12
Illinois Mathematics Teacher – Fall 2012 .....................................................................................36 Quadrilaterals: Transformations for Developing Student Thinking Colleen Eddy – University of North Texas, [email protected] Kevin Hughes – University of North Texas, [email protected] Vincent Kieftenbeld – Southern Illinois University Edwardsville, [email protected] Carole Hayata – University of North Texas, [email protected] Students begin learning about transformations in the early elementary grades. They might create simple tessellations by cutting and pasting cardboard pieces, or investigate symmetry by folding figures on patty paper (Common Core State Standards [CCSS] 4.G.3). Their knowledge and ease with transformations continues to grow through middle school, where the everyday language of turn, flip, slide, bigger and smaller is connected with the corresponding mathematical terminology of rotation, reflection, translation, and dilation (National Council of Teachers of Mathematics [NCTM] 2000). By the end of middle school, students should be able to describe the effect of transformations on two-dimensional figures (CCSS 8.G.3). In high school, however, students often study transformations in isolation, establishing few connections with other parts of geometry. This disconnects the informal thinking of elementary and middle school, and the deductive reasoning required in a high school geometry course. Coxford and Usiskin (1971, 1975) originally proposed the use of transformations to build conceptual understanding based on prior experiences before deriving proofs. Transformations also form the basis of geometric understanding in the vision of the Common Core. For instance, for high school geometry “[t]he concepts of congruence, similarity, and symmetry can be understood from the perspective of geometric transformation” (National Governors Association for Best Practices & Council of Chief State School Officers, 2010, Geometry: Introduction section, para. 4). Using transformations to strengthen your students’ understanding of geometry sounds like a good idea, but how can you actually do this in the classroom? This article describes geometry activities that incorporate transformations to discover and justify definitions and properties of quadrilaterals, and the relationships between the different quadrilaterals. We provide examples how you can help students use transformations in their reasoning. The lesson described in this article incorporates CCSS geometry content from across the grades. Specifically, it addresses the following standards in the Congruence domain (G-CO): Experiment with transformations in the plane G-CO.3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself. G-CO.5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

Quadrilaterals: Transformations for Developing Student

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Quadrilaterals: Transformations for Developing Student

Illinois Mathematics Teacher – Fall 2012 .....................................................................................36

Quadrilaterals: Transformations for Developing Student Thinking Colleen Eddy – University of North Texas, [email protected] Kevin Hughes – University of North Texas, [email protected] Vincent Kieftenbeld – Southern Illinois University Edwardsville, [email protected] Carole Hayata – University of North Texas, [email protected]

Students begin learning about transformations in the early elementary grades. They might create simple tessellations by cutting and pasting cardboard pieces, or investigate symmetry by folding figures on patty paper (Common Core State Standards [CCSS] 4.G.3). Their knowledge and ease with transformations continues to grow through middle school, where the everyday language of turn, flip, slide, bigger and smaller is connected with the corresponding mathematical terminology of rotation, reflection, translation, and dilation (National Council of Teachers of Mathematics [NCTM] 2000). By the end of middle school, students should be able to describe the effect of transformations on two-dimensional figures (CCSS 8.G.3).

In high school, however, students often study transformations in isolation, establishing few connections with other parts of geometry. This disconnects the informal thinking of elementary and middle school, and the deductive reasoning required in a high school geometry course. Coxford and Usiskin (1971, 1975) originally proposed the use of transformations to build conceptual understanding based on prior experiences before deriving proofs. Transformations also form the basis of geometric understanding in the vision of the Common Core. For instance, for high school geometry “[t]he concepts of congruence, similarity, and symmetry can be understood from the perspective of geometric transformation” (National Governors Association for Best Practices & Council of

Chief State School Officers, 2010, Geometry: Introduction section, para. 4).

Using transformations to strengthen your students’ understanding of geometry sounds like a good idea, but how can you actually do this in the classroom? This article describes geometry activities that incorporate transformations to discover and justify definitions and properties of quadrilaterals, and the relationships between the different quadrilaterals. We provide examples how you can help students use transformations in their reasoning. The lesson described in this article incorporates CCSS geometry content from across the grades. Specifically, it addresses the following standards in the Congruence domain (G-CO):

Experiment with transformations

in the plane G-CO.3 Given a rectangle, parallelogram,

trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.

G-CO.5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.

Page 2: Quadrilaterals: Transformations for Developing Student

��

Illinois Mathematics Teacher – Fall 2012 .....................................................................................37

Prove geometric theorems G-CO.11 Prove theorems about

parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

Completing the activities presented in this article will help your students develop the following mathematical practices [CCSS MP]: 1. Make sense of problems and persevere in

solving them; 3. Construct viable arguments and critique

reasoning of others; 5. Use appropriate tools strategically. Blackline masters for all activity pages are included at the end of this article. Examples of student work and suggestions on how to deliver the material can be found throughout the text.

Discovering and developing an understanding of quadrilateral properties

As mathematics teachers, we know

that simply providing students with a list of definitions and properties of quadrilaterals to memorize is an ineffective practice. This approach leads to minimal understanding of the quadrilateral properties and how they are derived. In addition, little or no connections are made between the properties and how the quadrilaterals relate to each other. Transformations give students the opportunity to develop the definitions and properties of quadrilaterals through discovery and to build connections among the family of quadrilaterals. In the activity we describe, students create quadrilaterals

using transformations of triangles and discuss how to derive the properties of the resulting quadrilateral. With teacher guidance, students synthesize and summarize their findings and investigate how these properties relate the different quadrilaterals to each other. Students then develop definitions to classify each quadrilateral shape accordingly (CCSS MP 3). The outline for this activity is as follows:

1. Form heterogeneous groups of 3 - 4

students. 2. Assign each group one or two

quadrilaterals to investigate parallel-ogram, rhombus, rectangle, square, trapezoid, isosceles trapezoid, or kite. a. Give each student in the group an

investigation sheet to record their findings. Blackline masters for these six investigations can be found at the end of the article.

b. In addition, give each group a sheet of graph paper, a ruler, and a sheet of patty paper, which students can use to complete the prescribed rotations in some of the investigations (CCSS MP 5).

3. During the investigation phase of the lesson, each group creates a quadrilateral by completing a set of transformations on a given triangle. In the process, the students discuss the various properties of the quadrilateral shape they create with respect to the sides, the vertex angles, the diagonals, and the symmetry of the quadrilateral.

4. Students are asked to go back and discuss how they could justify the various properties using their prior knowledge of transformations (CCSS MP 3). In particular, students should have developed the concept that rotations, reflections, and translations preserve congruency of segment lengths

Page 3: Quadrilaterals: Transformations for Developing Student

Illinois M

as welesson

5. The quadrcreatiquadrmastefamildefineach propeexclu

A

the use othis methexpert gquadrilatnew jigsaat least Every methe propeeach jigfamily tre

Justi

Dfor the tedeductivepropertiestudent rexample discussioparallelo Figure discussio

Mathematics

ell as anglen.

students rilaterals reing a farilaterals (ser). In the ly tree, s

nition of eacdefinition

erties whileuding any un

An alternativof expert anhod, student

groups wherteral and recaw groups arone expert ember shareerties of theisaw group ee.

ifying definiusing tran

Discussion peacher to guie reasoning

es. We desceasoning wiof how to

on. The firsgram (see Fi

1. Student on of parallel

Teacher – F

measures i

determine elate to eacamily treesee the las

process ofstudents foch shape, m

n specifies e at the

nwanted case

ve to numbernd jigsaw grts are first gre they creacord its propre formed wfor each q

es with the jiir particular creates a q

tions and prnsformations

provides an ide students to prove qcribe two iith transform facilitate tst group coigure 1).

drawing flograms

Fall 2012 .....

in an earlier

how thech other by for thest blacklinef creating aormulate amaking sure

minimumsame time

es.

r 5 above isroups. Usinggrouped intoate a singleperties. Thenhich contain

quadrilateral.igsaw groupshape. Thenquadrilateral

operties s

opportunityin the use ofquadrilateralinstances of

mations as anthis type ofonstructed a

from group

....................

r

e y e e a a e

m e

s g o e n n .

p n l

y f l f n f a

p

Whevertecreaoppopromjusti3). Ithat paraoppothe 140 askedrawtrianmea

strugparatermteacmeajustitrue werepropdiscstud1) thtriandegrcongbecaformalwavertesinganglof thto jvertethe fThe the p2).

....................

en asked wex angles

ated, the stosite angles mpted the ification forIn response

they meaallelogram aosite anglesother pair odegrees (s

ed the studew the samengle they staasures.

At thiggling to mallelogram thms of any acher remindeasuring the ification tha

for all pae instructedperties of cussed in andents in the ghat when thngle, the vrees on thegruent to ause they rom the paraays preserveex angles w

gle and doubles, which fohe parallelogustify that ex angles afact that rotagroup sum

properties o

....................

what they noof the par

tudents respwere congru

students r their reaso, the studenasured the and found t measures 4of opposite see Figure ents if they we conclusionarted with ha

s point, move beyohey had creaarbitrary pared the studangles did

at the propearallelogramd to thinktransformat

n earlier lesgroup now shey started wvertex ang

eir paper) wthe opposit

otated the orallelogram. e congruencwould be cle notation mormed the ogram, the stthe other p

also had to ations preser

mmarized theof parallelog

....................

oticed abourallelogram ponded thatuent. The te

to providoning (CCSSnts simply s

angles ofthat one pa40 degrees wangles mea1). The te

would be abn if the oriad different

students ond the speated and thirallelogram.

dents that sinot constitu

erty would ms. The stuk back totions they sson. One ostated (CCSSwith the ori

gle (markedwould alwayte vertex riginal triang

Since rotacy, the oppcongruent. Umarks for theother vertex tudents werepair of oppbe congruenrved congrueir knowledggrams (see F

.....38

ut the they

t the acher

de a S MP stated f the air of while sured acher ble to iginal angle

were ecific nk in The imply ute a hold

udents o the

had of the S MP iginal d 40 ys be angle gle to ations posite Using e two angle

e able posite nt by

uency. ge of

Figure

Page 4: Quadrilaterals: Transformations for Developing Student

Illinois M

Figure discussio

T

started thright UAon ܤܣതതതത, rotated tmidpoint Figure 3 Ԣܥܤܥܣ

Measurinstudents in the fig

Mathematics

2. Studenton of parallel

The second heir construcACB. They drew the m

the trianglet M (see Figu

3. Student

ng the sidemarked con

gure. One of

Teacher – F

t work frlograms

group in anction of a rec

found the mmedian ܥܯതതതതതe 180 degrure 3).

drawing o

es and the ngruent sidesf the question

Fall 2012 .....

from group

nother classctangle withmidpoint Mത, and thenܥrees around

of rectangle

angles, thes and anglesns that arose

....................

p

s h

M n d

e

e s e

in thbe cthis whybackand that of οതതതതതܤܯbe c

shownoticܤܥסorigcorrtheycongܤԢܥסthat lengrotatthat ܥԢܥסcorrwhicstudthe sthepost

transknowstudthe pablestudreasrigoproohad abou

demquadquad

....................

his group wacongruent towould alwa

y. When promk to the relangles of trif they cou

οܤܯܥ were c and ܥܯതതതതത

congruent. The que

w that ܥסԢܥced that ס because ,ܣܤginal right οresponds to y concludegruent. Theis a rig ܥܤതതതതܥܣ ؆ Ԣതതതതതܥܤ

gth of a setion. This aοܤܥܣ ؆ οܤܤܥ ؆ ܣܤܥסresponding pch proved t

dents’ undersstudents to m

side-angletulate.

Using tsformations wledge to

dents gainedproperties o

e to justify tdents used oning, theirrous than

of. This activthe benefit

ut the properIn one p

monstrated a drilateral pdrilateral fa

....................

as whether ܯതതo ܥܯതതതതത. The ays be true, mpted by thelationship beriangles, the ld show thacongruent, aopposite tho

estion thus ܤܥ ؆ ܣܤܥסis co ܤܣܥס

these are thοܤܥܣ. Realiund ܣܤԢܥס

ed that the students ght angle. T

and ܥܤതതതത ؆egment is allowed the Hence .ܣԢܥܤbecause th ܣparts of conthat ܤܯതതതതത ؆standing, themake explic-side trian

their prior and

a series od a deeper uf the quadrithe properti

transformr final justifi

a traditionvity was higof students

rties conjectuparticular cla

deeper undproperties amily tree.

....................

തതതതത would alܤܯstudents feltbut were un

e teacher to etween the students rea

at the base aand then the ose angles w

became hoFirst, stu .ܣomplementarhe base anglizing that סder the rotahe angles

concluded Then they arԢതതതതത becausܥܣpreserved ustudents to

e, they knewhe two anglengruent trianതതതതത. To deܥܯ

e teacher procit connectiongle congru

knowledgapplying

of investigatunderstandinlaterals and es. Althoug

mation in fication is nonal two-cohly engagingasking quesured.

assroom, stuerstanding oby creatinAlthough

.....39

lways t that nsure think sides

alized angles

sides would

ow to udents ry to les of ܤܣܥסation,

are that

rgued e the under o say w that es are ngles, eepen odded ons to uence

e of this

tions, ng of were h the their

o less olumn g and stions

udents of the ng a more

Page 5: Quadrilaterals: Transformations for Developing Student

Illinois M

time wapropertiesuccessfuunderstantree forvariationevident in

Squadrilatstarting square, ageneral organizedmethod wfigure atmore spe Figure 4tree

M

placing tfamily trfigures. Athe relarhombusdirected that werstudents square haand a rec

Indelivered

Mathematics

as spent dises than isully dnding by cr the quadns in studenn the familyome grou

teral shapes with the mand working

quadrilated their familwith the mort the top andecific figures

4. A top-dow

Most groupsthe kite anree diagramAt the centerationship be, and squastudents’ att

re similar acorrectly

as the propectangle. n summaryd as follows.

Teacher – F

scovering ans customarydemonstratedconstructing drilateral shnt represent tree constru

ups organin a bottom

most specificg back up teral. Othely tree usingre general pad working ds (see Figure

wn quadrila

s had an d the trape

m than the r of the discetween theare. After tention to thacross the concluded

erties of both

y, the lesso At the begi

Fall 2012 .....

nd derivingy, students

d theirthe family

hapes. Theations were

uctions. nized theirm-up fashionc shape, theto the moreer groupsg a top-downarallelogramdown to thee 4).

ateral family

easier timeezoid in the

rest of thecussions wase rectangle,the teacher

he propertiesfigures, thethat every

h a rhombus

on can beinning of the

....................

g s r y e e

r n e e s n

m e

y

e e e s , r s e y s

e e

lessoa palargesamsmamorassiginvediscstagexplAfteinveclassdiffeThisuse concargustuddiffefamiclassfollo

x Icntdv

x Oact

x Igsqmp

....................

on, studentsarticular quer class, yo

me quadrilatealler class, yre than one gn only a suestigation, stcovering thege, direct thelaining and er studentsestigation, ys together toerences in s also providmathematic

clusions, anuments maddents make erent quadrily tree. Whsroom, youowing sugge

If a group come up wineed to use the right dirdo you notvertex angleOnce a groua propertyconstructingtransformatiIf a group ogeneralize specific pquadrilateralmay want tparallelogram

....................

investigate uadrilateral ou may neeeral to differyou could as

quadrilateraubset. In the tudents mose propertiese attention o

justifying s have cyou may wao discuss the

the properdes students cal argumentnd to judgede by their

connectionrilaterals byhen using thu may wanestions in mi

of students ith any propa question

rection. For tice when yes?” up of student, guide th

g a justions. f students fifrom their arallelograml) to the geto suggest m.

....................

the propertiin groups.

ed to assignrent groups;ssign each gal, or you cfirst stage o

st likely focu. In the se

of the studenthese prope

completed ant to bringe similaritierties discovan opportunts to justify

e the validitr peers. Finns betweeny constructihis lesson in nt to keepind:

initially faiperties, you to point theinstance, “W

you measure

ts has discovhe studenttification u

inds it difficdrawing

m (or aneneral case,drawing an

.....40

ies of In a

n the ; in a group could of the us on econd nts to erties.

their g the s and

vered. nity to

their ty of nally,

n the ing a

your p the

ils to may

em in What e the

vered ts in using

ult to of a

nother , you

nother

Page 6: Quadrilaterals: Transformations for Developing Student

��

Illinois Mathematics Teacher – Fall 2012 .....................................................................................41

Advancing geometric thought through the use of transformations

The van Hiele levels of geometric

thought (1986) provide a sound justification of why transformations are a good bridge between initial student thinking and the abstract nature of high school geometry. The model includes five levels of geometric reasoning: visual, descriptive, informal deductive, (formal) deductive, and rigor. Although a student progresses through the levels linearly, there is no strict dependence on age. For example, a fourth grader and a high school geometry student could be at the same level. The levels overlap as a student transitions from one level to the next. Most students entering a high school geometry course operate at or below the van Hiele visual level of understanding (Shaughnessy and Burger 1985). These students are able to identify different shapes, but they may find it hard to recognize and reason with specific characteristics of shapes. For example, doing transformations with everyday language as described in the introduction is at the visual level. Students at this level are often not yet ready for the abstract reasoning required in high school geometry. Students using the mathematical terminology for transformations are at the overlap of the visual and descriptive levels. Students discovering and deriving quadrilateral properties are at the informal deductive level.

Transformations provide a bridge between the initial visual intuition of the students and the more formal reasoning of the higher van Hiele levels. The quadrilateral activities provided entry to students at the descriptive level. Students drew conclusions about the sides and angles of their original triangle and then rotated the triangles to create the specified quadrilateral. This provided students the opportunity to apply prior experiences of transformations

and the properties of triangles. With the discussions, the teacher guided students to the informal deductive level by having them discover the properties of quadrilaterals and create informal arguments deriving the quadrilateral properties. Finally, students unify their understanding of quadrilaterals by creating the family tree.

Conclusion

Incorporating transformations to develop understanding in high school geometry helps students move from the visual and descriptive van Hiele levels to the informal deductive and formal deductive levels. All students, regardless of their van Hiele level, stand to benefit from an integration of transformation geometry in a high school geometry course (Usiskin 1972; Okolica and Macrina 1992). In the quadrilateral activities described above, the teacher used this approach to guide the students in building their understanding of quadrilateral properties. When students can connect geometric concepts to the prior knowledge and experiences that they bring to class, they can formulate deductive arguments. The study of transformations in the early grades and the continuing development of these concepts in middle and high school can provide the bridge geometry students need to reach the informal and formal deductive levels of geometric reasoning.

References Coxford, Arthur F., and Zalman P. Usiskin.

Geometry: A Transformation Approach. River Forest, IL: Laidlaw, 1971, 1975.

National Council of Teachers of Mathematics (NCTM). Principles and Standards for School Mathematics. Reston, VA: NCTM, 2000.

Page 7: Quadrilaterals: Transformations for Developing Student

��

Illinois Mathematics Teacher – Fall 2012 .....................................................................................42

National Governors Association for Best Practices & Council of Chief State School Officers (2010) Common Core State Standards for Mathematics. http://www.corestandards.org/the-standards

Okolica, Steve, and Georgette Macrina. “Integrating Transformational Geometry Into Traditional High School Geometry.” Mathematics Teacher 85, no. 9 (December 1992): 716–19.

Shaughnessy, J. Michael, and William F. Burger. “Spadework Prior to Deduction in Geometry.” Mathematics Teacher 78, no. 6 (September 1985): 419–28.

Usiskin, Zalman P., and Arthur F. Coxford. “A Transformation Approach to Tenth-Grade Geometry.” Mathematics Teacher 65, no. 1 (January 1972): 21–30.

Usiskin, Zalman P. “The Effects of Teaching Euclidean Geometry via Transformations on Student Achievement and Attitudes in Tenth-Grade Geometry.” Journal of Research in Mathematics Education 3, no. 4 (November 1972): 249–59.

Van Hiele, Pierre M. Structure and Insight: A Theory of Mathematics Education. Orlando, FL: Academic Press, 1986.

Blackline masters for the activity pages are included below and on subsequent pages.

Building Quadrilaterals: Parallelogram 1. On a sheet of graph paper, draw obtuse οܥܤܣ.

x Draw one of the sides of οܥܤܣ along one of the grid lines. x Be sure all vertices are placed at the intersection of grid lines.

2. Locate the midpoint, ܯ, of ܤܣതതതത. 3. Draw the median to side ܤܣതതതത.

4. Label the figure you have drawn by indicating congruent sides, angles, and measures using

appropriate markings.

5. Rotate οܥܤܣ by ͳͺͲι around point ܯ. x Label the new image with the correct markings to indicate congruent sides, angles, and measures.

6. Discuss with your group the properties of the parallelogram that you created using the transformations above. Pay attention to the properties of the sides, the vertex angles, the diagonals, and the symmetry of the figure.

x Summarize your findings under the headings on the chart.

Page 8: Quadrilaterals: Transformations for Developing Student

��

Illinois Mathematics Teacher – Fall 2012 .....................................................................................43

Building Quadrilaterals: Rectangle 1. On a sheet of graph paper, draw scalene right οܥܤܣ.

x Draw both legs of οܥܤܣ along grid lines. x Draw the right angle at vertex ܥ. x Be sure all vertices are placed at the intersection of grid lines.

2. Locate the midpoint, ܯ, of ܤܣതതതത.

3. Draw the median to hypotenuse ܤܣതതതത.

4. Label the figure you have drawn by indicating congruent sides, angles, and measures using

appropriate markings.

5. Rotate οܥܤܣ by ͳͺͲι around point ܯ. x Label the new image with the correct markings to indicate congruent sides, angles, and measures.

6. Discuss with your group the properties of the parallelogram that you created using the transformations above. Pay attention to the properties of the sides, the vertex angles, the diagonals, and the symmetry of the figure.

x Summarize your findings under the headings on the chart.

Building Quadrilaterals: Rhombus 1. On a sheet of graph paper, draw scalene right οܥܤܣ.

x Draw both legs of οܥܤܣ along grid lines. x Draw the right angle at vertex ܥ. x Be sure all vertices are placed at the intersection of grid lines.

2. Label the figure you have drawn by indicating congruent sides, angles, and measures using

appropriate markings.

3. Reflect οܥܤܣ across the line containing ܥܤതതതത. x Label the new image with the correct markings to indicate congruent sides, angles, and measures. Use

prime marks for the image vertices. x What kind of figure do you have now? Justify your answer.

4. Reflect οܣܤܣԢ across the line containing ܣܣԢതതതതത. Be sure to also reflect ܥܤതതതത.

x Label the new image with the correct markings to indicate congruent sides, angles, and measures. Use prime marks for the image vertices.

5. Discuss with your group the properties of the parallelogram ܣܤܣԢܤԢ that you created using

the transformations above. Pay attention to the properties of the sides, the vertex angles, the diagonals, and the symmetry of the figure.

x Summarize your findings under the headings on the chart.

Page 9: Quadrilaterals: Transformations for Developing Student

��

Illinois Mathematics Teacher – Fall 2012 .....................................................................................44

Building Quadrilaterals: Square 1. On a sheet of graph paper, draw isosceles right οܥܤܣ.

x Draw both legs of οܥܤܣ along grid lines. x Draw the right angle at vertex ܤ. x Be sure all vertices are placed at the intersection of grid lines.

2. Label the figure you have drawn by indicating congruent sides, angles, and measures using

appropriate markings.

3. Reflect οܥܤܣ across the line containing ܥܤതതതത. x Label the new image with the correct markings to indicate congruent sides, angles, and measures. Use

prime marks for the image vertices. x What kind of figure do you have now? Justify your answer.

4. Reflect οܣܥܣԢ across the line containing ܣܣԢതതതതത. Be sure to also reflect ܥܤതതതത.

x Label the new image with the correct markings to indicate congruent sides, angles, and measures. Use prime marks for the image vertices.

5. Discuss with your group the properties of the square ܣܥܣԢܥԢ that you created using the

transformations above. Pay attention to the properties of the sides, the vertex angles, the diagonals, and the symmetry of the figure.

x Summarize your findings under the headings on the chart.

Building Quadrilaterals: Kite 1. On a sheet of graph paper, draw scalene acute οܥܤܣ.

x Draw side ܥܤതതതത of οܥܤܣ along a grid line. x Be sure all vertices are placed at the intersection of grid lines.

2. Draw an altitude, ܦܣതതതത, of οܥܤܣ from point ܣ to ܥܤതതതത.

3. Label the figure you have drawn by indicating congruent sides, angles, and measures.

4. Reflect οܥܤܣ across the line containing ܥܤതതതത.

x Label the new image with the correct markings to indicate congruent sides, angles, and measures. Use prime marks for the image vertices.

5. On a separate sheet of graph paper, repeat steps 1-4 with a scalene obtuse οܥܤܣ.

6. Discuss with your group the properties of the kites ܣܥܣԢܤ that you created using the transformations above.

x Summarize your findings under the headings on the chart.

Page 10: Quadrilaterals: Transformations for Developing Student

��

Illinois Mathematics Teacher – Fall 2012 .....................................................................................45

Building Quadrilaterals: Trapezoid 1 1. On a sheet of graph paper, draw a large scalene οܥܤܣ. 2. Label the figure you have drawn by indicating congruent sides, angles, and measures using

appropriate markings.

3. Locate a point anywhere on ܤܣതതതത. x Construct a line parallel to ܥܤതതതത through point . x Construct the intersection of this line with ܥܣതതതത at point .

4. Discuss with your group the properties of the trapezoid ܥܤ that you created using the

transformations above. x Summarize your findings under the headings on the chart. x Hint: What connections can be made between the measures of the angles in this figure and your prior

experiences with parallel lines cut by a transversal?

Building Quadrilaterals: Trapezoid 2 1. Now draw a large isosceles ο.

x Draw the vertex angle at .

2. Locate a point ܣ anywhere on തതതത. x Construct a line parallel to തതതത through point ܣ. x Construct the intersection of this line with തതതത at point ܤ.

3. Discuss within your group the properties of the trapezoid ܤܣ that you created using the

transformations above. x Summarize your findings under the headings on the chart. x Hint: What connections can be made between the measures of the angles in this figure and your prior

experiences with parallel lines cut by a transversal?

Page 11: Quadrilaterals: Transformations for Developing Student

��

Illinois Mathematics Teacher – Fall 2012 .....................................................................................46

Names _______________________________________________________________________

Properties of ____________________________________

SIDES:

VERTEX ANGLES:

DIAGONALS:

SYMMETRY:

Page 12: Quadrilaterals: Transformations for Developing Student

Illinois M

Your groexplored Your fambased onthe morewere a paBelong A As you cthese undsegments Your famquadrilattape the s

Using pafamily ofEach per Each shafollowing

99

In additioin class. If your gr

Mathematics

oup will be bso far in thi

mily tree will their sharedgeneric figu

art of all the Activity.”

ome to morederneath the s that branch

mily trees shoteral. Once yshapes in the

aper, pencil, f quadrilaterrson in the gr

ape must havg: 9 A picture 9 A list of t

on, the scrap

roup choose

Teacher – F

building a famis lesson.

l be a diagrad properties. ures at the toother shape

e shapes withfirst set of f

h between di

ould branch you have deceir appropria

Qu

and picturesal shapes. Yroup must cr

ve at least on

of the quadrthe character

pbook needs

es, you may a

Fall 2012 .....

Quadrilat

mily tree for

am that conn When desig

op of the diags. You will

h more specfigures. Be sfferent quad

off from thecided for surate place.

uadrilateral

s or photos, yYour entire greate at least

ne page in th

rilateral shapristic propert

to have a co

also complet

....................

eral Family

r all of the qu

ects all the dgning your fgram. Theseuse the shap

cific and uniqsure to showdrilaterals.

e most generre what your

ls Family S

your group ngroup will bet one page of

e scrapbook

pe seen in thties of that p

opy of the qu

te the scrapb

....................

y Tree

uadrilateral

different quafamily tree ite would be tpes that were

que propertiew connection

ric name for r family tree

Scrapbook

needs to desie responsiblef the scrapbo

k. Each page

he real worldparticular sha

uadrilateral f

book in Pow

....................

shapes that y

adrilateral sht would be bthe figures we cut out for

es, you will ns between fi

a 4-sided fige should look

ign a scrapboe for creatingook.

e should con

d ape

family tree th

werPoint on th

....................

you have

hapes togethebest to start wwhose proper

the “Where

need to placigures using

gure: k like, glue o

ook for the g one scrapb

ntain at least

hat was crea

he computer

.....47

er with rties

e Do I

ce line

or

book.

the

ated

r.