64
Quantum computing with trapped ions Hartmut Häffner Institute for Quantum Optics and Quantum Information Innsbruck, Austria • Basics of ion trap quantum computing • Measuring a density matrix Q t t Quantum gates SCALA QGATES FWF SFB Industrie Tirol IQI GmbH Zürich, Dec 8 th 2008 $ Which technology ? 000 100 Quantum processor 000 001 010 011 100 011 110 011 processor Cavity QED NMR NMR Superconducting qubits Quantum dots Trapped ions © A. Ekert

Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Embed Size (px)

Citation preview

Page 1: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Quantum computing with trapped ions

Hartmut Häffner

Institute for Quantum Optics and Quantum Information

pp

pInnsbruck, Austria

• Basics of ion trap quantum computing

• Measuring a density matrix

Q t t• Quantum gates

€ SCALAQGATES

FWF SFB

IndustrieTirol

IQIGmbH

Zürich, Dec 8th 2008

$

Which technology ?

000 100Quantumprocessor000

001010011

100011110011

processor

Cavity QED

NMRNMR

Superconducting qubitsQuantum dots

Trapped ions

© A. Ekert

Page 2: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Which technology ?

000 100Quantumprocessor000

001010011

100011110011

processor

Cavity QED

NMRNMR

Superconducting qubitsQuantum dots

Trapped ions

© A. Ekert

Why trapped ions ?

Good things about ion traps:

- Ions are excellent quantum memories; single qubit coherence times > 10 minutes have been demonstrated

- Ions can be controlled very well

Many ideas to scale ion traps- Many ideas to scale ion traps

Bad things about ion traps:

- Slow (~1 MHz)

- Technically demanding

Page 3: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

The hardware

P1/2

D5/2

Qubit

S1/2

Innsbruck quantum processor

Trapped ions form the quantum register

Trap electrodes

Page 4: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

DiVincenzo criteria

I. Scalable physical system, well characterized qubits

II. Ability to initialize the state of the qubits

III. Long relevant coherence times, much longer than gate operation time

IV. “Universal” set of quantum gates

V. Qubit-specific measurement capability

Experimental procedure

1. Initialization in a pure quantum stateP1/2 D5/2P1/2 D5/2P1/2 D5/2D5/2

τ =1s

40Ca+S1/2

CaS1/2S1/2S1/2

Page 5: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Experimental procedure

1. Initialization in a pure quantum stateP1/2 D5/2D5/2

2. Quantum state manipulation onS1/2 – D5/2 transition

Quantum statemanipulation

S1/2S1/2

Experimental procedure

P1/2 D5/2

1. Initialization in a pure quantum state:P1/2 D5/2P1/2 D5/2P1/2 D5/2

τ =1s

40Ca+

2. Quantum state manipulation onS1/2 – D5/2 transition

Dopplercooling Sideband

cooling

Quantum statemanipulation

Fluorescencedetection

S1/2

CaS1/2S1/2

3. Quantum state measurementby fluorescence detection

S1/2

Page 6: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Experimental procedure

P1/2 D5/2

1. Initialization in a pure quantum state:P1/2 D5/2P1/2 D5/2P1/2 D5/2

τ =1s

40Ca+

2. Quantum state manipulation onS1/2 – D5/2 transition

Dopplercooling Sideband

cooling

Quantum statemanipulation

Fluorescencedetection

S1/2

CaS1/2S1/2

3. Quantum state measurementby fluorescence detection

S1/2

5µmTwo ions: 5µm

0 i /Spatially resolved

Two ions:

50 experiments / s

Repeat experiments100-200 times

Spatially resolveddetection withCCD camera

Rabi oscillations

P1/2 D5/2D5/2

S1/2

Page 7: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Rabi oscillations

P1/2 D5/2D5/2

S1/2

Rabi oscillations

P1/2 D5/2D5/2

S1/2

Page 8: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

The phase ...

++

++ =

-

++

+- =

-

The phase ...

++

++ =

-

++

++e =

-iωt

-

Page 9: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

The phase ...

The phase ...

Page 10: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Addressing single qubits

Paul trapcoherentmanipulation p

electrooptic

of qubits

0.6

0.7

0.8

onp

deflector

0.3

0.4

0.5

Ex

cita

tio

-10 -8 -6 -4 -2 0 2 4 6 8 100

0.1

0.2

Fl

dichroicbeamsplitter

- inter ion distance: ~ 4 µm

Deflector Voltage (V)

CCDFluorescencedetection

- addressing waist: ~ 2 µm

< 0.1% intensity on neighbouring ions

Decoherence mechanisms

Memory errors:

- Bit-flips

- Dephasing

Operationial errors

- technical imperfections …

Page 11: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Dephasing of qubits

Ramsey Experiment

Ramsey Timeπ /2 π /2Ramsey Time

= 15.9 ms

Realized time scales

10-6 s Single qubit gates

Two qubit gates (Geometric phase gates) 10-5 s

10-4 s

10 3

10 5 s

Two qubit gates (Cirac-Zoller approach) 10-3 s

Single qubit coherence (magnetic field sensitive) 10-2 s

10-1 s Coherence of the motion

100 s

101 s

102 s

103 s

Page 12: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Raman transitions:

Long lived qubits

Raman transitions:

E it d t tExcited state

qubitGround state

qubit

Raman transitions:

Long lived qubits

Raman transitions:

E it d t tExcited state

Ground state

Page 13: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Level scheme of 9Be+:

Long lived qubits

Level scheme of 9Be :

From: C. Langer et al., PRL 95, 060502 (2005), NIST

Long lived qubits

From: C. Langer et al., PRL 95, 060502 (2005), NIST

Page 14: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Realized time scales

10-6 s Single qubit gates

Two qubit gates (Geometric phase gates) 10-5 s

10-4 s

10 3

10 5 s

Two qubit gates (Cirac-Zoller approach) 10-3 s

Single qubit coherence (magnetic field sensitive) 10-2 s

10-1 s Coherence of the motion

100 s

101 s

102 s

Single qubit coherence (magnetic field insensitive)

103 s Single qubit coherence (magnetic field insensitive + RF drive)

Having the qubits interact

The common motionacts as the quantumbus.

Page 15: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Having the qubits interact

The common motionacts as the quantumbus.

50 µm

Ion motion

harmonic trap

… ……

Page 16: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Ion motion

harmonic trap2-level-atom joint energy levels

… ……

Coherent manipulation

carrier

carrier and sidebandRabi oscillationswith Rabi frequencies

Lamb-Dicke parameter

Page 17: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Generation of Bell states

… …… …

Generation of Bell states

… …… …

π

Page 18: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Generation of Bell states

π/2… …… …

Generation of Bell states

π

… …… …

Page 19: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Generation of Bell states

π… …… …

Bell states with atoms

- 9Be+: NIST (fidelity: 97 %)

Bell states with atoms

- 9Be+: NIST (fidelity: 97 %)

- 40Ca+: Oxford (83%)

- 111Cd+: Ann Arbor (79%)

25M M i h

- 40Ca+: Oxford (83%)

- 111Cd+: Ann Arbor (79%)

25M M i h- 25Mg+: Munich

- 40Ca+: Innsbruck (99%)

- 25Mg+: Munich

- 40Ca+: Innsbruck (99%)

Analysis of Bell states

Fluorescencedetection withCCD camera:CCD camera:

Coherent superposition or incoherent mixture ?

What is the relative phase of the superposition ?

Measurement of the density matrix:SSSDDS

DD SSSDDSDDDSDD

Page 20: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Measuring a density matrix

A measurement yields the z-component of the Bl h tBloch vector => Diagonal of the density matrix

Measuring a density matrix

A measurement yields the z-component of the Bl h tBloch vector => Diagonal of the density matrix

Rotation around the x- or the y-axis prior tothe measurement yields the phase informationy pof the qubit.

Page 21: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Measuring a density matrix

A measurement yields the z-component of the Bl h tBloch vector => Diagonal of the density matrix

Rotation around the x- or the y-axis prior tothe measurement yields the phase information

=> coherences of the density matrix

y pof the qubit.

Decoherence properties of qubits

SSSD

DSDD SSSDDSDDDD

SSSD

DSDD SSSDDSDD

SSSD

DSDD SSSDDSDD

Page 22: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

A “real” thought experiment

Measurementof the center ion

Bell-state survives

of the center ion

Roos et al., Science 304, 1478 (20

Generalized Bell states

Page 23: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Generalized Bell states

656100 measurements

Genuine 8-particle entanglement 656100 measurements

~ 10 h measurement time

Häffner et al., Nature 438, 643 (2005)

DiVincenzo criteria

I. Scalable physical system, well characterized qubits

II. Ability to initialize the state of the qubits

III. Long relevant coherence times, much longer than gate operation time

IV. “Universal” set of quantum gates

V. Qubit-specific measurement capability

Page 24: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Quantum gates …

Having the qubits interact

...allows the realization of a universal quantum computer !

controlcontrol targettarget

universal quantum computer !

Page 25: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Having the qubits interact

...allows the realization of a universal quantum computer !

controlcontrol targettarget

universal quantum computer !

Most popular gates:- Cirac-Zoller gate (Schmidt-Kaler et al., Nature 422, 408 (2003)).- Geometric phase gate (Leibfried et al., Nature 422, 412 (2003)).- Mølmer-Sørensen gate (Sackett et al., Nature 404, 256 (2000)).Mølmer Sørensen gate (Sackett et al., Nature 404, 256 (2000)).

A controlled-NOT operation

C t l bitC t l bitControl bitControl bit

T t bitT t bitTarget bitTarget bit

Target

Page 26: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

A controlled-NOT operation

Ion 1: Control qubitControl qubit

Vibration:

I 2

SWAP-1SWAP

Target qubitTarget qubitIon 2: Target qubitTarget qubit

Mapping the qubit to the bus

Page 27: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

A controlled-NOT operation

Ion 1

Vib iSWAP-1SWAP

Control qubitControl qubit

Vibration

Ion 2 Target qubitTarget qubit

Pulse sequence:Pulse sequence:

Ion 1Ion 1

Laser frequencyPulse lengthOptical phase

A phase gate

Composite 2π-rotation:

Page 28: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Composite phase gate

11

22

3

4

Composite phase gate

0=ϕ 0=ϕ 2πϕ =ϕ ϕ 2πϕ

0 8

0.9

1

0.6

0.7

0.8

0.3

0.4

0.5

0 20 40 60 80 100 120 140 160 1800

0.1

0.2

0 20 40 60 80 100 120 140 160 1800

Time (µs)

Page 29: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

A phase gate

?

Composite 2π-rotation:

Action on the |1,S> |2,D> manifold

4

2

3 1

Page 30: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

A phase gate

Composite 2π-rotation:

Single-ion CNOT

Phase gate -π/2π/2

0 8

0.9

1

0.978 (5)

0.6

0.7

0.8

0.3

0.4

0.5

0

0.1

0.2

0.3

Time (µs) 0 50 100 150 200 250 300

0

Page 31: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

A controlled-NOT operation

Ion 1

Vib iSWAP-1SWAP

Control qubitControl qubit

Vibration

Ion 2 Target qubitTarget qubit

Pulse sequence:Pulse sequence:

Ion 1Ion 1

Laser frequencyPulse lengthOptical phase

Ion 2Ion 2

Truth table of the CNOT

Probability

InputOutput

Input

Page 32: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Using a CNOT to create a Bell state

prepare CNOTdetectoutput

Cirac-Zoller gate

Draw backs of the Cirac-Zoller gate:g

- slow (200 trap periods)- single ion addressing required

Page 33: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Mølmer-Sørensen gate

Raman transitions between

Interaction of two ions via commonInteraction of two ions via common motion.

n=1

n=0

Mølmer-Sørensen gate

Raman transitions between

Interaction of two ions via commonInteraction of two ions via common motion.

Page 34: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Mølmer-Sørensen gate

Raman transitions between

Interaction of two ions via commonInteraction of two ions via common motion.

Technical realization

bicromatic beam applied to both ions

Page 35: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Entangling ions

entangled ?

J. Benhelm et al., Nature Physics 4, 463 (2008)

Theory: C. Roos, NJP 10, 013002 (2008)

Entangling ions

entangled

measure entanglementvia parity oscillations

gate duration

fid lit 99 3 (2) %average fidelity: 99.3 (2) % J. Benhelm et al., Nature Physics 4, 463 (2008)

Theory: C. Roos, NJP 10, 013002 (2008)

Page 36: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Gate concatenation

maximally entangled states

Page 37: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Gate performance

Page 38: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

DiVincenzo criteria

I. Scalable physical system, well characterized qubits / ?II Ability to initialize the state of the qubitsII. Ability to initialize the state of the qubits

III. Long relevant coherence times, much longer than gate operation time

IV “Universal” set of quantum gatesIV. Universal set of quantum gates

V. Qubit-specific measurement capability

Often neglected:

• exceptional fidelity of operations

• low error rate also for large quantum systems

• all requirements have to met at the same time

Scaling of ion trap quantum computers

Its easy to have thousands of coherent qubits …but hard to control their interaction

Kielpinski Monroe WinelandKielpinski, Monroe, Wineland

Cirac, Zoller, Kimble, Mabuchi Zoller, Tian, Blatt

Page 39: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

The Michigan T trap

An implementation of the Deutsch-algoritm …

Page 40: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Deutsch‘s problem: IntroductionDeutsch‘s problem: Introduction

Decide which class the coin is:False (equal sides) or Fair

Front

B kBack

A single measurement does NOT give the right answer

Deutsch‘s problem: Mathematical formulationDeutsch‘s problem: Mathematical formulation

4 possible coins are representend by 4 functions

falseCase 4Case 3Case 2Case 1

BalancedConstant

fair0110f(1)

10 10f(0)

Page 41: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Deutsch‘s problem: Mathematical formulationDeutsch‘s problem: Mathematical formulation

4 possible coins are representend by 4 functions

Ux x

falseCase 4Case 3Case 2Case 1

BalancedConstant Ufz z + f(x)

fair0110f(1)

10 10f(0)

Z-CNOTCNOTNOTIDz + f(x)

Physically reversible process realized by a unitary transformation+

Deutsch Jozsa quantum circuitDeutsch Jozsa quantum circuit

UfnCase Logic Quantum circuit Matrix

f1

1000010000100001

x x

z f(x) + zID

f2

0100100000010010

NOT

f3

1000010000010010

CNOT

f

0010

010010000010Z CNOTf4 00100001

Z-CNOT

Page 42: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Deutsch Jozsa quantum circuitDeutsch Jozsa quantum circuit

x x|0> π/2 -π/2

Uf

x

z z + f(x)

|0>

|1>

π/2

π/2

π/2

-π/2

Quantum analysis gives the right answer after a single measurement!

•D. Deutsch, R. Josza, Proc. R. Soc. London A439, 553 (1992) •M. Nielsen, I. Chuang, QC and QI, Cambridge (2000)

Qubits in 40Ca+

computational

D5/2 |1>

internal qubit

...

motional qubit computational subspace

|D 0>|D,1>

729 nm

|2

|D,0>

|0>S1/2|0>

|1>1

n=0

|S,0>|S,1>

Page 43: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

No information in the second qubitNo information in the second qubit

x x|0>

electronic qubit

π/2 -π/2

Uf

x

z z + f(x)

|0>

|1>

π/2

π/2

π/2

-π/2

motional qubit

Deutsch Jozsa quantum circuitDeutsch Jozsa quantum circuit

UfnCase Logic Quantum circuit Matrix

f1

1000010000100001

x x

z f(x) + zID

f2

0100100000010010

NOT

f3

1000010000010010

CNOT

f

0010

010010000010Z CNOTf4 00100001

Z-CNOT

Page 44: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Deutsch Jozsa: RealizationDeutsch Jozsa: Realization

x x

z f(x) + z

Deutsch Jozsa: RealizationDeutsch Jozsa: Realization

x x

z f(x) + z

Swap SwapSwap Swap

Page 45: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

3-step composite SWAP operation3-step composite SWAP operation

1 1

|D,0>|D,1>

1 1

3

3

|S,0>|S,1>

2

I. Chuang et al., Innsbruck (2002)

Deutsch Jozsa: RealizationDeutsch Jozsa: Realization

x x

z f(x) + z

Swap SwapSwap Swap

Page 46: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Deutsch Jozsa: RealizationDeutsch Jozsa: Realization

x x

z f(x) + z

Swap SwapSwap Swap

Phasegate

Composite phase gate (2π rotation)

11

22

3

4

Page 47: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Action on |S,1> - |D,2>

4

2

3 1

Deutsch Jozsa: RealizationDeutsch Jozsa: Realization

x x

z f(x) + z

Swap SwapSwap Swap

Phasegate

Page 48: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Deutsch Jozsa: RealizationDeutsch Jozsa: Realization

x x

z f(x) + z

Swap SwapSwap Swap

Phasegate

Deutsch Jozsa: RealizationDeutsch Jozsa: Realization

x x

z f(x) + z

Swap SwapSwap Swap

Phasegate

Phasegate

Page 49: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Deutsch Jozsa: RealizationDeutsch Jozsa: Realization

Deutsch Jozsa: RealizationDeutsch Jozsa: Realization

Time (µs)

Page 50: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

D h J R lD h J R lDeutsch Jozsa: ResultDeutsch Jozsa: Result

B l dC t t

1100expected |<1| >|2

Case 4Case 3Case 2Case 1

BalancedConstant

0.975(2) 0.975(4) 0.087(6) 0.019(6) measured |<1|a>|2

|<1|a>|2

0.986(4) 0.931(9) 0.90(1) --measured |<1|w>|2

1111expected |<1|w>|2

|<1|w>|2

S. Gulde et al., Nature 412, 48 (2003)

Conclusions

• Basics of ion trap quantum computing

• Measuring a density matrix

• Quantum gates

• Deutsch Algorithm

€ SCALAQGATES

FWF SFB

IndustrieTirol

IQIGmbH

Berkeley, Nov 25th 2008

$

Page 51: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Decoherence properties of qubits

long lived (~ 1000 ms) short lived (~ ms)

SSSD

DSDD SSSDDSDD

SSSD

DSDD SSSDDSDD

DD

Ene

rgy

Ene

rgy

SSSD

DSDD SSSDDSDD

SSSD

DSDD SSSDDSDD

(see e.g. Kielpinski et al.,Science 291, 1013-1015 (2001)

Page 52: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Ultra long lived entanglement

D5/2

S1/2

Ultra long lived entanglement

Lifetime of entanglement > 20 s

H. Häffner et al., App. Phys. B 81 151 (2005).

Page 53: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Realized time scales

10-6 s Single qubit gates

Two qubit gates (Geometric phase gates: Boulder, Innsbruck)10-5 s

10-4 s

10 3

10 5 s

Two qubit gates (Cirac-Zoller approach) 10-3 s

Single qubit coherence (magnetic field sensitive) 10-2 s

10-1 s Coherence of the motion (Innsbruck)

100 s

101 sDecoherence free subspaces

102 s

Single qubit coherence (magnetic field insensitive, Boulder)

103 sWell chosen single qubit coherence (Boulder)

A quantum bit

Two level system:

Page 54: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Qubits

Possible qubit encodings

Physical Qubit Logical Qubit

Effect of magnetic field or laser frequency fluctuations on qubits

Logical qubit experiences global phase only

Page 55: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Realized time scales

10-6 s Single qubit gates

Two qubit gates (Geometric phase gates: Boulder, Innsbruck)10-5 s

10-4 s

10 3

10 5 s

Two qubit gates (Cirac-Zoller approach) 10-3 s

Single qubit coherence (magnetic field sensitive) 10-2 s

10-1 s Coherence of the motion (Innsbruck)

100 s

101 sDecoherence free subspaces

102 s

Single qubit coherence (magnetic field insensitive)

103 sWell chosen single qubit (Boulder)

Universal set of gates in a DFS

• single qubit operations

- Z gates

- X gates

• two –qubit operations

- phase gate

Page 56: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Z gate

Universal set of gates in a DFS

single qubit phaseshift byAC Stark shiftsZ AC Stark shifts

XX

Z?

Z?

Page 57: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Two logical qubit gate

Two body interactions preferred:

Most interactions cause the state to leave

the decoherence free subspace.

Some solutions: L. Aolita et al., PRA 75 052337 (2007)

Two logical qubit phase gate

Action of the phase gate on two physical qubits:

...and on the logical qubits:g q

Page 58: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Two qubit phase gate

D. Leibfried, et al., Nature 422 412 (2003)D. Leibfried, et al., Nature 422 412 (2003)

K. Kim et. al., Phys. Rev. A77, 050303 (2008)

Universal set of gates in a DFS

single qubit phaseshift byAC Stark shiftsZ AC Stark shifts

XX

Z

Z

Page 59: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

A CNOT in a DFS

spin echo

Process tomography of the CNOT

mean gate fidelity

Page 60: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Discussion

mean gate fidelity: 89(4)%

(after DFS postselection)

Main limitations:

- spurious laser frequency componentsspurious laser frequency components

- off-resonant coupling to other levels

- intensity stability on ions

- addressing errors

Discussion

Advantages:

• lifetime limited coherence time

• insensitive to laser linewidth

• insensitive to AC-Stark shifts

Page 61: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Scaling of ion trap quantum computers

© D. Leibfried

Scaling of ion trap quantum computers

Page 62: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Scaling of ion trap quantum computers

Scaling of ion trap quantum computers

„Architecture for a large-scale ion-trap quantum computer“, D. Kielpinski et al, Nature 417, 709 (2002)

Page 63: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Multiplexed trap structure: NIST Boulder

D. Leibfried, D. Wineland et al., NIST

Segmented ion traps as scalable trap architecture

(ideas pioneered b D Wineland NIST)(ideas pioneered by D. Wineland, NIST)

Segmented trap electrode allow tot t i d t lit i t itransport ions and to split ion strings

State of the art:

Transport of ions Splitting of two-ion crystal

State of the art:

1 mm within 50 µs

no motional heating

tseparation ≈ 200 µs

small heating n ≈1

„Architecture for a large-scale ion-trap quantum computer“, D. Kielpinski et al, Nature 417, 709 (2002)

„Transport of quantum states“, M. Rowe et al, quant-ph/0205084

Page 64: Quantum computing with trapped ions - Welcome to …qudev.phys.ethz.ch/content/courses/QSIT08/QSIT08_V12_2page.pdf · Quantum computing with trapped ions Hartmut Häffner Institute

Coherent transport of quantum information