35
ICE Quantum Vacuum & Cosmology on a Background of Zeta Functions E MILIO E LIZALDE ICE/CSIC & IEEC, UAB, Barcelona Casimir Physics 2014 Mar 30 – April 4, Les Houches (France) E Elizalde, Casimir Physics 2014, Mar 30 - April 4, Les Houches (France) – p. 1/23

Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

ICE

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Quantum Vacuum & Cosmologyon a Background of

Zeta Functions

EMILIO ELIZALDE

ICE/CSIC & IEEC, UAB, Barcelona

Casimir Physics 2014Mar 30 – April 4, Les Houches (France)

E Elizalde, Casimir Physics 2014, Mar 30 - April 4, Les Houches (France) – p. 1/23

Page 2: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

Outline

On Zeta Function Techniques

Quadratic Affine Case: Chowla-Selberg and Extensions

Traces and determinants

Regularizing Quantum Vacuum Fluctuations

Dark Energy vs Modified Gravity

On the recent, impacting discovery by BICEP2

E Elizalde, Casimir Physics 2014, Mar 30 - April 4, Les Houches (France) – p. 2/23

Page 3: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���� �� ��−3 −2 −1 0 1 2 3 4 5 −4

s

a.c.

(s) = −−1

nsζ Σ

(s)ζ

pole

Page 4: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

Basic strategiesJacobi’s identity for the θ−function

θ3(z, τ) := 1 + 2∑∞

n=1 qn2

cos(2nz), q := eiπτ , τ ∈ C

θ3(z, τ) = 1√−iτ

ez2/iπτ θ3

(zτ|−1

τ

)equivalently:

∞∑

n=−∞e−(n+z)2t =

√π

t

∞∑

n=0

e−π2n2

t cos(2πnz), z, t ∈ C, Ret > 0

Higher dimensions: Poisson summ formula (Riemann)∑

~n∈Zp

f(~n) =∑

~m∈Zp

f(~m)

f Fourier transform[Gelbart + Miller, BAMS ’03, Iwaniec, Morgan, ICM ’06]

Truncated sums −→ asymptotic series

Page 5: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,
Page 6: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,
Page 7: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,
Page 8: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

The Chowla-Selberg Formula (CS)M. Lerch, Sur quelques formules relatives du nombre des classes, Bull. Sci.

Math. 21 (1897) 290-304

A. Selberg and S. Chowla, On Epstein’s Zeta function (I), Proc. Nat. Acad.Sci. 35 (1949) 371-74

Page 9: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,
Page 10: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

The Chowla-Selberg Formula (CS)M. Lerch, Sur quelques formules relatives du nombre des classes, Bull. Sci.

Math. 21 (1897) 290-304

A. Selberg and S. Chowla, On Epstein’s Zeta function (I), Proc. Nat. Acad.Sci. 35 (1949) 371-74

S. Chowla and A. Selberg, On Epstein’s Zeta function, J. reine angew. Math.

(Crelle’s J.) 227 (1967) 86-110

Page 11: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,
Page 12: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,
Page 13: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,
Page 14: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

The Chowla-Selberg Formula (CS)M. Lerch, Sur quelques formules relatives du nombre des classes, Bull. Sci.

Math. 21 (1897) 290-304

A. Selberg and S. Chowla, On Epstein’s Zeta function (I), Proc. Nat. Acad.Sci. 35 (1949) 371-74

S. Chowla and A. Selberg, On Epstein’s Zeta function, J. reine angew. Math.

(Crelle’s J.) 227 (1967) 86-110

K. Ramachandra, Some applications of Kronecker’s limit formulas, Ann. Math.

80 (1964) 104-148

A. Weil, Elliptic functions according to Eisenstein and Kronecker (Springer,Berlin, 1976)

S. Iyanaga and Y. Kawada, Eds., Encyclopedic Dictionary of Mathematics, Vol.

II (The MIT Press, Cambridge, 1977), pp. 1378-79

B.H. Gross, On the periods of abelian integrals and a formula of Chowla andSelberg, Inv. Math. 45 (1978) 193-211

P. Deligne, Valeurs de fonctions L et periodes d’integrales, PSPM 33 (1979)313-346

Page 15: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

HistoryLerch (1897):

|D|∑

λ=1

(D

λ

)log Γ

D

)= h log |D| − h

3log(2π) −

(a,b,c)

log a

+2

3

(a,b,c)

log[θ′1(0|α)θ′1(0|β)

]

D discriminant, θ′1 ∼ η3

h class number of binary quadratic forms (a, b, c)

Page 16: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

HistoryLerch (1897):

|D|∑

λ=1

(D

λ

)log Γ

D

)= h log |D| − h

3log(2π) −

(a,b,c)

log a

+2

3

(a,b,c)

log[θ′1(0|α)θ′1(0|β)

]

D discriminant, θ′1 ∼ η3

h class number of binary quadratic forms (a, b, c)

Eta evaluations Dedekind eta function for Im (τ) > 0

η(τ) = q1/24∏∞

n=1(1 − qn), q := e2πiτ

It is a 24-th root of the discriminant func ∆(τ) of an elliptic

curve C/L from a lattice L = {aτ + b | a, b ∈ Z}

∆(τ) = (2π)12q

∞∏

n=1

(1 − qn)24

Page 17: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

Properties & Recent Results=⇒ The C-S formula gives the value of a product of eta functions

=⇒ If there is only one form in the class, it yields the value of a single etafunction in terms of gamma functions

=⇒ Long series of improvements: Kaneko (90),Nakajima and Taguchi (91), Williams et al. (95)

=⇒ In the last years the C-S formula has been ‘broken’ to isolate the etafunctions:Williams, van Poorten, Chapman, Hart

R. Chapman and W.B. Hart, Evaluation of the Dedekind eta function,Can. Math. Bull. (2005)

W.B. Hart, PhD Thesis, 2004 (Macquarie U., Sidney)

M. Suzuki, An analogue of the Chowla-Selberg formula for severalautomorphic L-functions, arXiv:math/0606096 (2006)

T. Yang, The Chowla-Selberg formula and the Colmez conjecture,Canad. J. Math. 62 (2010), pp. 456-472

Page 18: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

Extended CS Series Formulas (ECS)Consider the zeta function (Res > p/2, A > 0,Req > 0)

ζA,~c,q(s) =∑

~n∈Zp

′[1

2(~n+ ~c)

TA (~n+ ~c) + q

]−s

=∑

~n∈Zp

′[Q (~n+ ~c) + q]

−s

prime: point ~n = ~0 to be excluded from the sum(inescapable condition when c1 = · · · = cp = q = 0)

Q (~n+ ~c) + q = Q(~n) + L(~n) + q

Case q 6= 0 (Req > 0)

ζA,~c,q(s) =(2π)p/2qp/2−s

√detA

Γ(s− p/2)

Γ(s)+

2s/2+p/4+2πsq−s/2+p/4

√detA Γ(s)

×∑

~m∈Zp1/2

′ cos(2π~m · ~c)(~mTA−1~m

)s/2−p/4Kp/2−s

(2π

√2q ~mTA−1~m

)

EE JPA34 (2001) 3025 [ECS1]Pole: s = p/2 Residue:

Ress=p/2 ζA,~c,q(s) =(2π)p/2

Γ(p/2)(detA)−1/2

Page 19: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

Gives (analytic cont of) multidimensional zeta function in terms of anexponentially convergent multiseries, valid in the whole complex plane

Exhibits singularities (simple poles) of the meromorphic continuation—with the corresponding residua— explicitly

Only condition on matrix A: corresponds to (non negative) quadraticform, Q. Vector ~c arbitrary, while q is (to start) a non-neg constant

Kν modified Bessel function of the second kind and the subindex 1/2in Z

p1/2 means that only half of the vectors ~m ∈ Z

p participate in thesum. E.g., if we take an ~m ∈ Z

p we must then exclude −~m[simple criterion: one may select those vectors in Z

p\{~0} whosefirst non-zero component is positive]

Case c1 = · · · = cp = q = 0 [true extens of CS, diag subcase]

ζAp(s) =21+s

Γ(s)

p−1∑

j=0

(detAj)−1/2

[πj/2a

j/2−sp−j Γ

(s− j

2

)ζR(2s−j) +

4πsaj4− s

2

p−j

∞∑

n=1

~mj∈Zj

′nj/2−s(~mt

jA−1j ~mj

)s/2−j/4Kj/2−s

(2πn

√ap−j ~mt

jA−1j ~mj

)]

[ECS3d]

Page 20: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

Definition of DeterminantH ΨDO operator {ϕi, λi} spectral decomposition

∏i∈I λi ?! ln

∏i∈I λi =

∑i∈I lnλi

Riemann zeta func: ζ(s) =∑∞

n=1 n−s, Re s > 1 (& analytic cont)

Definition: zeta function of H ζH(s) =∑

i∈I λ−si = tr H−s

As Mellin transform: ζH(s) = 1Γ(s)

∫ ∞0 dt ts−1 tr e−tH , Res > s0

Derivative: ζ ′H(0) = −∑i∈I lnλi

Determinant: Ray & Singer, ’67detζ H = exp [−ζ ′H(0)]

Weierstrass def: subtract leading behavior of λi in i, as i→ ∞,

until series∑

i∈I lnλi converges =⇒ non-local counterterms !!

C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,...

Page 21: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

Multipl or N-Comm Anomaly, or DefectGiven A, B, and AB ψDOs, even if ζA, ζB, and ζAB exist,it turns out that, in general,

detζ(AB) 6= detζA detζB

The multiplicative (or noncommutative) anomaly (defect)is defined as

δ(A,B) = ln

[detζ(AB)

detζ A detζ B

]= −ζ ′AB(0) + ζ ′A(0) + ζ ′B(0)

Wodzicki formula

δ(A,B) =res

{[ln σ(A,B)]2

}

2 ordA ordB (ordA+ ordB)

where σ(A,B) = Aord BB−ord A

Page 22: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

Consequences of the Multipl AnomalyIn the path integral formulation

∫[dΦ] exp

{−

∫dDx

[Φ†(x)

( )Φ(x) + · · ·

]}

Gaussian integration: −→ det( )±

A1 A2

A3 A4

−→

A

B

det(AB) or detA · detB ?

In a situation where a superselection rule exists, AB has no

sense (much less its determinant): =⇒ detA · detB

But if diagonal form obtained after change of basis (diag.

process), the preserved quantity is: =⇒ det(AB)

Page 23: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,
Page 24: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,
Page 25: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,
Page 26: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

Zero point energy

QFT vacuum to vacuum transition: 〈0|H|0〉Spectrum, normal ordering (harm oscill):

H =

(n+

1

2

)λn an a

†n

〈0|H|0〉 =~ c

2

n

λn =1

2tr H

gives ∞ physical meaning?

Regularization + Renormalization ( cut-off, dim, ζ )

Even then: Has the final value real sense ?

Page 27: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

Vacuum Fluct & the Equival PrincipleThe main issue: S.A. Fulling et. al., hep-th/070209

energy ALWAYS gravitates therefore the energy density of the vacuumappears on the rhs of Einstein’s equations:

Rµν −1

2gµνR = −8πG(Tµν − Egµν)

Equivalent to a cosmological const Λ = 8πGE , ρc = 3H2

8πG

Observations: M. Tegmark et al. [SDSS Collab.] PRD 2004

Λ = (2.14 ± 0.13 × 10−3 eV)4 ∼ 4.32 × 10−9 erg/cm3

Question: how finite Casimir energy of pair of plates couples to gravity?

Two ways to proceed. Gauge-invariant procedure:

energy-momentum tensor of the phys sys must be conserved, so include aphysical mechanism holding the plates apart against the Casimir force

−→ Leads to complicated model-dependent calculations

Alternative: find a physically natural coordinate system, more realistic than

another: Fermi coord system [Marzlin ’94]

Calculations done also in Rindler coord (uniform accel obs)

Page 28: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

The accelerating UniverseDark Energy: effects on the expansion rate of Universe, 3 approaches:

—- Standard candles: measure luminosity distance as function of redshift—- Standard rulers: angular diam distance & expansion rate as f of redsh—- Growth of fluctuations: generated at origin of U & amplified by inflation

Both angular diameter and luminosity distances are integrals of(inverse) expansion rate: encode effects of DETo get competitive constraints on DE need see changes in H(z) at 1%would give statistical errors in DE EoS of O(10%)

—- calibrate the ruler accurately over most of the age of the universe—- measure the ruler over much of the volume of the universe—- make ultra-precise measurements of the ruler

On large scales or early times the perturbative treatment is valid:calculations are perfectly under controlLength scales from physics of the early universe are imprinted on thedistribution of mass and radiation: they form time-independent rulers(M White, Berkeley)

E Elizalde, Casimir Physics 2014, Mar 30 - April 4, Les Houches (France) – p. 3/23

Page 29: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

The accelerating Universe (II)Evidence for the acceleration of the Universe expansion:

distant supernovaeA.G Riess et al. ’98, S. Perlmutter et al. ’99

the cosmic microwave backgroundS. Dunkley et al., ’99, E. Komatsu et al. ’99, B.D. Sherwinet al. ’11, A. van Engelen et al. ’12

baryon acoustic oscillations BAO Martin White mwhite/bao/

the galaxy distribution AG Sanchez ea 12, Gaztanaga ea

correlations of galaxy distribs R Scranton ea ’03,

Multiple sets of evidence: no systematics affect theconclusion that a > 0, a scale factor of the Universe

E Elizalde, Casimir Physics 2014, Mar 30 - April 4, Les Houches (France) – p. 4/23

Page 30: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

QUANTUM VACUUM FLUCTUATIONSOF SPACETIME ITSELF?

BICEP2'S SNAPSHOTS OF THE CMB POLARIZATION

On 17 Mar 2014, John Kovac announced that, by looking at the CMB signal, BICEP2 had found the imprint of gravitational waves from the Big Bang:*polarization of the CMB*curly patterns known as B modes*generated by gravitational waves during inflation

Sergi R. Hildebrandt

Page 31: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,
Page 32: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

Important about the findingPrediction about B modes from inflation relies not just on the phenomenon of gravitational waves but on the quantization of gravity

Indeed, inflation assumes that everything started out as quantum fluctuations

*of a scalar field?

*of spacetime itself?

that then got amplified by inflation

B-mode polarization signal is twice as high as that from PLANCK !* Planck data comes from temperature maps of the CMB, not from a direct polarization measure* Team thought over the past three years about every possible systematic explanation that could

have falsified the signal* Done the most extensive systematic analysis that the PIs have ever been involved in by far* Compared the BICEP2 signal with BICEP1, very different detectors

Page 33: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

Could Quantum Gravity ever be detected?Freeman Dyson at Singapore conference Aug 2013, celebrating his 90th Birthday:

*physically impossible

*to detect individual graviton, mirrors need be so heavy they would collapse to form a Black Hole

But L. Krauss & F. Wilczeck, Phys. Rev. D89, 047501 (2014):

• gravitational waves stretch spacetime along one direction while contracting it along the other

• would affect how electromagnetic radiation travels through space, causing it to be polarized

• ”…measurement of polarization of CMB due to gravitational waves from Inflation would firmly establish the quantization of gravity”

• gravitational waves can be traced back to individual gravitons, “…what we finally hope to detect is the signal from a single graviton amplified by the Universe expansion”

And Alan Guth ”…the expected gravitational waves arise from the quantum properties of the gravitational field itself, and are not merely a by-product of the gravitationalfield interacting with the quantum fluctuations of other fields”

Page 34: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,
Page 35: Quantum Vacuum & Cosmology on a Background of Zeta Functions · C. Soulé et al, Lectures on Arakelov Geometry, CUP 1992; A. Voros,... Multipl or N-Comm Anomaly, or Defect Given A,

SOME OTHER OPINIONS:“Good Morning, Inflation! Hello, Multiverse!” (Max Tegmark)Hawking tells Turok: “You owe me!” But Turok's sticking with his cyclic universe“I believe that if both Planck and the new results agree, then together they

would give substantial evidence against inflation!” (Neil Turok) “There's a significant possibility of some of the polarization signal in E and B

modes not being cosmological. If genuine, then the spectrum is a bit strange and may indicate something added to the normal inflationary recipe” (Peter Coles)

“What is strange is that all the blue dots lie so close to zero. Statistically speaking this is extremely unlikely and it may suggest that the noise levels have been over-estimated” (Hans Kristian Eriksen)

Reserve judgement until this is confirmed by other experiments: STP, POLARBEAR, ABS, ACTPOL, CLASS, EBEX, SPIDER, PIPER, and PLANCK