Quantum Confinement Of

Embed Size (px)

Citation preview

  • 7/22/2019 Quantum Confinement Of

    1/36

    Quantum Confinement ofElectrons at Surfaces

    Robert A. Bartynski

    Department of Physics and AstronomyLaboratory for Surface Modification and NanoPhysics Lab

    Rutgers University

    Piscataway, NJ 08854NPL 203 [email protected] 732-445-5500 x4839

    Surface/Interface Science Course (Phys 627/Chem 542)25 March2013

    Laboratory for Nano Physics

    Laborator

    THE STATE UNIVERSITY OF NEW JERSEY

    RUTGERS

  • 7/22/2019 Quantum Confinement Of

    2/36

    Quantum Confinement Interference of Electron Waves

    M.F. Crommie, C.P. Lutz, D.M. Eigler.Confinement of electrons to quantum corrals on a metal surface.Science 262, 218-220 (1993)

    M.F. Crommie, C.P. Lutz, D.M. Eigler, E.J. Heller.Waves on a metal surface and quantum corrals.Surface Review and Letters 2 (1), 127-137 (1995)

    STM rounds up electron waves at the QM corral. Physics Today 46 (11), 17-19 (1993).

  • 7/22/2019 Quantum Confinement Of

    3/36

    . . .. . .

    Electronic Quantum Size Effects: Dimensionality

    Electron density acquires nodal structure along confinement direction. Energy spectrum acquires discrete character.

    2-d structure(thin film, quantum well)confinement in 1-d

    0-d structure(cluster, quantum dot)confinement in 3-d

    1-d structure(atomic chain, quantum wire)

    confinement in 2-d

    Y ( z

    )

    y ( z )

    y ( z )

    y ( x)

    y ( x)

  • 7/22/2019 Quantum Confinement Of

    4/36

    Scanning Tunneling Microscopy/Spectroscopy

  • 7/22/2019 Quantum Confinement Of

    5/36

    VB

    CLBCLS

    hu 1

    hu 2 > hu 1

    EF

    EV

    KE

    Intensity

    KE

    Intensity

    Photoelectron Spectroscopy

    Valence BandPhotoemission

    Core levelPhotoemission

    Auger ElectronEmission

  • 7/22/2019 Quantum Confinement Of

    6/36

    Complementary Spectroscopic Techniques

    Inverse Photoemission (Unoccupied States)

    e- e-Photoemission (Occupied States)

    k

    EF

    EV

    k

    EF

    EV

    e- e-

    PhotonCounts

    EF

    E f i n a

    l

    X X

    ElectronCounts

    EF

    E i n i t i a

    l

    e-

    e-

    Vertical transitions in the reduced Brillioun Zone

  • 7/22/2019 Quantum Confinement Of

    7/36

    Angle Resolved Photoelectron Spectroscopy

    Crystal Vacuum

    Direct transition in solid in = o Periodicity in plane of surface || in = || out + G || || out = || o

    k|| = ( 2 mE /h 2)1/2 sin q

    Map E (k || )

    For 2d systemobtain all informationabout energy bands

    o

    in

    out

    || out

    || in

    q

    S u r

    f a c e

  • 7/22/2019 Quantum Confinement Of

    8/36

    1-d confinement: Quantum Wells

  • 7/22/2019 Quantum Confinement Of

    9/36

    Metallic Quantum Well (MQW) States

    C u(100) f c c F e

    5 ML

    C u

    2 15ML

    Cu(100) Fe/Cu(100) Cu/Fe/Cu(100)200 x 200 nm 200 x 200 nm 300 x 300 nm

    Fe Cu Surf.

  • 7/22/2019 Quantum Confinement Of

    10/36

    k_parallel

    k_perpendicular

    Energy

    k_parallel

    k_perpendicular

    Energy

    k_parallel

    k_perpendicular

    Energy

    k_parallelk_perpendicular

    Energy

    k_parallelk_perpendicular

    Energy

    k_parallelk_perpendicular

    Energy

    k_parallelk_perpendicular

    Energy

    Effect of Confinement on Electronic States

    1) Free electron bandsE k2

    2) Continuous paraboloidshown as grid [ Dkx = 2 p /Na]

    3) Confinement allows onlyfixed values of k

    4) Projected on E axis:sub-bands

    E(k || )= E n + h 2k|| 2/2m

    For square well: E n = n2h2 / 8mL2

  • 7/22/2019 Quantum Confinement Of

    11/36

    Typical MQW Behavior: Cu/fccFe/Cu(100)

    InversePhotoemission

    (unoccupiedstates)

    All spectra here obtained at k || = 0

    MQW states disperse up with increasing Cu overlayer thickness!

    CuFe

    Energy above E F (eV) 4 3 2 1 0

    3 ML

    19 ML

    q Cu

    10 ML

    CuFe

    Photoemission

    (occupied states)

    @ALS w/ M. Hochstrasser, D. Arena, J. Tobin (LBL)

    30 20 10 0 Thickness (ML)

    1.0

    0.8

    0.6

    0.4

    0.2

    B i n d i n g

    E n e r g y

    ( e V ) 0.0

  • 7/22/2019 Quantum Confinement Of

    12/36

    ma (m + 1)a

    n + 1

    n

    n + 1

    n

    n + 2

    Since E = n 2h2/8mL 2 downwhen you increase the width of the well?

    d d + D

    n + 1

    n

    n + 1

    n

    u = (m n)

    u - 1

    u - 1

    u

    u + 1

    they do, but by how much?

  • 7/22/2019 Quantum Confinement Of

    13/36

    Vin Cu Vin Fe

    CuFe

    But the Electrons are NOT in a Square Well

    We must include the effect of the atomic potential

    e -

  • 7/22/2019 Quantum Confinement Of

    14/36

    Bohr-Summerfeld Approx.(Phase Accumulation Model)

    2k m a + Df c +D f s = n 2p 2k m a = n 2p - Df c - D f s

    Quantum Well States in a Band

    Phase accumulated in wellPhase shift on reflection from crystalPhase shift on reflection from vacuumExistence condition

    Phase/2 p 0 5 10 15 20

    u = m - n

  • 7/22/2019 Quantum Confinement Of

    15/36

    MQW states disperse up with increasing Cuoverlayer thickness

    10

    8

    6

    4

    2

    0

    -2

    -4

    E l e c t r o n

    E n e r g y

    ( e V )

    k ^0 p /a

    4

    3

    2

    1

    0

    m ML

    m+1 ML

    n nodes

    (n+1) nodes

    Add a layer, add a node (MQW states are characterized

    by the quantum number u = m - n )a

    k p

    a2

    States near BZB

  • 7/22/2019 Quantum Confinement Of

    16/36

    n

    n + 1

    n

    Sorting out n and n for MQW states of Ag/Fe(100)

    n+1

    T . C . C

    h i a n g

  • 7/22/2019 Quantum Confinement Of

    17/36

    Yes, they move discretely!

    T . C . C

    h i a n g

    Do MQW state disperse discretely or continuouslywith film thickness?

  • 7/22/2019 Quantum Confinement Of

    18/36

    Other System: Cu/fccNi/Cu(100)

    But

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    B i n d i n

    g E

    n e r g y

    ( e V )

    403020100Cu Thickness (ML)

    Photoemission(occupied states)

    B i n d i n g

    E n e r g y

    ( e V )

    Cu Thickness (ML)

    Cu

    Ni

    -0.4

    -0.2

    0.0

    -0.6

    -0.8

    0 10 20 4030

    Anomalous behavior above E F

    InversePhotoemission

    (unoccupied states)

    Energy Above E F (eV) 6 4 2 0

    2 ML Cu

    12 ML Cu

    Cu

    Ni

    Similar to Cu/Ni(100)[Himpsel and Rader, APL 67, 1151 (1995)]

  • 7/22/2019 Quantum Confinement Of

    19/36

    Cu

    C

    d bands

    Ni

    C

    d bands

    Fe

    C

    d bandsEF

    Behavior of electronic states depends on bandalignment

    Cu 4sp Fe 3dNi 4 sp Cu 4 sp

  • 7/22/2019 Quantum Confinement Of

    20/36

    Dispersion with k ||

    k || = (2 mE h 2)1/2 sin q

    k_parallelk_perpendicular

    Energy

    Energy

    k ||Free electron-like dispersion

    of sub-bands

    T . C . C

    h i a n g

  • 7/22/2019 Quantum Confinement Of

    21/36

    Energy (eV)

    0 2 4 6

    Dispersion with k ||

    Nearly parabolicUpward dispersion

    Flat dispersion !!

    Downward dispersion !!

    Projected bands ofCu and Co

  • 7/22/2019 Quantum Confinement Of

    22/36

    Mediate oscillatory magnetic coupling GMR

    Quantum Size Effects and Materials Properties

    MQW Intensity at E F (belly)

    MXLD

    Calculation

    MQW Intensity at E F (neck)

    Kawakami et al. PRL, 82 , 4098 (1999)

    Low High

  • 7/22/2019 Quantum Confinement Of

    23/36

    Low T = 6 MLHigh T = 5 & 7 ML

    Low T = 3 MLHigh T = 2 & 4 ML

    MQW state-induced layer stability

    Ag/Fe(100)

    T . C . C

    h i a n g

    W ei t er i n g e t al .

    Pb/Si(111)

    Expt.

    Theory

    Theory

    Quantum size effectsstabilize island height

  • 7/22/2019 Quantum Confinement Of

    24/36

    C O

    C O

    C O

    C O

    Quantization of Cu sp band results in MQW states

    Cu sp electrons play a role in CO chemisorption (A. Nilsson et al.)

    Changing Cu thickness modifies electronic levelswithout changing geometric structure

    Corresponding modification in CO chemisorption?

    Chemisorption on MQWs

    C u(100) fccFe

    5 ML

    C u

    2 15ML

  • 7/22/2019 Quantum Confinement Of

    25/36

    Measuring Bonding Strength

    Mass Spec

    Temperature Programmed Desorption (Bond Strength)

    - C - O

    - C - O

    - C - O

    M a s s

    2 8 s i g n a

    l ( A r b . U

    n i t s )

    300250200150Temperature (K)

    TPD ofCO/Cu(100)

    TP (th)

  • 7/22/2019 Quantum Confinement Of

    26/36

    CO TPD from MQWs

    M a s s

    2 8 I n t e n s

    i t y ( A r b .

    U n

    i t s )

    240200160120

    Temperature (K)

    Cu(100)

    q Cu

    CO /Cu/ fccCo /Cu(100) CO /Cu/ fccFe /Cu(100)

    2.5 ML

    5 ML

    10 ML

    15 ML

    M a s s

    2 8 I n t e n s i

    t y ( A

    r b .

    U n

    i t s )

    240200160120Temperature (K)

    2.5

    5

    10

    13.75

    qCu (ML)

  • 7/22/2019 Quantum Confinement Of

    27/36

    F

    172

    170

    168

    166

    164

    162

    T d

    ( K )

    20 10 0 Cu Film Thickness (ML)

    I n t e n s

    i t y a

    t E F

    ( A r b .

    U n

    i t s

    )

    Cu(100)

    CO/Cu/fccCo

    Td IPE Intensity at E

    IPE Intensity and Desorption Temperature

    185

    180

    175

    170

    165

    160

    T d ( K )

    30 20 10 0

    Cu Film Thickness (ML)

    I n t e n s

    i t y a

    t E F

    ( A r b .

    U n

    i t s

    )

    TdIPE Intensity at E F

    CO/Cu/fccFe Cu(100)

    F

  • 7/22/2019 Quantum Confinement Of

    28/36

    Weitering et al., Nature Physics (March 06)

    Low Dimensionality and Hard Superconductivity

  • 7/22/2019 Quantum Confinement Of

    29/36

    2-d confinement: Quantum Wires

  • 7/22/2019 Quantum Confinement Of

    30/36

    How to make quantum wires (and dots)

    (Himpsel et al.)

    CaF/Sias

    mask

    Highly regularsteps on Si(111)

  • 7/22/2019 Quantum Confinement Of

    31/36

    Electronic structure of quantum wires

    (Himpsel et al.)

    Si(557) - Au

    AuSi SiMetallic

    Au wires

    Semiconducting

    Au film

  • 7/22/2019 Quantum Confinement Of

    32/36

    k_y

    k_x

    Energy

    E_F

    k xk y

    EnergyEF

    2D

    1D

    Fermi surface of quantum wires (and dots)

  • 7/22/2019 Quantum Confinement Of

    33/36

    N. Nilius, T. M. Wallis, and W. Ho, Science 97 , 1853-1856 (2002).

    Other routes to quantum wires (and dots)

    Atom-by-atom construction(Au/NiAl)

    Self-assembly Ag/Cu(110)

    S p r u n g e r ,

    K u r

    t z

  • 7/22/2019 Quantum Confinement Of

    34/36

    Scanning tunneling spectroscopy ofquantum wires (and dots)

    dI/dV ~ N(E)

    Y ( x) = S cnsin( np x/L)

    W . H

    o

  • 7/22/2019 Quantum Confinement Of

    35/36

    CDW within an atomic wire

    Competing periodicities in fractionally filled one-dimensional bands, P.C. Snijders, S. Rogge, H.H. WeiteringPhysical Review Letters (February 24, 2006)

    S

  • 7/22/2019 Quantum Confinement Of

    36/36

    Summary

    Direct and Inverse Photoemission spectroscopies are powerfultechniques for exploring the electronic structure of nanometerscale structures.

    2-d structures show discrete electronic structure to plane ofthe film, but band-like structure parallel to plane.

    Square well model NOT sufficient, must take into accountelectronic structure of overlayer AND substrate to fully describe.

    1-d structures can be fabricated and photoemission shows thatmetallic behavior is possible (undoubtedly owing to interaction withsubstrate).

    Fermi surface mapping shows closed or open curves as expected

    for 2-d and 1-d structures, respectively.

    Scanning tunneling spectroscopy (STS) is powerful tool forfabricating and characterizing 1-d and 0-d structures.

    Can use STS to map electronic states of small (i.e. several atom

    l ) 1 d l di i i h l h