150
Qimiao Si Rice University International School on Heavy Fermions and Quantum PhaseTransitions, Center for Correlated Matter, Zhejiang University, Hangzhou, April 14, 2015 Quantum Criticality and the Kondo Lattice

Quantum Criticality and the Kondo Lattice

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Quantum Criticality and the Kondo Lattice

Qimiao Si

Rice University

International School on Heavy Fermions and Quantum PhaseTransitions, Center for Correlated Matter, Zhejiang University,

Hangzhou, April 14, 2015

Quantum Criticality and the Kondo Lattice

Page 2: Quantum Criticality and the Kondo Lattice

1.  Introduction to quantum critical point

2.  Introduction to heavy Fermi liquid

3.  Heavy fermion quantum criticality I

4.  Heavy fermion quantum criticality II

5.  Further topics and outlook

Q. Si, arXiv:1012.5440, a chapter in the book “Understanding Quantum Phase Transitions”, ed. L. D. Carr (2010).

Q. Si, J. H. Pixley, E. Nica, S. J. Yamamoto, P. Goswami, R. Yu & S. Kirchner,

arXiv:1312.0764 [J. Phys. Soc. Jpn. 83, 061005 (2014)].

Page 3: Quantum Criticality and the Kondo Lattice

1.  Introduction to quantum critical point

a.  Symmetry breaking and order parameter

b.  From classical criticality to quantum criticality

c.  Materials for quantum criticality

d.  Spin density wave quantum critical point

e.  Quantum criticality & non-Fermi liquid physics

Page 4: Quantum Criticality and the Kondo Lattice

Phases and Phase Transitions

Disorder (T>Torder)

Order (T<Torder)

Page 5: Quantum Criticality and the Kondo Lattice

Continuous Phase Transitions: Criticality

Disorder (T>Torder)

Order (T<Torder)

Criticality -- fluctuations of order parameter in d dimensions

Page 6: Quantum Criticality and the Kondo Lattice

•  A: every spin (spontaneously) points up Order parameter:

•  B: every microstate equally probable: m=0

σσ I- H zj

ij

zi∑=

><

ordered state

tem

pera

ture

T

T=0 A

B

1N /M limlim m site0h site

==∞→→ + N

Page 7: Quantum Criticality and the Kondo Lattice

1.  Introduction to quantum critical point

a.  Symmetry breaking and order parameter

b.  From classical criticality to quantum criticality

c.  Materials for quantum criticality

d.  Spin density wave quantum critical point

e.  Quantum criticality & non-Fermi liquid physics

Page 8: Quantum Criticality and the Kondo Lattice

•  A: every spin (spontaneously) points up Order parameter:

•  B: every microstate equally probable: m=0

σσ I- H zj

ij

zi∑=

><

ordered state

control parameter δ

tem

pera

ture

T

T=0 A

B

C ∑i

xi) (I- σδ

1N /M limlim m site0h site

==∞→→ + N

•  C: every spin points along the transverse field: m=0

Page 9: Quantum Criticality and the Kondo Lattice

Quantum Phase Transition

•  A: every spin (spontaneously) points up Order parameter:

•  B: every microstate equally probable: m=0

σσ I- H zj

ij

zi∑=

><

QCP

quantum critical

ordered state

control parameter δ

tem

pera

ture

T

T=0 A

B

C ∑i

xi) (I- σδ

1N /M limlim m site0h site

==∞→→ + N

•  C: every spin points along the transverse field: m=0

Page 10: Quantum Criticality and the Kondo Lattice

TN

Linear resistivity

Quantum Criticality

•  Competing states due to competing interactions •  Quantum critical point •  Finite T: Quantum critical regime

Torder

Page 11: Quantum Criticality and the Kondo Lattice

TN

Linear resistivity Quantum scaling: ξτ ~ ξ

z

τ ~ / kTorder

Tr e-(/kT)H/

! ∞ @QCP

Torder

Quantum Scaling

Page 12: Quantum Criticality and the Kondo Lattice

TN

Linear resistivity

Quantum Criticality

Fluctuations of order parameter, , in d+z dimensions m(x, τ )

Page 13: Quantum Criticality and the Kondo Lattice

TN

Linear resistivity

Quantum scaling:

ξτ ~ ξz

Torder

Quantum Scaling of Free Energy

ξ ~ r−ν

L. Zhu, M. Garst, A. Rosch, & QS, PRL (2003)

Page 14: Quantum Criticality and the Kondo Lattice

TN

Linear resistivity

Thermodynamic Singularities near QCP =>Grüneisen ratio divergent at QCP:

L. Zhu, M. Garst, A. Rosch, & QS, PRL (2003)

=>Entropy accumulation near a QCP:

Page 15: Quantum Criticality and the Kondo Lattice

Quantum critical points

unusual excitations; emergent phases

enhanced entropy

Page 16: Quantum Criticality and the Kondo Lattice

1.  Introduction to quantum critical point

a.  Symmetry breaking and order parameter

b.  From classical criticality to quantum criticality

c.  Materials for quantum criticality

d.  Spin density wave quantum critical point

e.  Quantum criticality & non-Fermi liquid physics

Page 17: Quantum Criticality and the Kondo Lattice

TN

Linear resistivity

Heavy Fermion AF Metals -- prototypical Quantum Critical Points

SC

CeRhIn5

N. M

athu

r et a

l

T. P

ark

et a

l

H. v

. Löh

neys

en e

t al

J. C

uste

rs e

t al

Page 18: Quantum Criticality and the Kondo Lattice

R. Küchler et al, PRL 91, 066405 (2003)

TN

Linear resistivity

Divergence of Grüneisen Ratio

Page 19: Quantum Criticality and the Kondo Lattice

Heavy fermions

Kas

ahar

a et

al

TN

Superconductivity at the border of magnetism

Bro

un

Falte

rmei

er e

t al

Pnictides Organics

Cuprates

Mat

hur e

t al

Page 20: Quantum Criticality and the Kondo Lattice

1.  Introduction to quantum critical point

a.  Symmetry breaking and order parameter

b.  From classical criticality to quantum criticality

c.  Materials for quantum criticality

d.  Spin density wave quantum critical point

e.  Quantum criticality & non-Fermi liquid physics

Page 21: Quantum Criticality and the Kondo Lattice

TN

Linear resistivity Spin-density-wave

Fermi liquid Paramagnetic Fermi liquid

J. A. Hertz; A. J. Millis; T. Moriya

Page 22: Quantum Criticality and the Kondo Lattice

Consider Hubbard model at a generic filling

Spin density wave and Stoner ferromagnetism

Page 23: Quantum Criticality and the Kondo Lattice

Selection of Q for order [order from disorder]: Q≠0: SDW Q=0: Stoner ferromagnetism (stability problems beware)

Spin density wave and Stoner ferromagnetism

Spin-dependent potential

Page 24: Quantum Criticality and the Kondo Lattice

Change of Fermi surface by spin-dependent potential:

Spin density wave

Page 25: Quantum Criticality and the Kondo Lattice

T=0 spin-density-wave transition

§ Dynamic exponent z=2 §  d+z>4,

o Gaussian fixed point o No omega/T scaling

§  At QCP o hot k-spots develop non-Fermi liquid form o Cold k-regions retain Fermi liquid form

Page 26: Quantum Criticality and the Kondo Lattice

1.  Introduction to quantum critical point

a.  Symmetry breaking and order parameter

b.  From classical criticality to quantum criticality

c.  Materials for quantum criticality

d.  Spin density wave quantum critical point

e.  Quantum criticality & non-Fermi liquid physics

Page 27: Quantum Criticality and the Kondo Lattice

TN

Quantum Criticality vis-à-vis Non-Fermi liquid Electronic Excitations

•  Quantum criticality generates non-Fermi liquid

electronic excitations –  How can AF quantum criticality turn the entire Fermi

surface hot? •  Can the non-Fermi liquid excitations in turn change

the universality class of QCP?

Page 28: Quantum Criticality and the Kondo Lattice

Beyond-Landau Quantum Criticality

Inherent quantum modes may be important, beyond order-parameter fluctuations -- need to identify the additional critical modes

Page 29: Quantum Criticality and the Kondo Lattice

Critical Kondo Destruction --Local Quantum Critical Point

QS, S. Rabello, K. Ingersent, & J. L. Smith, Nature 413, 804 (2001) P. Coleman et al, JPCM 13, R723 (2001)

Critical Kondo Destruction (f-elec. Mott localization) at the T=0 onset of antiferromagnetism

Page 30: Quantum Criticality and the Kondo Lattice

1.  Introduction to quantum critical point

2.  Introduction to heavy Fermi liquid

3.  Heavy fermion quantum criticality I

4.  Heavy fermion quantum criticality II

5.  Further topics and outlook

Q. Si, arXiv:1012.5440, a chapter in the book “Understanding Quantum Phase Transitions”, ed. L. D. Carr (2010).

Q. Si, J. H. Pixley, E. Nica, S. J. Yamamoto, P. Goswami, R. Yu & S. Kirchner,

arXiv:1312.0764 [J. Phys. Soc. Jpn. 83, 061005 (2014)].

Page 31: Quantum Criticality and the Kondo Lattice

2. Introduction to heavy Fermi liquid

a.  Single-impurity Kondo problem

b.  Kondo lattice

c.  Heavy Fermi liquid

Page 32: Quantum Criticality and the Kondo Lattice

Single-impurity Kondo Model:

fermion bath Local

moment

S: spin-1/2 moment at site 0

Page 33: Quantum Criticality and the Kondo Lattice

Single-impurity Kondo Model: –  resistivity minimum (scattering increases as T is

lowered!) – asymptotic freedom – Kondo screening (process of developing Kondo

singlet correlations as T is lowered)

Page 34: Quantum Criticality and the Kondo Lattice

Single impurity Kondo model

•  Kondo temperature:

Page 35: Quantum Criticality and the Kondo Lattice

Single impurity Kondo model

•  Kondo entanglement: singlet ground state

•  Kondo temperature:

Page 36: Quantum Criticality and the Kondo Lattice

Single impurity Kondo model

•  Kondo effect (emergence of Kondo resonance): –  Kondo-singlet ground state yields an electronic resonance –  local moment acquires electron quantum number

due to Kondo entanglement

•  Kondo entanglement: singlet ground state

•  Kondo temperature:

Page 37: Quantum Criticality and the Kondo Lattice

2. Introduction to heavy Fermi liquid

a.  Single-impurity Kondo problem

b.  Kondo lattice

c.  Heavy Fermi liquid

Page 38: Quantum Criticality and the Kondo Lattice

Kondo lattices:

Page 39: Quantum Criticality and the Kondo Lattice

Kondo lattices:

M. Klein et al, PRL 101, 266404 (’08) S. Ernst et al, Nature 474, 362 (’11)

Page 40: Quantum Criticality and the Kondo Lattice

Kondo lattices:

heavy Fermi liquid:

• Kondo singlet • Kondo resonance

Page 41: Quantum Criticality and the Kondo Lattice

2. Introduction to heavy Fermi liquid

a.  Single-impurity Kondo problem

b.  Kondo lattice

c.  Heavy Fermi liquid

Page 42: Quantum Criticality and the Kondo Lattice

•  The large Fermi surface applies to the paramagnetic phase, when the ground state is a Kondo singlet.

•  This can be seen through adiabatic

continuity of a Fermi liquid. •  It can also be seen, microscopically,

through eg slave-boson MFT (Auerbach & Levin, Millis & Lee, Coleman, Read & Newns)

Heavy Fermi Liquid (Kondo Lattice)

Page 43: Quantum Criticality and the Kondo Lattice

•  Kondo resonance …

•  … heavy electron bands

Heavy Fermi Liquid (Kondo Lattice)

),(--1

ωεωω

kkG

kc Σ

=),(

pole in Σ

Page 44: Quantum Criticality and the Kondo Lattice

•  Kondo resonance …

•  … heavy electron bands

Heavy Fermi Liquid (Kondo Lattice)

),(--1

ωεωω

kkG

kc Σ

=),(

pole in Σ

k-independent

Page 45: Quantum Criticality and the Kondo Lattice

Cond. electron band

Heavy Fermi Liquid Heavy electron bands

E1,2(k)

Kondo resonance

)(kε

Page 46: Quantum Criticality and the Kondo Lattice

Cond. electron band

Heavy Fermi Liquid Heavy electron bands

E1,2(k)

Kondo resonance

)(kε

Large Fermi surface

Page 47: Quantum Criticality and the Kondo Lattice

• Kondo lattices:

heavy Fermi liquid:

• Kondo singlet • Kondo resonance No symmetry breaking,

but macroscopic order

Page 48: Quantum Criticality and the Kondo Lattice

• Kondo lattices:

•  Competition between Kondo & RKKY (Doniach)

•  SDW of heavy Fermi liquid (Kondo

effect intact at the transition)

Page 49: Quantum Criticality and the Kondo Lattice

Critical Kondo Destruction -- Local Quantum Critical Point

Kondo Destruction (f-electron Mott localization) at the T=0 onset of antiferromagnetism

Q. Si, arXiv:1012.5440, a chapter in the book “Understanding Quantum Phase Transitions”, ed. L. D. Carr (2010).

Page 50: Quantum Criticality and the Kondo Lattice

TN

Linear resistivity

Page 51: Quantum Criticality and the Kondo Lattice

JK >>W>>I •  xNsite tightly bound local singlets

(cf. If x were =1, Kondo insulator)

•  (1-x)Nsite lone moments:

Page 52: Quantum Criticality and the Kondo Lattice

JK >>W>>I •  xNsite tightly bound local singlets

(cf. If x were =1, Kondo insulator)

•  (1-x)Nsite lone moments:

–  projection: –  (1-x)Nsite holes with U=∞

(C. Lacroix)

Page 53: Quantum Criticality and the Kondo Lattice

JK >>W>>I •  xNsite tightly bound local singlets

(cf. If x were =1, Kondo insulator)

•  (1-x)Nsite lone moments:

–  projection: –  (1-x)Nsite holes with U=∞

•  Luttinger’s theorem:

(1-x) holes/site in the Fermi surface (1+x) electrons/site ---- Large Fermi surface!

(C. Lacroix)

Page 54: Quantum Criticality and the Kondo Lattice

Physics of the Kondo Effect

Consider a simplified problem – non-dispersive conduction electron

Projection to the lowest f-states (U is large)

Page 55: Quantum Criticality and the Kondo Lattice

Physics of the Kondo Effect (cont’d)

Projection à Kondo Hamiltonian

Ground state: Low-lying states:

Kondo resonance:

Composite fermion:

Page 56: Quantum Criticality and the Kondo Lattice

Description of the Kondo resonance

Kondo singlet ground state à

Kondo resonance: Landau quasiparticle with tiny but nonzero weight

Page 57: Quantum Criticality and the Kondo Lattice

TN

J. Custers et al, Nature 424, 52 (’03)

Non-Fermi liquid behavior at a Quantum Critical Point

Page 58: Quantum Criticality and the Kondo Lattice

1.  Introduction to quantum critical point

2.  Introduction to heavy Fermi liquid

3.  Heavy fermion quantum criticality I

4.  Heavy fermion quantum criticality II

5.  Further topics and outlook

Q. Si, arXiv:1012.5440, a chapter in the book “Understanding Quantum Phase Transitions”, ed. L. D. Carr (2010).

Q. Si, J. H. Pixley, E. Nica, S. J. Yamamoto, P. Goswami, R. Yu & S. Kirchner,

arXiv:1312.0764 [J. Phys. Soc. Jpn. 83, 061005 (2014)].

Page 59: Quantum Criticality and the Kondo Lattice

3. Heavy fermion quantum criticality I

a.  Kondo effect vs antiferromagnetism b.  Collapse of Kondo scale:

Extended dynamical mean field theory c. Kondo destruction via Bose-Fermi Kondo

model d.  Kondo destruction and local quantum

criticality e.  Experimental evidence for local quantum

criticality

Page 60: Quantum Criticality and the Kondo Lattice

Kondo lattices:

Tuning parameter:

δ = TK0 / I

Page 61: Quantum Criticality and the Kondo Lattice

•  What happens to the Eloc* scale as the AF QCP is

approached from the PL side? –  Eloc* should decrease: the AF correlations among the local

moments reduces the strength of the Kondo singlet –  Does the Kondo effect become critical (beyond-Landau)?

•  Critical destruction of the Kondo effect, when Eloc*

continuously goes to zero •  Need methods that capture not only the AF order and

Kondo effect, but also the dynamical competition betwee the Kondo and RKKY interactions

Kondo Effect at the AF QCP

Page 62: Quantum Criticality and the Kondo Lattice

3. Heavy fermion quantum criticality I

a.  Kondo effect vs antiferromagnetism b.  Collapse of Kondo scale:

Extended dynamical mean field theory c. Kondo destruction via Bose-Fermi Kondo

model d.  Kondo destruction and local quantum

criticality e.  Experimental evidence for local quantum

criticality

Page 63: Quantum Criticality and the Kondo Lattice

Extended-DMFT of Kondo Lattice

Mapping to a Bose-Fermi Kondo model:

(Smith & QS; Chitra & Kotliar)

+ self-consistency conditions

–  Electron self-energy Σ (ω) G(k,ω)=1/[ω – εk - Σ(ω)] –  “spin self-energy” M (ω) χ(q,ω)=1/[ Iq + M(ω)]

Page 64: Quantum Criticality and the Kondo Lattice

Extended-DMFT of Kondo Lattice

fermion bath

fluctuating magnetic field

Local moment

Kondo Lattice

Bose-Fermi Kondo Jk

g

+ self-consistency

Page 65: Quantum Criticality and the Kondo Lattice

3. Heavy fermion quantum criticality I

a.  Kondo effect vs antiferromagnetism b.  Collapse of Kondo scale:

Extended dynamical mean field theory c. Kondo destruction via Bose-Fermi Kondo

model d.  Kondo destruction and local quantum

criticality e.  Experimental evidence for local quantum

criticality

Page 66: Quantum Criticality and the Kondo Lattice

ε-expansion of Bose-Fermi Kondo Model

JK

Kondo

Critical Kondo destruction

g

ε δ −1 −∑ ωwω pp

~)(

0<ε<1: sub-ohmic dissipation

Kondo destruction

QS, Rabello, Ingersent, Smith, Nature ’01; PRB ’03;

L. Zhu & QS, PRB ’02

Page 67: Quantum Criticality and the Kondo Lattice

ε-expansion of Bose-Fermi Kondo Model ε δ −1 −∑ ωwω p

p~)(

0<ε<1: sub-ohmic dissipation

QS, Rabello, Ingersent, Smith, Nature ’01; PRB ’03;

L. Zhu & QS, PRB ’02

Page 68: Quantum Criticality and the Kondo Lattice

ε-expansion of Bose-Fermi Kondo Model

JK

Kondo

Critical Kondo destruction

g

ε δ −1 −∑ ωwω pp

~)(

Critical:

Crucial for LQCP solution

0<ε<1: sub-ohmic dissipation

Kondo destruction

QS, Rabello, Ingersent, Smith, Nature ’01; PRB ’03;

L. Zhu & QS, PRB ’02

Page 69: Quantum Criticality and the Kondo Lattice

3. Heavy fermion quantum criticality I

a.  Kondo effect vs antiferromagnetism b.  Collapse of Kondo scale:

Extended dynamical mean field theory c. Kondo destruction via Bose-Fermi Kondo

model d.  Kondo destruction and local quantum

criticality e.  Experimental evidence for local quantum

criticality

Page 70: Quantum Criticality and the Kondo Lattice

Dynamical Scaling of Local Quantum Critical Point

Page 71: Quantum Criticality and the Kondo Lattice

Continuous phase transition

δ ≡ IRKKY / TK0

J.-X. Zhu, D. Grempel, and QS, Phys. Rev. Lett. (2003)

J.-X. Zhu, S. Kirchner, R. Bulla & QS, PRL 99, 227204 (2007); M. Glossop & K. Ingersent, PRL 99, 227203 (2007)

Page 72: Quantum Criticality and the Kondo Lattice

Dynamical Scaling of Local Quantum Critical Point

α = 0.72

α = 0.83

α = 0.78

J-X Zhu, D. Grempel and QS, PRL (2003)

J-X Zhu, S. Kirchner, R. Bulla, and QS, PRL (2007)

M. Glossop & K. Ingersent, PRL (2007)

Page 73: Quantum Criticality and the Kondo Lattice

Physics of the Kondo destruction

Page 74: Quantum Criticality and the Kondo Lattice

Destruction of quasiparticles at the local Kondo-destruction QCP

Small Fermi Surface

Large

Fermi Surface

Page 75: Quantum Criticality and the Kondo Lattice

3. Heavy fermion quantum criticality I

a.  Kondo effect vs antiferromagnetism b.  Collapse of Kondo scale:

Extended dynamical mean field theory c. Kondo destruction via Bose-Fermi Kondo

model d.  Kondo destruction and local quantum

criticality e.  Experimental evidence for local quantum

criticality

Page 76: Quantum Criticality and the Kondo Lattice

Local Quantum Critical Point (Kondo destruction)

•  ω/T scaling in χ(ω,T) and G(ω,T)

• Collapse of a large Fermi surface

• Multiple energy scales

Page 77: Quantum Criticality and the Kondo Lattice

Spin Dynamical Scaling in CeCu5.9Au0.1

A.  Schröder et al., Nature (’00); B.  O. Stockert et al; M. Aronson et al.

q=Q

q=0

INS and M/H

T0.75

1/χ(q)

. . .

INS @ AF Q

/Tω

Fractional exponent α=0.75

Page 78: Quantum Criticality and the Kondo Lattice

Fermi Surface Jump and Kondo-Destruction Energy Scale in YbRh2Si2

S. Friedemann, N. Oeschler, S. Wirth, C. Krellner, C. Geibel, F. Steglich, S. Paschen, S. Kirchner, and QS, PNAS 107, 14547 (2010) S. Paschen et al, Nature (2004); P. Gegenwart et al, Science (2007)

T*

2nd order transition across Bc

Crossover: isothermal Hall coeff.

Crossover width vs. T

Page 79: Quantum Criticality and the Kondo Lattice

Fermi Surface Jump and Kondo-Destruction Energy Scale in YbRh2Si2

P. Gegenwart, T. Westerkamp, C. Krellner, Y. Tokiwa, S. Paschen, C. Geibel, F. Steglich, E. Abrahams, and QS, Science 315, 969 (2007)

S. Paschen et al, Nature (2004); S. Friedemann et al., PNAS (2010)

Crossover: Isothermal magnetostricton and magnetization

Page 80: Quantum Criticality and the Kondo Lattice

Fermi Surface Jump and Kondo-Destruction Energy Scale in YbRh2Si2

P. Gegenwart, T. Westerkamp, C. Krellner, Y. Tokiwa, S. Paschen, C. Geibel, F. Steglich, E. Abrahams, and QS, Science 315, 969 (2007)

S. Paschen et al, Nature (2004); S. Friedemann et al., PNAS (2010)

Crossover: Isothermal magnetostricton and magnetization

Page 81: Quantum Criticality and the Kondo Lattice

Jump of Fermi-surface – dHvA Measurements in CeRhIn5

H. Shishido, R. Settai, H. Harima, & Y. Onuki, JPSJ 74, 1103 (’05)

P1 Pc P1 Pc

Fermi surface jumps across Pc Mass tends to diverge at Pc

2nd order transition across Pc

Page 82: Quantum Criticality and the Kondo Lattice

Dynamical Kondo Effect

J-X Zhu, D. Grempel, QS, PRL (2003) QS & S. Paschen, Phys. Status Solidi (2013)

Quasiparticle weight à 0 as the QCP is approached from both sides

Page 83: Quantum Criticality and the Kondo Lattice

Dynamical Kondo Effect

P. Gegeneart et al., PRL (2002)

Page 84: Quantum Criticality and the Kondo Lattice

1.  Introduction to quantum critical point

2.  Introduction to heavy Fermi liquid

3.  Heavy fermion quantum criticality I

4.  Heavy fermion quantum criticality II

5.  Perspective and outlook

Q. Si, arXiv:1012.5440, a chapter in the book “Understanding Quantum Phase Transitions”, ed. L. D. Carr (2010).

Q. Si, J. H. Pixley, E. Nica, S. J. Yamamoto, P. Goswami, R. Yu & S. Kirchner,

arXiv:1312.0764 [J. Phys. Soc. Jpn. 83, 061005 (2014)].

Page 85: Quantum Criticality and the Kondo Lattice

4. Heavy fermion quantum criticality II

a.  Antiferromagnetic order and Kondo destruction

b.  Global phase diagram c.  Experimental evidence for the global phase

diagram

Page 86: Quantum Criticality and the Kondo Lattice

Collapse of Kondo scale from the paramagnetic side

QS, S. Rabello, K. Ingersent, & J. L. Smith, Nature 413, 804 (2001); Phys. Rev. B68, 115103 (2003)

Page 87: Quantum Criticality and the Kondo Lattice

Opposite limit – when RKKY dominates over Kondo coupling what JK  <<  I  

δ =  JK  /  I  

Page 88: Quantum Criticality and the Kondo Lattice

Opposite limit – when RKKY dominates over Kondo coupling

• JK=0 as the reference point of expansion: • f- local moments: AF, QNLσM • conduction electrons: Fermi volume “x”

JK  <<  I  

Page 89: Quantum Criticality and the Kondo Lattice

Heisenberg model + coherent spin path integral QNLσM

Quantum non-linear Sigma Model Representation

SBerry not important deep inside ordered phase

Page 90: Quantum Criticality and the Kondo Lattice

RG for mixed Bosons and Fermions with a Fermi Surface

S. Yamamoto & QS, PRB 81, 205106 (2010)

All directions scales Only 1 direction scales (Shankar)

Page 91: Quantum Criticality and the Kondo Lattice

When RKKY dominates: inside AF order

• JK=0 as the reference point of expansion: • f- local moments: AF, QNLσM • conduction electrons: Fermi volume “x”

• JK Exactly Marginal • Kondo destruction -- AFS phase

S. Yamamoto & QS, PRL 99, 016401 (2007)

JK  <<  I  

Page 92: Quantum Criticality and the Kondo Lattice

4. Heavy fermion quantum criticality II

a.  Antiferromagnetic order and Kondo destruction

b.  Global phase diagram c.  Experimental evidence for the global phase

diagram

Page 93: Quantum Criticality and the Kondo Lattice

JK

G

AFS

JK<<Irkky<<W

Néel, Kondo destruction

Distinct from

PL

Page 94: Quantum Criticality and the Kondo Lattice

Global Phase Diagram G: frustration, reduced dimensionaltiy, …

In contrast to: single boundary a la Landau

Q. Si, Physica B 378, 23 (2006); Phys. Status Solidi B247, 476 (2010) also, P. Coleman & A. Nevidomskyy, JLTP 161, 182 (2010)

Page 95: Quantum Criticality and the Kondo Lattice

4. Heavy fermion quantum criticality II

a.  Antiferromagnetic order and Kondo destruction

b.  Global phase diagram c.  Experimental evidence for the global phase

diagram

Page 96: Quantum Criticality and the Kondo Lattice

Global Phase Diagram

E. D. Mun et al., PRB 87, 075120 (2013)

Co & Ir-doped YbRh2Si2 (S. Friedemann et al, Nat Phys 2009) Shastry-Sutherland Lattice Yb2Pt2Pb (Kim & Aronson, PRL 2013) Kagome lattice CePdAl (V. Fritsch et al, PRB 2014)

J. Custers, R. Yu et al., Nat. Mater. (2012)

Mini-review: QS & S. Paschen, Phys. Status Solidi B250, 425 (2013)

Page 97: Quantum Criticality and the Kondo Lattice

1.  Introduction to quantum critical point

2.  Introduction to heavy Fermi liquid

3.  Heavy fermion quantum criticality I

4.  Heavy fermion quantum criticality II

5.  Further topics and outlook

Q. Si, arXiv:1012.5440, a chapter in the book “Understanding Quantum Phase Transitions”, ed. L. D. Carr (2010).

Q. Si, J. H. Pixley, E. Nica, S. J. Yamamoto, P. Goswami, R. Yu & S. Kirchner,

arXiv:1312.0764 [J. Phys. Soc. Jpn. 83, 061005 (2014)].

Page 98: Quantum Criticality and the Kondo Lattice

5. Further topics and outlook

a.  Diverse settings for global phase diagram

b.  Quantum criticality vis-à-vis superconductivity

c.  Beyond antiferromagnetic settings

d.  Broader contexts

Page 99: Quantum Criticality and the Kondo Lattice

Global Phase Diagram

J1

J2

filling x=0.5

G=J2/J1 Shastry-Sutherland lattice

J. Pixley, R. Yu & QS, PRL 113, 176402 (2014)

Page 100: Quantum Criticality and the Kondo Lattice

Role of Berry Phase term in QNLσM Approach

P. Goswami + QS, PRL 107, 126404 (2011) – One dimension;

PRB 89, 045124 (2014) – 2D honeycomb lattice

Page 101: Quantum Criticality and the Kondo Lattice

Role of Berry Phase term in QNLσM Approach

P. Goswami + QS, PRL 107, 126404 (2011) – One dimension;

PRB 89, 045124 (2014) – 2D honeycomb lattice

Berry phase of local moments: è Singlet phases (Spin Peierls, …)

Cond. electron spins locked to local moments: è Cancellation of Berry phase è Kondo singlet è Competition w/ spin peierls

Page 102: Quantum Criticality and the Kondo Lattice

Global Phase Diagram Tuning by S.O.C.

X.-Y. Feng, J. Dai, C-H Chung and QS, Phys. Rev. Lett. 111, 016402 (2013)

JK/λsoc

hybr

idiz

atio

n

Page 103: Quantum Criticality and the Kondo Lattice

Global Phase Diagram Tuning by S.O.C.

X.-Y. Feng, J. Dai, C-H Chung and QS, Phys. Rev. Lett. 111, 016402 (2013)

JK/λsoc

hybr

idiz

atio

n Eg: o  SmB6 under pressure o  Ce(Ni,Pd,Pt)Sn

Page 104: Quantum Criticality and the Kondo Lattice

5. Further topics and outlook

a.  Diverse settings for global phase diagram

b.  Quantum criticality vis-à-vis superconductivity

c.  Beyond antiferromagnetic settings

d.  Broader contexts

Page 105: Quantum Criticality and the Kondo Lattice

T. Park et al., Nature 440, 65 (’06); G. Knebel et al., PRB74, 020501 (’06)

Superconductivity in CeRhIn5

CeRhIn5

High Tc : Tc / TF ≈ 0.1

SC

Page 106: Quantum Criticality and the Kondo Lattice

T. Park et al., Nature 440, 65 (’06); G. Knebel et al., PRB74, 020501 (’06)

Superconductivity near Local Kondo-destruction QCP in CeRhIn5

Page 107: Quantum Criticality and the Kondo Lattice

Topic of

the research talk tomorrow

Page 108: Quantum Criticality and the Kondo Lattice

5. Further topics and outlook

a.  Diverse settings for global phase diagram

b.  Quantum criticality vis-à-vis superconductivity

c.  Beyond antiferromagnetic settings

d.  Broader contexts

Page 109: Quantum Criticality and the Kondo Lattice

•  Kondo destruction (kicking one electron/site out of the Fermi surface)

•  What happens beyond the Kondo limit, w/ mixed-valency?

β-YbAlB4

-- H/T scaling ! interacting Y. Matsumoto et al, Science 331, 316 (2011)

-- Mixed valency M. Okawa et al, PRL 104, 247201 (2010)

Page 110: Quantum Criticality and the Kondo Lattice

Kondo destruction and valence fluctuations in pseudogapped asymmetric anderson model

J. Pixley, S. Kirchner, K. Ingersent and QS, PRL, to appear (2012)

Charge excitations part of the quantum-critical spectrum

spin susceptibility charge susceptibility

Page 111: Quantum Criticality and the Kondo Lattice

Kondo destruction and valence fluctuations in pseudogapped asymmetric anderson model

J. Pixley, S. Kirchner, K. Ingersent and QS, PRL, to appear (2012)

Charge excitations part of the quantum-critical spectrum

•  Field/temperature scaling

Page 112: Quantum Criticality and the Kondo Lattice

5. Further topics and outlook

a.  Diverse settings for global phase diagram

b.  Quantum criticality vis-à-vis superconductivity

c.  Beyond antiferromagnetic settings

d.  Broader contexts

Page 113: Quantum Criticality and the Kondo Lattice

TN

Beyond-Landau Quantum Criticality

at the border of magnetism u Quantum criticality beyond order-

parameter fluctuations o  Local QCP via Kondo destruction

o  vs conventional: SDW QCP u Distinguishing phases beyond

spontaneous symmetry breaking o  Kondo entanglement and destruction:

characterize a global phase diagram

Page 114: Quantum Criticality and the Kondo Lattice

How can the order-parameter-flucutation

description break down?

•  Quantum temporal fluctuations may not simply be extra dimensions of classical order-parameter fluctuations:

The partition function for an individual configuration in space and time may not be positive semi-definite

(cf, the “minus sign problem” of quantum Monte Carlo).

)(~ configτ)(x, in configZZ ∑

Page 115: Quantum Criticality and the Kondo Lattice

TN

Kondo Lattice and Heavy Fermions

at the border of magnetism u Two complimentary perspectives o  A lattice of Kondo “impurities” (advantageous for

understanding Kondo entanglement) o  Quantum magnetism of local moments +

conduction electrons (two types of quantum fluctuations, G and JK)

u Prototype system for magnetism at the

boundary of localization and itinerancy

Page 116: Quantum Criticality and the Kondo Lattice

TN

Superconductivity at the border of magnetism

•  Magnetic fluctuations a la Landau – glues for superconductivity

or •  Magnetism as proxy

– new excitations in normal state

Page 117: Quantum Criticality and the Kondo Lattice

Heavy fermions

Kas

ahar

a et

al

TN

Superconductivity at the border of magnetism

Bro

un

Falte

rmei

er e

t al

Pnictides Organics

Cuprates

Mat

hur e

t al

Page 118: Quantum Criticality and the Kondo Lattice
Page 119: Quantum Criticality and the Kondo Lattice

Dynamical Scaling of Local Quantum Critical Point

AdS/CMT:

N. Iqbal, H. Liu, M. Mezei and QS, PRD 82, 045002 (’10) T. Faulkner, G. T. Horowitz and M. M. Roberts, arXiv:1008.1581 AdS and Kondo lattice: S. Yamamoto & QS, JLTP 161, 233 (’10) S. Sachdev, PRL 105, 151602 (’10)

Page 120: Quantum Criticality and the Kondo Lattice

Kondo lattice f- local moments: AF, QNLσM

Page 121: Quantum Criticality and the Kondo Lattice

RG for mixed Bosons and Fermions with a Fermi Surface

S. Yamamoto & QS, PRB 81, 205106 (2010)

All directions scales Only 1 direction scales (Shankar)

Page 122: Quantum Criticality and the Kondo Lattice

RG at 1-loop & beyond:

=

~

Marginal even at 1-Loop and beyond.

No pole in self energy. Fermi surface remains “small”.

AF phase w/ “small” Fermi surface!

Large N:

S. Yamamoto & QS, PRL 99, 016401 (2007)

Page 123: Quantum Criticality and the Kondo Lattice

JK

G

AFS

JK<<Irkky<<W

Néel, Kondo destruction

Distinct from

PL

Page 124: Quantum Criticality and the Kondo Lattice

Collapse of Kondo scale from the paramagnetic side

QS, S. Rabello, K. Ingersent, & J. L. Smith, Nature 413, 804 (2001); Phys. Rev. B68, 115103 (2003)

Page 125: Quantum Criticality and the Kondo Lattice

JK

G

AFS PL

AFL

I

II

Global Phase Diagram

SDW of PL QS, Physica B 378, 23 (2006) S. Yamamoto & QS, PRL 2007

G: frustration, reduced dimensionaltiy, …

Page 126: Quantum Criticality and the Kondo Lattice

Global Phase Diagram

S. F

riede

man

n et

al,

N

at. P

hys.

5, 4

65 (’

09)

Pure and doped YbRh2Si2

Pure YbRh2Si2

Doped YbRh2Si2

Page 127: Quantum Criticality and the Kondo Lattice

Global Phase Diagram

S. F

riede

man

n et

al,

N

at. P

hys.

5, 4

65 (’

09)

Pure and doped YbRh2Si2

Page 128: Quantum Criticality and the Kondo Lattice

Global Phase Diagram AFS: CeCu6-xAux (I) YbRh2Si2 (I) YbRh2-xCoxSi2 (II) AFL: CeRu2-xRhxSi2 (II)

PS: YbRh2-xIrxSi2 (III) YbAgGe

Page 129: Quantum Criticality and the Kondo Lattice

Global Phase Diagram

J. Custers, R. Yu, et al., Nature Materials 11, 189 (2012)

Effect of dimensionality – the case of Ce3Pd20Si6

T *

Page 130: Quantum Criticality and the Kondo Lattice

4. Heavy fermion quantum criticality II

a.  Antiferromagnetic order and Kondo destruction

b.  Global phase diagram c.  Experimental evidence for the global phase

diagram

d.  Kondo effect from the ordered side: topological defects and Berry phase

Page 131: Quantum Criticality and the Kondo Lattice

Global Phase Diagram Motivates new theoretical questions and approaches:

Approach from the ordered side

Page 132: Quantum Criticality and the Kondo Lattice

Heisenberg model + coherent spin path integral QNLσM

Role of Berry Phase term in QNLσM Approach

Page 133: Quantum Criticality and the Kondo Lattice

Heisenberg model + coherent spin path integral QNLσM

Role of Berry Phase term in QNLσM Approach

Page 134: Quantum Criticality and the Kondo Lattice

Heisenberg model + coherent spin path integral QNLσM

Role of Berry Phase term in QNLσM Approach

Page 135: Quantum Criticality and the Kondo Lattice

Kondo lattice in one dimension

Tsvelik, PRL ’94 Sikkema, Affleck & White, PRL ’97 Zachar & Tsvelik, PRB ’01 Pivovarov & QS, PRB ’04 Berg, Fradkin & Kivelson, PRL ’10 Eidelstein, Moukouri, Schiller, ’11

Page 136: Quantum Criticality and the Kondo Lattice

JK<< Irkky, W

Kondo effect and Berry phase in 1D

QNLσM:

Page 137: Quantum Criticality and the Kondo Lattice

JK<< Irkky, W

QNLσM -- chiral rotation: (Tanaka & Machida)

Kondo effect and Berry phase in 1D

Page 138: Quantum Criticality and the Kondo Lattice

JK<<Irkky, W

QNLσM -- chiral rotation:

Kondo effect and Berry phase in 1D

P. Goswami + QS, PRL 107, 126404 (’11)

Page 139: Quantum Criticality and the Kondo Lattice

JK<< Irkky,W

QNLσM -- chiral rotation:

Kondo effect and Berry phase in 1D

P. Goswami + QS, PRL 107, 126404 (’11)

Cancels the θ term of local moments, S[n] à spin gapped Kondo singlet

Page 140: Quantum Criticality and the Kondo Lattice

JK<< Irkky, W

QNLσM -- chiral rotation:

Kondo effect and Berry phase in 1D

P. Goswami + QS, PRL 107, 126404 (’11)

Kondo vs spin-Peierls: large (PL) vs small (PS) Fermi-Surface phases in paramagnetic region

Page 141: Quantum Criticality and the Kondo Lattice

Global Phase Diagram Motivates new theoretical questions and approaches:

Approach from the ordered side

More generally, how to capture Kondo effect using bosonic representations of spin

Page 142: Quantum Criticality and the Kondo Lattice

5. Perspective and outlook

a.  Quantum criticality vis-à-vis superconductivity

b.  Beyond antiferromagnetic settings c.  Broader contexts

Page 143: Quantum Criticality and the Kondo Lattice

T. Park et al., Nature 440, 65 (’06); G. Knebel et al., PRB74, 020501 (’06)

Superconductivity near Local Kondo-destruction QCP in CeRhIn5

Page 144: Quantum Criticality and the Kondo Lattice

H. Q. Yuan et al, to be published (’12)

Superconductivity near Local Kondo-destruction QCP in CeRhIn5

Page 145: Quantum Criticality and the Kondo Lattice

Superconductivity in CeCu2Si2

Exchange energy saving ≈ 20 times of SC condensation energy

" large kinetic energy loss

O.Stockert, S. Kirchner, et al., Nat. Phys. 7, 119 (2011)

Page 146: Quantum Criticality and the Kondo Lattice

O.Stockert, S. Kirchner, et al., Nat. Phys. 7, 119 (2011)

Superconductivity in CeCu2Si2

Exchange energy saving ≈ 20 times of SC condensation energy

" large kinetic energy loss due to transfer of spectral weight to higher energies

Page 147: Quantum Criticality and the Kondo Lattice

5. Perspective and outlook

a.  Quantum criticality vis-à-vis superconductivity

b.  Beyond antiferromagnetic settings c.  Broader contexts

Page 148: Quantum Criticality and the Kondo Lattice

Spin-glass QCP in heavy fermions?

S. Wilson, P. Dai et al, Phys. Rev. Lett. ’05

D. Gajewski, R. Chau, and M. B. Maple, Phys. Rev. B (’00)

Page 149: Quantum Criticality and the Kondo Lattice

Beyond AF systems

Ferromagnetic Kondo lattice systems: FS phase is also stable S. Yamamoto & QS, PNAS (’10)

Growing list of ferromagnetic heavy fermions:

--URu2-xRexSi2 N. P. Butch & M. B. Maple, PRL (’09) --YbNi4P2 A. Steppke et al (’12) --CeRu2Al2B E. Baumbach et al, PRB (’12)

Page 150: Quantum Criticality and the Kondo Lattice

Localization-delocalization in UGe2?

A.  Huxley et al, JPCM 15, B.  S1945 (2003)

R. Settai et al, JPCM 14, L29 (2002)