33
Quantal Andreev Billiards and their Spectral Geometry Inanc Adagideli & Paul M. Goldbart Department of Physics and Seitz Materials Research Laboratory University of Illinois at Urbana-Champaign Phys. Rev. B 65 (2002) 201306(R) Int. J. Mod. Phys. B 16, 1381 (2002) [email protected] w3.physics.uiuc.edu/~goldbart

Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Quantal Andreev Billiards and their Spectral Geometry

Inanc Adagideli & Paul M. GoldbartDepartment of Physics and

Seitz Materials Research Laboratory

University of Illinois at Urbana-Champaign

Phys. Rev. B 65 (2002) 201306(R)

Int. J. Mod. Phys. B 16, 1381 (2002)

[email protected]/~goldbart

Page 2: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Outline of the talk

•What is spectral geometry?

•What is Andreev reflection?

•Schrödinger billiards; Andreev billiards

•Andreev billiards: Classical properties

•Andreev billiards: Quantal properties

•Applications to high-Tc superconductors

Page 3: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Planck’s BB radiation spectrum

ω

T3)/( TcV κh>>

U

•cubic oven filled with electromag. radiation

•thermal equilibrium •volume •temperature •2 polariz. states, periodic boundary cond’s

⇒ spectral energy density at frequency

1)/exp()(

3

32 −=

TcVU

κωω

πω

h

Page 4: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

What is spectral geometry?

•Planck •Lorentz •Hilbert •Weyl

Page 5: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

What is spectral geometry?

•Lorentz (Wolfskehl Lect. Göttingen1910): suggests short-wave DOS (henceBBRS) depends only on oven volume not shape

•Planck (1900): introduces quanta to derive black body radiation spectrum

•Hilbert (1910): “…will not be proven in my lifetime…”

•Weyl (1911): Lorentz correct; via Hilbert’s integral equation theory

Page 6: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Spectral geometry:2D Laplacian -- “Can one hear the shape of a drum?”

•study eigenvalues of Laplacian: with on the boundary

•origin: energies of Schrödinger particle in box; or normal mode freq’s of scalar wave equation

•collect eigenvalues in a distribution (DOS)

•study connection of with shape, especially at large

Ψ=Ψ∇− E2 0=ΨE

E

)(Eρ)(Eρ

•K

ac

Page 7: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Spectral geometry: 3D Laplacian-- e.g.: smoothed DOS at large energy --

with B.C.s

•volume , surface

•local principal radii of curvature and

ππρ

164)( 2

SEVE m≈

Ψ=Ψ∇− E2

( ) L+++ −−

Σ∫ E

RRdS 121

121 1

21

12π

V Σ

1R 2RV

ΣDirichlet (-)Neumann (+)

Page 8: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Spectral geometry: 3D Laplacian-- e.g.: DOS oscillations --

•also gives long-range clustering of levels (semiclass. remnant of quant. shell structure)

•evaluate MRE in saddle-point approximation (specular reflection, closed paths,…)

• dominated by classical periodic orbits (cpo), w/ tracings

•trace formulae for DOS osc’s(classical ingredients only)

)(Eρ

)/)((sin)(.trac

2/1.o.p.c

osc jjp

ljp

j pEpS

AE

jαρ +≈ ∑∑ + h

h

Page 9: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Potential Theory I

•View as due to charge-layer or dipole-layer on boundary

– solve

– with on boundary (Dirichlet), or

– with on boundary (Neumann)

•BVP of classical electrostatics

0)(2 =∇ rr ϕ)()( αψαϕ =)()(n αψαϕα =∇⋅

)(rϕ

∫Σ

∇⋅= )( ),(n )( 0 βµβσϕ ββ rr Gdd

∫Σ

= )( ),()( 0 βνβσϕ β rr Gdc

)(βν)(βµ

0G is familiar Coulomb potential

Page 10: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

apply Neumann BC here

++

++

++

+

Potential Theory II–charge-layer potential continuous

(but electric field discontinuous)–similarly dipole-layer potential discontinuous

ϕzzE

z ν21

∫Σ

∇⋅+−=∇⋅ )( ),(n )(21)r(n lim 0 βνβασανϕ ααβα Gdcrα→r

z

)(αψ

ϕzE

– solve F/II integral equation for by iterationν

Page 11: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

S.G. for Laplacian: Balian-Bloch scheme•seek Green function

•obeys

plus for on boundary

•use rep. of from classical potential theory

•obtain via Multiple Reflection Expansion

),,( zG rr ′( )rrrrr ′−=′−−∇ δ),,()( 2 zGz

0),,( =′ zG rr r

GG

= + + …+

•evaluate terms via large - asymptotics

•gives DOS via)(Eρ 01 |TrIm)( iEzGE +=−= πρ

E

Page 12: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Some further settings for S.G.

•acoustics and elasticity

•thermodynamics (e.g. electronic, magnetic and vibrational properties of granular matter)

•superfluid films, Casimir effects

•nucleation

•nuclei, atomic clusters, nanoparticles,…

Page 13: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

What is Andreev reflection?[Andreev, Sov. Phys. JETP 19 (1964) 1228]

incoming electronwhat happens?

•low-energy electron quasiparticle approaches superconductor from normal region

progressively more superconductivity

E

Fp− Fp

electronhole

holeelectron branch

pFermisea

electron

quasiparticle excitation spectrum

Page 14: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Charge-reversing retro-reflection•incident low-energy electron quasiparticle

retro-reflected as hole quasiparticle

progressively more superconductivity

electron

retro-reflected hole

(and vice versa)incomingsupercond.

pair potential

)(r∆

E

Fp− Fp

electronhole

holeelectron branch

p Fermisea

electronhole

quasiparticle excitation spectrum

Page 15: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Andreev reflection: semiclassics•gap excludes single-particle excitations•velocity must be reversed•but momentum cannot be…

4

FFFFFF

10/// −≈∆

≈∆

≈∆

≈≈ ∫∫ Evpdt

pdt

pdtdp

pp ξξξδ

•e/h conversion with retro-reflection•e acquires mate ⇒ Cooper-pair + hole

•Snell’s law: from action with reversed momentum

Page 16: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Schrödinger billiards

•shape is the only “parameter”•classical mechanics is “geometry”•DOS oscillations related to “polygons”

via trace formula•no separation of periods•quantum implications of classical chaos

Ψ=Ψ∇− )/2( 22 hmEwith on boundary 0=Ψ

•quantum mechanics of finite systems

Page 17: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Andreev billiards

•normal region surrounded by superconductor

•1-quasiparticle energy gap; low-energy states confined

•mechanism: Andreev reflection from boundary

•shape-spectrum connection– DOS oscillations related to chordal orbits and

creeping orbits via trace formula– separation of periods

What are they?

Basic issues

[Kosztin, Maslov & PMG, Phys. Rev. Lett. 75 (1995) 1735]

Page 18: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Andreev billiards: Model system

⇒ Bogoliubov-de Gennes eigenproblem

⎟⎠⎞

⎜⎝⎛=⎟

⎠⎞

⎜⎝⎛⎟⎠

⎞⎜⎝

⎛+∇∆−∆−−∇−

)()(

)()(

)()(22*

22

rr

rr

rr

vuEv

κ

10

10

),(ˆ),(

),(ˆ),(

ΦΨΦ=

ΦΨΦ=+↓

ttv

ttu

rr

rr generic 1-qp state (Heisenberg rep.)

ground state (Heis. rep.)

remove spin-up; add spin-down (Heisenberg rep.)

e/h-qp wave functions •one-e/h-qp states:

( ) ⎟⎠⎞

⎜⎝⎛=∆ potential

pairenergy

excitationenergyFermi,,

22

2

Em

κhwhere

Page 19: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Andreev billiards: BB scheme•seek e/h Green function via

Balian-Bloch type scheme (potential theory plus MSE)

•integrate out propagation in superconductor; yields eff. Mult. Reflection Expansion

L

•evaluate via two asymptotic schemes

(A)

(B)

•sets which classical reflections rules hold

).const/(0/, 2 κκκ ∆→∆∞→ LL.const/, 2κκ ∆∞→L

Page 20: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Andreev billiards: Effective reflection•integrate out propagation in superconductor:

• Separate propagation (a) short range (b) long range

• sum all s. r. propagationeffective MRE with renormalized Green function

• l.r. propagation in superconductor vanishes• e/h interconversion dominant process

Normal reflection Andreev reflection

Page 21: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Andreev billiards: Scheme A

•limits:•essentially Andreev•classical rule:

perfect retro-reflection•ladder of states on chords

).const/(0/, 2 κκκ ∆→∆∞→ LL

( ) ( ) nEE πκ 2cos2 1 =∆−− −βα αβ

chord lengthe/h momentum difference

reflection phase-shiftinteger

•leads to the scheme-A DOS:

βαθαβθ

( ) ( ) ( )∫Σ

− ∆−−−≈ EiEiE 1cos2exp1coscosRe)( κθθρ βααβ βα

Page 22: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

).const/(0/, 2 κκκ ∆→∆∞→ LLVan Hove-type singularities

•scheme A:

− sharp spectral features− signature of bunching of

energy levels − line-shape “quality” from

signature of Hessian − quantitative DOS via stationary

lengths and end-point curvatures

•role of stationary chords

•can “hear” lengths of the stationary chords

Page 23: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

“Hearing” the geometry

•several stationary chords•yield distinct features•some examples…

chord length islocal maximum

ρ

E ρ

Echord length islocal minimum

Page 24: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

•scheme B:•retro-refl. no longer perfect•now class. periodic orbits are

– stationary chords (coarse)– creeping orbits (fine)

•separation of period scales

S.G. of Andreev billiards: Scheme B.const/, 2κκ ∆∞→L

results for a circular Andreev billiard

Page 25: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

What’s missing?•scheme B:•make perfect charge-conversion model •compare w/ periodic orbit results ⇒ better fit

.const/, 2κκ ∆∞→L

⇒ charge-preservingprocesses

are missing

Page 26: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Normal reflection in Andreev Billiards

•scheme B:•retro-refl. no longer perfect•charge interconv. no longer perfect

.const/, 2κκ ∆∞→L

Page 27: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Some conclusions•Quantal properties of Andreev billiards

– discussed in terms of spectral geometry

•Basic structures– Andreev’s approximation (all chords) – fine structure needs creeping orbits etc.

•“Can “hear” novel geometrical features – distribution of chord lengths – stationary chords, degeneracies and curvatures

•Still to do…– self-consistent superconductivity– soft and ray-splitting Schrödinger billiards – making an Andreev billiard!

Page 28: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

A few references• Andreev, Sov. Phys. JETP 19 (1964) 1228

• Abrikosov, Fundamentals of the theory of metals• Kac, Am. Math. Monthly 73 (1966) 1

• Balian & Bloch, Ann. Phys. (NY) 60 (1970) 401

• Balian & Bloch, Ann. Phys. (NY) 69 (1972) 76

• Baltes & Hilf, Spectra of finite systems (1976)

• Guenther & Lee, PDEs of mathematical physics and integral equations (Dover, 1996; Sec. 8-7)

• Berry, in Chaotic behaviour of deterministic systems (Les Houches 1981; ed. by Iooss et al.)

• Kosztin, Maslov & PMG, Phys. Rev. Lett. 75 (1995) 1735

• Adagideli & PMG, Phys. Rev. B 65 (2002) 201306(R); Int. J. Mod. Phys. B (2002, in press)

Page 29: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Side-products I: Impurity states in d-wave supercondutor

•along trajectory determined by classical position and velocity:

•semiclassical motion in presence of impurity

•quantum-mechanical electron-hole scattering along classical trajectory

⎟⎠⎞⎜

⎝⎛=⎟

⎠⎞⎜

⎝⎛⎟⎠⎞

⎜⎝⎛

∂∆∆∂−

vuEv

uik

iks

s

F*

F

22

)()( cc xx Vs −∇=&&µ

• nonmagnetic impurity

)( )();( cFc sks xx &∆∆ ≡

Page 30: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Side-products I: Impurity states in

d-wave supercondutor

•a realization of Witten’s supersymmetricquantum mechanics

•focus on E=0: 0)2( F =∆±∂ mϕsk( )F2/)(exp ksds∫ ∆±=⇒ ±ϕ

•normalizability ⇒ low-energy states for trajectories on which changes sign∆

Page 31: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

+

-

-

•gives state at E=0•degeneracy proportional to

linear extent of impurity•no dep. on details of ∆

• does not give state at E=0• shape of DOS depends on

details of ∆

changesign no if ,0

in changesign if ,1

ies trajectors/c allover )(

∑+= RkE FBG δρρ

0

0.4

0.8

1.2

1.6

2

2.4

2.8 Center10 Å20 Å

-0.1 -0.05 0 0.05 0.1dI

/dV

[10-8

Ω−1

]

Voltage [V]

Local Density of States Near an Atomic Scale Defect

+

-

-

Impurity states in d-wave supercon.Yazdani et al.; Hudson et al. (1999)

Page 32: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Side products I: Impurity in d-wave

•tunneling through the impurity

•diffraction effects in scattering

•transition between zero energy states

•splitting of E=0 peak

Page 33: Quantal Andreev Billiards and their Spectral GeometryPlanck’s BB radiation spectrum ω T V >>(hc/κT)3 U •cubic oven filled with electromag. radiation •thermal equilibrium •volume

Side products II: Imp. in pseudogap

Pseudogap

Superconductor

LDOS

E

Thermal ∆E?

Superconducting correlations?

E

Quantum hΩ?

E

Phase Diagram

The

rmal

Flu

ctua

tion

s

DopingQuantum Fluctuations