23
Nature’s building blocks 1 QuarkNet Oregon 2012, R Frey

QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

Nature’s building blocks

1QuarkNet Oregon 2012, R Frey

Page 2: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

building blocks → matter

Baryons: qqq• Baryons: qqq Examples: proton (p) = uud

charge: 1e=(2/3 e) + (2/3 e) + ( 1/3 e)charge: 1e=(2/3 e) + (2/3 e) + (-1/3 e)neutron (n) = udd

charge: 0 = (2/3 e) + (-1/3 e) + (-1/3 e)• Mesons: q anti-qMesons: q anti-q. Examples: + = u anti-d charge: 1e=(2/3 e) + (1/3 e)- = d anti u charge: 1e=( 1/3 e) + ( 2/3 e) = d anti-u charge: -1e=(-1/3 e) + (-2/3 e)

• atoms: p+n+e; e.g. hydrogen: p + e2QuarkNet Oregon 2012, R Frey

Page 3: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

Cosmic Rays

• Outside earth’s atmosphere, these are charged particles, 86% protons

• These primary cosmic ray particles• These primary cosmic ray particles interact with air high in the atmosphere (15 km), creating h f d ti lshowers of secondary particles

• By time the secondaries reach sea level, muons dominate the flux

• The detectable (vertical) rate at sea level is 1/cm2/min Th h t l CR h• Throughout our galaxy, CRs have an energy density of 1 eV/cm3

Starlight: 0.6 eV/cm3

CMB: 0.26 eV/cm3

• 30% of natural radiation (sea level)• Provide charge and seeds for• Provide charge and seeds for

lightningfrom QuarkNet CRD manual

3QuarkNet Oregon 2012, R Frey

Page 4: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

energy and origin of primaries

• Steeply falling, power law energy spectrumF E 1014 V t d fl• For E1014 eV, spectrum and flux are consistent with acceleration by shock waves from supernovae (“Fermi acceleration”)

• For largest energies, mechanism is unknown (Gamma-rayis unknown (Gamma ray bursts??)

• For E1019 eV, protons would not b t d b l ti tibe captured by galactic magnetic field (310-10 T) pt [GeV] = (0.3q/e)B[T] R[m]pt [ ] ( q ) [ ] [ ]

• So higher energy CRs must be extra-galactic (but GZK cutoff)

4QuarkNet Oregon 2012, R Frey

Page 5: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

Auger CR observatorywww.auger.org

• Sites in Mexico and Argentina• Array of detectors: (40x1.5 km)x(40x1.5 km)• GZK: extragalactic CRs attenuated:• GZK: extragalactic CRs attenuated:

p + (CMB) + p + , n + +

411 CMB photons/ cm3 ; E=k2.7K=2.410-4 eV No protons >1020 eV from further than 5 Mpc

• Summer 2007: No excess above GZK cutoff• Fall 2007: UHE CRs associated with AGNs• Fall 2007: UHE CRs associated with AGNs

5QuarkNet Oregon 2012, R Frey

Page 6: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

The cosmic ray showers

• Primaries interact in the atmosphere the• Primaries interact in the atmosphere – the maximum production of pions and muons is at z15 km, making showers of (mostly) short-lived particles (e g pion () lifetime is 2 610-8 s)particles.(e.g. pion ( ) lifetime is 2.610 s)

• Characteristic shower angle: pt / pL 0.2 GeV/E

• The long-lived secondaries are: e, photons: mostly absorbed neutrinos (): practically invisibleneutrinos (): practically invisible muons (): =lifetime is 2.210-6 s

• Without time dilation, muons would travel dc=660 m with a survival fractiondc=660 m, with a survival fraction

e-0.66/15 10-10

• Instead, for a 10 GeV muon, 10/0.1=100, then mean distance is 66 km. (OK)

6QuarkNet Oregon 2012, R Frey

Page 7: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

cosmic rays at earth’s surface

• Predominantly muons

• Detectable (vertical) flux is 1/ cm2/ min• Detectable (vertical) flux is 1/ cm / min

• Mean energy 4 GeVgy

• Originate at altitude of 15 km, on average

• The very low energy muons (1-3 GeV) mostly decay 15 km decay length corresponds to a 2 4 GeV muon 15 km decay length corresponds to a 2.4 GeV muon

• The higher energy muons lose about 2 GeV (on average) due to ionization in the atmosphere and about 4 MeV / cm in concrete

7QuarkNet Oregon 2012, R Frey

Page 8: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

8QuarkNet Oregon 2012, R Frey

Page 9: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

9QuarkNet Oregon 2012, R Frey

Page 10: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

Basic principle of particle detectors

• High-energy charged particles (e.g. cosmic rays, nuclear decays, LHC collisions x-rays, gamma rays, etc) ionize the medium they pass throughmedium they pass through.

• The ionization is detected directly or by separation (and amplification) of the charge pairs.

• Uncharged particles (e.g. x/gamma-rays) similar• That’s it (almost).

• Examples: Geiger and other gaseous countersg g Scintillator (e.g. quarknet CRDs) Smoke detectors Semiconductor detectors Bubble chambers Spark chambers Spark chambers Cloud chambers

10QuarkNet Oregon 2012, R Frey

Page 11: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

Cloud chambers

• A supersaturated vapor will preferentially condense along the ionization trail left by a passing particlepassing particle.

• Basic ingredients are: • A fluid with high vapor pressure

(alcohol)• A cold plate at temperature well below

boiling pointboiling point• Very still conditions• A strong light and black background• An electric field is sometimes applied

In ented b Wilson (1911)• Invented by Wilson (1911)• Used to discover positron (1932) by

Anderson• Replaced by other techniques for HEP

11QuarkNet Oregon 2012, R Frey

Page 12: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

Modern particle detectors

12QuarkNet Oregon 2012, R Frey

Page 13: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

What particles are actually detected?

( tl )(mostly)

13QuarkNet Oregon 2012, R Frey

Page 14: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

Detectors revealed

• Inner detectors: Low density ionization detectors to measure trajectory of chargeddetectors to measure trajectory of charged particles (gas, thin silicon) in a uniform magnetic field (p=qvB). [trackers]

• Outer detectors absorb and measure particle energies. [calorimeters]

• Muons (and neutrinos) surviveMuons (and neutrinos) survive.• Energy & Momentum conservation to

reconstruct the processes 14QuarkNet Oregon 2012, R Frey

Page 15: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

pix (silicon detectors)

QuarkNet Oregon 2012, R Frey 15

Page 16: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

QuarkNet Oregon 2012, R Frey 16

Page 17: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

e.g. e+e- → e+e- at E=91 GeV

QuarkNet Oregon 2012, R Frey 17

Page 18: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

QuarkNet Oregon 2012, R Frey 18

Page 19: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

QuarkNet Oregon 2012, R Frey 19

Page 20: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

e+e- → q anti-q at E=91 GeV

QuarkNet Oregon 2012, R Frey 20

Page 21: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

QuarkNet cosmic ray detectors

• 4 scintillator paddles and photomultiplier tubesphotomultiplier tubes• requires only wall plug power• GPS receiverGPS receiver• electronics card and computer interface

• measure cosmic ray rates in various configurationsvarious configurations• datasets written to computer• combine with other setups• muon lifetime experimentmuon lifetime experiment

21QuarkNet Oregon 2012, R Frey

Page 22: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

CRD principle in a nutshellA “minimum ionizing particle” (MIP) e g a typical cosmic ray muon• A minimum ionizing particle (MIP), e.g. a typical cosmic ray muon, passes through a plastic scintillator, depositing (on average) about 2 MeV / cm (ionization of the plastic)

• Typically, the scintillation yield is 1 photon per 100 eV of ionization 2104 photons/ cm for each muon

• Some fraction of the photons are collected at the photomultiplier tubeSome fraction of the photons are collected at the photomultiplier tube (PMT) – depends on geometry and indices of refraction

• The photocathode of the PMT converts a blue photon to an electron ith ffi i f 10%with efficiency of 10%

• The PMT multiplies an electron by a factor 106

depends on high voltage setting, number of stages N (N=10 to 12depends on high voltage setting, number of stages N (N 10 to 12 typically), and geometry

Gain (few)N

22QuarkNet Oregon 2012, R Frey

Page 23: QuarkNet Oregon 2012, R Frey 1pages.uoregon.edu/rayfrey/QuarkNet/Ray_detection_CR.pdfQuarkNet Oregon 2012, R Frey 8. QuarkNet Oregon 2012, R Frey 9. Basic principle of particle detectors

a community of cosmic experimenters

23QuarkNet Oregon 2012, R Frey