667

Quantum-Chemical Calculation of Unique Molecular Systems, Two-Volume Set

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

MOLECULAR SYSTEMS
Edited by
Vladimir A. Babkin, DSc, Gennady E. Zaikov, DSc, and A. K. Haghi, PhD
Apple Academic Press TORONTO NEW JERSEY
QUANTUM-CHEMICAL CALCULATION OF UNIQUE
MOLECULAR SYSTEMS VOLUME 1
QUANTUM-CHEMICAL CALCULATION OF UNIQUE
MOLECULAR SYSTEMS VOLUME 1
Edited by
Vladimir A. Babkin, DSc, Gennady E. Zaikov, DSc, and A. K. Haghi, PhD
Apple Academic Press TORONTO NEW JERSEY
CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742
Apple Academic Press, Inc 3333 Mistwell Crescent Oakville, ON L6L 0A2 Canada
© 2014 by Apple Academic Press, Inc. Exclusive worldwide distribution by CRC Press an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works Version Date: 20140124
International Standard Book Number-13: 978-1-4822-2433-7 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources. Reason- able efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organiza- tion that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com
and the CRC Press Web site at http://www.crcpress.com
For information about Apple Academic Press product http://www.appleacademicpress.com
ABOUT THE EDITORS
Vladimir A. Babkin, DSc
Vladimir A. Babkin, DSc, is Professor and Head of the Research Depart- ment at Volgograd State University of Architecture and Engineering, Se- bryakovsky Branch in Volgograd, Russia. Professor Babkin graduated from Bashkir State University in 1976 (Ufa, Russia) as a physicist, spe- cializing in the field of applied quantum chemistry. He is the author of more than 1,200 scientific papers, including 14 monographs.
Gennady E. Zaikov, DSc
Gennady E. Zaikov, DSc, is Head of the Polymer Division at the N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia, and professor at Moscow State Academy of Fine Chemi- cal Technology, Russia, as well as professor at Kazan National Research Technological University, Kazan, Russia. He is also a prolific author, re- searcher, and lecturer. He has received several awards for his work, includ- ing the Russian Federation Scholarship for Outstanding Scientists. He has been a member of many professional organizations and on the editorial boards of many international science journals.
A. K. Haghi, PhD
A. K. Haghi, PhD, holds a BSc in urban and environmental engineering from the University of North Carolina (USA); a MSc in mechanical en- gineering from North Carolina A&T State University (USA); a DEA in applied mechanics, acoustics and materials from the Université de Tech- nologie de Compiègne (France); and a PhD in engineering sciences from the Université de Franche-Comté (France). He is the author and editor of 65 books as well as 1000 published papers in various journals and
conference proceedings. Dr. Haghi has received several grants, consulted for a number of major corporations, and is a frequent speaker to national and international audiences. Since 1983, he served as a professor at sever- al universities. He is currently Editor-in-Chief of the International Journal of Chemoinformatics and Chemical Engineering and Polymers Research Journal and on the editorial boards of many international journals. He is a member of the Canadian Research and Development Center of Sciences and Cultures (CRDCSC), Montreal, Quebec, Canada.
vi About the Editors
ABOUT AAP RESEARCH NOTES ON CHEMICAL ENGINEERING
The AAP Research Notes on Chemical Engineering series will report on research development in different fields for academic institutes and indus- trial sectors interested in advanced research books. The main objective of the AAP Research Notes series is to report research progress in the rapidly growing field of chemical engineering.
Editor-in-Chief: Eduardo A. Castro, PhD Professor, Universidad Nacional de La Plata, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Argentina email: [email protected]
Editorial Board
Antonio Ballada, PhD Executive Vice President in FasTech Technology, Antonio Ballada Consulting Services, Milano, Italy
Alexandr A. Berlin, DSc Director, N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
Walter W. Focke, PhD Professor, Department of Chemical Engineering, and Director of the Institute of Applied Materials Pretoria University, South Africa
LinShu Liu, PhD Research Chemist, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, USA
viii About AAP Research Notes on Chemical Engineering
Ali Pourhashemi, PhD Professor, Department of Chemical and Biochemical Engineering, Christian Brothers University, Memphis, Tennessee, USA
Ing. Hans-Joachim Radusch, PhD Polymer Engineering Center of Engineering Sciences, Martin-Luther- Universität of Halle-Wittenberg, Germany
Books in the AAP Research Notes on Chemical Engineering series:
Quantum-Chemical Calculations of Unique Molecular Systems (2-volume set) Editors: Vladimir A. Babkin, DSc, Gennady E. Zaikov, DSc, and A. K. Haghi, PhD
List of Contributors ................................................................................. xvii List of Abbreviations ................................................................................ xix Preface ..................................................................................................... xxi
Volume 1 Section 1: Quantum-Chemical Calculations of Alicyclic Olefins,
Diolefins and Its Derivations
1. Quantum-Chemical Calculation of Molecule d-limonene by Method MNDO ......................................................................................................... 1
V. A. Babkin, A. S. Serebryakova, and G. E. Zaikov
2. Quantum-Chemical Calculation of Molecule 1,4-Dimethylene- cyclohexane by Method MNDO ................................................................ 7
V. A. Babkin, A. S. Serebryakova, and G. E. Zaikov
3. Quantum-Chemical Calculation of Molecule 1-Methylene-4- vinylcyclohexane by Method MNDO ...................................................... 13
V. A. Babkin, A. S. Serebryakova, and G. E. Zaikov
4. Quantum-Chemical Calculation of Molecule Methylencyclooctane by Method MNDO .................................................................................... 19
V. A. Babkin, Yu. S. Artemova, and G. E. Zaikov
5. Quantum-Chemical Calculation of Molecule Methylency- clododecane by Method MNDO .............................................................. 25
V. A. Babkin, Yu. S. Artemova, and G. E. Zaikov
6. Quantum-Chemical Calculation of Molecule α-Cyclopropyl-p- isopropylstyrene by Method MNDO ....................................................... 33
V. A. Babkin, D. S. Zaharov, and G. E. Zaikov
7. Quantum-Chemical Calculation of Molecule α-Cyclopropyl-2,4- dimethylstyrene by Method MNDO ....................................................... 39
V. A. Babkin, D. S. Zaharov, and G. E. Zaikov
8. Quantum-Chemical Calculation of Molecule α-Cyclopropyl-p- Fluorostyrene by Method MNDO ........................................................... 45
V. A. Babkin, D. S. Zaharov, and G. E. Zaikov
CONTENTS
A. Quantum-Chemical Calculations by Method MNDO
9. Quantum-Chemical Calculation of Molecule Phenylcyclopropane by Method MNDO .................................................................................... 53
V. A. Babkin, D. S. Zaharov, and G. E. Zaikov
10. Quantum-Chemical Calculation of Molecule 1,1-Dichlor-2,2- dimethylcyclopropane by Method MNDO ............................................. 59
V. A. Babkin, D. V. Sivovolov, and G. E. Zaikov
11. Quantum-Chemical Calculation of Molecule 1,1-Dichlor-2,2,3- trimethylcyclopropane by Method MNDO ............................................ 65
V. A. Babkin, D. V. Sivovolov, and G. E. Zaikov
12. Quantum-Chemical Calculation of Molecule 1-Chlor-1-bromo-2,2- dimethylcyclopropane by Method MNDO ............................................. 71
V. A. Babkin, Yu. S. Artemova, and G. E. Zaikov
13. Quantum-Chemical Calculation of Molecule 1,1-Dichlor-2- phenylcyclopropane by Method MNDO ................................................. 77
V. A. Babkin, Yu. Kalashnikova, and G. E. Zaikov
14. Quantum-Chemical Calculation of Molecule 1,1-Dichlor-2-phenyl- 2-methylcyclopropane by Method MNDO ............................................. 83
V. A. Babkin, Yu. Kalashnikova, G. E. Zaikov
15. Quantum-Chemical Calculation of Molecule 1,1-Dichlor-2(p- chlorphenyl)-2-methylcyclopropane by Method MNDO ...................... 89
V. A. Babkin and Yu. Kalashnikova
16. Quantum-Chemical Calculation of Molecule 1-Methyl-1-vinyl-2,2- dichlorocyclopropane by Method MNDO .............................................. 95
V. A. Babkin and Yu. Kalashnikova
17. Quantum-Chemical Calculation of Molecule 7,7-Dichlorbicyclo [4,1,0]heptane by Method MNDO ......................................................... 101
V. A. Babkin and Yu. Kalashnikova
18. Quantum-Chemical Calculation of Molecule 1-Methyl-6,6- Dichlorbicyclo[3,1,0]hexane by Method MNDO ................................. 107
V. A. Babkin and A. S. Serebryakova
Contents xi
V. A. Babkin and M. V. Golovko
20. Quantum-Chemical Calculation of Molecule 1-Methyl-8,8- dichlorbicyclo[5,1,0]octane by Method MNDO ................................... 119
V. A. Babkin and M. V. Golovko
21. Quantum-Chemical Calculation of Molecule 1-Methyl-9,9- dichlorbicyclo[6,1,0]nonane by Method MNDO .................................. 125
V. A. Babkin and M. V. Golovko
22. Quantum-Chemical Calculation of Molecule Ethylcyclobutane by Method MNDO ....................................................................................... 131
V. A. Babkin and D. E. Zabaznov
23. Quantum-Chemical Calculation of Molecule Isopropylcyclobutane by Method MNDO .................................................................................. 137
V. A. Babkin and D. E. Zabaznov
24. Quantum-Chemical Calculation of Molecule 13,13-Dibrombicy- clo[10,1,0]tridecane by Method MNDO ............................................... 143
V. A. Babkin and S. A. Belozerov
25. Quantum-Chemical Calculation of Molecule 1-Methyl-13,13- dichlorbicyclo[10,1,0]tridecane by method MNDO ............................ 151
V. A. Babkin and S. A. Belozerov
26. Quantum-Chemical Calculation of Molecule 1-Methyl-13,13- dibrombicyclo[10,1,0]tridecane by Method MNDO ............................ 159
V. A. Babkin and S. A. Belozerov
27. Quantum-Chemical Calculation of Molecule 13,13-Dichlorbicy- clo[10,1,0]tridecane by Method MNDO ............................................... 167
V. A. Babkin, D. S. Zaharov, and G. E. Zaikov
B. Quantum-Chemical Calculation by Method AB INITIO
28. Quantum-Chemical Calculation of Molecule Bicyclo[3,1,0]hexane by Method Ab Initio ................................................................................ 175
D. S. Andreev
29. Quantum-Chemical Calculation of Molecule Bicyclo[4,1,0]heptane by Method Ab Initio ................................................................................ 181
D. S. Andreev
xii Contents
30. Quantum-Chemical Calculation of Molecule Bicyclo[5,1,0]octane by Method Ab Initio ................................................................................ 187
V. A. Babkin and D. S. Andreev
31. Quantum-Chemical Calculation of Molecule Bicyclo[6,1,0]nonane by Method Ab Initio ................................................................................ 193
V. A. Babkin and D. S. Andreev
32. Quantum-Chemical Calculation of Molecule Bicyclo[10,1,0] tridecane by Method Ab Initio ............................................................... 199
V. A. Babkin and D. S. Andreev
33. Quantum-Chemical Calculation of Molecule 1-Methylbicyclo [4,1,0]heptane by Method Ab Initio ....................................................... 205
V. A. Babkin and D. S. Andreev
34. Quantum-Chemical Calculation of Molecule 1-Methylbicyclo [10,1,0]tridecaneby Method Ab Initio ................................................... 211
V. A. Babkin and D. S. Andreev
35. Quantum-Chemical Calculation of Molecule 2,11-Spirotetradecane by Method Ab Initio ................................................................................ 217
V. A. Babkin and D. S. Andreev
36. Quantum-Chemical Calculation of Molecule Dicyclopropyl by Method Ab Initio ..................................................................................... 225
V. A. Babkin and D. S. Andreev
37. Quantum-Chemical Calculation of Molecule Phenylcyclopropane by Method Ab Initio ................................................................................ 231
V. A. Babkin and D. S. Andreev
38. Quantum-Chemical Calculation of Molecule 1-Methyl-8,8- dichlorbicyclo[5,1,0]octane by Method Ab Initio ................................. 237
V. A. Babkin and D. S. Andreev
39. Quantum-Chemical Calculation of Molecule 1-Methyl-9,9- dichlorbicyclo[6,1,0]nonane by Method Ab Initio ............................... 243
D. S. Andreev
D. S. Andreev
D. S. Andreev
42. Quantum-Chemical Calculation of Molecule 1-Methylency clohexene-2 by Method MNDO ............................................................. 263
V. A. Babkin and D.V. Sivovolov
43. Quantum-Chemical Calculation of Molecule 1-Vinylcyclohexene by Method MNDO .................................................................................. 269
V. A. Babkin and D. V. Sivovolov
44. Quantum-Chemical Calculation of Molecule 1,2-Dimethylenc- yclohexane by Method MNDO .............................................................. 275
V. A. Babkin and D. V. Sivovolov
45. Quantum-Chemical Calculation of Molecule 6,6-Dimethylfulvene by Method MNDO .................................................................................. 281
V. A. Babkin and Yu. Kalashnikova
46. Quantum-Chemical Calculation of Molecule Cyclohexadiene-1,3 by Method MNDO .................................................................................. 287
V. A. Babkin and Yu. Kalashnikova
47. Quantum-Chemical Calculation of Molecule Allylmethylcycl opentadiene by Method MNDO ............................................................ 293
V. A. Babkin and Yu. S. Artemova
48. Quantum-Chemical Calculation of Molecule cis,cis-Cyclooctadiene -1,3 by Method MNDO ........................................................................... 299
V. A. Babkin and D. E. Zabaznov
49. Quantum-Chemical Calculation of Molecule p-Ksimelen by Method MNDO ..................................................................................................... 305
V. A. Babkin and D. E. Zabaznov
50. Quantum-Chemical Calculation of Molecule 1-Methyl-4-isopropylcy- clohexadiene-1,3 by Method MNDO ..................................................... 311
V. A. Babkin and D. E. Zabaznov
51. Quantum-Chemical Calculation of Molecule Ethylbenzofulvene by Method MNDO ....................................................................................... 317
V. A. Babkin and M. V. Golovko
xiv Contents
52. Quantum-Chemical Calculation of Molecule Benzylindene by Method MNDO ...................................................................................... 323
V. A. Babkin and M. V. Golovko
53. Quantum-Chemical Calculation of Molecule Cinnamylindene by Method MNDO ....................................................................................... 329
V. A. Babkin and M. V. Golovko
54. Quantum-Chemical Calculation of Molecule Cinnamalfluorene by Method MNDO ....................................................................................... 335
V. A. Babkin and M. Yu. Shkuratova
55. Quantum-Chemical Calculation of Molecule 1-Isopropylindene- 3,4,7,7-tetrahydroindene by Method MNDO ................................... 343
V. A. Babkin and M. Yu. Shkuratova
56. Quantum-Chemical Calculation of Molecule 1-Isopropylin denedicyclopentadiene by Method MNDO .......................................... 349
V. A. Babkin and M. Yu. Shkuratova
Section 4: Quantum-Chemical Calculations of Styrenes and Their Derivations
57. Quantum-Chemical Calculation of Molecule p-yanostyrene by Method MNDO ....................................................................................... 357
V. A. Babkin and D. E. Zabaznov
58. Quantum-Chemical Calculation of Molecule p-Oxistyrene by Method MNDO ....................................................................................... 363
V. A. Babkin and M. Yu. Shkuratov
59. Quantum-Chemical Calculation of Molecule o-Oxistyrene by Method MNDO ....................................................................................... 369
V. A. Babkin and M. Yu. Shkuratova
60. Quantum-Chemical Calculation of Molecule m-Oxistyrene by Method MNDO ....................................................................................... 375
V. A. Babkin and M. Yu. Shkuratova
61. Quantum-Chemical Calculation of Molecule p-Metoxystyrene by Method MNDO ....................................................................................... 381
V. A, Babkin and D. E. Zabaznov
Contents xv
62. Quantum-Chemical Calculation of Molecule o-Metoxystyrene by Method MNDO ....................................................................................... 387
V. A. Babkin and D. E. Zabaznov
Index ........................................................................................................ 393 Volume 2
D. S. Andreev
D. S. Andreev
D. S. Andreev
D. S. Andreev
67. Quantum-Chemical Calculation of Molecule 5-Vinylindene by Method Ab Initio ..................................................................................... 431
D. S. Andreev
68. Quantum-Chemical Calculation of Molecule 1-Phenylindene by Method Ab Initio ..................................................................................... 437
D. S. Andreev
V. A. Babkin
70. Quantum-Chemical Calculation of Molecule 3,3’-Diindelyl by Method Ab Initio ..................................................................................... 451
V. A. Babkin
V. A. Babkin
72. Quantum-Chemical Calculation of Molecule 4-Methoxyindene by Method Ab Initio ..................................................................................... 465
V. A. Babkin
73. Quantum-Chemical Calculation of Molecule 6-Methoxyindene by Method Ab Initio ..................................................................................... 471
V. A. Babkin
Section 6: Quantum-Chemical Calculations of Others Aromatic Olefins
74. Quantum-Chemical Calculation of Molecule Allylbenzol by Method Ab Initio ..................................................................................... 479
V. A. Babkin
V. A. Babkin
V. A. Babkin
77. Quantum-Chemical Calculation of Molecule 1-Vinylpyrene by Method Ab Initio ................................................................................ 497
V. A. Babkin
78. Quantum-Chemical Calculation of Molecule o-Divinylbenzol by Method Ab Initio ..................................................................................... 503
V. A. Babkin
V. A. Babkin
V. A. Babkin
81. Quantum-Chemical Calculation of Molecule cis-Stilbene by Method Ab Initio ..................................................................................... 523
V. A. Babkin
82. Quantum-Chemical Calculation of Molecule trans-Stilbene by Method Ab Initio ..................................................................................... 529
V. A. Babkin
V. A. Babkin
V. A. Babkin
V. A. Babkin
V. A. Babkin
V. A. Babkin
V. A. Babkin, D. S. Andreev, and G. E. Zaikov
89. Quantum-Chemical Calculation of Molecule p-Allyloxistyrene by Method Ab Initio ................................................................................ 583
V. A. Babkin, D. S. Andreev, and G. E. Zaikov
90. Quantum-Chemical Calculation of Molecule trans-Isosafrole by Method Ab Initio ..................................................................................... 597
V. A. Babkin, D. S. Andreev, and G. E. Zaikov
91. Quantum-Chemical Calculation of Molecule trans-Isoeugenol by Method Ab Initio ..................................................................................... 611
V. A. Babkin, D. S. Andreev, and G. E. Zaikov
Index ........................................................................................................ 625
D. S. Andreev Volgograd State University of Architecture and Civil Engineering, Sebrykovsky Affiliate, Volgograd, Russia, and Department of Mathematics and Natural Sciences.
Yu. S. Artemova Volgograd State University of Architecture and Civil Engineering, Sebrykovsky Affiliate, Volgograd, Russia.
V. A. Babkin Volgograd State University of Architecture and Civil Engineering, Sebrykovsky Affiliate, Volgograd, Russia, and Department of Mathematics and Natural Sciences.
S. A. Belozerov Volgograd State University of Architecture and Civil Engineering, Sebrykovsky Affiliate, Volgograd, Russia, and Department of Mathematics and Natural Sciences.
M. V. Golovko Volgograd State University of Architecture and Civil Engineering, Sebrykovsky Affiliate, Volgograd, Russia, and Department of Mathematics and Natural Sciences.
Yu. Kalashnikova Volgograd State University of Architecture and Civil Engineering, Sebrykovsky Affiliate, Volgograd, Russia, and Department of Mathematics and Natural Sciences.
A. S. Serebryakova Volgograd State University of Architecture and Civil Engineering, Sebrykovsky Affiliate, Volgograd, Russia, and Department of Mathematics and Natural Sciences.
M. Yu. Shkuratova Volgograd State University of Architecture and Civil Engineering, Sebrykovsky Affiliate, Volgograd, Russia.
D. V. Sivovolov Volgograd State University of Architecture and Civil Engineering, Sebrykovsky Affiliate, Volgograd, Russia.
D. E. Zabaznov Volgograd State University of Architecture and Civil Engineering, Sebrykovsky Affiliate, Volgograd, Russia, and Department of Mathematics and Natural Sciences.
D. S. Zaharov Volgograd State University of Architecture and Civil Engineering, Sebrykovsky Affiliate, Volgograd, Russia.
G. E. Zaikov Institute of Biochemical Physics, Russian Academy of Sciences, Mosow, Russia
Quantum chemistry, a special field of the quantum-mechanical theory, has always been a very tricky course for chemistry students around the world, because of the demanding mathematical background they have to possess in order to comprehend the extremely difficult concepts and applications and to understand phenomena at the atomic and molecular level. Quan- tum chemistry is a branch of theoretical chemistry that applies quantum mechanics and quantum field theory to address issues and problems in chemistry. The description of the electronic behavior of atoms and mole- cules as pertaining to their reactivity is one of the applications of quantum chemistry. Quantum chemistry lies on the border between chemistry and physics, and significant contributions have been made by scientists from both fields. It has a strong and active overlap with the field of atomic phys- ics and molecular physics, as well as physical chemistry. This new book presents leading research in the field.
Practical for readers in all branches of chemistry, the new edition (in two volumes) reflects the latest quantum chemistry research and methods of computational chemistry and clearly demonstrates the usefulness and limitations of current quantum-mechanical methods for the calculation of molecular properties.
Integrating many new computer-oriented examples and problems throughout, this book demonstrates the usefulness and limitations of cur- rent quantum-chemical methods for the calculation of molecular proper- ties. It offers full, step-by-step examinations of derivations that are easy to follow and understand and offers comprehensive coverage of recent, revo- lutionary advances in modern quantum-chemistry methods for molecular calculations. Many problems are integrated throughout, with a substantial amount of computer applications utilized.
This book presents the structure and unity of the theoretical frame- work of modern chemistry in a progression from the single atom to the bulk limit. Employing an engaging and somewhat informal tone, this new
PREFACE
book delivers a superior presentation of rigorous mathematical derivations and quantum theory in a manner that is accessible and applicable to di- verse readers.
— Prof. A. K. Haghi
Section 1: Quantum-Chemical Calculations of Alicyclic Olefins, Diolefins and Its
Derivations
V. A. BABKIN, A. S. SEREBRYAKOVA, and G. E. ZAIKOV
CONTENTS
Abstract ..................................................................................................... 2 1.1 Introduction ...................................................................................... 2 1.2 Methodical Part ................................................................................ 2 Keywords .................................................................................................. 5 References ................................................................................................. 5
2 Quantum-Chemical Calculation of Unique Molecular Systems
ABSTRACT
For the first time quantum-chemical calculation of a molecule of d-lim- onene is executed by the method modified neglect of diatomic overlap (MNDO) with optimization of geometry on all parameters. The optimized geometrical and electronic structure of this compound is received. Acid power of d-limonene is theoretically appreciated. It is established, than it relate to a class of very weak H-acids (pKa = +35, where, pKa––universal index of acidity).
1.1 INTRODUCTION
The aim of this work is a study of electronic structure of molecule d-lim- onene [1] and theoretical estimation its acid power by quantum-chemical method MNDO. The calculation was done with optimization of all pa- rameters by standard gradient method built-in in PC GAMESS [2]. The calculation was executed in approach the insulated molecule in gas phase. The program MacMolPlt was used for visual presentation of the model of the molecule [3].
1.2 METHODICAL PART
The geometric and electronic structures, general and electronic energies of molecule d-limonene were received by the method MNDO and are shown in Figure 1 and Table 1. The universal factor of acidity was calcu- lated by formula–– pKa = 42.11–147.18 × qmax
H+ [4, 5] (where, qmax H+ ––a
maximum positive charge on atom of the hydrogen qmax H+ = +0.05 (for
d-limonene qmax H+ alike Table 1.)) [6-17] pKa = 35.
The quantum-chemical calculation of molecule d-limonene by the method of MNDO was executed for the first time. The optimized geo- metric and electronic structure of this compound was received. The acid power of molecule d-limonene was theoretically evaluated (pKa = 35). This compound pertain to class of very weak H-acids ( >14).
Quantum-Chemical Calculation of Molecule d-limonene by Method MNDO 3
FIGURE 1 Geometric and electronic molecule structure of d-limonene
(0 = –145015 kDg/mol and el = –804685 kDg/mol).
4 Quantum-Chemical Calculation of Unique Molecular Systems
TABLE 1 Optimized bond lengths, valence corners, and charges on atoms of the molecule d-limonene.
Bond lengths R,A Valence corners Grad Atom Charges on atoms
C(2)-C(1) 1.51 C(1)-C(2)-C(3) 120 C(1) +0.08
C(3)-C(2) 1.53 C(7)-C(8)-C(3) 113 C(2) –0.15
C(3)-C(8) 1.55 C(2)-C(3)-C(4) 113 C(3) +0.01
C(4)-C(3) 1.55 C(3)-C(4)-C(5) 114 C(4) +0.03
C(5)-C(4) 1.50 C(4)-C(5)-C(6) 125 C(5) –0.08
C(6)-C(5) 1.35 C(5)-C(6)-C(7) 121 C(6) –0.14
C(7)-C(6) 1.51 C(6)-C(7)-C(8) 115 C(7) +0.04
C(8)-C(7) 1.54 C(5)-C(6)-C(9) 122 C(8) 0.00
C(9)-C(6) 1.51 C(1)-C(2)-C(10) 120 C(9) +0.08
C(10)-C(2) 1.35 C(2)-C(1)-H(11) 113 C(10) –0.04
H(11)-C(1) 1.11 C(2)-C(1)-H(12) 112 H(11) 0.00
H(12)-C(1) 1.11 C(2)-C(1)-H(13) 110 H(12) –0.01
H(13)-C(1) 1.11 C(2)-C(3)-H(14) 107 H(13) 0.00
H(14)-C(3) 1.12 C(3)-C(4)-H(15) 109 H(14) +0.01
H(15)-C(4) 1.11 C(3)-C(4)-H(16) 111 H(15) +0.01
H(16)-C(4) 1.11 C(4)-C(5)-H(17) 114 H(16) +0.01
H(17)-C(5) 1.09 C(6)-C(7)-H(18) 110 H(17) +0.05
H(18)-C(7) 1.11 C(6)-C(7)-H(19) 108 H(18) +0.01
H(19)-C(7) 1.12 C(7)-C(8)-H(20) 108 H(19) +0.01
H(20)-C(8) 1.11 C(7)-C(8)-H(21) 109 H(20) +0.01
H(21)-C(8) 1.11 C(6)-C(9)-H(22) 111 H(21) +0.01
H(22)-C(9) 1.11 C(6)-C(9)-H(23) 112 H(22) 0.00
Quantum-Chemical Calculation of Molecule d-limonene by Method MNDO 5
H(23)-C(9) 1.11 C(6)-C(9)-H(24) 113 H(23) –0.01
H(24)-C(9) 1.11 C(2)-C(10)-H(25) 123 H(24) –0.01
H(25)-C(10) 1.09 C(2)-C(10)-H(26) 124 H(25) +0.04
H(26)-C(10) 1.09 H(26) +0.04
REFERENCES
1. Kennedi, J. Cationic polymerization of olefins. Moscow, p. 431 (1978). 2. Shmidt, M. W., Baldrosge, K. K., Elbert, J. A., Gordon, M. S., Enseh, J. H., Koseki,
S., Matsvnaga, N., Nguyen, K. A., SU, S. J., et al. J. Comput. Chem., 14, 1347–1363 (1993).
3. Bode, B. M. and Gordon, M. S. J. Mol. Graphics Mod., 16, 133–138 (1998). 4. Babkin, V. A., Fedunov, R. G., Minsker, K. S., et al. Oxidation communication, 25(1),
21–47 (2002). 5. Babkin, V. A., et al. Oxidation communication, 21(4), 454–460 (1998). 6. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of
molecule monomer of cationic polymerization of hexene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 93–95 (2010).
7. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of heptene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 95–97 (2010).
TABLE 1 (Continued)
6 Quantum-Chemical Calculation of Unique Molecular Systems
8. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of decene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 97–99 (2010).
9. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of nonene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 99–102 (2010).
10. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of octene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 103–104 (2010).
11. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule iso- butylene by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1. 176–177 (2010).
12. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-meth- ylbutene-1 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 177–179 (2010).
13. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-meth- ylbutene-2 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 179–180 (2010).
14. Babkin, V. A., Andreev, D. S., Titova, E. S., Sangalov, Yu. A., and Denisov, A. A. Quantum-chemical calculation of olefins and their derivations: [monograph] Vol- gASU. Volgograd, p. 99 (2012)
15. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-eth- ylbutene-1 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 183–185 (2010).
16. Babkin, V. A., Andreev, D. S., and Titova, E. S. Geometrical and electronic struc- ture of molecule vitamin «» by method MNDO/Quantum-Chemical Calculation of Molecular Systems as the Basis of Nanotechnologes in Applied Quantum Chemistry. Nova Publishers, New York, 1 (2011).
17. Babkin, V. A., Andreev, D. S., and Titova, E. S. Geometrical and electronic struc- ture of molecule vitamin «C» by method MNDO/Quantum-Chemical Calculation of Molecular Systems as the Basis of Nanotechnologes in Applied Quantum Chemistry. Nova Publishers, New York, 1 (2011).
QUANTUM-CHEMICAL CALCULATION OF MOLECULE 1,4-DIMETHYLENECYCLOHEXANE BY METHOD MNDO
V. A. BABKIN, A. S. SEREBRYAKOVA, and G. E. ZAIKOV
CHAPTER 2
ABSTRACT
For the first time quantum-chemical calculation of a molecule of 1,4-di- methylencyclohexane is executed by the method modified neglect of di- atomic overlap (MNDO) with optimization of geometry on all parameters. The optimized geometrical and electronic structure of this compound is received. The acid power of 1,4-dimethylencyclohexane is theoretically appreciated. It is established, than it relate to a class of very weak H-acids (pKa = +36, where, pKa––universal index of acidity).
2.1 INTRODUCTION
The aim of this work is a study of electronic structure of molecule 1,4-di- methylenecyclohexane [1] and theoretical estimation its acid power by quantum-chemical method MNDO. The calculation was done with op- timization of all parameters by standard gradient method built-in in PC GAMESS [2]. The calculation was executed in approach the insulated molecule in gas phase. The program MacMolPlt was used for visual pre- sentation of the model of the molecule [3].
2.2 METHODICAL PART
The geometric and electronic structures, general and electronic energies of molecule 1,4-dimethylenecyclohexane were received by the method MNDO and are shown in Figure 1 and Table 1. The universal factor of acidity was calculated by formula––pKa = 42.11 – 147.18 × qmax
H+ [4, 5] (where, qmax
H+––a maximum positive charge on atom of the hydrogen qmax
H+ = +0.04 (for 1,4-dimethylenecyclohexane qmax H+ alike Table.1)).
This same formula is used in references [6-17] pKa = 36. The quantum-chemical calculation of molecule 1,4-dimethylenecyclo-
hexane by the method of MNDO was executed for the first time. The opti- mized geometric and electronic structure of this compound was received. The acid power of molecule 1,4-dimethylenecyclohexane was theoreti-
Quantum-Chemical Calculation of Molecule 1 9
cally evaluated (pKa = 36). This compound pertain to class of very weak H-acids ( >14).
FIGURE 1 Geometric and electronic molecule structure of 1,4-dimethylenecyclohexane (0 = –114880 kDg/mol and el = –559931 kDg/mol).
10 Quantum-Chemical Calculation of Unique Molecular Systems
TABLE 1 Optimized bond lengths, valence corners, and charges on atoms of the molecule 1,4-dimethylenecyclohexane
Bond lengths
C(2)-C(1) 1.35 C(1)-C(2)-C(3) 121 C(1) –0.03
C(3)-C(2) 1.51 C(2)-C(3)-C(4) 115 C(2) –0.14
C(4)-C(3) 1.54 C(3)-C(4)-C(5) 115 C(3) +0.04
C(5)-C(4) 1.51 C(4)-C(5)-C(6) 117 C(4) +0.04
C(6)-C(5) 1.51 C(2)-C(7)-C(6) 115 C(5) –0.15
C(6)-C(7) 1.54 C(1)-C(2)-C(7) 122 C(6) +0.04
C(7)-C(2) 1.51 C(4)-C(5)-C(8) 122 C(7) +0.04
C(8)-C(5) 1.35 C(2)-C(1)-H(9) 124 C(8) –0.04
H(9)-C(1) 1.09 C(2)-C(1)-H(10) 124 H(9) +0.04
H(10)-C(1) 1.09 C(2)-C(3)-H(11) 109 H(10) +0.04
H(11)-C(3) 1.12 C(2)-C(3)-H(12) 110 H(11) +0.01
H(12)-C(3) 1.11 C(3)-C(4)-H(13) 108 H(12) 0.00
H(13)-C(4) 1.11 C(3)-C(4)-H(14) 109 H(13) 0.00
H(14)-C(4) 1.12 C(5)-C(6)-H(15) 110 H(14) +0.01
H(15)-C(6) 1.11 C(5)-C(6)-H(16) 109 H(15) 0.00
H(16)-C(6) 1.12 C(2)-C(7)-H(17) 108 H(16) +0.01
H(17)-C(7) 1.12 C(2)-C(7)-H(18) 110 H(17) +0.01
H(18)-C(7) 1.11 C(5)-C(8)-H(19) 124 H(18) 0.00
H(19)-C(8) 1.09 C(5)-C(8)-H(20) 124 H(19) +0.04
H(20)-C(8) 1.09 H(20) +0.04
KEYWORDS
REFERENCES
1. Kennedi, J. Cationic polymerization of olefins. Moscow, p. 431 (1978). 2. Shmidt, M. W., Baldrosge, K. K., Elbert, J. A., Gordon, M. S., Enseh, J. H., Koseki,
S., Matsvnaga, N., Nguyen, Ks. A., SU, S. J., et al. J. Comput. Chem., 14, 1347–1363 (1993).
3. Bode, B. M. and Gordon, M. S. J. Mol. Graphics Mod., 16, 133–138 (1998). 4. Babkin, V. A., Fedunov, R. G., Minsker, K. S., et al. Oxidation communication, 25(1),
21–47 (2002). 5. Babkin, V. A., et al. Oxidation communication, 21(4), 454–460 (1998). 6. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of
molecule monomer of cationic polymerization of hexene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 93–95 (2010).
7. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of heptene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 95–97 (2010).
8. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of decene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 97–99 (2010).
9. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of nonene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 99–102 (2010).
10. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of octene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 103–104 (2010).
11. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule iso- butylene by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1. 176–177 (2010).
12 Quantum-Chemical Calculation of Unique Molecular Systems
12. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-meth- ylbutene-1 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 177–179 (2010).
13. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-meth- ylbutene-2 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 179–180 (2010).
14. Babkin, V. A., Andreev, D. S., Titova, E. S., Sangalov, Yu. A., and Denisov, A. A. Quantum-chemical calculation of olefins and their derivations: [monograph] Vol- gASU. Volgograd, p. 99 (2012)
15. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-eth- ylbutene-1 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 183–185 (2010).
16. Babkin, V. A., Andreev, D. S., and Titova, E. S. Geometrical and electronic struc- ture of molecule vitamin «» by method MNDO/Quantum-Chemical Calculation of Molecular Systems as the Basis of Nanotechnologes in Applied Quantum Chemistry. Nova Publishers, New York, 1 (2011).
17. Babkin, V. A., Andreev, D. S., and Titova, E. S. Geometrical and electronic struc- ture of molecule vitamin «C» by method MNDO/Quantum-Chemical Calculation of Molecular Systems as the Basis of Nanotechnologes in Applied Quantum Chemistry. Nova Publishers, New York, 1 (2011).
CHAPTER 3
V. A. BABKIN, A. S. SEREBRYAKOVA, and G. E. ZAIKOV
CONTENTS
Abstract ................................................................................................... 14 3.1 Introduction .................................................................................... 14 3.2 Methodical Part .............................................................................. 14 Keywords ................................................................................................ 17 References ............................................................................................... 17
14 Quantum-Chemical Calculation of Unique Molecular Systems
ABSTRACT
For the first time quantum-chemical calculation of a molecule of 1-meth- ylene-4-vinylcyclohexane is executed by the method modified neglect of diatomic overlap (MNDO) with optimization of geometry on all parame- ters. The optimized geometrical and electronic structure of this compound is received. The acid power of 1-methylen-4-vinylcoclohexane is theoreti- cally appreciated. It is established, than it relate to a class of very weak H-acids (pKa = +35, where, pKa––universal index of acidity).
3.1 INTRODUCTION
The aim of this work is a study of electronic structure of molecule 1-meth- ylene-4-vinylcyclohexane [1] and theoretical estimation its acid power by quantum-chemical method MNDO. The calculation was done with op- timization of all parameters by standard gradient method built-in in PC GAMESS [2]. The calculation was executed in approach the insulated molecule in gas phase. The program MacMolPlt was used for visual pre- sentation of the model of the molecule [3].
3.2 METHODICAL PART
The geometric and electronic structures, general and electronic energies of molecule 1-methylene-4-vinylcyclohexane were received by the meth- od MNDO and are shown in Figure 1 and Table 1. The universal factor of acidity was calculated by formula––pKa = 42.11 – 147.18 × qmax
H+ [4, 5] (where, qmax
H+––a maximum positive charge on atom of the hydrogen qmax
H+ = +0.05 (for 1-methylene-4-vinylcyclohexane qmax H+ alike Table 1)).
This same formula is used in references [6-17] pKa = 35. The quantum-chemical calculation of molecule 1-methylene-4-vinyl-
cyclohexane by the method of MNDO was executed for the first time. The optimized geometric and electronic structure of this compound was received. Acid power of molecule 1-methylene-4-vinylcyclohexane was
Quantum-Chemical Calculation of Molecule 1-Methylene 15
theoretically evaluated (pKa = 35). This compound pertain to class of very weak H-acids ( >14).
FIGURE 1 Geometric and electronic molecule structure of 1-methylene-4- vinylcyclohexane
(0 = –129929 kDg/mol and el = –676811 kDg/mol).
16 Quantum-Chemical Calculation of Unique Molecular Systems
TABLE 1 Optimized bond lengths, valence corners, and charges on atoms of the molecule 1-methylene-4-vinylcyclohexane
Bond lengths R, A Valence corners Grad Atom Charges on atoms
C(2)-C(1) 1.35 C(1)-C(2)-C(3) 122 C(1) –0.03
C(3)-C(2) 1.51 C(2)-C(3)-C(4) 114 C(2) –0.15
C(4)-C(3) 1.54 C(3)-C(4)-C(5) 114 C(3) +0.04
C(5)-C(4) 1.55 C(4)-C(5)-C(6) 112 C(4) 0.00
C(6)-C(5) 1.55 C(2)-C(7)-C(6) 114 C(5) 0.00
C(6)-C(7) 1.54 C(1)-C(2)-C(7) 122 C(6) 0.00
C(7)-C(2) 1.51 C(4)-C(5)-C(8) 111 C(7) +0.04
C(8)-C(5) 1.51 C(5)-C(8)-C(9) 126 C(8) –0.11
C(9)-C(8) 1.34 C(2)-C(1)-H(10) 124 C(9) –0.06
H(10)-C(1) 1.09 C(2)-C(1)-H(11) 124 H(10) +0.04
H(11)-C(1) 1.09 C(2)-C(3)-H(12) 111 H(11) +0.04
H(12)-C(3) 1.11 C(2)-C(3)-H(13) 109 H(12) 0.00
H(13)-C(3) 1.12 C(3)-C(4)-H(14) 109 H(13) +0.01
H(14)-C(4) 1.11 C(3)-C(4)-H(15) 109 H(14) +0.01
H(15)-C(4) 1.11 C(4)-C(5)-H(16) 107 H(15) +0.01
H(16)-C(5) 1.12 C(5)-C(6)-H(17) 109 H(16) +0.01
H(17)-C(6) 1.11 C(5)-C(6)-H(18) 110 H(17) +0.01
H(18)-C(6) 1.11 C(2)-C(7)-H(19) 109 H(18) +0.01
H(19)-C(7) 1.12 C(2)-C(7)-H(20) 111 H(19) +0.01
H(20)-C(7) 1.11 C(5)-C(8)-H(21) 115 H(20) 0.00
Quantum-Chemical Calculation of Molecule 1-Methylene 17
H(21)-C(8) 1.10 C(8)-C(9)-H(22) 125 H(21) +0.05
H(22)-C(9) 1.09 C(8)-C(9)-H(23) 122 H(22) +0.04
H(23)-C(9) 1.09 H(23) +0.04
REFERENCES
1. Kennedi, J. Cationic polymerization of olefins. Moscow, p. 431 (1978). 2. Shmidt, M. W., Baldrosge, K. K., Elbert, J. A., Gordon, M. S., Enseh, J. H., Koseki,
S., Matsvnaga, N., Nguyen, K. A., SU, S. J., et al. J. Comput. Chem., 14, 1347–1363 (1993).
3. Bode, B. M. and Gordon, M. S. J. Mol. Graphics Mod., 16, 133–138 (1998). 4. Babkin, V. A., Fedunov, R. G., Minsker, K. S., et al. Oxidation communication, 25(1),
21–47 (2002). 5. Babkin, V. A., et al. Oxidation communication, 21(4), 454–460 (1998). 6. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of
molecule monomer of cationic polymerization of hexene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 93–95 (2010).
7. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of heptene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 95–97 (2010).
8. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of decene-1 by method MNDO. Col-
TABLE 1 (Continued)
lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 97–99 (2010).
9. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of nonene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 99–102 (2010).
10. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of octene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 103–104 (2010).
11. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule iso- butylene by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1. 176–177 (2010).
12. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-meth- ylbutene-1 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 177–179 (2010).
13. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-meth- ylbutene-2 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 179–180 (2010).
14. Babkin, V. A., Andreev, D. S., Titova, E. S., Sangalov, Yu. A., and Denisov, A. A. Quantum-chemical calculation of olefins and their derivations: [monograph] Vol- gASU. Volgograd, p. 99 (2012)
15. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-eth- ylbutene-1 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 183–185 (2010).
16. Babkin, V. A., Andreev, D. S., and Titova, E. S. Geometrical and electronic struc- ture of molecule vitamin «» by method MNDO/Quantum-Chemical Calculation of Molecular Systems as the Basis of Nanotechnologes in Applied Quantum Chemistry. Nova Publishers, New York, 1 (2011).
17. Babkin, V. A., Andreev, D. S., and Titova, E. S. Geometrical and electronic struc- ture of molecule vitamin «C» by method MNDO/Quantum-Chemical Calculation of Molecular Systems as the Basis of Nanotechnologes in Applied Quantum Chemistry. Nova Publishers, New York, 1 (2011).
CHAPTER 4
V. A. BABKIN, YU. S. ARTEMOVA, and G. E. ZAIKOV
CONTENTS
Abstract ................................................................................................... 20 4.1 Introduction .................................................................................... 20 4.2 Methodical Part .............................................................................. 20 Keywords ................................................................................................ 23 References ............................................................................................... 23
20 Quantum-Chemical Calculation of Unique Molecular Systems
ABSTRACT
For the first time quantum-chemical calculation of a molecule of methy- lencyclooctane is executed by the method modified neglect of diatomic overlap (MNDO) with optimization of geometry on all parameters. The optimized geometrical and electronic structure of this compound is re- ceived. The acid power of methylencyclooctane is theoretically appreci- ated. It is established, than it relate to a class of very weak H-acids (pKa = +36, where, pKa––universal index of acidity).
4.1 INTRODUCTION
The aim of this work is a study of electronic structure of molecule methy- lencyclooctane [1] and theoretical estimation its acid power by quantum- chemical method MNDO. The calculation was done with optimization of all parameters by standard gradient method built-in in PC GAMESS [2]. The calculation was executed in approach the insulated molecule in gas phase. The program MacMolPlt was used for visual presentation of the model of the molecule [3].
4.2 METHODICAL PART
The geometric and electronic structures, general and electronic energies of molecule methylencyclooctane were received by the method MNDO and are shown in Figure 1 and Table 1. The universal factor of acidity was calculated by formula––pKa = 42.11 – 147.18 × qmax
H+ [4, 5] (where, qmax H+
––a maximum positive charge on atom of the hydrogen qmax H+ = +0.04 (for
methylencyclooctane qmax H+ alike Table.1)). This same formula is used in
references [6-17] pKa = 36. The quantum-chemical calculation of molecule methylencyclooctane
by the method of MNDO was executed for the first time. The optimized geometric and electronic structure of this compound was received. The acid power of molecule methylencyclooctane was theoretically evaluated
Quantum-Chemical Calculation of Molecule Methylencyclooctane 21
(pKa = 36). This compound pertain to class of very weak H-acids ( >14).
FIGURE 1 Geometric and electronic molecule structure of methylencyclooctane
(0 = –132969 kDg/mol and el = –734560 kDg/mol).
TABLE 1 Optimized bond lengths, valence corners, and charges on atoms of the molecule methylencyclooctane
Bond lengths R,A Valence corners Grad Atom Charges on atoms
C(1)-C(2) 1.35 C(2)-C(1)-H(10) 124 C(1) –0.04
C(2)-C(3) 1.52 C(2)-C(1)-H(11) 124 C(2) –0.15
C(3)-C(4) 1.54 C(2)-C(3)-H(12) 110 C(3) 0.04
C(4)-C(5) 1.54 C(2)-C(3)-H(13) 109 C(4) –0.01
22 Quantum-Chemical Calculation of Unique Molecular Systems
C(5)-C(6) 1.54 C(2)-C(9)-H(24) 110 C(5) –0.01
C(6)-C(7) 1.54 C(2)-C(9)-H(25) 109 C(6) –0.00
C(7)-C(8) 1.54 C(3)-C(4)-H(14) 110 C(7) –0.01
C(8)-C(9) 1.54 C(3)-C(4)-H(15) 107 C(8) –0.01
C(9)-C(2) 1.52 C(4)-C(3)-H(12) 110 C(9) 0.04
H(10)-C(1) 1.09 C(4)-C(3)-H(13) 107 H(10) 0.04
H(11)-C(1) 1.09 C(4)-C(5)-H(16) 107 H(11) 0.04
H(12)-C(3) 1.11 C(4)-C(5)-H(17) 110 H(12) 0.01
H(13)-C(3) 1.12 C(5)-C(4)-H(14) 110 H(13) 0.00
H(14)-C(4) 1.11 C(5)-C(4)-H(15) 107 H(14) 0.01
H(15)-C(4) 1.12 C(5)-C(6)-H(18) 110 H(15) –0.00
H(16)-C(5) 1.12 C(5)-C(6)-H(19) 107 H(16) –0.00
H(17)-C(5) 1.12 C(6)-C(5)-H(16) 107 H(17) 0.01
H(18)-C(6) 1.11 C(6)-C(5)-H(17) 110 H(18) 0.01
H(19)-C(6) 1.12 C(6)-C(7)-H(20) 107 H(19) –0.00
H(20)-C(7) 1.12 C(6)-C(7)-H(21) 110 H(20) –0.00
H(21)-C(7) 1.11 C(7)-C(6)-H(18) 110 H(21) 0.01
H(22)-C(8) 1.11 C(7)-C(6)-H(19) 107 H(22) 0.01
H(23)-C(8) 1.12 C(7)-C(8)-H(22) 110 H(23) –0.00
H(24)-C(9) 1.11 C(7)-C(8)-H(23) 107 H(24) 0.01
H(25)-C(9) 1.12 C(8)-C(7)-H(20) 107 H(25) 0.00
C(8)-C(7)-H(21) 110
C(8)-C(9)-H(24) 110
C(8)-C(9)-H(25) 107
C(9)-C(8)-H(22) 110
C(9)-C(8)-H(23) 107
REFERENCES
1. Kennedi, J. Cationic polymerization of olefins. Moscow, p. 431 (1978). 2. Shmidt, M. W., Baldrosge, K. K., Elbert, J. A., Gordon, M. S., Enseh, J. H., Koseki,
S., Matsvnaga, N., Nguyen, K. A., SU, S. J., et al. J. Comput. Chem., 14, 1347–1363 (1993).
3. Bode, B. M. and Gordon, M. S. J. Mol. Graphics Mod., 16, 133–138 (1998). 4. Babkin, V. A., Fedunov, R. G., Minsker, K. S., et al. Oxidation communication, 25(1),
21–47 (2002). 5. Babkin, V. A., et al. Oxidation communication, 21(4), 454–460 (1998). 6. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of
molecule monomer of cationic polymerization of hexene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 93–95 (2010).
7. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of heptene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 95–97 (2010).
TABLE 1 (Continued)
24 Quantum-Chemical Calculation of Unique Molecular Systems
8. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of decene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 97–99 (2010).
9. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of nonene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 99–102 (2010).
10. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of octene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 103–104 (2010).
11. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule iso- butylene by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1. 176–177 (2010).
12. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-meth- ylbutene-1 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 177–179 (2010).
13. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-meth- ylbutene-2 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 179–180 (2010).
14. Babkin, V. A., Andreev, D. S., Titova, E. S., Sangalov, Yu. A., and Denisov, A. A. Quantum-chemical calculation of olefins and their derivations: [monograph] Vol- gASU. Volgograd, p. 99 (2012)
15. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-eth- ylbutene-1 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 183–185 (2010).
16. Babkin, V. A., Andreev, D. S., and Titova, E. S. Geometrical and electronic struc- ture of molecule vitamin «» by method MNDO/Quantum-Chemical Calculation of Molecular Systems as the Basis of Nanotechnologes in Applied Quantum Chemistry. Nova Publishers, New York, 1 (2011).
17. Babkin, V. A., Andreev, D. S., and Titova, E. S. Geometrical and electronic struc- ture of molecule vitamin «C» by method MNDO/Quantum-Chemical Calculation of Molecular Systems as the Basis of Nanotechnologes in Applied Quantum Chemistry. Nova Publishers, New York, 1 (2011).
CHAPTER 5
V. A. BABKIN, YU. S. ARTEMOVA, and G. E. ZAIKOV
CONTENTS
Abstract ................................................................................................... 26 5.1 Introduction .................................................................................... 26 5.2 Methodical Part .............................................................................. 26 Keywords ................................................................................................ 29 References ............................................................................................... 30
26 Quantum-Chemical Calculation of Unique Molecular Systems
ABSTRACT
For the first time quantum-chemical calculation of a molecule of methy- lencyclododecane is executed by the method modified neglect of diatomic overlap (MNDO) with optimization of geometry on all parameters. The optimized geometrical and electronic structure of this compound is re- ceived. The acid power of methylencyclododecane is theoretically appre- ciated. It is established, than it relate to a class of very weak H-acids (pKa = +36, where, pKa––universal index of acidity).
5.1 INTRODUCTION
The aim of this work is a study of electronic structure of molecule methy- lencyclododecane [1] and theoretical estimation its acid power by quan- tum-chemical method MNDO. The calculation was done with optimiza- tion of all parameters by standard gradient method built-in in PC GAMESS [2]. The calculation was executed in approach the insulated molecule in gas phase. The program MacMolPlt was used for visual presentation of the model of the molecule [3].
5.2 METHODICAL PART
The geometric and electronic structures, general and electronic energies of molecule methylencyclododecane were received by the method MNDO and are shown in Figure 1 and Table 1. The universal factor of acidity was calculated by formula––pKa = 42.11 – 147.18 × qmax
H+ [4,5] (where, qmax
H+–– a maximum positive charge on atom of the hydrogen qmax H+ =
+0.04 (for methylencyclododecane qmax H+ alike table1)). This same for-
mula is used in references [6-17] pKa = 36. The quantum-chemical calculation of molecule methylencyclododecane
by method of MNDO was executed for the first time. The optimized geo- metric and electronic structure of this compound was received. The acid power of molecule 1,4-dimethylenecyclohexane was theoretically evaluated (pKa = 36). This compound pertain to class of very weak H-acids ( >14).
Quantum-Chemical Calculation of Molecule Methylencyclooctane 27
FIGURE 1 Geometric and electronic molecule structure of methylencyclododecane (0= –208385 kDg/mol, el= –1454702 kDg/mol)
TABLE 1 Optimized bond lengths, valence corners, and charges on atoms of the molecule methylencyclododecane
Bond lengths R, A Valence corners Grad Atom Charges on atoms
C(1)-C(2) 1.54 C(1)-C(2)-C(3) 116 C(1) –0.01
C(2)-C(3) 1.54 C(2)-C(3)-C(4) 117 C(2) –0.01
C(3)-C(4) 1.55 C(3)-C(4)-C(5) 116 C(3) –0.01
C(4)-C(5) 1.54 C(4)-C(5)-C(6) 117 C(4) –0.01
C(5)-C(6) 1.54 C(5)-C(6)-C(7) 119 C(5) –0.01
C(6)-C(7) 1.54 C(6)-C(7)-C(8) 117 C(6) –0.01
C(7)-C(8) 1.54 C(7)-C(8)-C(9) 115 C(7) –0.01
C(8)-C(9) 1.55 C(8)-C(9)-C(10) 115 C(8) –0.01
28 Quantum-Chemical Calculation of Unique Molecular Systems
C(9)-C(10) 1.52 C(9)-C(10)-C(11) 120 C(9) 0.04
C(10)-C(11) 1.35 C(2)-C(1)-C(12) 116 C(10) –0.15
C(10)-C(14) 1.52 C(1)-C(12)-C(13) 115 C(11) –0.04
C(12)-C(13) 1.54 C(10)-C(14)-C(13) 117 C(12) –0.01
C(13)-C(14) 1.55 C(9)-C(10)-C(14) 117 C(13) –0.01
C(1)-C(12) 1.54 C(12)-C(1)-H(15) 108 C(14) 0.04
H(15)-C(1) 1.12 C(12)-C(13)-H(16) 109 H(15) 0.00
H(16)-C(1) 1.11 C(1)-C(2)-H(17) 108 H(16) 0.00
H(17)-C(2) 1.12 C(1)-C(2)-H(18) 110 H(17) 0.00
H(18)-C(2) 1.11 C(2)-C(3)-H(19) 110 H(18) 0.00
H(19)-C(3) 1.11 C(2)-C(3)-H(20) 107 H(19) 0.01
H(20)-C(3) 1.12 C(3)-C(4)-H(21) 109 H(20) –0.00
H(21)-C(4) 1.11 C(3)-C(4)-H(22) 108 H(21) 0.01
H(22)-C(4) 1.12 C(4)-C(5)-H(23) 108 H(22) 0.00
H(23)-C(5) 1.12 C(4)-C(5)-H(24) 111 H(23) 0.00
H(24)-C(5) 1.11 C(5)-C(6)-H(25) 109 H(24) 0.01
H(25)-C(6) 1.12 C(5)-C(6)-H(26) 108 H(25) 0.00
H(26)-C(6) 1.12 C(6)-C(5)-H(27) 109 H(26) 0.00
H(27)-C(7) 1.11 C(6)-C(5)-H(28) 108 H(27) 0.01
H(28)-C(7) 1.12 C(7)-C(8)-H(29) 109 H(28) 0.00
TABLE 1 (Continued)
H(38)-C(13) 1.12 H(38) 0.00
H(39)-C(14) 1.12 H(39) 0.00
H(40)-C(14) 1.11 H(40) 0.00
REFERENCES
1. Kennedi, J. Cationic polymerization of olefins. Moscow, p. 431 (1978). 2. Shmidt, M. W., Baldrosge, K. K., Elbert, J. A., Gordon, M. S., Enseh, J. H., Koseki,
S., Matsvnaga, N., Nguyen, K. A., SU, S. J., et al. J. Comput. Chem., 14, 1347–1363 (1993).
3. Bode, B. M. and Gordon, M. S. J. Mol. Graphics Mod., 16, 133–138 (1998). 4. Babkin, V. A., Fedunov, R. G., Minsker, K. S., et al. Oxidation communication, 25(1),
21–47 (2002). 5. Babkin, V. A., et al. Oxidation communication, 21(4), 454–460 (1998). 6. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of
molecule monomer of cationic polymerization of hexene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 93–95 (2010).
7. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of heptene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 95–97 (2010).
8. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of decene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 97–99 (2010).
9. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of nonene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 99–102 (2010).
10. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of octene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 103–104 (2010).
11. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule iso- butylene by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1. 176–177 (2010).
12. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-meth- ylbutene-1 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 177–179 (2010).
13. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-meth- ylbutene-2 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 179–180 (2010).
14. Babkin, V. A., Andreev, D. S., Titova, E. S., Sangalov, Yu. A., and Denisov, A. A. Quantum-chemical calculation of olefins and their derivations: [monograph] Vol- gASU. Volgograd, p. 99 (2012)
15. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-eth- ylbutene-1 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 183–185 (2010).
Quantum-Chemical Calculation of Molecule Methylencyclooctane 31
16. Babkin, V. A., Andreev, D. S., and Titova, E. S. Geometrical and electronic struc- ture of molecule vitamin «» by method MNDO/Quantum-Chemical Calculation of Molecular Systems as the Basis of Nanotechnologes in Applied Quantum Chemistry. Nova Publishers, New York, 1 (2011).
17. Babkin, V. A., Andreev, D. S., and Titova, E. S. Geometrical and electronic struc- ture of molecule vitamin «C» by method MNDO/Quantum-Chemical Calculation of Molecular Systems as the Basis of Nanotechnologes in Applied Quantum Chemistry. Nova Publishers, New York, 1 (2011).
CHAPTER 6
V. A. BABKIN, D. S. ZAHAROV, and G. E. ZAIKOV
CONTENTS
Abstract ................................................................................................... 34 6.1 Introduction .................................................................................... 34 6.2 Methodical Part .............................................................................. 34 Keywords ................................................................................................ 37 References ............................................................................................... 37
34 Quantum-Chemical Calculation of Unique Molecular Systems
ABSTRACT
For the first time quantum-chemical calculation of a molecule of α-cyclopropyl-p-isopropylstyrene is executed by the method modified ne- glect of diatomic overlap (MNDO) with optimization of geometry on all parameters. The optimized geometrical and electronic structure of this com- pound is received. The acid power of α-cyclopropyl-p-isopropylstyrene is theoretically appreciated. It is established, than it relate to a class of very weak H-acids (pKa = 33, where, pKa––universal index of acidity).
6.1 INTRODUCTION
The aim of this work is a study of electronic structure of molecule α-cyclopropyl-p-isopropylstyrene [1] and theoretical estimation its acid power by quantum-chemical method MNDO. The calculation was done with optimization of all parameters by standard gradient method built-in in PC GAMES [2]. The calculation was executed in approach the insulated molecule in gas phase. The program MacMolPlt was used for visual pres- entation of the model of the molecule [3].
6.2 METHODICAL PART
The geometric and electronic structures, general and electronic energies of molecule α-cyclopropyl-p-isopropylstyrene were received by the method MNDO and are shown in Figure 1 and Table 1. The universal factor of acidity was calculated by formula––pKa = 42.11 – 147.18 × qmax
H+ [4, 5] (where, qmax
H+––a maximum positive charge on atom of the hydrogen qmax H+
= + 0.06 (for α-cyclopropyl-p-isopropylstyrene qmax H+ alike Table.1)). This
same formula is used in references [6-17] pKa = 33. The quantum-chemical calculation of molecule α-cyclopropyl-p-
isopropylstyrene by the method of MNDO was executed for the first time. The optimized geometric and electronic structure of this compound was received. The acid power of molecule α-cyclopropyl-p-isopropylstyrene
Quantum-Chemical Calculation of Molecule 35
was theoretically evaluated (pKa = 33). This compound pertain to the class of very weak H-acids ( >14).
FIGURE 1 Geometric and electronic molecule structure of α-cyclopropyl-p- isopropylstyrene
(0 = –196875 kDg/mol and el = –1215375 kDg/mol).
TABLE 1 Optimized bond lengths, valence corners, and charges on atoms of the molecule α-cyclopropyl-p-isopropylstyrene
Bond lengths R, A Valence corners Grad Atom Charges on atoms
C(1)-C(6) 1.40 C(6)-C(1)-C(2) 121 C(1) –0.04
C(2)-C(1) 1.39 C(1)-C(2)-C(3) 121 C(2) –0.05
C(3)-C(2) 1.40 C(2)-C(3)-C(4) 119 C(3) –0.07
C(3)-C(7) 1.50 C(3)-C(4)-C(5) 121 C(4) –0.05
C(4)-C(3) 1.40 C(4)-C(5)-C(6) 121 C(5) –0.05
C(5)-C(4) 1.39 C(2)-C(3)-C(7) 120 C(6) –0.03
C(6)-C(5) 1.40 C(3)-C(7)-C(8) 111 C(7) –0.02
C(6)-C(10) 1.47 C(3)-C(7)-C(9) 111 C(8) +0.04
C(7)-C(8) 1.52 C(8)-C(7)-C(9) 110 C(9) +0.04
36 Quantum-Chemical Calculation of Unique Molecular Systems
C(7)-C(9) 1.52 C(1)-C(6)-C(10) 121 C(10) –0.06
C(10)-C(11) 1.34 C(6)-C(10)-C(11) 122 C(11) –0.03
C(10)-C(21) 1.47 C(10)-C(11)-H(12) 122 H(12) +0.04
H(12)-C(11) 1.10 C(10)-C(11)-H(13) 122 H(13) +0.04
H(13)-C(11) 1.10 C(3)-C(7)-H(14) 108 H(14) +0.01
H(14)-C(7) 1.13 C(7)-C(8)-H(15) 110 H(15) 0.00
H(15)-C(8) 1.12 C(7)-C(8)-H(16) 111 H(16) 0.00
H(16)-C(8) 1.12 C(7)-C(8)-H(17) 110 H(17) –0.01
H(17)-C(8) 1.12 C(7)-C(9)-H(18) 111 H(18) 0.00
H(18)-C(9) 1.12 C(7)-C(9)-H(19) 110 H(19) 0.00
H(19)-C(9) 1.12 C(7)-C(9)-H(20) 110 H(20) –0.01
H(20)-C(9) 1.12 C(6)-C(10)-C(21) 116 C(21) –0.07
(21)-C(22) 1.51 C(11)-C(10)-C(21) 123 C(22) –0.05
(22)-C(23) 1.50 C(22)-C(23)-C(21) 60 C(23) –0.06
(23)-C(21) 1.51 C(10)-C(21)-C(22) 121 H(24) +0.06
H(24)-C(5) 1.10 C(21)-C(23)-C(22) 60 H(25) +0.06
H(25)-C(4) 1.10 C(21)-C(22)-C(23) 60 H(26) +0.06
H(26)-C(2) 1.10 C(22)-C(21)-C(23) 60 H(27) +0.06
H(27)-C(1) 1.10 C(4)-C(5)-H(24) 120 H(28) +0.04
H(28)-C(22) 1.10 C(3)-C(4)-H(25) 120 H(29) +0.04
H(29)-C(23) 1.10 C(1)-C(2)-H(26) 120 H(30) +0.04
H(30)-C(22) 1.10 C(2)-C(1)-H(27) 120 H(31) +0.04
H(31)-C(23) 1.10 C(21)-C(22)-H(28) 119 H(32) +0.05
H(32)-C(21) 1.11 C(21)-C(23)-H(29) 118
C(21)-C(23)-H(31) 120
C(10)-C(21)-H(32) 111
REFERENCES
1. Kennedi, J. Cationic polimerization of olefins. Moscow, p. 431 (1978). 2. Shmidt, M. W., Baldrosge, K. K., Elbert, J. A., Gordon, M. S., Enseh, J. H., Koseki,
S., Matsvnaga, N., Nguyen, K. A., SU, S. J., et al. J. Comput. Chem., 14, 1347–1363 (1993).
3. Bode, B. M. and Gordon, M. S. J. Mol. Graphics Mod., 16, 133–138 (1998). 4. Babkin, V. A., Fedunov, R. G., Minsker, K. S., et al. Oxidation communication, 25(1),
21–47 (2002). 5. Babkin, V. A., et al. Oxidation communication, 21(4), 454–460 (1998). 6. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of
molecule monomer of cationic polymerization of hexene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 93–95 (2010).
7. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of heptene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 95–97 (2010).
8. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of decene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 97–99 (2010).
TABLE 1 (Continued)
38 Quantum-Chemical Calculation of Unique Molecular Systems
9. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of nonene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 99–102 (2010).
10. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of octene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 103–104 (2010).
11. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule isobu- tilene by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1. 176–177 (2010).
12. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-meth- ylbutene-1 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 177–179 (2010).
13. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-meth- ylbutene-2 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 179–180 (2010).
14. Babkin, V. A., Andreev, D. S., Titova, E. S., Sangalov, Yu. A., and Denisov, A. A. Quantum-chemical calculation of olefins and their derivations: [monograph] Vol- gASU. Volgograd, p. 99 (2012)
15. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-eth- ylbutene-1 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 183–185 (2010).
16. Babkin, V. A., Andreev, D. S., and Titova, E. S. Geometrical and electronic struc- ture of molecule vitamin «» by method MNDO/Quantum-Chemical Calculation of Molecular Systems as the Basis of Nanotechnologes in Applied Quantum Chemistry. Nova Publishers, New York, 1 (2011).
17. Babkin, V. A., Andreev, D. S., and Titova, E. S. Geometrical and electronic struc- ture of molecule vitamin «C» by method MNDO/Quantum-Chemical Calculation of Molecular Systems as the Basis of Nanotechnologes in Applied Quantum Chemistry. Nova Publishers, New York, 1 (2011).
CHAPTER 7
V. A. BABKIN, D. S. ZAHAROV, and G. E. ZAIKOV
CONTENTS
Abstract ................................................................................................... 40 7.1 Introduction .................................................................................... 40 7.2 Methodical Part .............................................................................. 40 Keywords ................................................................................................ 43 References ............................................................................................... 43
40 Quantum-Chemical Calculation of Unique Molecular Systems
ABSTRACT
For the first time quantum-chemical calculation of a molecule of α-cyclopropyl-2,4-dimethylstyrene is executed by the method modified neglect of diatomic overlap (MNDO) with optimization of geometry on all parameters. The optimized geometrical and electronic structure of this com- pound is received. The acid power of α-cyclopropyl-2,4-dimethylstyrene is theoretically appreciated. It is established, than it relate to a class of very weak H-acids (pKa = 33, where, pKa––universal index of acidity).
7.1 INTRODUCTION
The aim of this work is a study of electronic structure of molecule α-cyclopropyl-2,4-dimethylstyrene [1] and theoretical estimation its acid power by quantum-chemical method MNDO. The calculation was done with optimization of all parameters by standard gradient method built-in in PC GAMESS [2]. The calculation was executed in approach the insu- lated molecule in gas phase. The program MacMolPlt was used for visual presentation of the model of the molecule [3].
7.2 METHODICAL PART
The geometric and electronic structures, general and electronic energies of molecule α-cyclopropyl-2,4-dimethylstyrene were received by the meth- od MNDO and are shown in Figure 1 and Table 1. The universal factor of acidity was calculated by formula––pKa = 42.11–147.18 × qmax
H+ [4, 5] (where, qmax
H+––a maximum positive charge on atom of the hydrogen qmax
H+ = +0.06 (for α-cyclopropyl-2,4-dimethylstyrene qmax H+ alike Table
1)). This same formula is used in references [6-17] pKa = 33. The quantum-chemical calculation of molecule α-cyclopropyl-2,4-
dimethylstyrene by the method of MNDO was executed for the first time. The optimized geometric and electronic structure of this compound was received. The acid power of molecule α-cyclopropyl-2,4-dimethylstyrene
Quantum-Chemical Calculation of Molecule 41
was theoretically evaluated (pKa = 33). This compound pertain to the class of very weak H-acids ( >14).
FIGURE 1 Geometric and electronic molecule structure of α-cyclopropyl-2,4- dimethylstyrene
(0 = –181125 kDg/mol and el = –1084125 kDg/mol).
TABLE 1 Optimized bond lengths, valence corners, and charges on atoms of the molecule α-cyclopropyl-2,4-dimethylstyrene
Bond lengths R,A Valence corners Grad Atom Charges on atoms
C(1)-C(7) 1.42 C(1)-C(7)-C(2) 119 C(1) –0.05
C(2)-C(5) 1.42 C(7)-C(1)-C(3) 121 C(2) –0.08
C(3)-C(1) 1.40 C(1)-C(3)-C(4) 121 C(3) –0.04
C(4)-C(3) 1.41 C(2)-C(5)-C(4) 123 C(4) –0.10
C(5)-C(4) 1.41 C(3)-C(4)-C(5) 118 C(5) –0.03
C(6)-C(4) 1.51 C(3)-C(4)-C(6) 121 C(6) 0.08
C(7)-C(2) 1.42 C(5)-C(2)-C(7) 119 C(7) –0.02
42 Quantum-Chemical Calculation of Unique Molecular Systems
C(7)-C(9) 1.50 C(5)-C(2)-C(8) 119 C(8) 0.08
C(10)-C(9) 1.35 C(1)-C(7)-C(9) 118 C(9) –0.05
(11)-C(9) 1.50 C(7)-C(9)-C(10) 120 C(10) –0.04
(12)-C(11) 1.54 C(7)-C(9)-(11) 115 C(11) –0.06
(13)-C(12) 1.52 C(9)-C(11)-(12) 125 C(12) –0.06
(13)-C(11) 1.54 C(9)-C(11)-(13) 125 C(13) –0.06
H(14)-C(6) 1.11 C(4)-C(6)-H(14) 111 H(14) 0.00
H(15)-C(6) 1.11 C(4)-C(6)-H(15) 111 H(15) 0.00
H(16)-C(6) 1.11 C(4)-C(6)-H(16) 113 H(16) 0.01
H(17)-C(8) 1.11 C(2)-C(8)-H(17) 112 H(17) –0.01
H(18)-C(8) 1.11 C(2)-C(8)-H(18) 111 H(18) 0.00
H(19)-C(12) 1.10 C(11)-C(12)-H(19) 121 H(19) 0.04
H(20)-C(12) 1.10 C(11)-C(12)-H(20) 118 H(20) 0.04
H(21)-C(13) 1.10 C(11)-C(13)-H(21) 121 H(21) 0.04
H(22)-C(13) 1.10 C(11)-C(13)-H(22) 118 H(22) 0.04
H(23)-C(11) 1.10 C(9)-C(11)-H(23) 111 H(23) 0.05
H(24)-C(10) 1.09 C(9)-C(10)-H(24) 124 H(24) 0.04
H(25)-C(10) 1.09 C(9)-C(10)-H(25) 123 H(25) 0.04
H(26)-C(5) 1.09 C(2)-C(5)-H(26) 119 H(26) 0.06
H(27)-C(3) 1.09 C(1)-C(3)-H(27) 119 H(27) 0.05
H(28)-C(1) 1.09 C(3)-C(1)-H(28) 119 H(28) 0.06
H(29)-C(8) 1.11 C(2)-C(8)-H(29) 111 H(29) 0.00
TABLE 1 (Continued)
KEYWORDS
REFERENCES
1. Kennedi, J. Cationic polymerization of olefins. Moscow, p. 431 (1978). 2. Shmidt, M. W., Baldrosge, K. K., Elbert, J. A., Gordon, M. S., Enseh, J. H., Koseki,
S., Matsvnaga, N., Nguyen, K. A., SU, S. J., et al. J. Comput. Chem., 14, 1347–1363 (1993).
3. Bode, B. M. and Gordon, M. S. J. Mol. Graphics Mod., 16, 133–138 (1998). 4. Babkin, V. A., Fedunov, R. G., Minsker, K. S., et al. Oxidation communication, 25(1),
21–47 (2002). 5. Babkin, V. A., et al. Oxidation communication, 21(4), 454–460 (1998). 6. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of
molecule monomer of cationic polymerization of hexene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 93–95 (2010).
7. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of heptene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 95–97 (2010).
8. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of decene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 97–99 (2010).
9. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of nonene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 99–102 (2010).
10. Babkin, V. A., Dmitriev, V. Yu., and Zaikov, G. E. Quantum-chemical calculation of molecule monomer of cationic polymerization of octene-1 by method MNDO. Col- lected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 103–104 (2010).
44 Quantum-Chemical Calculation of Unique Molecular Systems
11. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule isobu- tilene by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1. 176–177 (2010).
12. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-meth- ylbutene-1 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 177–179 (2010).
13. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-meth- ylbutene-2 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 179–180 (2010).
14. Babkin, V. A., Andreev, D. S., Titova, E. S., Sangalov, Yu. A., and Denisov, A. A. Quantum-chemical calculation of olefins and their derivations: [monograph] Vol- gASU. Volgograd, p. 99 (2012)
15. Babkin, V. A. and Andreev, D. S. Quantum-chemical calculation of molecule 2-eth- ylbutene-1 by method MNDO. Collected papers: Quantum-chemical calculation of unique molecular systems/VolgSU. Volgograd, 1, 183–185 (2010).
16. Babkin, V. A., Andreev, D. S., and Titova, E. S. Geometrical and electronic struc- ture of molecule vitamin «» by method MNDO/Quantum-Chemical Calculation of Molecular Systems as the Basis of Nanotechnologes in Applied Quantum Chemistry. Nova Publishers, New York, 1 (2011).
17. Babkin, V. A., Andreev, D. S., and Titova, E. S. Geometrical and electronic struc- ture of molecule vitamin «C» by method MNDO/Quantum-Chemical Calculation of Molecular Systems as the Basis of Nanotechnologes in Applied Quantum Chemistry. Nova Publishers, New York, 1 (2011).
CHAPTER 8
V. A. BABKIN, D. S. ZAHAROV, and G. E. ZAIKOV
CONTENTS
Abstract ................................................................................................... 46 8.1 Introduction .................................................................................... 46 8.2 Methodical Part .............................................................................. 46 Keywords ................................................................................................ 48 References ............................................................................................... 49
46 Quantum-Chemical Calculation of Unique Molecular Systems
ABSTRACT
For the first time quantum-chemical calculation of a molecule of α-cyclopropyl-p-fluorostyrene is executed by the method modified ne- glect of diatomic overlap (MNDO) with optimization of geometry on all parameters. The optimized geometrical and electronic structure of this compound is received. The acid power of α-cyclopropyl-p-fluorostyrene is theoretically appreciated. It is established, than it relate to a class of very weak H-acids (pKa = 30, where, pKa––universal index of acidity).
8.1 INTRODUCTION
The aim of this work is a study of electronic structure of molecule α-cyclopropyl-p-fluorostyrene [1] and theoretical estimation its acid pow- er by quantum-chemical method MNDO. The calculation was done with optimization of all parameters by standard gradient method built-in in PC GAMESS [2]. The calculation was executed in approach the insulated molecule in gas phase. The program MacMolPlt was used for visual pres- entation of the model of the molecule [3].
8.2 METHODICAL PART
The geometric and electronic structures, general and electronic energies of molecule α-cyclopropyl-p-fluorostyrene were received by the method MNDO and are shown in Figure 1 and Table 1. The universal factor of acidity was calculated by formula––pKa = 42.11 – 147.18 × qmax
H+ [4, 5] (where, qmax
H+––a maximum positive charge on atom of the hydrogen qmax
H+= +0.08 (for α-cyclopropyl-p-fluorostyrene qmax H+ alike Table 1)).
This same formula is used in references [6-17] pKa=30. The quantum-chemical calculation of molecule α-cyclopropyl-p-
fluorostyrene by the method of MNDO was executed for the first time. The optimized geometric and electronic structure of this compound was received. The acid power of molecule α-cyclopropyl-p-fluorostyrene was
Quantum-Chemical Calculation of Molecule 47
theoretically evaluated (pKa = 30). This compound pertain to the class of very weak H-acids ( >14).
FIGURE 1 Geometric and electronic molecule structure of α-cyclopropyl-p-fluorostyrene
(0 = –196875 kDg/mol and el = –1155000 kDg/mol)
TABLE 1 Optimized bond lengths, valence corners and charges on atoms of the molecule α-cyclopropyl-p-fluorostyrene
Bond lengths R,A Valence corners Grad Atom Charges on atoms
C(1)-C(3) 1.40 C(1)-C(6)-C(2) 119 C(1) –0.02
C(2)-C(6) 1.41 C(4)-C(5)-C(2) 120 C(2) –0.02
C(3)-C(4) 1.42 C(5)-C(4)-C(3) 120 C(3) –0.09
C(4)-C(5) 1.42 C(1)-C(3)-C(4) 120 C(4) +0.15
C(5)-C(2) 1.40 C(6)-C(2)-C(5) 121 C(5) –0.09
C(6)-C(7) 1.49 C(3)-C(1)-C(6) 121 C(6) –0.06
C(7)-C(9) 1.50 C(1)-C(6)-C(7) 121 C(7) –0.06
C(8)-C(7) 1.35 C(6)-C(7)-C(8) 120 C(8) –0.04
C(9)-C(10) 1.54 C(6)-C(7)-C(9) 115 C(9) –0.07
48 Quantum-Chemical Calculation of Unique Molecular Systems
C(10)-C(11) 1.52 C(7)-C(9)-C(10) 124 C(10) –0.06
C(11)-C(9) 1.54 C(7)-C(9)-(11) 125 C(11) –0.06
H(12)-C(10) 1.10 C(9)-C(10)-H(12) 121 H(12) +0.04
H(13)-C(10) 1.10 C(9)-C(10)-H(13) 118 H(13) +0.04
H(14)-C(11) 1.10 C(9)-C(11)-H(14) 121 H(14) +0.04
H(15)-C(11) 1.10 C(9)-C(11)-H(15) 118 H(15) +0.04
H(16)-C(9) 1.10 C(7)-C(9)-H(16) 111 H(16) +0.04
H(17)-C(8) 1.09 C(7)-C(8)-H(17) 124 H(17) +0.04
H(18)-C(8) 1.09 C(7)-C(8)-H(18) 123 H(18) +0.04
H(19)-C(5) 1.09 C(2)-C(5)-H(19) 120 H(19) +0.08
H(20)-C(3) 1.09 C(1)-C(3)-H(20) 120 H(20) +0.08
H(21)-C(1) 1.09 C(3)-C(1)-H(21) 119 H(21) +0.07
F(22)-C(4) 1.33 C(3)-C(4)-F(22) 120 F(22) –0.18
H(23)-C(2) 1.09 C(5)-C(2)-H(23) 119 H(23) +0.07
KEYWORDS
REFERENCES
1. Kennedi, J. Cationic polymerization of olefins. Moscow, p. 431 (1978). 2. Shmidt, M. W., Baldrosge, K. K., Elbert, J. A., Gordon, M. S., Enseh, J. H., Koseki,
S., Matsvnaga, N., Nguyen, K. A., SU, S. J., et al. J. Comput. Chem., 14, 1347–1363 (1993).
3. Bode, B. M. and Gordon, M. S. J. Mol. Graphics Mod., 16, 133–138 (1998). 4.