44
Query Lower Bounds for Matroids via Group Representations Nick Harvey

Query Lower Bounds for Matroids via Group Representations Nick Harvey

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Query Lower Boundsfor Matroids

via Group Representations

Nick Harvey

Page 2: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Matroids• Definition

A matroid is a pair (S,B ) where B 2⊂ S s.t.

Example: B = { spanning trees of graph G }

• Sets in B are called bases• Rank of matroid is |A| for any A∈B

Exchange PropertyLet A and B∈B

a∈A\B, b∈B\A s.t. B+a-b∈B

Page 3: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Matroids• Definition

A matroid is a pair (S,B ) where B 2⊂ S s.t.

Example: B = { spanning trees of graph G }

• Applications– Generalize Graph Problems– Approximation Algorithms– Network Coding

Exchange PropertyLet A and B∈B

a∈A\B, b∈B\A s.t. B+a-b∈B

b1⊕b2

b1⊕b2b1⊕b2

s tb1 b2

Page 4: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Multicast Network Coding

• Goal: Multicast sourcesinks at maximum rate• Algorithm: Can construct optimal solution in P

Flow: [Jaggi et al. ’05], Matroids: [H., Karger, Murota ’05]

Source

Sinks

a b

a b

a b

a+b a+b

a+b

Page 5: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Reversibility of Network Codes

Sources

Sinks

a b

a b

a+b a+b

a+b

sa sb

tbta

G

Page 6: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Reversibility of Network Codes

• Flow: G feasible Grev feasible

• Coding: feasible G s.t. Grev not feasible[Dougherty, Zeger ’06]

Sources

Sinks

a b

a b

a+b a+b

a+b

sasb

tbta

Grev

Page 7: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Constructed fromFano and

non-Fano matroids

Reversibility of Network Codes [Dougherty, Zeger ’06]

Page 8: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Discrete Optimization Problems

MatroidIntersectionMatroidIntersection

BipartiteMatchingBipartiteMatching

Non-Bip.MatchingNon-Bip.Matching

NetworkFlowNetworkFlow

SubmodularFunctionMinimization

SubmodularFunctionMinimization

SubmodularFlowSubmodularFlow

MatroidMatchingMatroidMatching

MinimumSpanningTree

MinimumSpanningTree

MatroidGreedyAlgorithm

MatroidGreedyAlgorithm

Spanning TreePackingSpanning TreePacking

Min-costArboresenceMin-costArboresence

MatroidIntersectionMatroidIntersection

• Matroid IntersectionGiven matroids M1=(S,B 1) and M2=(S,B 2),

is B 1 ⋂ B 2 = ∅?

Page 9: Query Lower Bounds for Matroids via Group Representations Nick Harvey

n = # elementsr = rank

Unweighted

Edmonds/Lawler ’68-’75

O(nr2) oracle

Cunningham ’86 O(nr1.5) oracle

Gabow-Xu ’89-’96 O(nr1.62)

Harvey ’06 O(nr1.38)

Matroid Intersection Algorithms

Linear Matroids

W = max weight

Weighted

Lawler/Edmonds ~’75 O(nr2) oracle

Shigeno-Iwata ’95 O(nr1.5 log(rW)) oracle

Gabow-Xu ’89-’96 O(nr1.77 log(rW))Harvey ’07 O(nr1.38 W)

Linear Matroids

Page 10: Query Lower Bounds for Matroids via Group Representations Nick Harvey

n = # elementsr = rank

Unweighted

Edmonds/Lawler ’68-’75

O(nr2) oracle

Cunningham ’86 O(nr1.5) oracle

Gabow-Xu ’89-’96 O(nr1.62)

Harvey ’06 O(nr1.38)

Linear Matroids

Weighted

Are these algorithms optimal? Are these algorithms optimal?

W = max weightLawler/Edmonds ~’75 O(nr2) oracle

Shigeno-Iwata ’95 O(nr1.5 log(rW)) oracle

Gabow-Xu ’89-’96 O(nr1.77 log(rW))Harvey ’07 O(nr1.38 W)

Linear Matroids

Page 11: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Algorithm

Computational Lower Bounds• Strong lower bounds in unrestricted

computational models are beyond our reach– 5n - o(n) is best-known lower bound on circuit size

for an explicit boolean function. [Iwama et al. ’05]

– We believe 3SAT requires 2(n) time, butbest-known result is (n).

• A super-linear lower bound for anynatural problem in P is hopeless.

Data

Page 12: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Query Lower Bounds• Strong lower bounds can be proven in

concrete computational models– Sorting in comparison model– Monotone graph properties [Rivest-Vuillemin ’76]

– Volume of convex body• Deterministic [Elekes ’86]• Randomized [Rademacher-Vempala ’06]

• Our work– Matroid intersection, Submodular Function Minimization

BOut

InData

Black Box

AlgorithmQueries

Page 13: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Query Model for Matroids(Independence Oracle)

Out

InMatroid

(S,B ) Algorithm

“Yes” if B∈B s.t. T⊆B “No” otherwise

T⊆S

• Example: if B = { spanning trees of graph G },then query asks if T is an acyclic subgraph of G

Page 14: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Algorithms O(nr2) queries[Lawler ’75]

Matroid Intersection Complexity

Are (nr2) queries necessary and sufficientto solve matroid intersection?D. J. A. Welsh, “Matroid Theory”, 1976.

Page 15: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Algorithms O(nr2) queries[Lawler ’75]

Matroid Intersection Complexity O(nr1.5) queries

[Cunningham ’86]

Can one prove any non-trivial lower boundon # queries to solve matroid intersection?

Are (nr2) queries necessary and sufficientto solve matroid intersection?D. J. A. Welsh, “Matroid Theory”, 1976.

Page 16: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Algorithms O(nr2) queries[Lawler ’75]

# qu

erie

s

Rank r0 nn/2

O(nr1.5) queries[Cunningham ’86]

Trivial LB

Cunningham UB

Matroid Intersection Complexity

n

2n

0

Page 17: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Algorithms O(nr1.5) queries[Cunningham ’86]

# qu

erie

s

Rank r0 nn/2

Trivial LB

Cunningham UB

Via Dual Matroids

Matroid Intersection Complexity

n

2n

0

Page 18: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Algorithms O(nr1.5) queries[Cunningham ’86]

# qu

erie

s

Rank r0 nn/2

Trivial LB

Cunningham UB

Via Dual Matroids

Optimal UB?

Matroid Intersection Complexity

n

2n

0

Page 19: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Matroid Intersection Complexity

Algorithms O(nr1.5) queries[Cunningham ’86]

# qu

erie

s

Rank r0 n

n

2n

0n/2

Trivial LB

Cunningham UB

Via Dual Matroids

Optimal UB?

1.58n

New LB [Harvey ’08]

Page 20: Query Lower Bounds for Matroids via Group Representations Nick Harvey

• A family M of matroids, each of rank n/2

• # oracle queries for any deterministic algorithm on inputs from M is:

(log2 3) n - o(n) > 1.58n

Lower Bound[Harvey ’08]

Hard Instances CommunicationComplexity

RankComputation

Alice Bob

M =0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 1

Page 21: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Hard InstancesBipartite Matching in Almost-2-Regular Graphs

1

3

2

4

• Is there a perfect matching?

Four verticeshave degree 1

Page 22: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Hard InstancesBipartite Matching in Almost-2-Regular Graphs

1

32

4

• Is there a perfect matching?• No: if path from 1 to 2• Yes: otherwise

Four verticeshave degree 1

Page 23: Query Lower Bounds for Matroids via Group Representations Nick Harvey

• Alice given ∈ Sn and Bob given ∈ Sn

Elements 1 and 2are not in the same cycle

Permutation

Permutation -1

1

2

3

4

5

6

1’

2’

3’

4’

5’

6’

• In-Same-Cycle Problem:Are elements 1 and 2 in the same cycleof composition -1

º ?

Permutation Formulation

Page 24: Query Lower Bounds for Matroids via Group Representations Nick Harvey

LB from Rank Computation• Let C be a matrix with rows and columns

indexed by permutations in Sn

C, =

where G = { : 1 & 2 are in the same cycle of }• C is adjacency matrix of Cayley graph

for Sn with generators G

10

if -1 º ∈ Gotherwise

Corollary: # queries log rank C = (log2 3) n - o(n).

Page 25: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Main ProofA Tour of Algebraic Combinatorics

• Step 0: Young Tableaux

• Step 1: Decomposing G

• Step 2: Decomposing C

• Step 3: Block diagonalizing R

• Step 4: Diagonalizing Xi

• Wrap-up

1

3

56

24

7

11

11

11

Page 26: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Young Diagrams• Young diagram of shape =(1,2,...,k)

• Standard Young Tableau of shape

• Main Result: rank C =# of SYT with n boxes such that 3 1

Row i has i boxes

12…k>0# boxes = n = ∑i i

Place numbers {1,..,n} in boxesRows increase →

Columns increase ↓

11 22 66 8833 55 9944

111177 1010

(and some other minor conditions)

Page 27: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Main Proof

• Step 0: Young Tableaux

• Step 1: Decomposing G

• Step 2: Decomposing C

• Step 3: Block diagonalizing R

• Step 4: Diagonalizing Xi

• Wrap-up

1

3

56

24

7

11

11

11

Page 28: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Decomposing Sn

• Claim: ∈Sn = ◦ ( n, -1(n) ), where ∈Sn-1

• Example: Let ∈S6 be

• Then ◦ ( 7, 3 ) ∈ S7 is

1

3

56

2

4

24

7

1

3

56

Page 29: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Decomposing Sn

• Restatement: Let Xi = { (j,i) : 1ji }.

Then Sn = X2 × … × Xn.

13

56

2

4

7

(2,2) = ◦ (1,3) ◦ (2,4) ◦ (3,5) ◦ (5,6)◦ (3,7)

• Claim: ∈Sn = ◦ ( n, -1(n) ), where ∈Sn-1

Page 30: Query Lower Bounds for Matroids via Group Representations Nick Harvey

DecomposingG• Let G = { : 1 & 2 are in the same cycle }

• Claim: Let Xi = { (j,i) : 1ji }.

Then G = {(1,2)} × X3 × X4 … × Xn.

1 & 2 remain in the same cycle

13

56

24

7

(1,2) = ◦ (1,3) ◦ (4,4)◦ (2,5) ◦ (5,6)◦ (3,7)

Page 31: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Main Proof• Step 0: Young Tableaux

• Step 1: Decomposing G

• Step 2: Decomposing C

• Step 3: Block diagonalizing R

• Step 4: Diagonalizing Xi

• Wrap-up

1

3

56

24

7

11

11

11

G = { (1,2) } × X3 × X4 …× Xn

Page 32: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Decomposing CRegular Representation

• Recall: C is defined

C, =

Definition: R() is defined

R(), =

• Thus: C = ∑∈G R()

1

0if -1 º ∈ Gotherwise

1

0

if -1 º = otherwise

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1

1

1

1

1

1

Page 33: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Main Proof• Step 0: Young Tableaux

• Step 1: Decomposing G

• Step 2: Decomposing C

• Step 3: Block diagonalizing R

• Step 4: Diagonalizing Xi

• Wrap-up

1

3

56

24

7

11

11

11

G = { (1,2) } × X3 × X4 …× Xn

C = ∑∈G R()

Page 34: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Decomposing R“Fourier Transform”

1

1

1

1

1

1

1

1

1

R() BR()B-1

IrreducibleRepresentations

YoungTableaux

change-of-basis matrix B block-diagonalizing R()

′′

Page 35: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Main Proof• Step 0: Young Tableaux

• Step 1: Decomposing G

• Step 2: Decomposing C

• Step 3: Block diagonalizing R

• Step 4: Diagonalizing Xi

• Wrap-up

1

3

56

24

7

11

11

11

G = { (1,2) } × X3 × X4 …× Xn

C = ∑∈G R()

Page 36: Query Lower Bounds for Matroids via Group Representations Nick Harvey

• Let Xi = { (j,i) : 1ji }

• Let Y(Xi) = ∑∈Xi BR()B-1,

restricted to irreducible block

1

1

1

1

1

1

R()

BR()B-1 YoungTableaux

′′

Diagonalizing XiJucys-Murphy Elements

Page 37: Query Lower Bounds for Matroids via Group Representations Nick Harvey

• Let Xi = { (j,i) : 1ji }

• Let Y(Xi) = ∑∈Xi BR()B-1,

restricted to irreducible block

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

∑∈Xi R() ∑∈Xi

BR()B-1 YoungTableaux

′′

Y(Xi)

Diagonalizing XiJucys-Murphy Elements

Page 38: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Diagonalizing XiJucys-Murphy Elements

• Let Xi = { (j,i) : 1ji }

• Let Y(Xi) = ∑∈Xi BR()B-1,

restricted to irreducible block • Fact: Y(Xi) is diagonal (and entries known)

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

∑∈Xi R() ∑∈Xi

BR()B-1 YoungTableaux

′′

Y(Xi)

Page 39: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Diagonalizing XiJucys-Murphy Elements

• Let Xi = { (j,i) : 1ji }

• Let Y(Xi) = ∑∈Xi BR()B-1,

restricted to irreducible block • Fact: Y(Xi) is diagonal (and entries known)

Y(X4) =

YoungTableau

SYT

t1

t2 t3

t2 t3t1t2t3

t1

• Let Xi = { (j,i) : 1ji }

• Let Y(Xi) = ∑∈Xi BR()B-1,

restricted to irreducible block • Fact: Y(Xi) is diagonal, and entry Y(Xi)tj,tj

is c-r+1, where i is in row r and col c of tj.Content Value

Page 40: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Diagonalizing XiJucys-Murphy Elements

• Let Xi = { (j,i) : 1ji }

• Let Y(Xi) = ∑∈Xi BR()B,

restricted to irreducible block • Fact: Y(Xi) is diagonal (and entries known)

03

3Y(X4) =

YoungTableau

SYT

t1

t2 t3

t2 t3t1t2t3

t1

• Let Xi = { (j,i) : 1ji }

• Let Y(Xi) = ∑∈Xi BR()B-1,

restricted to irreducible block • Fact: Y(Xi) is diagonal, and entry Y(Xi)tj,tj

is c-r+1, where i is in row r and col c of tj.Content Value

Page 41: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Main Proof• Step 0: Young Tableaux

• Step 1: Decomposing G

• Step 2: Decomposing C

• Step 3: Block diagonalizing R

• Step 4: Diagonalizing Xi

• Wrap-up

1

3

56

24

7

11

11

11

G = { (1,2) } × X3 × X4 …× Xn

C = ∑∈G R()

Page 42: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Wrap-upDiagonalizing C

Y({(1,2)}) ∙ Y(X3) … Y(Xn) is diagonal

Y({(1,2)}×X3×…×Xn) is diagonal

Y(G ) is diagonal

∑∈G BR()B-1 is diagonal

BCB-1 is diagonal

(homomorphism)

(Step 1)

(Step 3)

(Step 2)

(Step 4)

Page 43: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Y(G )tj,tj 0

Y(Xi)tj,tj 0 i3

If i3 is in row c and col r of tj, then c-r+10

rank C = # SYT with 3 1 (and 2 below 1,...)

Wrap-upWhat are eigenvalues of C?

1 2 3 4

0 1 2

-1

-2

0 1

c-r+1

1 0

0

0

0

Content Value

Content Values

1

0

0

0

2

SYT tjNo i3 can

go here

3 1

Y(G )=Y({(1,2)}×X3×…×Xn)

Page 44: Query Lower Bounds for Matroids via Group Representations Nick Harvey

Main Proof• Step 0: Young Tableaux

• Step 1: Decomposing G

• Step 2: Decomposing C

• Step 3: Block diagonalizing R

• Step 4: Diagonalizing Xi

• Wrap-up

1

3

56

24

7

11

11

11

G = { (1,2) } × X3 × X4 …× Xn

C = ∑∈G R()

QED