15
University of Groningen Quantitative proteomics of Saccharomyces cerevisiae vacuoles and stress responses in Lactococcus lactis Wiederhold, Elena IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2010 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Wiederhold, E. (2010). Quantitative proteomics of Saccharomyces cerevisiae vacuoles and stress responses in Lactococcus lactis. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 17-12-2020

QUANTITATIVE PROTEOMICS OF SACCHAROMYCES CEREVISIAE ... · References BREITLING, R. & HERZYK, P. (2005).Rank-based methods as a non-parametric alternative of the T-statistic for the

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: QUANTITATIVE PROTEOMICS OF SACCHAROMYCES CEREVISIAE ... · References BREITLING, R. & HERZYK, P. (2005).Rank-based methods as a non-parametric alternative of the T-statistic for the

University of Groningen

Quantitative proteomics of Saccharomyces cerevisiae vacuoles and stress responses inLactococcus lactisWiederhold, Elena

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite fromit. Please check the document version below.

Document VersionPublisher's PDF, also known as Version of record

Publication date:2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):Wiederhold, E. (2010). Quantitative proteomics of Saccharomyces cerevisiae vacuoles and stressresponses in Lactococcus lactis. s.n.

CopyrightOther than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of theauthor(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediatelyand investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons thenumber of authors shown on this cover page is limited to 10 maximum.

Download date: 17-12-2020

Page 2: QUANTITATIVE PROTEOMICS OF SACCHAROMYCES CEREVISIAE ... · References BREITLING, R. & HERZYK, P. (2005).Rank-based methods as a non-parametric alternative of the T-statistic for the

REFERENCES

Galileo: What is written in the old books no longer satisfies them. (…) All the world says: yes, that’s written in books but now let us see for ourselves.

Page 3: QUANTITATIVE PROTEOMICS OF SACCHAROMYCES CEREVISIAE ... · References BREITLING, R. & HERZYK, P. (2005).Rank-based methods as a non-parametric alternative of the T-statistic for the
Page 4: QUANTITATIVE PROTEOMICS OF SACCHAROMYCES CEREVISIAE ... · References BREITLING, R. & HERZYK, P. (2005).Rank-based methods as a non-parametric alternative of the T-statistic for the

References

-A- AEBERSOLD, R. & MANN, M. (2003). Mass spectrometry-based proteomics. — Nature, 422, 198-207. ALBER, F., DOKUDOVSKAYA, S., VEENHOFF, L. M., ZHANG, W., KIPPER, J., DEVOS, D., SUPRAPTO, A., KARNI-SCHMIDT, O.,

WILLIAMS, R., CHAIT, B. T., ROUT, M. P. & SALI, A. (2007a). Determining the architectures of macromolecular assemblies. — Nature, 450, 683-694.

ALBER, F., DOKUDOVSKAYA, S., VEENHOFF, L. M., ZHANG, W., KIPPER, J., DEVOS, D., SUPRAPTO, A., KARNI-SCHMIDT, O., WILLIAMS, R., CHAIT, B. T., SALI, A. & ROUT, M. P. (2007b). The molecular architecture of the nuclear pore complex. — Nature, 450, 695-701.

ALBERTSEN, M., BELLAHN, I., KRÃMER, R. & WAFFENSCHMIDT, S. (2003). Localization and Function of the Yeast Multidrug Transporter Tpo1p. — J. Biol. Chem., 278, 12820-12825.

ANDERSEN, J. S., LAM, Y. W., LEUNG, A. K., ONG, S. E., LYON, C. E., LAMOND, A. I. & MANN, M. (2005). Nucleolar proteome dynamics. — Nature, 433, 77-83.

ANDERSEN, J. S. & MANN, M. (2006). Organellar proteomics: turning inventories into insights —EMBO reports, 7, 874-879.

ANDERSEN, J. S., WILKINSON, C. J., MAYOR, T., MORTENSEN, P., NIGG, E. A. & MANN, M. (2003). Proteomic characterization of the human centrosome by protein correlation profiling. — Nature, 426, 570-4.

ANRAKU, Y., UMEMOTO, N., HIRATA, R. & WADA, Y. (1989). Structure and function of the yeast vacuolar membrane proton ATPase. — J. Bioenerg. Biomembr., 21, 589-603.

ARIS, J. P. & BLOBEL, G. (1991). Isolation of yeast nuclei. — Methods Enzymol., 194, 735-49. ARONOVA, S., WEDAMAN, K., ANDERSON, S., YATES, J., III & POWERS, T. (2007). Probing the Membrane Environment of

the TOR Kinases Reveals Functional Interactions between TORC1, Actin, and Membrane Trafficking in Saccharomyces cerevisiae. — Mol. Biol. Cell, 18, 2779-2794.

ATHENSTAEDT, K., ZWEYTICK, D., JANDROSITZ, A., KOHLWEIN, S. D. & DAUM, G. (1999). Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. — J. Bacteriol., 181, 6441-8.

ATHERLY, A. G. & MENNINGER, J. R. (1972). Mutant E. coli strain with temperature sensitive peptidyl-transfer RNA hydrolase. — Nat. New Biol., 240, 245-6.

-B- BALGLEY, B. M., LAUDEMAN, T., YANG, L., SONG, T. & LEE, C. S. (2007). Comparative evaluation of tandem MS search

algorithms using a target-decoy search strategy. — Mol. Cell. Proteomics, 6, 1599-608. BAUERLE, C., HO, M. N., LINDORFER, M. A. & STEVENS, T. H. (1993). The Saccharomyces cerevisiae VMA6 gene

encodes the 36-kDa subunit of the vacuolar H+-ATPase membrane sector. — J. Biol. Chem., 268, 12749-12757.

BECK, T., SCHMIDT, A. & HALL, M. N. (1999). Starvation Induces Vacuolar Targeting and Degradation of the Tryptophan Permease in Yeast. — J. Cell Biol., 146, 1227-1238.

BEELER, T., FU, D., RIVERA, J., MONAGHAN, E., GABLE, K. & DUNN, T. (1997). SUR1 (CSG1/BCL21), a gene necessary for growth of Saccharomyces cerevisiae in the presence of high Ca2+ concentrations at 37 degrees C, is required for mannosylation of inositolphosphorylceramide. — Mol. Genet. Genomics, 255, 570-579.

BENDTSEN, J. D., NIELSEN, H., VON HEIJNE, G. & BRUNAK, S. (2004). Improved prediction of signal peptides: SignalP 3.0. — J. Mol. Biol., 340, 783-95.

BENJAMINI, Y. & HOCHBERG, Y. (2000). On the adaptive control of the false discovery fate in multiple testing with independent statistics. — J. Educ. Behav. Stat., 25, 60-83.

BERGER, A. C., SALAZAR, G., STYERS, M. L., NEWELL-LITWA, K. A., WERNER, E., MAUE, R. A., CORBETT, A. H. & FAUNDEZ, V. (2007). The subcellular localization of the Niemann-Pick Type C proteins depends on the adaptor complex AP-3. — J. Cell Sci., 120, 3640-3652.

BERKELMAN, T., GARRET-ENGELE, P. & HOFFMAN, N. E. (1994). The pacL gene of Synechococcus sp. strain PCC 7942 encodes a Ca(2+)-transporting ATPase. — J. Bacteriol., 176, 4430-6.

BINNS, D., JANUSZEWSKI, T., CHEN, Y., HILL, J., MARKIN, V. S., ZHAO, Y., GILPIN, C., CHAPMAN, K. D., ANDERSON, R. G. W. & GOODMAN, J. M. (2006). An intimate collaboration between peroxisomes and lipid bodies. — J. Cell Biol., 173, 719-731.

BISLE, B., SCHMIDT, A., SCHEIBE, B., KLEIN, C., TEBBE, A., KELLERMANN, J., SIEDLER, F., PFEIFFER, F., LOTTSPEICH, F. & OESTERHELT, D. (2006). Quantitative Profiling of the Membrane Proteome in a Halophilic Archaeon. — Mol. Cell. Proteomics, 5, 1543-1558.

BOLLER, T., DURR, M. & WIEMKEN, A. (1989). Transport in isolated yeast vacuoles: characterization of arginine permease. — Methods Enzymol., 174, 504-18.

BONANDER, N. & BILL, R. M. (2009). Relieving the first bottleneck in the drug discovery pipeline: using array technologies to rationalize membrane protein production. — Expert Rev. Proteomics, 6, 501-5.

BONANGELINO, C. J., CATLETT, N. L. & WEISMAN, L. S. (1997). Vac7p, a novel vacuolar protein, is required for normal vacuole inheritance and morphology. — Mol. Cell. Biol., 17, 6847-6858.

BRACHMANN, C., DAVIES, A., COST, G., CAPUTO, E., LI, J., HIETER, P. & BOEKE, J. (1998). Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. — Yeast, 14, 115-132.

BRAELL, W. A. (1988). Two sensitive, convenient, and widely applicable assays for marker enzyme activities specific to endoplasmic reticulum. — Anal. Biochem., 170, 328-34.

BREITLING, R., AMTMANN, A. & HERZYK, P. (2004a). Iterative Group Analysis (iGA): A simple tool to enhance sensitivity and facilitate interpretation of microarray experiments. — BMC Bioinformatics, 5, 34.

BREITLING, R., ARMENGAUD, P., AMTMANN, A. & HERZYK, P. (2004b). Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. — FEBS Lett., 573, 83-92.

117

Page 5: QUANTITATIVE PROTEOMICS OF SACCHAROMYCES CEREVISIAE ... · References BREITLING, R. & HERZYK, P. (2005).Rank-based methods as a non-parametric alternative of the T-statistic for the

References

BREITLING, R. & HERZYK, P. (2005). Rank-based methods as a non-parametric alternative of the T-statistic for the analysis of biological microarray data. — J. Bioinform. Comput. Biol., 3, 1171-89.

BROSCH, M., SWAMY, S., HUBBARD, T. & CHOUDHARY, J. (2008). Comparison of Mascot and X!Tandem performance for low and high accuracy mass spectrometry and the development of an adjusted Mascot threshold. — Mol. Cell. Proteomics, 7, 962-70.

BROWN, C. R., MCCANN, J. A. & CHIANG, H.-L. (2000). The Heat Shock Protein Ssa2p Is Required for Import of Fructose-1,6-Bisphosphatase into Vid Vesicles. — J. Cell Biol., 150, 65-76.

-C- CABIB, E., ROBERTS, R. & BOWERS, B. (1982). Synthesis of the Yeast Cell Wall and its Regulation. — Annu. Rev.

Biochem., 51, 763-793. CAGNAC, O., LETERRIER, M., YEAGER, M. & BLUMWALD, E. (2007). Identification and Characterization of Vnx1p, a Novel

Type of Vacuolar Monovalent Cation/H+ Antiporter of Saccharomyces cerevisiae. — J. Biol. Chem., 282, 24284-24293.

CARDENAS, M. E. & HEITMAN, J. (1995). FKBP12-rapamycin target TOR2 is a vacuolar protein with an associated phosphatidylinositol-4 kinase activity. — EMBO J., 14, 5892-5907.

CARO, L. H. P., TETTELIN, H., VOSSEN, J. H., RAM, A. F. J., VAN DEN ENDE, H. & KLIS, F. M. (1997). In silico identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. — Yeast, 13, 1477-1489.

CEREGHINO, J. L. & CREGG, J. M. (2000). Heterologous protein expression in the methylotrophic yeast Pichia pastoris. — FEMS Microbiol. Rev., 24, 45-66.

CHANG, J., RUIZ, V. & VANCURA, A. (2008). Purification of Yeast Membranes and Organelles by Sucrose Density Gradient Centrifugation. — In, p. 1-9.

CHEN, E. J. & KAISER, C. A. (2003). LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway. — J. Cell Biol., 161, 333-347.

CHEN, Y., SONG, J., SUI, S. F. & WANG, D. N. (2003). DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli. — Protein Expr. Purif., 32, 221-31.

CHUANG, J. S. & SCHEKMAN, R. W. (1996). Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p [published erratum appears in J Cell Biol 1996 Dec;135(6 Pt 2):1925]. — J. Cell Biol., 135, 597-610.

CLAUSER, K. R., BAKER, P. & BURLINGAME, A. L. (1999). Role of accurate mass measurement (+/- 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. — Anal. Chem., 71, 2871-82.

CLEVES, A. E., MCGEE, T. P., WHITTERS, E. A., CHAMPLON, K. M., ALTKEN, J. R., DOWHAN, W., GOEBL, M. & BANKAITIS, V. A. (1991). Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. — Cell, 64, 789-800.

COLLINS, K. M., THORNGREN, N. L., FRATTI, R. A. & WICKNER, W. T. (2005). Sec17p and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion. — EMBO J., 24, 1775-1786.

COMARTIN, D. J. & BROWN, E. D. (2006). Non-ribosomal factors in ribosome subunit assembly are emerging targets for new antibacterial drugs. — Curr. Opin. Pharmacol., 6, 453-458.

CONIBEAR, E. & STEVENS, T. H. (2002). Studying yeast vacuoles. — Methods Enzymol., 351, 408-32. COOKE, F. T., DOVE, S. K., MCEWEN, R. K., PAINTER, G., HOLMES, A. B., HALL, M. N., MICHELL, R. H. & PARKER, P. J.

(1998). The stress-activated phosphatidylinositol 3-phosphate 5-kinase Fab1p is essential for vacuole function in S. cerevisiae. — Curr. Biol., 8, 1219-1222.

CORMACK, B. P., BERTRAM, G., EGERTON, M., GOW, N. A. R., FALKOW, S. & BROWN, A. J. P. (1997). Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. — Microbiology, 143, 303-311.

CORMACK, B. P., VALDIVIA, R. H. & FALKOW, S. (1996). FACS-Optimized Mutants of the Green Fluorescent Protein (GFP). — Gene, 173, 33-38.

CRISTEA, I. M., WILLIAMS, R., CHAIT, B. T. & ROUT, M. P. (2005). Fluorescent proteins as proteomic probes. — Mol. Cell. Proteomics, 4, 1933-41.

CUNNINGHAM, K. W. & WICKNER, W. T. (1989). Yeast KEX2 protease and mannosyltransferase I are localized to distinct compartments of the secretory pathway. — Yeast, 5, 25-33.

-D- DE DUVE, C. & BEAUFAY, H. (1981). A short history of tissue fractionation. — J. Cell Biol., 91, 293s-299. DE GIER, J. W. & LUIRINK, J. (2001). Biogenesis of inner membrane proteins in Escherichia coli. — Mol. Microbiol., 40,

314-22. DE GROOT, P. W. J., HELLINGWERF, K. J. & KLIS, F. M. (2003). Genome-wide identification of fungal GPI proteins. —

Yeast, 20, 781-796. DE NOBEL, J. G., DIJKERS, C., HOOIJBERG, E. & KLIS, F. M. (1989). Increased cell wall porosity in Saccharomyces

cerevisiae after treatment with dithiothreitol or EDTA. — J. Gen. Micro., 135, 2077-2084. DE NOBEL, J. G., KLIS, F. M., PRIEM, J., MUNNIK, T. & VAN DEN ENDE, H. (1990). The glucanase-soluble mannoproteins

limit cell wall porosity in Saccharomyces cerevisiae. — Yeast, 6, 491-499. DE RUYTER, P. G., KUIPERS, O. P. & DE VOS, W. M. (1996). Controlled gene expression systems for Lactococcus lactis

with the food-grade inducer nisin. — Appl. Environ. Microbiol., 62, 3662-7. DECKER, B. L. & WICKNER, W. T. (2006). Enolase Activates Homotypic Vacuole Fusion and Protein Transport to the

Vacuole in Yeast. — J. Biol. Chem., 281, 14523-14528.

118

Page 6: QUANTITATIVE PROTEOMICS OF SACCHAROMYCES CEREVISIAE ... · References BREITLING, R. & HERZYK, P. (2005).Rank-based methods as a non-parametric alternative of the T-statistic for the

References

DELOM, F., SZPONARSKI, W., SOMMERER, N., BOYER, J.-C., BRUNEAU, J.-M., ROSSIGNOL, M. & GIBRAT, R. (2006). The plasma membrane proteome of Saccharomyces cerevisiae and its response to the antifungal calcofluor. — Proteomics, 6, 3029-3039.

DEN HENGST, C. D., VAN HIJUM, S. A. F. T., GEURTS, J. M. W., NAUTA, A., KOK, J. & KUIPERS, O. P. (2005). The Lactococcus lactis CodY Regulon: IDENTIFICATION OF A CONSERVED cis-REGULATORY ELEMENT. — J. Biol. Chem., 280, 34332-34342.

DRIDER, D., BOLOTINE, A., RENAULT, P. & PREVOST, H. (2002). Functional study of Lactococcus lactis RNase III in Escherichia coli. — Plasmid, 47, 246-50.

DRUMM, M. L., POPE, H. A., CLIFF, W. H., ROMMENS, J. M., MARVIN, S. A., TSUI, L. C., COLLINS, F. S., FRIZZELL, R. A. & WILSON, J. M. (1990). Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer. — Cell, 62, 1227-33.

DUELL, E. A., INOUE, S. & UTTER, M. F. (1964). Isolation and Properties of Intact Mitochondria from Spheroplasts of Yeast. — J. Bacteriol., 88, 1762-73.

DUNKLEY, T. P., DUPREE, P., WATSON, R. B. & LILLEY, K. S. (2004a). The use of isotope-coded affinity tags (ICAT) to study organelle proteomes in Arabidopsis thaliana. — Biochem. Soc. Trans., 32, 520-3.

DUNKLEY, T. P., HESTER, S., SHADFORTH, I. P., RUNIONS, J., WEIMAR, T., HANTON, S. L., GRIFFIN, J. L., BESSANT, C., BRANDIZZI, F., HAWES, C., WATSON, R. B., DUPREE, P. & LILLEY, K. S. (2006). Mapping the Arabidopsis organelle proteome. — Proc. Natl. Acad. Sci. U. S. A., 103, 6518-23.

DUNKLEY, T. P., WATSON, R., GRIFFIN, J. L., DUPREE, P. & LILLEY, K. S. (2004b). Localization of organelle proteins by isotope tagging (LOPIT). — Mol. Cell. Proteomics, 3, 1128-34.

DUNN, J. J. & STUDIER, F. W. (1973). T7 early RNAs and Escherichia coli ribosomal RNAs are cut from large precursor RNAs in vivo by ribonuclease 3. — Proc. Natl. Acad. Sci. U. S. A., 70, 3296-3300.

DURR, M., BOLLER, T. & WIEMKEN, A. (1975). Polybase induced lysis of yeast spheroplasts. A new gentle method for preparation of vacuoles. — Arch. Microbiol., 105, 319-27.

-E- ENG, J. K., MCCORMACK, A. L. & YATES, J. R., 3RD. (1994). An approach to correlate tandem mass spectral data of

peptides with amino acid sequences in a protein database. — J. Am. Soc. Mass Spectrom., 5, 976-989.

-F- FIERENS, C., THIENPONT, L. M., STOCKL, D., WILLEKENS, E. & DE LEENHEER, A. P. (2000). Quantitative analysis of urinary

C-peptide by liquid chromatography-tandem mass spectrometry with a stable isotopically labelled internal standard. — J. Chromatogr. A, 896, 275-8.

FORTIN, T., SALVADOR, A., CHARRIER, J. P., LENZ, C., BETTSWORTH, F., LACOUX, X., CHOQUET-KASTYLEVSKY, G. & LEMOINE, J. (2009). Multiple Reaction Monitoring Cubed for Protein Quantification at the Low Nanogram/Milliliter Level in Nondepleted Human Serum. — Anal. Chem.

FOSTER, L. J., DE HOOG, C. L. & MANN, M. (2003). Unbiased quantitative proteomics of lipid rafts reveals high specificity for signaling factors. — Proc. Natl. Acad. Sci. U. S. A., 100, 5813-5818.

FRANZUSOFF, A. & CIRILLO, V. (1983). Glucose transport activity in isolated plasma membrane vesicles from Saccharomyces cerevisiae. — J. Biol. Chem., 258, 3608-3614.

FUHRMANN, G. F., WEHRLI, E. & BOEHM, C. (1974). Preparation and identification of yeast plasma membrane vesicles. — Biochim. Biophys. Acta., 363, 295-310.

FUNES, S., HASONA, A., BAUERSCHMITT, H., GRUBBAUER, C., KAUFF, F., COLLINS, R., CROWLEY, P. J., PALMER, S. R., BRADY, L. J. & HERRMANN, J. M. (2009). Independent gene duplications of the YidC/Oxa/Alb3 family enabled a specialized cotranslational function. — Proc. Natl. Acad. Sci. U. S. A., 106, 6656-61.

-G- GARLID, K. D. & PAUCEK, P. (2003). Mitochondrial potassium transport: the K(+) cycle. — Biochim. Biophys. Acta.,

1606, 23-41. GARY, J. D., SATO, T. K., STEFAN, C. J., BONANGELINO, C. J., WEISMAN, L. S. & EMR, S. D. (2002). Regulation of Fab1

Phosphatidylinositol 3-Phosphate 5-Kinase Pathway by Vac7 Protein and Fig4, a Polyphosphoinositide Phosphatase Family Member. — Mol. Biol. Cell, 13, 1238-1251.

GARY, J. D., WURMSER, A. E., BONANGELINO, C. J., WEISMAN, L. S. & EMR, S. D. (1998). Fab1p Is Essential for PtdIns(3)P 5-Kinase Activity and the Maintenance of Vacuolar Size and Membrane Homeostasis. — J. Cell Biol., 143, 65-79.

GAUCI, S., VEENHOFF, L. M., HECK, A. J. & KRIJGSVELD, J. (2009). Orthogonal separation techniques for the characterization of the yeast nuclear proteome. — J. Proteome Res., 8, 3451-63.

GEERTSMA, E. R. & POOLMAN, B. (2007). High-throughput cloning and expression in recalcitrant bacteria. — Nat. Methods, 4, 705-7.

GELPERIN, D., WHITE, M., WILKINSON, M., KON, Y., KUNG, L., WISE, K., LOPEZ-HOYO, N., JIANG, L., PICCIRILLO, S., YU, H., GERSTEIN, M., DUMONT, M., PHIZICKY, E., SNYDER, M. & GRAYHACK, E. (2005). Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. — Genes Dev., 19, 2816-2826.

GHAEMMAGHAMI, S., HUH, W.-K., BOWER, K., HOWSON, R. W., BELLE, A., DEPHOURE, N., O'SHEA, E. K. & WEISSMAN, J. S. (2003). Global analysis of protein expression in yeast. — Nature, 425, 737-741.

GHARIEB, M. M. & GADD, G. M. (1998). Evidence for the involvement of vacuolar activity in metal(loid) tolerance: vacuolar-lacking and -defective mutants of Saccharomyces cerevisiae display higher sensitivity to chromate, tellurite and selenite. — Biometals, 11, 101-106.

GIETZ, D., ST JEAN, A., WOODS, R. A. & SCHIESTL, R. H. (1992). Improved method for high efficiency transformation of intact yeast cells. — Nucleic Acids Res., 20, 1425.

119

Page 7: QUANTITATIVE PROTEOMICS OF SACCHAROMYCES CEREVISIAE ... · References BREITLING, R. & HERZYK, P. (2005).Rank-based methods as a non-parametric alternative of the T-statistic for the

References

GOFFEAU, A., BARRELL, B. G., BUSSEY, H., DAVIS, R. W., DUJON, B., FELDMANN, H., GALIBERT, F., HOHEISEL, J. D., JACQ, C., JOHNSTON, M., LOUIS, E. J., MEWES, H. W., MURAKAMI, Y., PHILIPPSEN, P., TETTELIN, H. & OLIVER, S. G. (1996). Life with 6000 Genes. — Science, 274, 546-567.

GRAHAM, J. (2001). Biological Centrifugation. — BIOS Scientific Publishers Ltd, Oxford, UK. GREGORY, R. J., CHENG, S. H., RICH, D. P., MARSHALL, J., PAUL, S., HEHIR, K., OSTEDGAARD, L., KLINGER, K. W., WELSH,

M. J. & SMITH, A. E. (1990). Expression and characterization of the cystic fibrosis transmembrane conductance regulator. — Nature, 347, 382-6.

GRIFF, I. C., SCHEKMAN, R., ROTHMAN, J. E. & KAISER, C. A. (1992). The yeast SEC17 gene product is functionally equivalent to mammalian α-SNAP protein. — J. Biol. Chem., 267, 12106-12115.

GRISSHAMMER, R. & TATE, C. G. (1995). Overexpression of integral membrane proteins for structural studies. — Q. Rev. Biophys., 28, 315-422.

GROPP, R., GROPP, F. & BETLACH, M. (1992). Association of the halobacterial 7S RNA to the polysome correlates with expression of the membrane protein bacterioopsin. — Proc. Natl. Acad. Sci. U. S. A., 89, 1204-1208.

GROSSHANS, B. L., ORTIZ, D. & NOVICK, P. (2006). Rabs and their effectors: Achieving specificity in membrane traffic. — Proc. Natl. Acad. Sci. U. S. A., 103, 11821-11827.

GRUNERT, T., POCK, K., BUCHACHER, A. & ALLMAIER, G. (2003). Selective solid-phase isolation of methionine-containing peptides and subsequent matrix-assisted laser desorption/ionisation mass spectrometric detection of methionine- and of methionine-sulfoxide-containing peptides. — Rapid Commun. Mass Spectrom., 17, 1815-24.

GUEDON, E., SPERANDIO, B., PONS, N., EHRLICH, S. D. & RENAULT, P. (2005). Overall control of nitrogen metabolism in Lactococcus lactis by CodY, and possible models for CodY regulation in Firmicutes. — Microbiology, 151, 3895-909.

-H- HALACHMI, D. & EILAM, Y. (1996). Elevated cytosolic free Ca2+ concentrations and massive Ca2+ accumulation within

vacuoles, in yeast mutant lacking PMR1, a homolog of Ca2+-ATPase. — FEBS Lett., 392, 194-200. HAN, X., ASLANIAN, A. & YATES, J. R., 3RD. (2008). Mass spectrometry for proteomics. — Curr. Opin. Chem. Biol., 12,

483-90. HEURGUE-HAMARD, V., KARIMI, R., MORA, L., MACDOUGALL, J., LEBOEUF, C., GRENTZMANN, G., EHRENBERG, M. &

BUCKINGHAM, R. H. (1998). Ribosome release factor RF4 and termination factor RF3 are involved in dissociation of peptidyl-tRNA from the ribosome. — EMBO J., 17, 808-16.

HIRATA, T., WADA, Y. & FUTAI, M. (2002). Sodium and sulfate transport in yeast vacuoles. — J. Biochem., 131, 261-265.

HONG, F., BREITLING, R., MCENTEE, C. W., WITTNER, B. S., NEMHAUSER, J. L. & CHORY, J. (2006). RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. — Bioinformatics, 22, 2825-7.

HORST, M., KNECHT, E. C. & SCHU, P. V. (1999). Import into and degradation of cytosolic proteins by isolated yeast vacuoles. — Mol. Biol. Cell, 10, 2879-89.

HOSSACK, J. A., WHEELER, G. E. & ROSE, A. H., eds. (1973). Yeast, Mould and Plant Protoplasts (Proc. Int. Symp.Yeast Protoplasts 3rd, Salamanca 1972) (Villanueva, J. R., Garcia-Acha, I., Cascon, S. & Uruburu, F., eds.),. — Academic Press, London and New York.

HUH, W.-K., FALVO, J. V., GERKE, L. C., CARROLL, A. S., HOWSON, R. W., WEISSMAN, J. S. & O'SHEA, E. K. (2003). Global analysis of protein localization in budding yeast. — Nature, 425, 686-691.

HURLIMANN, H. C., STADLER-WAIBEL, M., WERNER, T. P. & FREIMOSER, F. M. (2007). Pho91 Is a Vacuolar Phosphate Transporter That Regulates Phosphate and Polyphosphate Metabolism in Saccharomyces cerevisiae. — Mol. Biol. Cell, 18, 4438-4445.

-I- INADOME, H., NODA, Y., ADACHI, H. & YODA, K. (2005). Immunoisolaton of the Yeast Golgi Subcompartments and

Characterization of a Novel Membrane Protein, Svp26, Discovered in the Sed5-Containing Compartments. — Mol. Cell. Biol., 25, 7696-7710.

INDGE, K. J. (1968a). Metabolic lysis of yeast protoplasts. — J. Gen. Microbiol., 51, 433-40. INDGE, K. J. (1968b). Polyphosphates of the yeast cell vacuole. — J. Gen. Microbiol., 51, 447-55. INGMER, H., VOGENSEN, F. K., HAMMER, K. & KILSTRUP, M. (1999). Disruption and Analysis of the clpB, clpC, and clpE

Genes in Lactococcus lactis: ClpE, a New Clp Family in Gram-Positive Bacteria. — J. Bacteriol., 181, 2075-2083.

INOUE, K., WADA, Y., NISHIMURA, M. & HARA-NISHIMURA, I. (1997). Heterologous Expression and Subcellular Localization of Pumpkin Seed Tonoplast Intrinsic Proteins (TIP) in Yeast Cells. — Plant Cell Physiol., 38, 366-370.

ISHIHAMA, Y., ODA, Y., TABATA, T., SATO, T., NAGASU, T., RAPPSILBER, J. & MANN, M. (2005). Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein. — Mol. Cell. Proteomics, 4, 1265-1272.

-J- JACINTO, E. & LORBERG, A. (2008). TOR regulation of AGC kinases in yeast and mammals. — Biochem. J., 410, 19-

37. JOBIN, M. P., GARMYN, D., DIVIES, C. & GUZZO, J. (1999). Expression of the Oenococcus oeni trxA gene is induced by

hydrogen peroxide and heat shock. — Microbiology, 145, 1245-51.

120

Page 8: QUANTITATIVE PROTEOMICS OF SACCHAROMYCES CEREVISIAE ... · References BREITLING, R. & HERZYK, P. (2005).Rank-based methods as a non-parametric alternative of the T-statistic for the

References

JONES, E. W., ZUBENKO, G. S. & PARKER, R. R. (1982). PEP4 gene function is required for expression of several vacuolar hydrolases in Saccharomyces cerevisiae. — Genetics, 102, 665-77.

JORGENSEN, P., NISHIKAWA, J. L., BREITKREUTZ, B.-J. & TYERS, M. (2002). Systematic Identification of Pathways That Couple Cell Growth and Division in Yeast. — Science, 297, 395-400.

-K- KAKINUMA, Y., MASUDA, N. & IGARASHI, K. (1992). Proton potential-dependent polyamine transport by vacuolar

membrane vesicles of Saccharomyces cerevisiae. — Biochim. Biophys. Acta., 1107, 126-30. KAKINUMA, Y., OHSUMI, Y. & ANRAKU, Y. (1981). Properties of H+-translocating adenosine triphosphatase in vacuolar

membranes of Saccharomyces cerevisiae. — J. Biol. Chem., 256, 10859-63. KAPP, E. A., SCHUTZ, F., CONNOLLY, L. M., CHAKEL, J. A., MEZA, J. E., MILLER, C. A., FENYO, D., ENG, J. K., ADKINS, J. N.,

OMENN, G. S. & SIMPSON, R. J. (2005). An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: sensitivity and specificity analysis. — Proteomics, 5, 3475-90.

KARIMI, R., PAVLOV, M. Y., HEURGUE-HAMARD, V., BUCKINGHAM, R. H. & EHRENBERG, M. (1998). Initiation factors IF1 and IF2 synergistically remove peptidyl-tRNAs with short polypeptides from the P-site of translating Escherichia coli ribosomes. — J. Mol. Biol., 281, 241-52.

KELLER, A., NESVIZHSKII, A. I., KOLKER, E. & AEBERSOLD, R. (2002). Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. — Anal. Chem., 74, 5383-92.

KEREM, B., ROMMENS, J. M., BUCHANAN, J. A., MARKIEWICZ, D., COX, T. K., CHAKRAVARTI, A., BUCHWALD, M. & TSUI, L. C. (1989). Identification of the cystic fibrosis gene: genetic analysis. — Science, 245, 1073-1080.

KIM, I., RODRIGUEZ-ENRIQUEZ, S. & LEMASTERS, J. J. (2007). Selective degradation of mitochondria by mitophagy. — Arch. Biochem. Biophys., 462, 245-253.

KIM, S., AYYADURAI, N., HEO, M., PARK, S., JEONG, Y. & LEE, S. (2009). Improving the Productivity of Recombinant Protein in Escherichia coli Under Thermal Stress by Coexpressing GroELS Chaperone System. — J. Microbiol. Biotechnol., 19, 72-77.

KIM, S., SCHILKE, B., CRAIG, E. A. & HORWICH, A. L. (1998). Folding in vivo of a newly translated yeast cytosolic enzyme is mediated by the SSA class of cytosolic yeast Hsp70 proteins. — Proc. Natl. Acad. Sci. U. S. A., 95, 12860-12865.

KIPPER, J., STRAMBIO-DE-CASTILLIA, C., SUPRAPTO, A., ROUT, M. P. & CHRISTINE GUTHRIE AND GERALD, R. F. (2002). Isolation of nuclear envelope from Saccharomyces cerevisiae. — In: Methods Enzymol., Academic Press, p. 394-408.

KLIS, F. M. (1994). Review: cell wall assembly in yeast. — Yeast, 10, 851-69. KOLAJ, O., SPADA, S., ROBIN, S. & WALL, J. G. (2009). Use of folding modulators to improve heterologous protein

production in Escherichia coli. — Microb. Cell Fact., 8, 9-25. KOSSEL, H. & RAJBHANDARY, U. L. (1968). Studies on polynucleotides. LXXXVI. Enzymic hydrolysis of N-

acylaminoacyl-transfer RNA. — J. Mol. Biol., 35, 539-60. KROGH, A., LARSSON, B., VON HEIJNE, G. & SONNHAMMER, E. L. (2001). Predicting transmembrane protein topology with

a hidden Markov model: application to complete genomes. — J. Mol. Biol., 305, 567-80. KUCHLER, K., DAUM, G. & PALTAUF, F. (1986). Subcellular and submitochondrial localization of phospholipid-

synthesizing enzymes in Saccharomyces cerevisiae. — J. Bacteriol., 165, 901-10. KUHN, E., WU, J., KARL, J., LIAO, H., ZOLG, W. & GUILD, B. (2004). Quantification of C-reactive protein in the serum of

patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C-labeled peptide standards. — Proteomics, 4, 1175-1186.

KUMAR, A., AGARWAL, S., HEYMAN, J. A., MATSON, S., HEIDTMAN, M., PICCIRILLO, S., UMANSKY, L., DRAWID, A., JANSEN, R., LIU, Y., CHEUNG, K. H., MILLER, P., GERSTEIN, M., ROEDER, G. S. & SNYDER, M. (2002). Subcellular localization of the yeast proteome. — Genes Dev., 16, 707-19.

KUNJI, E. R., CHAN, K. W., SLOTBOOM, D. J., FLOYD, S., O'CONNOR, R. & MONNE, M. (2005). Eukaryotic membrane protein overproduction in Lactococcus lactis. — Curr. Opin. Biotechnol., 16, 546-51.

KUNJI, E. R., SLOTBOOM, D. J. & POOLMAN, B. (2003). Lactococcus lactis as host for overproduction of functional membrane proteins. — Biochim. Biophys. Acta., 1610, 97-108.

KUNZ, J., SCHNEIDER, U., HOWALD, I., SCHMIDT, A. & HALL, M. N. (2000). HEAT Repeats Mediate Plasma Membrane Localization of Tor2p in Yeast. — J. Biol. Chem., 275, 37011-37020.

KVAM, E. & GOLDFARB, D. S. (2006). Nucleus-vacuole junctions in yeast: anatomy of a membrane contact site. — Biochem. Soc. Trans., 34, 340-342.

KWEON, Y., ROTHE, A., CONIBEAR, E. & STEVENS, T. H. (2003). Ykt6p Is a Multifunctional Yeast R-SNARE That Is Required for Multiple Membrane Transport Pathways to the Vacuole. — Mol. Biol. Cell, 14, 1868-1881.

-L- LAWSON, J. E. & DOUGLAS, M. G. (1988). Separate genes encode functionally equivalent ADP/ATP carrier proteins in

Saccharomyces cerevisiae. Isolation and analysis of AAC2. — J. Biol. Chem., 263, 14812-14818. LEBER, R., ZINSER, E., ZELLNIG, G., PALTAUF, F. & DAUM, G. (1994). Characterization of lipid particles of the yeast,

Saccharomyces cerevisiae. — Yeast, 10, 1421-1428. LESAGE, G. & BUSSEY, H. (2006). Cell Wall Assembly in Saccharomyces cerevisiae. — Microbiol. Mol. Biol. Rev., 70,

317-343. LEWIS, M. J. & PELHAM, H. R. B. (2002). A New Yeast Endosomal SNARE Related to Mammalian Syntaxin 8. — Traffic,

3, 922-929. LINK, A. J., ENG, J., SCHIELTZ, D. M., CARMACK, E., MIZE, G. J., MORRIS, D. R., GARVIK, B. M. & YATES, J. R., 3RD. (1999).

Direct analysis of protein complexes using mass spectrometry. — Nat. Biotechnol., 17, 676-82.

121

Page 9: QUANTITATIVE PROTEOMICS OF SACCHAROMYCES CEREVISIAE ... · References BREITLING, R. & HERZYK, P. (2005).Rank-based methods as a non-parametric alternative of the T-statistic for the

References

LINK, A. J., SKRETAS, G., STRAUCH, E. M., CHARI, N. S. & GEORGIOU, G. (2008). Efficient production of membrane-integrated and detergent-soluble G protein-coupled receptors in Escherichia coli. — Protein Sci., 17, 1857-63.

LIU, H., SADYGOV, R. G. & YATES, J. R. (2004). A Model for Random Sampling and Estimation of Relative Protein Abundance in Shotgun Proteomics. — Anal. Chem., 76, 4193-4201.

LUERS, G. H., HARTIG, R., MOHR, H., HAUSMANN, M., FAHIMI, H. D., CREMER, C. & VOLKL, A. (1998). Immuno-isolation of highly purified peroxisomes using magnetic beads and continuous immunomagnetic sorting. — Electrophoresis, 19, 1205-10.

LUIRINK, J., SAMUELSSON, T. & DE GIER, J. W. (2001). YidC/Oxa1p/Alb3: evolutionarily conserved mediators of membrane protein assembly. — FEBS Lett., 501, 1-5.

LUIRINK, J., VON HEIJNE, G., HOUBEN, E. & DE GIER, J.-W. (2005). Biogenesis of Inner Membrane Proteins in Escherichia coli. — Annu. Rev. Microbiol., 59, 329-355.

LUPASHIN, V. V., HAMAMOTO, S. & SCHEKMAN, R. W. (1996). Biochemical requirements for the targeting and fusion of ER-derived transport vesicles with purified yeast Golgi membranes. — J. Cell Biol., 132, 277-289.

-M- MACDIARMID, C. W., GAITHER, L. A. & EIDE, D. (2000). Zinc transporters that regulate vacuolar zinc storage in

Saccharomyces cerevisiae. — EMBO J., 19, 2845-55. MANN, M. & WILM, M. (1994). Error-tolerant identification of peptides in sequence databases by peptide sequence

tags. — Anal. Chem., 66, 4390-9. MARELLI, M., SMITH, J. J., JUNG, S., YI, E., NESVIZHSKII, A. I., CHRISTMAS, R. H., SALEEM, R. A., TAM, Y. Y., FAGARASANU,

A., GOODLETT, D. R., AEBERSOLD, R., RACHUBINSKI, R. A. & AITCHISON, J. D. (2004). Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane. — J. Cell Biol., 167, 1099-112.

MARTINEZ, B., ZOMER, A. L., RODRIGUEZ, A., KOK, J. & KUIPERS, O. P. (2007). Cell envelope stress induced by the bacteriocin Lcn972 is sensed by the Lactococcal two-component system CesSR. — Mol. Microbiol., 64, 473-86.

MATILE, P. & WIEMKEN, A. (1967). The vacuole as the lysosome of the yeast cell. — Arch. Mikrobiol., 56, 148-55. MAYER, A. & WICKNER, W. (1997). Docking of Yeast Vacuoles Is Catalyzed by the Ras-like GTPase Ypt7p after

Symmetric Priming by Sec18p (NSF). — J. Cell Biol., 136, 307-317. MAYER, A., WICKNER, W. & HAAS, A. (1996). Sec18p (NSF)-driven release of Sec17p (α-SNAP) can precede docking

and fusion of yeast vacuoles. — Cell, 85, 83-94. MCCAMMON, M. T., VEENHUIS, M., TRAPP, S. B. & GOODMAN, J. M. (1990). Association of glyoxylate and ß-oxidation

enzymes with peroxisomes of Saccharomyces cerevisiae. — J. Bacteriol., 172, 5816-5827. MEISINGER, C., SOMMER, T. & PFANNER, N. (2000). Purification of Saccharomcyes cerevisiae Mitochondria Devoid of

Microsomal and Cytosolic Contaminations. — Anal. Biochem., 287, 339-342. MENENDEZ, A., LARSSON, C. & UGALDE, U. (1995). Purification of functionally sealed cytoplasmic side-out plasma

membrane vesicles from Saccharomyces cerevisiae. — Anal. Biochem., 230, 308-14. MENNINGER, J. R. (1979). Accumulation of peptidyl tRNA is lethal to Escherichia coli. — J. Bacteriol., 137, 694-6. MENNINGER, J. R., CAPLAN, A. B., GINGRICH, P. K. & ATHERLY, A. G. (1983). Tests of the ribosome editor hypothesis. II.

Relaxed (relA) and stringent (relA+) E. coli differ in rates of dissociation of peptidyl-tRNA from ribosomes. — Mol. Gen. Genet., 190, 215-21.

MESECKE, N., SPANG, A., DEPONTE, M. & HERRMANN, J. M. (2008). A Novel Group of Glutaredoxins in the cis-Golgi Critical for Oxidative Stress Resistance. — Mol. Biol. Cell, E07-09-0896.

MEYER, J. & MATILE, P. H. (1975). Subcellular distribution of yeast invertase isoenzymes. — Arch. Microbiol., 103, 51-5.

MILLER, J. P., LO, R. S., BEN-HUR, A., DESMARAIS, C., STAGLJAR, I., NOBLE, W. S. & FIELDS, S. (2005). Large-scale identification of yeast integral membrane protein interactions. — Proc. Natl. Acad. Sci. U. S. A., 102, 12123-12128.

MIYOSHI, A., ROCHAT, T., GRATADOUX, J.-J., LE LOIR, Y., OLIVEIRA, S. C., LANGELLA, P. & AZEVEDO, V. (2003). Oxidative stress in Lactococcus lactis. — Genet. Mol. Res., 2, 348-359.

MOELLER, C. H. & THOMSON, W. W. (1979). Uptake of lipid bodies by the yeast vacuole involving areas of the tonoplast depleted of intramembranous particles. — J. Ultrastruct. Res., 68, 38-45.

MOGK, A., VOLKER, A., ENGELMANN, S., HECKER, M., SCHUMANN, W. & VOLKER, U. (1998). Nonnative Proteins Induce Expression of the Bacillus subtilis CIRCE Regulon. — J. Bacteriol., 180, 2895-2900.

MONNE, M., CHAN, K. W., SLOTBOOM, D. J. & KUNJI, E. R. (2005). Functional expression of eukaryotic membrane proteins in Lactococcus lactis. — Protein Sci., 14, 3048-56.

MONNE, M., ROBINSON, A. J., BOES, C., HARBOUR, M. E., FEARNLEY, I. M. & KUNJI, E. R. (2007). The mimivirus genome encodes a mitochondrial carrier that transports dATP and dTTP. — J. Virol., 81, 3181-6.

MOSLEY, A. L., FLORENS, L., WEN, Z. & WASHBURN, M. P. (2009). A label free quantitative proteomic analysis of the Saccharomyces cerevisiae nucleus. — J. Proteomics, 72, 110-120.

MUMBERG, D., MULLER, R. & FUNK, M. (1994). Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. . — Nucleic Acids Res., 22, 5767-5768.

-N- NAGY, M. (1979). Studies on purine transport and on purine content in vacuoles isolated from Saccharomyces

cerevisiae. — Biochim. Biophys. Acta., 558, 221-232. NAVARRE, C., DEGAND, H., BENNETT, K. L., CRAWFORD, J. S., MØRTZ, E. & BOUTRY, M. (2002). Subproteomics:

Identification of plasma membrane proteins from the yeast Saccharomyces cerevisiae. — Proteomics, 2, 1706-1714.

122

Page 10: QUANTITATIVE PROTEOMICS OF SACCHAROMYCES CEREVISIAE ... · References BREITLING, R. & HERZYK, P. (2005).Rank-based methods as a non-parametric alternative of the T-statistic for the

References

NESVIZHSKII, A. I., KELLER, A., KOLKER, E. & AEBERSOLD, R. (2003). A statistical model for identifying proteins by tandem mass spectrometry. — Anal. Chem., 75, 4646-58.

NIEDENTHAL, R. K., RILES, L., JOHNSTON, M. & HEGEMANN, J. H. (1996). Green Fluorescent Protein As a Marker For Gene Expression and Subcellular Localization in Budding Yeast. — Yeast, 12, 773-786.

NIELSEN, H., ENGELBRECHT, J., BRUNAK, S. & VON HEIJNE, G. (1997). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. — Protein Eng., 10, 1-6.

NISHIMURA, A., MORITA, M., NISHIMURA, Y. & SUGINO, Y. (1990). A rapid and highly efficient method for preparation of competent Escherichia coli cells. — Nucleic Acids Res., 18, 6169.

NOVICK, P., FERRO, S. & SCHEKMAN, R. (1981). Order of events in the yeast secretory pathway. — Cell, 25, 461-469. NOVICK, P., FIELD, C. & SCHEKMAN, R. (1980). Identification of 23 complementation groups required for post-

translational events in the yeast secretory pathway. — Cell, 21, 205-215. NURMINEN, T., TASKINEN, L. & SUOMALAINEN, H. (1976). Distribution of membranes, especially of plasma-membrane

fragments, during zonal centrifugations of homogenates from glucose-repressed Saccharomyces cerevisiae. — Biochem. J., 154, 751-63.

-O- OHLMEIER, S., KASTANIOTIS, A. J., HILTUNEN, J. K. & BERGMANN, U. (2004). The Yeast Mitochondrial Proteome, a Study

of Fermentative and Respiratory Growth. — J. Biol. Chem., 279, 3956-3979. OHSUMI, Y. & ANRAKU, Y. (1981). Active transport of basic amino acids driven by a proton motive force in vacuolar

membrane vesicles of Saccharomyces cerevisiae. — J. Biol. Chem., 256, 2079-82. ONG, S.-E. & MANN, M. (2005). Mass spectrometry-based proteomics turns quantitative. — Nat. Chem. Biol., 1, 252-

262. ONG, S. E., BLAGOEV, B., KRATCHMAROVA, I., KRISTENSEN, D. B., STEEN, H., PANDEY, A. & MANN, M. (2002). Stable

isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. — Mol. Cell. Proteomics, 1, 376-86.

OW, S. Y., SALIM, M., NOIREL, J., EVANS, C., REHMAN, I. & WRIGHT, P. C. (2002). iTRAQ underestimation in sample and complex mixtures: :the good, the bad and the ugly: — J. Proteome Res., 8, 5347-55.

-P- PANG, J. X., GINANNI, N., DONGRE, A. R., HEFTA, S. A. & OPITECK, G. J. (2002). Biomarker Discovery in Urine by

Proteomics. — J. Proteome Res., 1, 161-169. PAPANIKOU, E. & GLICK, B. S. (2009). The yeast Golgi apparatus: Insights and mysteries. — FEBS Lett., 583, 3746-

3751. PEPLOWSKA, K., MARKGRAF, D. F., OSTROWICZ, C. W., BANGE, G. & UNGERMANN, C. (2007). The CORVET tethering

complex interacts with the yeast Rab5 homolog Vps21 and is involved in endo-lysosomal biogenesis. — Dev. Cell, 12, 739-50.

PERKINS, D. N., PAPPIN, D. J., CREASY, D. M. & COTTRELL, J. S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. — Electrophoresis, 20, 3551-67.

PERKTOLD, A., ZECHMANN, B., DAUM, G. & ZELLNIG, G. (2007). Organelle association visualized by three-dimensional ultrastructural imaging of the yeast cell. — FEMS Yeast Res., 7, 629-638.

PFLIEGER, D., LE CAER, J. P., LEMAIRE, C., BERNARD, B. A., DUJARDIN, G. & ROSSIER, J. (2002). Systematic identification of mitochondrial proteins by LC-MS/MS. — Anal. Chem., 74, 2400-6.

PICOTTI, P., RINNER, O., STALLMACH, R., DAUTEL, F., FARRAH, T., DOMON, B., WENSCHUH, H. & AEBERSOLD, R. (2010). High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. — Nat. Methods, 7, 43-6.

PREUSS, D., MULHOLLAND, J., FRANZUSOFF, A., SEGEV, N. & BOTSTEIN, D. (1992). Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. — Mol. Biol. Cell, 3, 789-803.

PREUSS, D., MULHOLLAND, J., KAISER, C. A., ORLEAN, P., ALBRIGHT, C., ROSE, M. D., ROBBINS, P. W. & BOTSTEIN, D. (1991). Structure of the yeast endoplasmic reticulum: localization of ER proteins using immunofluorescence and immunoelectron microscopy. — Yeast, 7, 891-911.

PRIETO-ALAMO, M. J., JURADO, J., GALLARDO-MADUENO, R., MONJE-CASAS, F., HOLMGREN, A. & PUEYO, C. (2000). Transcriptional regulation of glutaredoxin and thioredoxin pathways and related enzymes in response to oxidative stress. — J. Biol. Chem., 275, 13398-405.

PROKISCH, H., SCHARFE, C., CAMP, D. N., XIAO, W., DAVID, L., ANDREOLI, C., MONROE, M., MOORE, R., GRITSENKO, M., KOZANY, C., HIXSON, K., MOTTAZ, H., ZISCHKA, H., UEFFING, M., HERMAN, Z., DAVIS, R., MEITINGER, T., OEFNER, P., SMITH, R. & STEINMETZ, L. (2004). Integrative analysis of the mitochondrial proteome in yeast. — PLoS Biol., 2, e160.

-Q- QUICK, M. & JAVITCH, J. A. (2007). Monitoring the function of membrane transport proteins in detergent-solubilized

form. — Proc. Natl. Acad. Sci. U. S. A., 104, 3603-8.

-R- RAO, A. R. & VARSHNEY, U. (2001). Specific interaction between the ribosome recycling factor and the elongation

factor G from Mycobacterium tuberculosis mediates peptidyl-tRNA release and ribosome recycling in Escherichia coli. — EMBO J., 20, 2977-86.

123

Page 11: QUANTITATIVE PROTEOMICS OF SACCHAROMYCES CEREVISIAE ... · References BREITLING, R. & HERZYK, P. (2005).Rank-based methods as a non-parametric alternative of the T-statistic for the

References

RAPPSILBER, J., RYDER, U., LAMOND, A. I. & MANN, M. (2002). Large-Scale Proteomic Analysis of the Human Spliceosome. — Genome Res., 12, 1231-1245.

REINDERS, J., ZAHEDI, R. P., PFANNER, N., MEISINGER, C. & SICKMANN, A. (2006). Toward the Complete Yeast Mitochondrial Proteome: Multidimensional Separation Techniques for Mitochondrial Proteomics. — J. Proteome Res., 5, 1543-1554.

RIORDAN, J. R., ROMMENS, J. M., KEREM, B., ALON, N., ROZMAHEL, R., GRZELCZAK, Z., ZIELENSKI, J., LOK, S., PLAVSIC, N., CHOU, J. L. & ET AL. (1989). Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. — Science, 245, 1066-73.

ROBERTS, C. J., RAYMOND, C. K., YAMASHIRO, C. T. & STEVENS, T. H. (1991). Methods for studying the yeast vacuole. — Methods Enzymol., 194, 644-61.

ROBERTS, P., MOSHITCH-MOSHKOVITZ, S., KVAM, E., O'TOOLE, E., WINEY, M. & GOLDFARB, D. S. (2003). Piecemeal Microautophagy of Nucleus in Saccharomyces cerevisiae. — Mol. Cell. Biol., 14, 129-141.

ROCES, C., CAMPELO, A. B., VEIGA, P., PINTO, J. P., RODRIGUEZ, A. & MARTINEZ, B. (2009). Contribution of the CesR-regulated genes llmg0169 and llmg2164-2163 to Lactococcus lactis fitness. — Int. J. Food Microbiol., 133, 279-85.

ROMMENS, J. M., IANNUZZI, M. C., KEREM, B., DRUMM, M. L., MELMER, G., DEAN, M., ROZMAHEL, R., COLE, J. L., KENNEDY, D., HIDAKA, N. & AL, E. (1989). Identification of the cystic fibrosis gene: chromosome walking and jumping. — Science, 245, 1059-1065.

ROTIN, D., STAUB, O. & HAGUENAUER-TSAPIS, R. (2000). Ubiquitination and endocytosis of plasma membrane proteins: role of Nedd4/Rsp5p family of ubiquitin-protein ligases. — J. Membr. Biol., 176, 1-17.

ROUT, M. P., AITCHISON, J. D., SUPRAPTO, A., HJERTAAS, K., ZHAO, Y. & CHAIT, B. T. (2000). The Yeast Nuclear Pore Complex: Composition, Architecture, and Transport Mechanism. — J. Cell Biol., 148, 635-652.

RUSSNAK, R., KONCZAL, D. & MCINTIRE, S. L. (2001). A Family of Yeast Proteins Mediating Bidirectional Vacuolar Amino Acid Transport. — J. Biol. Chem., 276, 23849-23857.

-S- SADOWSKI, P. G., DUNKLEY, T. P., SHADFORTH, I. P., DUPREE, P., BESSANT, C., GRIFFIN, J. L. & LILLEY, K. S. (2006).

Quantitative proteomic approach to study subcellular localization of membrane proteins. — Nat. Protoc., 1, 1778-89.

SADYGOV, R. G., COCIORVA, D. & YATES, J. R., 3RD. (2004). Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book. — Nat. Methods, 1, 195-202.

SAKAI, Y., KOLLER, A., RANGELL, L. K., KELLER, G. A. & SUBRAMANI, S. (1998). Peroxisome Degradation by Microautophagy in Pichia pastoris: Identification of Specific Steps and Morphological Intermediates. — J. Cell Biol., 141, 625-636.

SANDERSON, C. M. & MEYER, D. I. (1991). Purification and functional characterization of membranes derived from the rough endoplasmic reticulum of Saccharomyces cerevisiae. — J. Biol. Chem., 266, 13423-13430.

SARRY, J. E., CHEN, S., COLLUM, R. P., LIANG, S., PENG, M., LANG, A., NAUMANN, B., DZIERSZINSKI, F., YUAN, C. X., HIPPLER, M. & REA, P. A. (2007). Analysis of the vacuolar luminal proteome of Saccharomyces cerevisiae. — FEBS J., 274, 4287-305.

SATTLER, T. & MAYER, A. (2000). Cell-free Reconstitution of Microautophagic Vacuole Invagination and Vesicle Formation. — J. Cell Biol., 151, 529-538.

SATYANARAYANA, C., SCHRÖDER-KÖHNE, S., CRAIG, E. A., SCHU, P. V. & HORST, M. (2000). Cytosolic Hsp70s are involved in the transport of aminopeptidase 1 from the cytoplasm into the vacuole. — FEBS Lett., 470, 232-238.

SCHÄFER, H., NAU, K., SICKMANN, A., ERDMANN, R. & MEYER, H. E. (2001). Identification of peroxisomal membrane proteins of Saccharomyces cerevisiae by mass spectrometry. — Electrophoresis, 22, 2955-2968.

SCHIBECI, A., RATTRAY, J. B. M. & KIDBY, D. K. (1973). Isolation and identification of yeast plasma membrane. — Biochim. Biophys. Acta., 311, 15-25.

SCHIRMER, E. C., FLORENS, L., GUAN, T., YATES, J. R., III & GERACE, L. (2003). Nuclear Membrane Proteins with Potential Disease Links Found by Subtractive Proteomics. — Science, 301, 1380-1382.

SCHMIDT, F., KRAH, A., SCHMID, M., JUNGBLUT, P. R. & THIEDE, B. (2006). Distinctive mass losses of tryptic peptides generated by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight. — Rapid Commun. Mass Spectrom., 20, 933-6.

SCHNAITMAN, C. & GREENAWALT, J. W. (1968). Enzymatic properties of the inner and outer membranes of rat liver mitochondria. — J. Cell Biol., 38, 158-75.

SCHUMANN, U. & SUBRAMANI, S. (2008). Special delivery from mitochondria to peroxisomes. — Trends Cell Biol., 18, 253-256.

SCHWENCKE, J. & DE ROBICHON-SZULMAJSTER, H. (1976). The transport of S-adenosyl-L-methionine in isolated yeast vacuoles and spheroplasts. — Eur. J. Biochem., 65, 49-60.

SERRANO, R., MONTESINOS, C., ROLDÁN, M., GARRIDO, G., FERGUSON, C., LEONARD, K., MONK, B. C., PERLIN, D. S. & WEILER, E. W. (1991). Domains of yeast plasma membrane and ATPase-associated glycoprotein. — Biochim. Biophys. Acta., 1062, 157-164.

SHILOV, I. V., SEYMOUR, S. L., PATEL, A. A., LOBODA, A., TANG, W. H., KEATING, S. P., HUNTER, C. L., NUWAYSIR, L. M. & SCHAEFFER, D. A. (2007). The Paragon Algorithm, a Next Generation Search Engine That Uses Sequence Temperature Values and Feature Probabilities to Identify Peptides from Tandem Mass Spectra. — Mol. Cell. Proteomics, 6, 1638-1655.

SHIRAHAMA, K., YAZAKI, Y., SAKANO, K., WADA, Y. & OHSUMI, Y. (1996). Vacuolar Function in the Phosphate Homeostasis of the Yeast Saccharomyces cerevisiae. — Plant Cell Physiol., 37, 1090-1093.

124

Page 12: QUANTITATIVE PROTEOMICS OF SACCHAROMYCES CEREVISIAE ... · References BREITLING, R. & HERZYK, P. (2005).Rank-based methods as a non-parametric alternative of the T-statistic for the

References

SICKMANN, A., REINDERS, J., WAGNER, Y., JOPPICH, C., ZAHEDI, R., MEYER, H. E., SCHONFISCH, B., PERSCHIL, I., CHACINSKA, A., GUIARD, B., REHLING, P., PFANNER, N. & MEISINGER, C. (2003). The proteome of Saccharomyces cerevisiae mitochondria. — Proc. Natl. Acad. Sci. U. S. A., 100, 13207-13212.

SINGER-KRUGER, B., FRANK, R., CRAUSAZ, F. & RIEZMAN, H. (1993). Partial purification and characterization of early and late endosomes from yeast. Identification of four novel proteins. — J. Biol. Chem., 268, 14376-14386.

SINGH, N. S. & VARSHNEY, U. (2004). A physiological connection between tmRNA and peptidyl-tRNA hydrolase functions in Escherichia coli. — Nucleic Acids Res., 32, 6028-6037.

SKRETAS, G. & GEORGIOU, G. (2009). Genetic analysis of G protein-coupled receptor expression in Escherichia coli: inhibitory role of DnaJ on the membrane integration of the human central cannabinoid receptor. — Biotechnol. Bioeng., 102, 357-67.

SONNHAMMER, E. L. L., VON HEIJNE, G. & KROGH, A. (1998). A hidden Markov model for predicting transmembrane helices in protein sequences. — Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology, 175-182.

SPEERS, A. E. & WU, C. C. (2007). Proteomics of Integral Membrane Proteins-Theory and Application. — Chem. Rev., 107, 3687-3714.

SPRINGAEL, J.-Y. & ANDRE, B. (1998). Nitrogen-regulated Ubiquitination of the Gap1 Permease of Saccharomyces cerevisiae. — Mol. Biol. Cell, 9, 1253-1263.

STRAMBIO-DE-CASTILLIA, C., BLOBEL, G. & ROUT, M. (1995). Isolation and characterization of nuclear envelopes from the yeast Saccharomyces. — J. Cell Biol., 131, 19-31.

STRIMMER, K. (2008). fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. — Bioinformatics, 24, 1461-2.

SURADE, S., KLEIN, M., STOLT-BERGNER, P. C., MUENKE, C., ROY, A. & MICHEL, H. (2006). Comparative analysis and "expression space" coverage of the production of prokaryotic membrane proteins for structural genomics. — Protein Sci., 15, 2178-89.

SVOBODA, A. & NECAS, O. (1987). Ultrastructure of Saccharomyces cerevisiae cells accumulating Golgi organelles. — J. Basic Microbiol., 27, 603-12.

SWIDA, U., KREUTZFELDT, C., RAMEZANI-RAD, M. & KÄUFER, N. (1982). Isolation and characterisation of rough and smooth endoplasmic reticulum from Saccharomyces cerevisiae. — FEMS Microbiol. Lett., 15, 313-318.

-T- TARASSOV, K., MESSIER, V., LANDRY, C. R., RADINOVIC, S., MOLINA, M. M. S., SHAMES, I., MALITSKAYA, Y., VOGEL, J.,

BUSSEY, H. & MICHNICK, S. W. (2008). An in Vivo Map of the Yeast Protein Interactome. — Science, 320, 1465-1470.

TATE, C. G. & GRISSHAMMER, R. (1996). Heterologous expression of G-protein-coupled receptors. — Trends Biotechnol., 14, 426-30.

TATE, C. G., HAASE, J., BAKER, C., BOORSMA, M., MAGNANI, F., VALLIS, Y. & WILLIAMS, D. C. (2003). Comparison of seven different heterologous protein expression systems for the production of the serotonin transporter. — Biochim. Biophys. Acta., 1610, 141-53.

THIERINGER, R., SHIO, H., HAN, Y. S., COHEN, G. & LAZAROW, P. B. (1991). Peroxisomes in Saccharomyces cerevisiae: immunofluorescence analysis and import of catalase A into isolated peroxisomes. — Mol. Cell. Biol., 11, 510-522.

-U- UNGERMANN, C., VON MOLLARD, G. F., JENSEN, O. N., MARGOLIS, N., STEVENS, T. H. & WICKNER, W. (1999). Three v-

SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion. — J. Cell Biol., 145, 1435-42.

URBANUS, M. L., SCOTTI, P. A., FRODERBERG, L., SAAF, A., DE GIER, J. W., BRUNNER, J., SAMUELSON, J. C., DALBEY, R. E., OUDEGA, B. & LUIRINK, J. (2001). Sec-dependent membrane protein insertion: sequential interaction of nascent FtsQ with SecY and YidC. — EMBO Rep., 2, 524-9.

URECH, K., DURR, M., BOLLER, T., WIEMKEN, A. & SCHWENCKE, J. (1978). Localization of polyphosphate in vacuoles of Saccharomyces cerevisiae. — Arch. Microbiol., 116, 275-8.

UTTENWEILER, A., SCHWARZ, H., NEUMANN, H. & MAYER, A. (2007). The vacuolar transporter chaperone (VTC) complex is required for microautophagy. — Mol. Biol. Cell, 18, 166-75.

-V- VALENT, Q. A., SCOTTI, P. A., HIGH, S., DE GIER, J. W., VON HEIJNE, G., LENTZEN, G., WINTERMEYER, W., OUDEGA, B. &

LUIRINK, J. (1998). The Escherichia coli SRP and SecB targeting pathways converge at the translocon. — EMBO J., 17, 2504-12.

VAN DE GUCHTE, M., SERROR, P., CHERVAUX, C., SMOKVINA, T., EHRLICH, S. D. & MAGUIN, E. (2002). Stress responses in lactic acid bacteria. — Antonie Van Leeuwenhoek, 82, 187-216.

VAN ROERMUND, C. W. T., DRISSEN, R., VAN DEN BERG, M., IJLST, L., HETTEMA, E. H., TABAK, H. F., WATERHAM, H. R. & WANDERS, R. J. A. (2001). Identification of a Peroxisomal ATP Carrier Required for Medium-Chain Fatty Acid ß-Oxidation and Normal Peroxisome Proliferation in Saccharomyces cerevisiae. — Mol. Cell. Biol., 21, 4321-4329.

VAN STELTEN, J., SILVA, F., BELIN, D. & SILHAVY, T. J. (2009). Effects of antibiotics and a proto-oncogene homolog on destruction of protein translocator SecY. — Science, 325, 753-6.

VEENHUIS, M., MATEBLOWSKI, M., KUNAU, W. & HARDER, W. (1987). Proliferation of microbodies in Saccharomyces cerevisiae. — Yeast, 3, 77-84.

125

Page 13: QUANTITATIVE PROTEOMICS OF SACCHAROMYCES CEREVISIAE ... · References BREITLING, R. & HERZYK, P. (2005).Rank-based methods as a non-parametric alternative of the T-statistic for the

References

VICKERS, M. F., YAO, S. Y. M., BALDWIN, S. A., YOUNG, J. D. & CASS, C. E. (2000). Nucleoside Transporter Proteins of Saccharomyces cerevisiae. Demonstration of a transporter (FUI1) with high uridine selectivity in plasma membranes and a transporter (FUN26) with broad nucleoside selectivity in intracellular membranes. — J. Biol. Chem., 275, 25931-25938.

VIDA, T. A. & EMR, S. D. (1995). A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. — J. Cell Biol., 128, 779-792.

VIKLUND, H., BERNSEL, A., SKWARK, M. & ELOFSSON, A. (2008). SPOCTOPUS: a combined predictor of signal peptides and membrane protein topology. — Bioinformatics, 24, 2928-9.

VISSER, W., VAN SPRONSEN, E. A., NANNINGA, N., PRONK, J. T., GIJS KUENEN, J. & VAN DIJKEN, J. P. (1995). Effects of growth conditions on mitochondrial morphology in Saccharomyces cerevisiae. — Antonie Van Leeuwenhoek, 67, 243-53.

VOGEL, C. & MARCOTTE, E. M. (2008). Calculating absolute and relative protein abundance from mass spectrometry-based protein expression data. — Nat. Protocols, 3, 1444-1451.

-W- WAGNER, S., BAARS, L., YTTERBERG, A. J., KLUSSMEIER, A., WAGNER, C. S., NORD, O., NYGREN, P. A., VAN WIJK, K. J. &

DE GIER, J. W. (2007). Consequences of membrane protein overexpression in Escherichia coli. — Mol. Cell. Proteomics, 6, 1527-50.

WAGNER, S., KLEPSCH, M. M., SCHLEGEL, S., APPEL, A., DRAHEIM, R., TARRY, M., HOGBOM, M., VAN WIJK, K. J., SLOTBOOM, D. J., PERSSON, J. O. & DE GIER, J. W. (2008). Tuning Escherichia coli for membrane protein overexpression. — Proc. Natl. Acad. Sci. U. S. A., 105, 14371-6.

WALTER, H., BROOKS, D. E. & FISHER, D. (1985). Partitioning in Aqueous Two-Phase Systems: Theory, Methods, Uses and Applications to Biotechnology. — Academic Press, New York.

WANG, L., SEELEY, E. S., WICKNER, W. & MERZ, A. J. (2002). Vacuole Fusion at a Ring of Vertex Docking Sites Leaves Membrane Fragments within the Organelle. — Cell, 108, 357-369.

WELTEN-VERSTEGEN, G. W., BOER, P. & STEYN-PARVE, E. P. (1980). Lipid-mediated glycosylation of endogenous proteins in isolated plasma membrane of Saccharomyces cerevisiae. — J. Bacteriol., 141, 342-9.

WHITTERS, E. A., MCGEE, T. P. & BANKAITIS, V. A. (1994). Purification and characterization of a late Golgi compartment from Saccharomyces cerevisiae. — J. Biol. Chem., 269, 28106-28117.

WICHMANN, H., HENGST, L. & GALLWITZ, D. (1992). Endocytosis in yeast: Evidence for the involvement of a small GTP-binding protein (Ypt7p). — Cell, 71, 1131-1142.

WIEDERHOLD, E., GANDHI, T., PERMENTIER, H. P., BREITLING, R., POOLMAN, B. & SLOTBOOM, D. J. (2009). The yeast vacuolar membrane proteome. — Mol. Cell. Proteomics, 8, 380-392.

WIEMKEN, A. (1975). Isolation of vacuoles from yeasts. — Methods Cell Biol., 12, 99-109. WIEMKEN, A. & DURR, M. (1974). Characterization of amino acid pools in the vacuolar compartment of Saccharomyces

cerevisiae. — Arch. Microbiol., 101, 45-57. WIEMKEN, A., SCHELLENBERG, M. & URECH, K. (1979). Vacuoles: The sole compartments of digestive enzymes in yeast

(Saccharomyces cerevisiae)? — Arch. Microbiol., 123, 23-35. WIESE, S., GRONEMEYER, T., OFMAN, R., KUNZE, M., GROU, C. P., ALMEIDA, J. A., EISENACHER, M., STEPHAN, C., HAYEN,

H., SCHOLLENBERGER, L., KOROSEC, T., WATERHAM, H. R., SCHLIEBS, W., ERDMANN, R., BERGER, J., MEYER, H. E., JUST, W., AZEVEDO, J. E., WANDERS, R. J. A. & WARSCHEID, B. (2007). Proteomics Characterization of Mouse Kidney Peroxisomes by Tandem Mass Spectrometry and Protein Correlation Profiling. — Mol. Cell. Proteomics, 6, 2045-2057.

WOLFF, A., DIN, N. & PETERSEN, J. (1996). Vacuolar and extracellular maturation of Saccharomyces cerevisiae proteinase A. — Yeast, 12, 823-832.

WU, C. C., MACCOSS, M. J., HOWELL, K. E. & YATES, J. R., 3RD. (2003). A method for the comprehensive proteomic analysis of membrane proteins. — Nat. Biotechnol., 21, 532-8.

WU, C. C. & YATES, J. R., 3RD. (2003). The application of mass spectrometry to membrane proteomics. — Nat. Biotechnol., 21, 262-7.

-Y- YAN, W., HWANG, D. & AEBERSOLD, R. (2008). Quantitative Proteomic Analysis to Profile Dynamic Changes in the

Spatial Distribution of Cellular Proteins. — Methods Mol. Biol., 432, 389-401. YATES III, J. R., GILCHRIST, A., HOWELL, K. E. & BERGERON, J. J. M. (2005). Proteomics of organelles and large cellular

structures. — Nat. Rev. Mol. Cell Biol., 6, 702-714. YATES, J. R., 3RD. (1998). Database searching using mass spectrometry data. — Electrophoresis, 19, 893-900. YATES, J. R., 3RD, ENG, J. K., MCCORMACK, A. L. & SCHIELTZ, D. (1995). Method to correlate tandem mass spectra of

modified peptides to amino acid sequences in the protein database. — Anal. Chem., 67, 1426-36. YI, E. C., MARELLI, M., LEE, H., PURVINE, S. O., AEBERSOLD, R., AITCHISON, J. D. & GOODLETT, D. R. (2002). Approaching

complete peroxisome characterization by gas-phase fractionation. — Electrophoresis, 23, 3205-3216. YIN, Q. Y., DE GROOT, P. W., DEKKER, H. L., DE JONG, L., KLIS, F. M. & DE KOSTER, C. G. (2005). Comprehensive

proteomic analysis of Saccharomyces cerevisiae cell walls: identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. — J. Biol. Chem., 280, 20894-901.

-Z- ZAHEDI, R. P., SICKMANN, A., BOEHM, A. M., WINKLER, C., ZUFALL, N., SCHONFISCH, B., GUIARD, B., PFANNER, N. &

MEISINGER, C. (2006). Proteomic Analysis of the Yeast Mitochondrial Outer Membrane Reveals Accumulation of a Subclass of Preproteins. — Mol. Biol. Cell, 17, 1436-1450.

126

Page 14: QUANTITATIVE PROTEOMICS OF SACCHAROMYCES CEREVISIAE ... · References BREITLING, R. & HERZYK, P. (2005).Rank-based methods as a non-parametric alternative of the T-statistic for the

References

ZHANG, S., REN, J., LI, H., ZHANG, Q., ARMSTRONG, J. S., MUNN, A. L. & YANG, H. (2004). Ncr1p, the Yeast Ortholog of Mammalian Niemann Pick C1 Protein, is Dispensable for Endocytic Transport. — Traffic, 5, 1017-1030.

ZHANG, T. & HONG, W. (2001). Ykt6 Forms a SNARE Complex with Syntaxin 5, GS28, and Bet1 and Participates in a Late Stage in Endoplasmic Reticulum-Golgi Transport. — J. Biol. Chem., 276, 27480-27487.

ZINSER, E., PALTAUF, F. & DAUM, G. (1993). Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism. — J. Bacteriol., 175, 2853-2858.

ZINSER, E., SPERKA-GOTTLIEB, C. D., FASCH, E. V., KOHLWEIN, S. D., PALTAUF, F. & DAUM, G. (1991). Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. — J. Bacteriol., 173, 2026-2034.

ZISCHKA, H., BRAUN, R. J., MARANTIDIS, E. P., BURINGER, D., BORNHOVD, C., HAUCK, S. M., DEMMER, O., GLOECKNER, C. J., REICHERT, A. S., MADEO, F. & UEFFING, M. (2006). Differential Analysis of Saccharomyces cerevisiae Mitochondria by Free Flow Electrophoresis. — Mol. Cell. Proteomics, 5, 2185-2200.

ZLOTNIK, H., FERNANDEZ, M. P., BOWERS, B. & CABIB, E. (1984). Saccharomyces cerevisiae mannoproteins form an external cell wall layer that determines wall porosity. — J. Bacteriol., 159, 1018-1026.

ZWEERS, J. C., BARAK, I., BECHER, D., DRIESSEN, A. J., HECKER, M., KONTINEN, V. P., SALLER, M. J., VAVROVA, L. & VAN

DIJL, J. M. (2008). Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes. — Microb. Cell Fact., 7, 10.

ZWEERS, J. C., WIEGERT, T. & VAN DIJL, J. M. (2009). Stress-responsive systems set specific limits to the overproduction of membrane proteins in Bacillus subtilis. — Appl. Environ. Microbiol., 75, 7356-64.

127

Page 15: QUANTITATIVE PROTEOMICS OF SACCHAROMYCES CEREVISIAE ... · References BREITLING, R. & HERZYK, P. (2005).Rank-based methods as a non-parametric alternative of the T-statistic for the

References

128