66
1 2

Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Quantum Sinkhorn's theorem:

Applications in entanglement dynamics,

channel capacities, and compatibility theory

Sergey Filippov

1Moscow Institute of Physics and Technology (National Research University)2Steklov Mathematical Institute of Russian Academy of Sciences

Mathematical Aspects in Current Quantum Information Theory 2019

Seoul National University, Korea

May 21, 2019

Page 2: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Plan

1. Sinkhorn's theorem for matrices

2. Quantum Sinkhorn's theorem

3. Lower and upper bounds on classical capacity

4. Entanglement robustness

5. Compatibility of trace decreasing operations

Page 3: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Sinkhorn's theorem

Theorem (1)

If X is an n× n matrix with strictly positive elements, then there

exist diagonal matrices D1 and D2 with strictly positive diagonal

elements such that D1XD2 is doubly stochastic.

1R. Sinkhorn, A relationship between arbitrary positive matrices and doubly stochastic matrices,

Ann. Math. Statist. 35, 876879 (1964).

Page 4: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

1

2

3 · · ·· · ·· · ·

Page 5: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

1

2

3 · · ·· · ·· · ·

Page 6: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

1

2

3 · · ·1 · ·· · ·

Page 7: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

1

2

3 · 1 ·1 · ·· · ·

Page 8: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

1

2

3 · 1 ·1 · ·1 · ·

Page 9: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

1

2

3 · 1 ·1 · ·1 · 1

Page 10: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

1

2

3 · 1 ·1 · 11 · 1

Page 11: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

1

2

3 · 1 ·1 1 11 · 1

Page 12: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

1

2

3 · 2 ·1 1 11 · 1

Page 13: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

1

2

3 1 2 ·1 1 11 · 1

Page 14: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

1

2

3 1 2 ·2 1 11 · 1

Page 15: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

1

2

3 1 2 ·2 1 11 1 1

Page 16: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

1

2

3 1 2 12 1 11 1 1

Page 17: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

1

2

3 1 2 13 1 11 1 1

Page 18: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

1

2

3 1 2 13 1 11 2 1

Page 19: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

1

2

3 1 2 13 1 11 2 2

Page 20: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

P1(t+ ∆t)P2(t+ ∆t)P3(t+ ∆t)

=

p1→1 p2→1 p3→1

p1→2 p2→2 p3→2

p1→3 p2→3 p3→3

P1(t)P2(t)P3(t)

transition matrix

Y =

p1→1 p2→1 p3→1

p1→2 p2→2 p3→2

p1→3 p2→3 p3→3

Page 21: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

X =

1 2 13 1 11 2 2

Premise: transition matrix Y is bistochastic (uniform distribution is

a xed point)

XD2 =

1 2 13 1 11 2 2

1/5 0 00 1/5 00 0 1/4

=

0.2 0.4 0.250.6 0.2 0.250.2 0.4 0.5

left stochastic, but not right stochastic

D1XD2 =

0.85−1 0 00 1.05−1 00 0 1.1−1

0.2 0.4 0.250.6 0.2 0.250.2 0.4 0.5

= 0.235 0.471 0.2940.572 0.190 0.2280.182 0.364 0.454

right stochastic, but not left stochastic

and so on ...

Page 22: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Sinkhorn's theorem

Theorem (2)

If X is an n× n matrix with strictly positive elements, then there

exist diagonal matrices D1 and D2 with strictly positive diagonal

elements such that D1XD2 is doubly stochastic.

2R. Sinkhorn, A relationship between arbitrary positive matrices and doubly stochastic matrices,

Ann. Math. Statist. 35, 876879 (1964).

Page 23: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Let A and B be operators acting on Hd. Denote

ΦA[X] = AXA†

ΦB[X] = BXB†

Theorem (3)

Let Φ : B(Hd) 7→ B(Hd) be a linear map which belongs to the

interior of the cone of positive maps. Then there exist

positive-denite operators A and B such that Υ = ΦA Φ ΦB is

bistochastic.

3G. Aubrun, S.J. Szarek, Two proofs of Størmer's theorem, arXiv:1512.03293 (2015)

Page 24: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Alternative discussions of the relation Υ = ΦA Φ ΦB:

I L. Gurvits, Classical complexity and quantum entanglement, J.

Comput. System Sci. 69, 448484 (2004).

For maps Φ s.t. infdetΦ[X]|X > 0,detX = 1 > 0.

I T. T. Georgiou, M. Pavon, Positive contraction mappings for

classical and quantum Schrodinger systems, J. Math. Phys.

56, 033301 (2015).

For so-called positivity improving CPT maps with the property

Φ†[ρ] > 0 for all ρ.

Page 25: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Proof.

Υ[I] = AΦ[B2]A = I ⇐⇒ (Φ[B2])−1 = A2

Υ†[I] = BΦ†[A2]B = I ⇐⇒ (Φ†[A2])−1 = B2

(Φ[(

Φ†[S])−1])−1

= S

A = S1/2

B =(Φ†[S]

)−1/2

Page 26: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

S is a xed point of the map F [X] =

(Φ[(

Φ†[X])−1])−1

f [X] =F [X]

tr[F [X]]

By Brouwer's xed-point theorem there exists a density operator %such that f [%] = % and hence F [%] = α%, where α = tr[F [%]] > 0.If we choose A = %1/2 and B = (Φ†[%])−1/2, then Υ is trace

preserving and satises Υ[I] = αI. Therefore, if α = 1, then % is a

xed point of F that we needed to conclude the proof.

Page 27: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Applications

The main idea is to translate known properties of bistochastic

channels into new properties of nonunital channels or operations.

Page 28: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Classical capacity

n

...

i

i ∈ 1, . . . , NEncoder: i→ %

(n)i

n is the number of qubits

Page 29: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Classical capacity

n

...

n

...

F

i

Quantum channel Φ is a CPT map for individual qubit

Map Φ⊗n for n qubits

The output state of n qubits is Φ⊗n[%(n)i ]

Page 30: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Classical capacity

t

n

...

n...

F

i

j

Decoder: POVM, which assigns a positive-semidenite operator

M(n)j (acting on 2n-dimensional Hilbert space) to each observed

outcome j ∈ 1, . . . , N

p(n)(j|i) = tr[%(n)i M

(n)j ]

Condition∑N

j=1M(n)j = I guarantees

∑Nj=1 p

(n)(j|i) = 1.

perr(n,N) = maxj=1,...,N

(1− p(n)(j|j)

)

Page 31: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Classical capacity

R is called an achievable rate of information transmission if

limn→∞

perr(n, 2nR) = 0

Classical capacity:

C(Φ) = supR : lim

n→∞perr(n, 2

nR) = 0

Holevo4SchumacherWestmoreland5 theorem:

C(Φ) = limn→∞

1

nCχ(Φ⊗n)

Cχ(Ψ) = suppk,ρk

[S

(∑k

pkΨ[ρk]

)−∑k

pkS(Ψ[ρk])

]

S(ρ) = −tr(ρlog2ρ)4A. S. Holevo, IEEE Trans. Inf. Theory 44, 269 (1998).

5B. Schumacher, M. Westmoreland, Phys. Rev. A 56, 131 (1997).

Page 32: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Classical capacity

Additivity property

Cχ(Φ⊗n) = nCχ(Φ)

holds for a limited classes of channels only (depolarizing channels6,

entanglement breaking channels7, unital qubit channels8).

Υ is unital if Υ[I] = I

l

l

3

1

t

l

l

3

1

l

l

3

1

Unital qubit channel:

Υ[X] =1

2

(tr[X]I +

3∑k=1

tr[Xσk]λkσk

)

6C. King, IEEE Trans. Inf. Theory 49, 221 (2003).

7P. W. Shor, J. Math. Phys. 43, 4334 (2002).

8C. King, J. Math. Phys. 43, 4641 (2002).

Page 33: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Classical capacity of unital qubit channels

C(Υ) = Cχ(Υ) = 1− h(

1

2

(1− max

i=1,2,3|λi|))

h(x) = −xlog2x− (1− x)log2(1− x)

l

l

3

1

t

l

l

3

1

Optimal encodings

and decodings are known!

Message

i → binary form 0,1,0,0,1,1,. . .

%(n)i = |0〉〈0| ⊗ |1〉〈1| ⊗ |0〉〈0| ⊗|0〉〈0| ⊗ |1〉〈1| ⊗ |1〉〈1| ⊗ . . .M

(n)j =

∑x: g(x)=j

⊗nk=1M

(1)xk ,

M(1)xk ∈ |0〉〈0|, |1〉〈1|

Page 34: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Classical capacity of nonunital qubit channels

t

l

l

3

1

Φ[I] 6= I

What is the capacity

of a nonunital qubit channel?

Nobody knows

Bounds:

I X. Wang, W. Xie, R. Duan, Semidenite programming strong

converse bounds for classical capacity, IEEE Trans. Inf. Theory

64, 640 (2018).

I F. Leditzky, E. Kaur, N. Datta, M. M. Wilde, Approaches for

approximate additivity of the Holevo information of quantum

channels, Phys. Rev. A 97, 012332 (2018).

Page 35: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Bounds on capacity

Proposition9. Suppose Φ is a channel such that Ψ = ΦA Φ ΦB

is a channel too. Then C(Φ) > C(Ψ)− 2 log2(‖A‖‖B‖).Proof. Let %(n)

i ,M(n)i Ni=1 be the optimal code of size N = 2nRΨ

for the composite channel Ψ⊗n s.t. limn→∞ perr Ψ(n, 2nRΨ) = 0.Modied input states:

%(n)i =

B⊗n%(n)i (B†)⊗n

tr[B⊗n%(n)i (B†)⊗n]

.

Modied positive operator-valued measure j → M(n)j Nj=0:

M(n)0 = I −

N∑j=1

M(n)j , M

(n)j =

(A†)⊗nM(n)j A⊗n

‖A‖2n, j = 1, . . . , N,

‖X‖ = ‖X‖∞ = maxψ:〈ψ|ψ〉=1〈ψ|X†X|ψ〉 is the operator norm.9S. N. Filippov, Rep. Math. Phys. 82, 149 (2018)

Page 36: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Bounds on capacity

Using the modied code, let each qubit be transmitted through the

channel Φ. Then the probability to observe outcome j 6= 0 provided

input message i equals

p(n)(j|i)=tr[%

(n)i M

(n)j

]=

trA⊗nΦ⊗n

[B⊗n%

(n)i (B†)⊗n

](A†)⊗nM

(n)j

tr[B⊗n%

(n)i (B†)⊗n]‖A‖2n

.

Since ΦA Φ ΦB = Ψ, we get

p(n)(j|i) =tr

Ψ⊗n[%(n)i ]M

(n)j

tr[B⊗n%

(n)i (B†)⊗n]‖A‖2n

=p(n)(j|i)

tr[B⊗n%(n)i (B†)⊗n]‖A‖2n

,

where p(n)(j|i) is the probability to get outcome j ∈ 1, . . . , Nfor the input message i ∈ 1, . . . , N in the original optimal

protocol for channel Ψ⊗n.

Page 37: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Bounds on capacity

Observation of the outcome j = 0 in the modied protocol would

be treated as unsuccessful event, whereas observation of the

outcome j ∈ 1, . . . , N leads to a successful identication of the

message because p(n)(j|i)→ δij if n→∞.

The probability to observe nonzero outcome j equals

P (n) =

N∑j=1

p(n)(j|i) =1

tr[B⊗n%(n)i (B†)⊗n]‖A‖2n

>1

(‖A‖‖B‖)2n

One can transmit information in the case of successful events j 6= 0,the average number of successfully transmitted messages N is

N = P (n)N = P (n)2nRΨ > 2n(RΨ−2 log2(‖A‖‖B‖))

Therefore, the considered protocol enables one to achieve the rate

R > RΨ − 2 log2(‖A‖‖B‖)

Page 38: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Bounds on capacity

If RΨ 6 C(Ψ) and one observes the successful event (j 6= 0), thanthe maximum error probability in the modied protocol

perr(n, N) = maxj=1,...,N

(1− p(n)(j|j)

P (n)

)= max

j=1,...,N

(1− p(n)(j|j)

)→

n→∞0.

Taking supremum on both sides of R > RΨ− 2 log2(‖A‖‖B‖) withrequirement limn→∞ perr(n, N) = 0, we get

C(Φ) > C(Ψ)− 2 log2(‖A‖‖B‖)

Q.E.D.

Page 39: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Bounds on capacity

Υ = ΦA Φ ΦB

Φ = ΦA−1 Υ ΦB−1

Corollary (10)

Let Φ be a positivity-improving qubit channel, then there exist

positive denite operators A and B acting on H2 such that the

map Υ = ΦA Φ ΦB is a unital channel and

C(Υ)− 2 log2(‖A‖‖B‖) 6 C(Φ) 6 C(Υ) + 2 log2(‖A−1‖‖B−1‖).

10S. N. Filippov, Rep. Math. Phys. 82, 149 (2018)

Page 40: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

4-parameter nonunital qubit channels

Nonunital qubit channel

Φ[X] = 12

(tr[X](I + t3σ3) +

∑3j=1 λjtr[σj%]σj

)with

|t3|+ |λ3| < 1

A = diag

(4

√(1− t3)2 − λ2

3 ,4

√(1 + t3)2 − λ2

3

)

B =

√2

(4−

(4√

(1− t3)2 − λ23 − 4

√(1 + t3)2 − λ2

3

)2)−1/2

4√

(1− t3)2 − λ23

4√

(1 + t3)2 − λ23

×diag

(√(1 + t3 − λ3)

4

√(1− t3)2 − λ2

3 + (1− t3 + λ3)4

√(1 + t3)2 − λ2

3,√(1 + t3 + λ3)

4

√(1− t3)2 − λ2

3 + (1− t3 − λ3)4

√(1 + t3)2 − λ2

3

)

C(Υ)− 2 log2(‖A‖‖B‖) 6 C(Φ) 6 C(Υ) + 2 log2(‖A−1‖‖B−1‖).

Page 41: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

4-parameter nonunital qubit channels

Unital qubit channel Υ has parameters11

λ1 =2λ1√

(1 + λ3)2 − t23 +√

(1− λ3)2 − t23,

λ2 =2λ2√

(1 + λ3)2 − t23 +√

(1− λ3)2 − t23,

λ3 =4λ3(√

(1 + λ3)2 − t23 +√

(1− λ3)2 − t23)2 .

C(Υ)− 2 log2(‖A‖‖B‖) 6 C(Φ) 6 C(Υ) + 2 log2(‖A−1‖‖B−1‖).

11S. N. Filippov, V. V. Frizen, D. V. Kolobova, Phys. Rev. A 97, 012322 (2018).

Page 42: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Example

Following Ref. 12, consider a one-parameter qubit channel

Φmix = pAp + (1− p)Dp,

where 0 ≤ p ≤ 1,Ap[X] = K1XK

†1 +K2XK

†2 is the qubit amplitude damping

channel with K1 = |0〉〈0|+√

1− p|1〉〈1| and K2 =√p|0〉〈1|,

Dp is the qubit depolarizing channel given by

Dp[X] = (1− p)X + p3(σxXσx + σyXσy + σzXσz).

Φmix is a partial case of the 4-parameter channel discussed before:

λ1 = λ2 = p√

1− p+ (1− p)(

1− 4p

3

)λ3 = (1− p)

(1− p

3

)t3 = p2.

12F. Leditzky, E. Kaur, N. Datta, M. M. Wilde, Phys. Rev. A 97, 012332 (2018)

Page 43: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Example

0 0.1 0.2 0.3 0.4 0.50

0.2

0.4

0.6

0.8

1

p

C

I X. Wang, W. Xie, R. Duan, IEEE Trans. Inf. Theory 64, 640 (2018), upper bound

I F. Leditzky, E. Kaur, N. Datta, M. M. Wilde, Phys. Rev. A 97, 012332 (2018), upper bound

I S. N. Filippov, Rep. Math. Phys. 82, 149 (2018), upper and lower bounds

I · · · · ·· Cχ(Φmix), lower bound

Page 44: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Improvement of bounds

Room for improvement:

I M(n)j =

(A†)⊗nM(n)j A⊗n

‖A‖2n .

Since M(n)j =

⊗nk=1Mjk and we know A explicitly, we can

replace ‖A‖2 by maxj,k‖AMjkA

†‖

I P (n) =∑N

j=1 p(n)(j|i) = 1

tr[B⊗n%(n)i (B†)⊗n]‖A‖2n

> 1(‖A‖‖B‖)2n

Since %(n)i =

⊗nk=1 %ik and we know B explicitly, we can

replace ‖B‖2 by maxi,k‖B%ikB†‖

This approach works for improvement of lower bound.

Page 45: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Improvement of bounds

0 0.1 0.2 0.3 0.4 0.50

0.2

0.4

0.6

0.8

1

p

C

I X. Wang, W. Xie, R. Duan, IEEE Trans. Inf. Theory 64, 640 (2018), upper boundI F. Leditzky, E. Kaur, N. Datta, M. M. Wilde, Phys. Rev. A 97, 012332 (2018), upper boundI S. N. Filippov, Rep. Math. Phys. 82, 149 (2018), upper and lower boundsI · · · · ·· Cχ(Φmix), lower boundI improved lower bound

Page 46: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

0.0 0.2 0.4 0.6 0.8 1.0γ

0.0

0.2

0.4

0.6

0.8

1.0N = 0.1

0.0 0.2 0.4 0.6 0.8 1.0γ

0.0

0.2

0.4

0.6

0.8

1.0N = 0.2

0.0 0.2 0.4 0.6 0.8 1.0γ

0.0

0.2

0.4

0.6

0.8

1.0N = 0.3

0.0 0.2 0.4 0.6 0.8 1.0γ

0.0

0.2

0.4

0.6

0.8

1.0N = 0.4

0.0 0.2 0.4 0.6 0.8 1.0γ

0.0

0.2

0.4

0.6

0.8

1.0N = 0.45

0.0 0.2 0.4 0.6 0.8 1.0γ

0.0

0.2

0.4

0.6

0.8

1.0N = 0.5

χ(Aγ,N) Cβ(Aγ,N) CUBcov CUB

EB CUBFil CE(Aγ,N)

S. Khatri, K. Sharma, M. M. Wilde. Information-theoretic aspects of the generalized amplitude dampingchannel. arXiv:1903.07747 [quant-ph]

Page 47: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

entanglement

entanglement

(local)

AA

BB

F FÄ1 2

AA BB

FA BA B

Global noise:

(local)

Alice

Bob

External noises

Alice

Bob

Alice

Bob

Alice

Bob

vac

thermal

AA

BB

AA

BB

Page 48: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

entanglement

entanglement

(local)

AA

BB

F FÄ1 2

AA BB

FA BA B

Global noise:

(local)

Alice

Bob

External noises

Alice

Bob

Alice

Bob

Alice

Bob

vac

thermal

AA

BB

AA

BB

Page 49: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

entanglement

entanglement

(local)

AA

BB

F FÄ1 2

AA BB

FA BA B

Global noise:

(local)

Alice

Bob

External noises

Alice

Bob

Alice

Bob

Alice

Bob

vac

thermal

AA

BB

AA

BB

AA

BB

IdId

IdId

Page 50: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

entanglement

entanglement

(local)

AA

BB

F FÄ1 2

AA BB

FA BA B

Global noise:

(local)

Alice

Bob

External noises

Alice

Bob

Alice

Bob

Alice

Bob

vac

thermal

AA

BB

AA

BB

Page 51: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

entanglement

entanglement

(local) F FÄ1 2

AA BB

FA BA B

Global noise:

(local)

Alice

Bob

External noises

Alice

Bob

Alice

Bob

Alice

Bob

vac

thermal

AA

BB

AA

BB

AA

BB

AA

BB

IdId

IdId

F FÄ1 2

AA BB

AA

BB

Page 52: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

entanglement

entanglement

(local) F FÄ1 2

AA BB

FA BA B

Global noise:

(local)

Alice

Bob

External noises

Alice

Bob

Alice

Bob

Alice

Bob

vac

thermal

AA

BB

AA

BB

AA

BB

AA

BB

IdId

IdId

F FÄ1 2

AA BB

AA

BB

Page 53: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

entanglement

entanglement

(local) F FÄ1 2

AA BB

FA BA B

Global noise:

(local)

Alice

Bob

External noises

Alice

Bob

Alice

Bob

Alice

Bob

vac

thermal

AA

BB

AA

BB

AA

BB

AA

BB

IdId

IdId

F FÄ1 2

AA BB

AA

BBF1

F2

Page 54: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

entanglement

entanglement

(local) F FÄ1 2

AA BB

FA BA B

Global noise:

(local)

Alice

Bob

External noises

Alice

Bob

Alice

Bob

Alice

Bob

vac

thermal

AA

BB

AA

BB

AA

BB

AA

BB

IdId

IdId

F FÄ1 2

AA BB

AA

BBF1

F2

AA

BBF1

F2

%in

%out = Φ1 ⊗ Φ2[%in]

Page 55: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

entanglement

entanglement

(local) F FÄ1 2

AA BB

FA BA B

Global noise:

(local)

Alice

Bob

External noises

Alice

Bob

Alice

Bob

Alice

Bob

vac

thermal

AA

BB

AA

BB

AA

BB

AA

BB

IdId

IdId

F FÄ1 2

AA BB

AA

BB

AA

BBF1

F2

AA

BBF1

F2

BB

BB

BB

AA

AA

AA

...

...

...

...

...

...

%in

%in

%in

%in

%⊗nout −→purication

(|ψ+〉〈ψ+|)⊗m, |ψ+〉 =1√2

(|00〉+ |11〉)

Page 56: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Entanglement of purication13

Ep = limn→∞

m

n

For two qubit states %out

Ep > 0 i %out is entangled14

The noise Φ1 ⊗ Φ2 is admissible if there exists an input state %in

such that Φ1 ⊗ Φ2[%in] is entangled.

DenitionThe channel Φ1 ⊗ Φ2 is called entanglement annihilating if

Φ1 ⊗ Φ2[%in] is separable for all input states %in.15

13B.M. Terhal, M. Horodecki, D.W. Leung, D.P. DiVincenzo, J. Math. Phys. 43 4286 (2002)

14M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. Lett. 78 574 (1997)

15L. Moravcikova and M. Ziman, J. Phys. A: Math. Theor. 43 275306 (2010)

Page 57: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Proposition

The local two-qubit unital map Υ⊗Υ is entanglement annihilating

if and only if Υ2 is entanglement breaking, i.e. λ21 + λ2

2 + λ23 6 1.16

Proposition

The maximally entangled state |ψ+〉 = 1√2(|00〉+ |11〉) is the most

robust to the loss of entanglement in the case of general local

unital dynamical maps Υt ⊗Υt.

16S.N. Filippov, T. Rybar, M. Ziman, Phys. Rev. A 85 012303 (2012)

Page 58: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Υt = ΦAt Φt ΦBt

Φt = ΦA−1tΥt ΦB−1

t

Proposition

Local non-unital map Φt ⊗ Φt is entanglement annihilating if and

only if λ21(t) + λ2

2(t) + λ23(t) 6 1.

Solving equation λ21 + λ2

2 + λ23 = 1, we nd entanglement lifetime τ .

Proposition

The most robust entangled state w.r.t. local non-unital noises

Φt ⊗ Φt is17

|ψ〉 =Bτ ⊗Bτ |ψ+〉√

〈ψ+|B†τBτ ⊗B†τBτ |ψ+〉

.

17S. N. Filippov, V. V. Frizen, D. V. Kolobova, Ultimate entanglement robustness of two-qubit

states against general local noises, Phys. Rev. A 97, 012322 (2018).

Page 59: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Generalized amplitude-damping noise

λ1 = λ2 =√λ3 = e−γt, t3 = (2w − 1)(1− e−2γt),

where w, 1− w are the populations of ground and excited levels in

thermal equilibrium, i.e. w = 11+exp(−∆E/kT )

λ1(t) = λ2(t) = e−γt√

w(1− w)(1− e−2γt)

+√

[1− w(1− e−2γt)][w + e−2γt(1− w)]−1

and λ3(t) = λ21(t) = λ2

2(t).

Solving equation λ21(t) + λ2

2(t) + λ23(t) = 1, we nd the maximal

entanglement lifetime:

τ =1

2γln

4(√

2 + 1)w(1− w)

1+4(√

2+1)w(1−w)−√

1+8(√

2+1)w(1−w)

Page 60: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Generalized amplitude-damping noise

The most robust entangled state:

|ψ〉 =

√(1− w)[1− (1− w)(1− e−2γτ )]

1− (1− 2w + 2w2)(1− e−2γτ )|0〉 ⊗ |0〉

+

√w[1− w(1− e−2γτ )]

1− (1− 2w + 2w2)(1− e−2γτ )|1〉 ⊗ |1〉

Page 61: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

0 0.5 g ty+g tè

g t

0.1

0.2

0.3

0.4

0.5N

If w → 0, then τ /τψ+ → 2, i.e. the use of the ultimately robust

state allows to prolong entanglement lifetime twice as compared

with the entanglement lifetime of the maximally entangled state.

Page 62: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Trace decreasing operations

To deal with a nite dimensional Hilbert space, we here consider a

situation where the transmitted state is postselected in the basis of

the injected qubit state, |−l0,−l0〉, |−l0, l0〉, |l0,−l0〉, |l0, l0〉.Since such postselection entails the decay of the output state, the

decaying output biphoton state needs to be renormalized by its

trace before we can quantify the entanglement evolution in

turbulence by the concurrence. N. D. Leonhard, V. N. Shatokhin, and A. Buchleitner. Universal entanglement decay of photonicorbital-angular-momentum qubit states in atmospheric turbulence. Phys. Rev. A 91, 012345 (2015)

Page 63: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Compatibility of channels19

Φ is 2-selfcompatible if and only if the Choi state ΩΦ is symmetric

extendable.

For qubits, Ω is symmetric extendable if and only if18

tr[Ω2B] ≥ tr[Ω2

AB]− 4√

detΩAB.

18J. Chen, Z. Ji, D. Kribs, N. Lutkenhaus, and B. Zeng. Symmetric extension of two-qubit states.

Phys. Rev. A 90, 032318 (2014)19

T. Heinosaari and T. Miyadera. Incompatibility of quantum channels. J. Phys. A: Math. Theor. 50,135302 (2017)

Page 64: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Summary

We have reviewed the quantum analogue of Sinkhorn's theorem

and found the explicit decomposition in the case of qubit maps.

As applications of it we have considered estimation of capacity for

nonunital qubit channels and entanglement robustness.

I We have obtained new lower and upper bounds on classical

capacities of nonunital qubit channels.

I The obtained result holds true for the regularized version of

χ-capacity.

I We have illustrated our ndings by 4-parameter family of

nonunital channels and, in particular, a mixture of amplitude

damping and depolarizing channels.

Page 65: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Summary

The most robust states to loss of entanglement under local noises:

I |ψ+〉 for two qubit unital Υ⊗Υ

I |ψ〉 ∝ B⊗B|ψ+〉 for two qubit non-unital Φ⊗ Φ

Our proofs are based on the relation between unital and nonunital

qubit channels. Such a relation may turn out to be productive in

other research areas as well.

Page 66: Quantum Sinkhorn's theorem: Applications in entanglement ...hhlee/Filippov_MAQIT_2019.pdf · Quantum Sinkhorn's theorem: Applications in entanglement dynamics, channel capacities,

Thank you for attention!