35
Quantifying ETG Transport In Spherical Tokamaks With Flow Shear Walter Guttenfelder Aug. 28, 2009

Quantifying ETG Transport In Spherical Tokamaks With … Documents/2009_08... · Quantifying ETG Transport In Spherical Tokamaks With Flow Shear Walter Guttenfelder Aug. 28, 2009

Embed Size (px)

Citation preview

Quantifying ETG Transport In Spherical Tokamaks With Flow Shear

Walter Guttenfelder

Aug. 28, 2009

Overview

• Relevance of ETG to spherical tokamaks

• ST-like nonlinear gyrokinetic simulations (low aspect ratio, shaped, strong E×B shear)

• Convergence of simulations using kinetic ions & electrons with grid size, resolution and boundary conditions using GYRO (comparison with adiabatic ion model)

• Temperature profile predictions using a model transport expression derived from nonlinear simulations

Experimental Example: MAST Thermal Transport• Considering plasmas PNBI≤2 MW, n~3-5×1019 m-3, Te(0)~Ti(0)≤1.5 keV,

B~0.45-0.55 T• χi approaches neoclassical• χe anomalous, a few times electron

gyroBohm

0 0.2 0.4 0.6 0.8 10

5

10

15

r/a

Shot 8500

m2 /s

χi (exp)

χe (exp)

χi (NC)

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

Te (

keV

)

85008505

0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

r/a

χ e / (ρ

e2 v Te/L

Te)

8500

8505

Te

Te2eGB

e Lvρ

Field et al., IAEA 2004

E×B Shear Rates Strong Compared to Ion Scale Linear Growth Rates

• From [Kinsey et al., 2007], complete suppression expected at γE≈1⋅γlin,max for R/a=1.6, κ=1.5

LCFS,t

t0unit

unit

rE

rr

BB

BE

rq

rqr

ψψ

=ρ∂ρ∂ρ

=

⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

0 0.5 1 1.5 20

0.2

0.4

0.6

kθρ

i

Ti

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

r/a

γ e / (c

s/a)

8500

8505

17661

Experimental E×B shear rateLinear growth rates

γ/ (

c s/a

)

MAST mid-radius parametersUsing GYRO

ETG Is Potentially Relevant• One MAST prediction with TGLF works “well”, ion transport neoclassical

(large E×B shear), electron transport dominated by ETG• ETG model in TGLF calibrated by one non-linear gyrokinetic simulation

Staebler et al. IAEA 2009; Colyer Stutman et al., PRL 2009

Obviously can not account for flat profiles in core of high power discharges, but maybe the edge – when and where is ETG valid?

ETG?

NSTX

ST-ETG Modeling GoalsLinear stability

• Known linear dependence for low beta, modest shaping [Jenko et al. 2001]

• TGLF will hopefully capture modifications at high beta – benchmarking with GS2, GYRO, GKW is underway [motivated by Roach, EPS 2009]

Non-linear transport• Capture dominant scaling in non-linear transport• Validate (or recalibrate?) ETG model in TGLF

What are the dominant non-linear scalings?

( ) ⎟⎠⎞

⎜⎝⎛ κ+⋅ε−⋅⎟⎟

⎞⎜⎜⎝

⎛+⋅⎟⎟

⎞⎜⎜⎝

⎛+=⎟⎟

⎞⎜⎜⎝

⎛drdr3.015.11

qs91.133.1

TTZ1

LR

i

eeff

critTe

Interpreting Published Simulations Assuming a Critical Gradient Formulation

( )0.1

critTeTeTe

Te2e

e LR

LR

LvF ⎟

⎟⎠

⎞⎜⎜⎝

⎛−⋅⎟⎟

⎞⎜⎜⎝

⎛ ρ⋅⋅⋅⋅=χ

gyroBohm → local effects only

Non-lineareffects

( ) ⎟⎠⎞

⎜⎝⎛ κ+⋅ε−

×⎟⎟⎠

⎞⎜⎜⎝

⎛+⋅⎟⎟

⎞⎜⎜⎝

⎛+=⎟⎟

⎞⎜⎜⎝

drdr3.015.11

qs91.133.1

TTZ1

LR

i

eeff

critTe

Linear threshold scaling[Jenko et al. 2001]

Strong Dependence Of Nonlinear ETG Transport On Magnetic Shear Expected

• Interpreting three published sets of simulations assuming a critical gradient model

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−⋅⎟⎟

⎞⎜⎜⎝

⎛ ρ⋅⋅⋅⋅=χ

critTeTeTe

Te2e

e LR

LR

LvF

−1 0 1 2 30

2

4

6

8

10

( ),...sF

s0 0.2 0.4 0.6 0.8 1

−2

0

2

4

6

r/a

mag

netic

she

ar

8505

8500

17661

MAST experimental s

• Nearly all simulations at low safety factor (q=1.4) – want to expand (s,q) parameter space for STs with a consistent set of simulations

ETG Saturation Problems

• Convergence problem in ETG simulations using adiabatic ions for magnetic shear > 0.4 [Nevins et al., 2006]

Unphysical, monotonicspectra

Simulation Issues

• Convergence problem in ETG simulations using adiabatic ions for magnetic shear > 0.4

• Evidently kinetic ions (ETG-ki), strong E×B shear (ETG-ai-exb), or finite electron collisionality can provide long wavelength cut-off/physical saturation mechanism in the simulations[Nevins et al. 2006; Mikkelsen; Candy et al. 2007; Roach et al., 2009]

• Following simulations for MAST-like mid-radius parameters:R/a=1.6, r/a=0.5κ=1.5, δ=0.2q=1.4, s=0.8a/LT=3, a/Ln=1BUTβ=0 (electrostatic), ν=0

Kinetic ions and electrons (mi/me=3600)

Using GYRO but in the local limit(no n, T, ∇n, ∇T profile variation→no adaptive source)

E×B shear → Er profile, ωE(r)Non-periodic, fixed BCs

Ion Scale Transport Suppressed In Local Simulations With Experimental Level of E×B Shear

• Kinetic ions and electrons• 70ρi×70ρi box, 16/64 toroidal/radial modes, 128 velocity space

• Neither simulation well resolved → transport contributions at high kθ not falling off rapidly (or at all)

0 0.2 0.4 0.6 0.8 1 1.2 1.410

−2

10−1

100

101

kθρ

i

Δ(χ/

χGB

s ) / Δ

(kθρ i)

χi

χe

γE=0.9 c

s/a

0 200 400 600 800 1000 1200−2

0

2

4

6

8

10

t (a/cs)

χi (ρ

s2c

s/a)

χe (ρ

s2c

s/a)

γE=0.9 c

s/a

γE = 0.0 c

s/a

Fractional transport spectraγlin,max(kθρs≤1)≈0.3 cs/a ( ) ( )T

2 sink~k ϕθθ αϕχ

10−1

100

101

102

10−4

10−3

10−2

10−1

100

kθρ

i

Δ(χ/

χGB

s )With Reduced Box Size Spectrum Peak Recovered At

Electron Scales

• Transport peak occurs at kθρe≈0.15

−60 −40 −20 0 20 40 60

−0.2

0

0.2

0.4

0.6

0.8

1

Δ (ρe)

C(Δr)L

r≈24ρ

e

C(Δy)L

r≈9ρ

e

Density contours

Correlation functions

L=64→2ρi (120ρe)γE=0.9 cs/a

Fractional χe transport spectra

y (ρ

e)

60

0

6

0

4.1q8.0s

==

Increased Box Size Alone Does Not Lead To Convergence

• Toroidal/radial grid 16/64→128/512• Turbulence characteristics (spectra, correlation lengths) remain relatively

constant

−500 0 5000

0.05

0.1

0.15

0.2

0.25

r (ρe)

ρ s2 c s/a

0 20 40 60

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Δ (ρe)

C(Δr)L

r≈27−33ρ

e

C(Δy) L

y≈9−10ρ

e

Spatial correlation

FWHM

χe radial profile

Lx=Ly≈2-17ρi

Equilibrium Gradient Perturbations Are Significant• Even in local simulations (flat profiles, a/ρe=7500), perturbations grow

(δTe,n=0/Te~0.01) to cancel equilibrium driving gradients

• Need to optimize boundary regions for these electron scale simulations(new territory)

−600 −300 0 300 600−0.015

−0.01

−0.005

0

0.005

0.01

0.015

r (ρe)

L=4

L=16

−600 −300 0 300 6002

2.5

3

3.5

4

r (ρe)

(a/L

Te) to

tal

L=4

L=16

⟨Te,n=0⟩θ,t / Te,eq (a/LTe)total = (a/LTe)eq + ⟨a/LTe,n=0⟩θ,t

Treatment Of Simulation Boundary• Fixed boundaries lead to large variation at domain edges (e.g. ∇⋅q)• Damping n=0 components of distribution counteracts relaxation

−400 −200 0 200 4000

0.1

0.2

0.3

r (ρe)

ρ s2 c s/a

Δb=16ρe, νb=1 cs/aΔb=64ρe, νb=1 cs/aΔb=64ρe, νb=6,30 cs/aΔb=64ρe, νb=2 cs/a

0nM

buffer0n

0n FTZeh)RHS(

th

=σ=

=⎟⎟⎠

⎞⎜⎜⎝

⎛δφ+⋅ν−=

∂∂

[ ] )R(h)x()x(FT

ez)x(f sMss

rrrr+δφ−δφ−=δ

σ

σ

Damping of axisymmetric mode in boundary

bufferrr >

Δb~102 ρe > 2⋅Lr seems okay, but will likely depend on magnitude of transport & correlation lengths

χe radial profile

Resulting Convergence Problem Is Mostly Explained By Perturbed Equilibrium Gradient

• Exacerbated by resulting stiff transport

(a/LTe)total = (a/LTe)eq + ⟨a/LTe,n=0⟩θ,t

5.1La

crit,linTe

≈⎟⎟⎠

⎞⎜⎜⎝

2.6 2.8 30

0.1

0.2

0.3

a/LTe,total

χ e (ρ s2 c s/a

)

L scan

Δb scan

νb scan

Strength Of Zonal Potential Converges And Reaches Steady State

• Radial modes (zonal/axisymmetric) tend to evolve on slower time scales, but they appear to have converged and reached steady state

0 10 20 30 40 500

1

2

3x 10

−3

t (a/cs)

n=0

Σn>02/1

r0n

2 ⎟⎠

⎞⎜⎝

⎛ϕ∑

>

( ) 2/1r

20n=ϕ

⟨ϕ2⟩r1/2ϕn=0(r,t)

Transport Nearly Doubles With Increased Binormal Resolution

• Similar to ETG-ai benchmark paper [Nevins et al. 2006]

• With such strong shear suppression, can reduce binormal width (Lx=2Ly)

• Additional runs demonstrate convergence with radial resolution (dx →1.33dx), velocity space (nvel=128→288), and parallel orbit time (nτ=10→14)

−200 −100 0 100 2000

0.1

0.2

0.3

0.4

0.5

r (ρe)

ρ s2 c s/a

kθρ

e,max=0.74

1.50

1.50 (Lx=2L

y)

100

101

102

10−5

10−4

10−3

10−2

10−1

kθρ

i

Δ(χ e/χ

GB

i) / Δ

(kθρ i)

χe radial profile Fractional transport spectra

Including Toroidal Rotation & Parallel Flow Shear Does Not Affect These ETG Scale Simulations

• At this level of shear and box size, there is little difference when including toroidal flow (Mtor) and parallel flow shear (γp)γE=0.9γp=(q/ε)γE=4.32Mtor=0.6

100

101

102

10−5

10−4

10−3

10−2

10−1

kθρ

i

Δ(χ e/χ

GB

i) / Δ

(kθρ i)

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

kθρ

i

γ (c

s/a)

γp=M=0

γp,M>0

10−2

10−1

100

101

102

0

1

2

3

4

5

6

7

kθρ

i

γ (c

s/a)

γp=M=0

γp,M>0

ψ∂Φ∂

=

γ=⎟⎟⎠

⎞⎜⎜⎝

⎛ψ∂Φ∂

∂∂

⎟⎟⎠

⎞⎜⎜⎝

⎛ψ∂Φ∂

∂∂

0

s

0

E00

0p

0E

cRM

rqR

rR

rqr

Ion scale growth rates Electron scale growth rates Fractional transport spectra

Turbulence Characteristics Qualitatively Constant• While quantitative transport has varied considerably (χe=2-8ρe

2vTe/LTe), qualitative turbulence characteristics are largely unchanged

• In the presence of E×B shear, eddies remain elongated (but tilted) with Lr≈3Ly

-150 75 0 75 150r (ρe)

y (ρ

e)

-120

60

0

60

120

−100 −50 0 50 100

−0.2

0

0.2

0.4

0.6

0.8

1

Δ (ρe)

C(Δr)L

r≈26ρ

e

C(Δy)L

y≈9ρ

e

Potential contours

Ltotal≈36ρe

1-D correlation functions

Spectra Are Anisotropic In The Presence Of E×B Shear

• Spectra are anisotropic at high kρe>0.2, contrary to:– ETG simulations without E×B shear [Nevins et al., 2006]

– Multi-scale simulations without E×B shear [Waltz et al., 2007]

10−2

10−1

100

10−10

10−9

10−8

10−7

10−6

kρe

<φ2(kθ)>

<φ2(kr>0)>

<φ2(kr<0)>

log[ϕ2(kθ,kr)] ∫ ϕ dk2

T

Er kk

ωΔγ

≈ θ

Consideration for interpretation of high-k turbulence measurements & synthetic diagnostics?

0 10 20 30 40 500

1

2

3

4x 10

−3

t (a/cs)

n=0

Σn>0

Adiabatic Ion Model Can Be Unreliable Even With E×B Shear

kinetic ion νb=6 cs/aadiabatic ion νb=6 cs/aadiabatic ion νb=60 cs/a

Stronger buffer dampingonly delays onset

0 10 20 30 40 500

0.2

0.4

0.6

0.8

t (a/cs)

ρ s2 c s/a

Strong Radial Mode Develops

ϕn=0(r,t) ϕn=0(r,t)

t=100 (a/cs)

Kinetic ions Adiabatic ions

While The Adiabatic Ion Model Can Be Unreliable It Has Been Used For An Initial Scan in s & q

• Earlier (naïve) simulations for comparable box size and resolution were run for varying magnetic shear and safety factor

• They used different boundary conditions and adaptive source (relatively strong, small perturbed gradients)

• None of the simulations exhibited the transition

Significant Transport Occurs For Window Of s/q• Higher safety factor recovers larger transport• Simple fit to simulations for comparison with experiment

−0.5 0 0.5 1 1.50

2

4

6

8

10

12

s/q

F

q=1.4

q=4.4

SimFit

( )s

q

c

54

32

c

1

)qc1(c)qc1(cq/s1

qcq,sF

++−

+

⋅=

( )

cq ≈ 0.7cs ≈ 1.9

⎟⎟⎠

⎞⎜⎜⎝

⎛−⋅⎟⎟

⎞⎜⎜⎝

⎛ ρ⋅⋅⋅⋅=χ

critTeTeTe

Te2e

e LR

LR

LvF

84.0

13.1PPPLIFS

i s1q~+

χ −⎟⎟⎠

⎞⎜⎜⎝

⎛<<<<

2s5.08q7.0

For comparison, χi from IFS-PPPL

Model ETG Transport Significant Over Midradius• Sensitive to safety factor profile (and derivative) – experimental

uncertainties?

Decreasing qmin (& larger s/q)

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−⋅⎟⎟

⎞⎜⎜⎝

⎛ ρ⋅⋅⋅⋅=χ

critTeTeTe

Te2e

e LR

LR

LvF

0 0.2 0.4 0.6 0.8 10

5

0

5Shot 17661

0 0.2 0.4 0.6 0.8 10

5

1

5

r/a

ExpModel

0 0.2 0.4 0.6 0.8 10

5

0

5Shot 8505

0 0.2 0.4 0.6 0.8 10

.5

1

.5

r/a

ExpModel

0 0.2 0.4 0.6 0.8 10

5

10

15

χ e (m

2 /s)

Shot 8500

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

r/a

Te (

keV

)

ExpModel

( ) BC,eelmod

eexpee

elmode

T,qT

T

+χ∇−

=

Direct comparison of χe using experimental profiles

Predicting Te profile using experimental heat flux and transport model

Additional Scaling Expected From Varying Collisionality

• Collisionality in MAST stabilizing to trapped electron contributions• Transport reduced ~25%

• Additional scaling expected with γE and β,∇β

100

101

102

0.0001

0.001

0.01

kθρ

i

Δ(χ e/χ

GB

i)

10−1

100

101

102

0

2

4

6

kθρ

i

γ (c

s/a)

Linear growth rates Fractional transport spectra

γE

Summary

• Demonstrating convergence of ETG simulations for large magnetic shear, important for spherical tokamak parameters

• Sensitive to simulation boundary (not using spectral flux tube representation)

• Adiabatic ion model with E×B shear can reproduce kinetic ion results, at least in some cases – expect larger disparity for reduced E×B shear (increased drive at ion scales)

• Initial simple transport model seems to recover similar behaviour to TGLF predictions (in one instance)

Strong Dependence Of Nonlinear ETG Transport On Magnetic Shear Expected

• Interpreting three published sets of simulations assuming a critical gradient model

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−⋅⎟⎟

⎞⎜⎜⎝

⎛ ρ⋅⋅⋅⋅=χ

critTeTeTe

Te2e

e LR

LR

LvF

−1 0 1 2 30

2

4

6

8

10

Jenko & Dorland 2002ai, EM, α=0, f

t=0

( ),...sF

s

Strong Dependence Of Nonlinear ETG Transport On Magnetic Shear Expected

• Interpreting three published sets of simulations assuming a critical gradient model

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−⋅⎟⎟

⎞⎜⎜⎝

⎛ ρ⋅⋅⋅⋅=χ

critTeTeTe

Te2e

e LR

LR

LvF

−1 0 1 2 30

2

4

6

8

10

Nevins et al. 2006ki, ES, α=0, f

t ≠ 0

( ),...sF

s

Strong Dependence Of Nonlinear ETG Transport On Magnetic Shear Expected

• Interpreting three published sets of simulations assuming a critical gradient model

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−⋅⎟⎟

⎞⎜⎜⎝

⎛ ρ⋅⋅⋅⋅=χ

critTeTeTe

Te2e

e LR

LR

LvF

−1 0 1 2 30

2

4

6

8

10

Joiner et al. 2006MAST Eq. ψ

N = 0.4

ai/ki, EM, ft ≠ 0

MAST Eq.ψ

N = 0.8

( ),...sF

s

Strong Dependence Of Nonlinear ETG Transport On Magnetic Shear Expected

• Interpreting three published sets of simulations assuming a critical gradient model

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−⋅⎟⎟

⎞⎜⎜⎝

⎛ ρ⋅⋅⋅⋅=χ

critTeTeTe

Te2e

e LR

LR

LvF

−1 0 1 2 30

2

4

6

8

10

Jenko (2002), analytichigh shear limit

( ),...sF

s

Strong Dependence Of Nonlinear ETG Transport On Magnetic Shear Expected

• Interpreting three published sets of simulations assuming a critical gradient model

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−⋅⎟⎟

⎞⎜⎜⎝

⎛ ρ⋅⋅⋅⋅=χ

critTeTeTe

Te2e

e LR

LR

LvF

−1 0 1 2 30

2

4

6

8

10

( ),...sF

s0 0.2 0.4 0.6 0.8 1

−2

0

2

4

6

r/a

mag

netic

she

ar

8505

8500

17661

MAST experimental s

ST-ETG Modeling GoalsLinear stability

• Known linear dependence for low beta, modest shaping [Jenko et al. 2001]

• TGLF will hopefully capture modifications at high beta – benchmarking with GS2, GYRO, GKW is underway [motivated by Roach, EPS 2009]

0 0.5 1 1.5 20

0.1

0.2

0.3

0.4

0.5

kθρ

i

γ (v

Ti/a

)

GS2

GKW

GYRO

0 10 20 30 400

1

2

3

4

5

kθρ

i

γ (v

Ti/a

)

GS2

GKW

GYRO

−2 0 20

0.5

1

1.5

2

θ (rad)

|B|

−2 0 20

0.5

1

θ (rad)

ω∇B

(−), ωκ (−−)

−2 0 20

50

100

θ (rad)

k⊥2

GS2−EQDSK

GYRO−geq

GeometryVerification

GyrokineticVerification

MAST experimental case, mid-radius, EFIT equilibrium specification

Ion scale growth rates Electron scale growth rates