcos   +

    (A1)= i A1 32

    (⇒  a = 0 b = 1)[12]

     

    17. (a) EITHER5

    5

    5

    2πsini

    5

    2πcos    

      

       +=w

    (M1)

    = cos 2p + i sin 2p A1

    = 1 A1

    5ence 0  is a root of z &  1 = 0 A$

    IB Questionbank Mathematics Higher Level 3rd edition 1*

  • 8/17/2019 question bank complex numberp1_answ.rtf

    20/31

    OR

    7ol#ing z & = 1 (M1)

    z  = cos.4"3"2"1"0"

    5

    π2sini

    5

    π2=+   nnn

     A1

    n = 1 gi#es cos   5

    π2sini

    5

    π2+

     w*ic* is 0   A1

     

    (!) (0   1)(1 + 0  + 0 2 + 0 

     + 0 

    4) = 0  + 0 

    2 + 0 

     + 0 

    4 + 0 

    &  1

    0 0 2  0 

      0 

    4M1

    = 0 &  1 A1

    7ince 0 &  1 = 0 and 0  ≠  1 0 4 + 0  + 0 2 + 0  + 1 = 0. /1

     

    (c) 1 + 0  + 0 2 + 0 

     + 0 

    4 =

    +   

       ++++

    2

    5

    π2sini

    5

    π2cos

    5

    π2sini

    5

    π2cos1

    43

    5

    π2sini

    5

    π2cos

    5

    π2sini

    5

    π2cos    

      

       ++ 

      

       +

    (M1)

    +++++5

    4sini

    5

    4cos

    5

    2sini

    5

    2cos1

      π π π π 

    5

    π8sini

    5

    π8cos

    5

    π6sini

    5

    π6cos   +++

    M1

    +++++5

    π4sini

    5

    π4cos

    5

    π2sini

    5

    π2cos1

    5

    π2sini

    5

    π2cos

    5

    π4sini

    5

    π4cos   −+−

    M1A1A1

    Notes:  Award M1 for attempting to replace 'p and 6p !y 4p and 2p Award A1 for correct cosine terms and A1 for correct sine terms.

    05

    2πcos25

    4πcos21   =++=  A1

    Note: orrect met*ods in#ol#ing equating real parts use of conBugates or reciprocals are also accepted.

    2

    1

    5

    4πcos

    5

    2πcos   −=+

     A$

    Note: 9se of cis notation is accepta!le t*roug*out t*is question.[12]

     

    18. (a) r  = 3

    1−

    (A1)

    IB Questionbank Mathematics Higher Level 3rd edition ,  

  • 8/17/2019 question bank complex numberp1_answ.rtf

    21/31

    31

    1

    27

    +=∞S 

    M1

    ( )25.204

    81==∞S 

     A1 31

     

    (!) Attempting to s*ow t*at t*e result is true for n = 1 M1

    57 = a and /57 =

    ( )a

    r a=

    −−

    1

    1

     A1

    5ence t*e result is true for n = 1

     Assume it is true for n = k 

    ( )r 

    r aar ar ar a

    k k 

    −−

    =++++   −1

    1... 12

    M1onsider n = k  + 1C

    ( ) k k k k ar 

    r aar ar ar ar a   +

    −−

    =+++++   −1

    1... 12

    M1

    ( )   ( )r 

    r ar r a   k k 

    −−+−

    =1

    11

    =r 

    ar ar ar ak k k 

    −−+−   +

    1

    1

     A1

    Note: Award A1 for an equi#alent correct intermediate step.

    ar ak 

    −−

    =+

    1

    1

    =

    ( )r 

    r a k 

    −−   +

    1

    1 1

     A1

    Note: llogical attempted proofs t*at use t*e result to !e pro#edwould gain M1A0A0 for t*e last t*ree a!o#e mar%s.

    *e result is true for n = k  

    ⇒ it is true for n = k  + 1 and as it is

    true for n =1 t*e result is pro#ed !y mat*ematical induction. /1 30

    Note: o o!tain t*e final /1 mar% a reasona!le attempt must*a#e !een made to pro#e t*e k  + 1 step.

    [10]

    IB Questionbank Mathematics Higher Level 3rd edition 1

  • 8/17/2019 question bank complex numberp1_answ.rtf

    22/31

    19. METHOD 1

    3

    π"2   −==   θ r 

    (A1)(A1)

    ( )

    3

    333πsini3πcos23i1

    −−     

            −+     −=−∴ M1

    ( )πsiniπcos8

    1+=

    (M1)

    8

    1−=

     A1

    METHOD 2

    (1 i 3 )(1 i 3 ) = 1 2i 3   (= 2 2i   3 ) (M1)A1

    ( 2 2i 3 )(1 i 3 ) = 6 (M1)(A1)

    ( ) 81

    3i1

    13  −=

    −∴

     A1

    METHOD 3

     Attempt at inomial e-pansion M1

    (1 i   3 ) = 1 + (i 3 ) + (i 3 )2 + (i   3 ) (A1)

    = 1 i 3   ; + i  3

    (A1)= 6 A1

    ( ) 81

    3i1

    13  −=

    −∴

    M1[5]

    IB Questionbank Mathematics Higher Level 3rd edition  

  • 8/17/2019 question bank complex numberp1_answ.rtf

    23/31

    20. EITHER

    c*anging to modulusargument formr  = 2

    θ  = arctan   3

    π3 =

    (M1)A1

       

       +=+⇒

    3

    πisin

    3

    πcos231  nnnn

    M1

    if sin⇒= 0

    3

    πn

     n = D0 3" 6"...B (M1)A1 C2

    OR

    θ  = arctan   3

    π3 =

    (M1)(A1)

    M1

    n ∈ ∈=⇒   k k 

    n"π

    3

    π

      M1∈=⇒   k k n   "3   A1 32

    [5]

     

    21. (a) (i)2222

    iii

    i11

     y x

     y

     y x

     x

     y x

     y x

     y x z    +−

    +=

    −−

    ×+

    =(M1)A1

     

    (ii) z  +    

      

     

    +−+

    ++=

    2222  i

    1

     y x

     y y

     y x

     x x

     z  = k  (A1)

    for k  to !e real .   – ⇒=+  022  y x

     y

    . ( - 2 + . 

    2  – 1) = 0 M1A1

    *ence .  = 0 or - 2 + . 

    2  –  1 = 0 ⇒   - 2 + . 2 = 1 A$

     

    (iii) w*en - 2 + . 

    2 = 1 z  +  z 

    1

     = 2 -  (M1)A1 - D 1 1⇒k  E 2 A$

    IB Questionbank Mathematics Higher Level 3rd edition 3

  • 8/17/2019 question bank complex numberp1_answ.rtf

    24/31

    (!) (i) 0  – n

     = cos( – nθ ) + i sin( – nθ ) = cos nθ   – i sin nθ  M1A1⇒  0 n + 0  – n = (cos nθ  + i sin nθ ) + (cos nθ   – i sin nθ ) = 2 cos nθ M1A$

     

    (ii) (rearranging)

    (0 2 + 0  –2) – (0  + 0  –1) + 2 = 0 (M1)⇒  (2 cos 2θ ) – 2 cos θ  + 2 = 0 A1⇒  2( cos 2θ   – cos θ  + 1) = 0⇒  (2 cos2 θ   – 1) – cos θ  + 1 = 0 M1⇒  ' cos2 θ   – cos θ   – 2 = 0 A1⇒  ( cos θ   – 2)(2 cos θ  + 1) = 0 M1

    2

    1cos"

    3

    2cos   −==∴   θ θ 

     A1A1

    3

    5sin

    3

    2cos   ±=⇒=   θ θ 

     A1

    2

    3sin

    2

    1cos   ±=⇒−=   θ θ 

     A1

    2

    3i

    2

    1"

    3

    5i

    3

    2±−±=∴w

     A1A1

    Note: Allow from incorrect cos θ  andFor sin θ .[22]

     

    22. (a) any appropriate form e.g. (cos θ  + i sin θ )n = cos (nθ ) + i sin (nθ ) A1

     

    (!) z n = cos nθ  + i sin nθ   A1

    n z 

    1

     = cos( – nθ ) + i sin( – nθ ) (M1)= cos nθ   – i sin (nθ ) A1

    t*erefore z n  –

    n z 

    1

     = 2i sin (nθ ) A$

     

    (c)

    543

    2

    2

    345

    511

    4

    51

    3

    51

    2

    51

    1

    51   

      −+ 

      

      −  

     

      

     + 

      

      −  

     

      

     + 

      

      −  

     

      

     + 

      

      −  

     

      

     += 

      

       −

     z  z  z 

     z  z 

     z  z 

     z  z  z 

     z  z 

    (M1)(A1)

    = z &  – 5z  + 10z   –

    53

    1510

     z  z  z −+

     A1

    IB Questionbank Mathematics Higher Level 3rd edition !

  • 8/17/2019 question bank complex numberp1_answ.rtf

    25/31

  • 8/17/2019 question bank complex numberp1_answ.rtf

    26/31

    (g)   15

    8$cos2

    π

    0

    5 =∫    θ θ  wit* appropriate reference to symmetry and grap*s.A1/1/1

    Note: Award first /1 for partially correct reasoning e.g. s%etc*esof grap*s of sin and cos.

     Award second /1 for fully correct reasoning in#ol#ing sin& and cos&.[22]

     

    23. (a) 1 – 3i  A1

     

    (!) EITHER

    (z   – (1 + 3i ))(z   – (1 – 3i )) = z 2  – 2z  + 4 (M1)A1 (z ) = (z – 2)(z 

    2  – 2z  + 4) (M1)

    = z   – 4z 2 + 6z   – 8 A1

    there

  • 8/17/2019 question bank complex numberp1_answ.rtf

    27/31

    (iii) L( –1 + i) = 43π

    i2-n   + A1 31

     

    (c) for comparing t*e product of two of t*e a!o#e results wit* t*e t*ird M1

    for stating t*e result –1 + i = –1 (1 – i) n$ L ( –1 + i) L ( –1) + L (1 – i)1hence" the roert9 L(z 1z 2) = L(z 1) + L(z 2)does not *old for all #alues of z 1 and z 2  A$ 30

    [9]

     

    25. (a) z  = 5  and 0 =24   a+

    0  = 2z 

    524   2 =+ aattempt to sol#e equation M1

    Note: Award M0 if modulus is not used.

    a = ±4 A1A1 30

     

    (!) z0  = (2 – 2a) + (4 + a)i A1forming equation 2 – 2a = 2 (4 + a) M1

    a = 2

    3−

     A1 30[6]

    IB Questionbank Mathematics Higher Level 3rd edition %  

  • 8/17/2019 question bank complex numberp1_answ.rtf

    28/31

    26. (a) METHOD 1

    2

    i

    ++

     z 

     z 

     = iz  + i = iz  + 2i M1

    (1 – i)z  = i A1

    z  = i1

    i

    −  A1

    EITHER

    z  =   

      

       

      

    43π

    cis2

    cis

    M1

    z  =    

     

     

     

      

     

     

     

      

     

     

     4

    3πcis

    2

    1or 

    4

    3πcis

    2

    2

     A1A1

    OR

    z  =   

       +−=

    +−i

    2

    1

    2

    1

    2

    i1

    M1

    z  =   

      

        

      

       

      

    4

    3πcis

    2

    1or 

    4

    3πcis

    2

    2

     A1A1

     

    METHOD 2

    i = y x

     y x

    i2

    )1i(

    ++++

    M1 -  + i(.  + 1) = – .  + i( -  + 2) A1 -  = – . , -  + 2 = .  + 1 A1

    sol#ing -  = 2

    1;

    2

    1=−   y

     A1

    z  =i

    2

    1

    2

    1+−

    z  =   

      

        

      

       

      

    4

    cis2

    1

    or 4

    cis2

    2

     A1A1

    Note: Award A1 fort t*e correct modulus and A1 for t*e correct argument!ut t*e final answer must !e in t*e form r cis θ . Accept 1&

  • 8/17/2019 question bank complex numberp1_answ.rtf

    29/31

    (!) su!stituting z  = -  + i.  to o!tain 0  =i)2(

    i)1(

     y x

     y x

    ++++

    (A1)use of ( -  + 2) – . i to rationalie t*e denominator M1

    ω = 22)2(

    ))2)(1(i()1()2(

     y x

     x y xy y y x x

    ++

    +++−++++

     A1

    =22

    22

    )2(

    )22i()2(

     y x

     y x y y x x

    ++++++++

     A$

     

    (c) /e ω =22

    22

    )2(

    2

     y x

     y y x x

    +++++

     = 1 M1⇒   - 2 + 2 -  + . 2 + .  = - 2 + 4 -  + 4 + . 2  A1⇒  .  = 2 -  + 4 A1

    w*ic* *as gradient m = 2 A1 

    (d) EITHER

    arg (z ) =⇒

    4

    π

     -  = .  (and -  . @ 0) (A1)

    ω =2222

    2

    )2(

    )2i(3

    )2(

    32

     x x

     x

     x x

     x x

    +++

    +++

    +

    if arg(ω) = θ   x x

     x

    32

    23tn

    2 ++

    =⇒   θ 

    (M1)1

    32

    232

      =++

     x x

     x

    M1A1

    OR

    arg (z ) =⇒

    4

    π

      -  = .  (and -  .  @ 0) A1

    arg (0 ) =⇒

    4

    π

      - 2 + 2 -  + . 

    2 + .  = -  + 2.  + 2 M1

    sol#e simultaneously M1

     - 2 + 2 -  + - 

    2 + -  = -  + 2 -  + 2 (or equi#alent) A1

    THEN

     - 2 = 1

     -  = 1 (as -  @ 0) A1

    Note: Award A0 for -  = 1.

    z  = 2  A1

    Note: A1low from incorrect #alues of - .[19]

     

    IB Questionbank Mathematics Higher Level 3rd edition *

  • 8/17/2019 question bank complex numberp1_answ.rtf

    30/31

    27. (a) (i) ω =

    3

    3

    2πisin

    3

    π2cos   

     

      

        

      + 

      

      

    =   

       ×+ 

      

       ×

    3

    2π3isin

    3

    π23cos

    (M1)= cos 2π + i sin 2π  A1= 1 A$

     

    (ii) 1 + ω + ω2 = 1 + 

       

      + 

      

      + 

      

      + 

      

      

    3

    4πsini

    3

    4πcos

    3

    2πsini

    3

    π2cos

    M1A1

    = 1 + 2

    3i

    2

    1

    2

    3i

    2

    1−−+−

     A1= 0 A$

     

    (!) (i)   

      

    +   

      

    + ++   34π

    i3

    ii eeeθ θ θ 

    =

       

      

       

      

    ++   34π

    ii3

    2πi

    ii eeeee   θ θ θ  (M1)

    =   

     

     

     

     

      

     

     

     

     ++   

      

      

       

      

    34π

    i32π

    ii ee1e   θ 

    = eiθ (1 + ω + ω

    2) A1

    = 0 A$

     

    (ii)

     A1A1

    Note: Award A1 for one point on t*e imaginary a-is and anot*er point mar%ed wit* appro-imately correct modulus and argument. Award A1 for t*ird point mar%ed to form an equilateral trianglecentred on t*e origin.

    IB Questionbank Mathematics Higher Level 3rd edition 3,  

  • 8/17/2019 question bank complex numberp1_answ.rtf

    31/31

    (c) (i) attempt at t*e e-pansion of at least two linear factors (M1)

    (z   – 1)z 2  – z (ω + ω2) + ω or equi#alent (A1)use of earlier result (M1)

    2 (z ) = (z   – 1)(z 2 + z  + 1) = z   – 1 A1

     

    (ii) equation to sol#e is z  = 6 (M1)

    z  = 2 2ω 2ω2

     A2

    Note: Award A1 for 2 correct solutions.[16]