15
1 QSAR-based Prediction of Inhalation Toxicity Kendall B. Wallace, Eli Petkova, Gilman D. Veith University of Minnesota – Duluth Medical School & International QSAR Foundation Incorporating elements of dosimetry and reactivity to predict biological response Human Airway Chemical disposition (free vapor)- VP Sol H2O Chemical Reactivity Biological Response - Protein adduct - immune surveillance Asthma, T-cell mediated hypersensitivity Irritation/inflammation /tissue necrosis

QSAR-based Prediction of Inhalation Toxicitymckim.qsari.org/Presentations/22_K_Wallace_G_Veith... · 2007. 2. 5. · inhalation toxicity database using strict standards of peer review

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    QSAR-based Prediction of Inhalation Toxicity

    Kendall B. Wallace, Eli Petkova, Gilman D. Veith

    University of Minnesota – Duluth Medical School &

    International QSAR Foundation

    Incorporating elements of dosimetry and reactivity to predict biological response

    Human Airway

    Chemical disposition

    (free vapor)-

    • VP

    • SolH2O• Chemical Reactivity

    Biological Response -

    • Protein adduct -

    immune surveillance

    � Asthma, T-cell mediated hypersensitivity

    � Irritation/inflammation/tissue necrosis

  • 2

    Factors affecting pulmonary response

    noneLowLowCarbon

    monoxide

    Lower

    terminal

    airways

    HighLowPhosgene

    Isocyanates

    Large and

    intermediate

    airways

    HighModerateChlorine

    Upper airwaysHighHighAmmonia

    Upper airwaysModerateHighAcetaldehyde

    Pulmonary

    Toxicity

    Chemical

    Reactivity

    Water

    Solubility

    Chem Name

    �Although inhalation toxicity data have been compiled in selected open access databases, the entries are limited and have seldom been subjected to rigorous peer review.

    �Thus, although these databases may suffice for general reference purposes, the data is frequently ambiguous and of questionable quality.

    �As a result, models of inhalation toxicity derived from these databases have largely been unsuccessful and doubts have been cast regarding the validity of QSAR approaches to inhalation toxicology.

    The QSAR Inhalation Toxicity Database

  • 3

    �The inhalation toxicity database (ITDB) is an effort to compile high quality inhalation data published in the open literature and government reports as well as publicly available unpublished toxicity reports using strict Q/A standards.

    �ITDB has a goal of eventually becoming an international and widely distributed resource for high quality inhalation toxicity data that can be used to better characterize inhalation toxicity with minimal animal testing.

    The Inhalation Toxicity Database

    � We have embarked on compiling an exhaustive mammalian inhalation toxicity database using strict standards of peer review to insure only high-quality studies are included.

    � Currently focus on acute (4 hr) inhalation by rats

    � About 200 unique chemicals, 86 – tested for acute toxicity in rat/4h

    � Limited short-term mouse data

    � Expanding to include other species as well as repeat exposure and chronic inhalation data

    � Preliminary analyses of the database.……….

    Current Status of the ITDB

  • 4

    Modeling Assumptions

    • Obstructive disorders– Low vapor pressure

    – High water solubility

    – High chemical reactivity

    • Restrictive disorders– Low vapor pressure

    – Low water solubility

    – High chemical reactivity

    • MoA - specific disease

    • Non-specific, narcotic-like effects – Low vapor pressure

    – Low water solubility

    – Low chemical reactivity

    LC50/rat/4h vs Vapor Pressure

    Data was compiled from the literature.

    •From mid 50s to present *

    •All chemicals tested as vapors **

    •Consistent exposure conditions ***

    •Different rat strains

    * Guidelines somewhat vary with time

    **Specified (aimed ) in the experiment but sometimes might not be truth

    ***Exposure time constant, number of animals and observation periods vary-2

    -1

    0

    1

    2

    3

    4

    5

    -2 -1 0 1 2 3 4

    Vapor Pressure, mmHg

    LC50

    ,mm

    ol/m

    3LC50, mmol/m3

    Vapor Pressure, mmHg

  • 5

    LC50 /rat/4h vs Vapor Pressure for chemicals previously classified as

    NONNONNONNON----REACTIVEREACTIVEREACTIVEREACTIVE

    y = 0.705x + 1.4719

    R2 = 0.9277

    -2

    -1

    0

    1

    2

    3

    4

    5

    -2 -1 0 1 2 3 4

    Vapor pressure, mmHg

    LC50, m

    mol /

    m3

    LC50, mmol/m3

    Vapor Pressure, mmHg

    HYDROCARBONSHYDROCARBONSHYDROCARBONSHYDROCARBONSHYDROCARBONSHYDROCARBONSHYDROCARBONSHYDROCARBONS are a good examples for narcosis

    Nonane, hexane, isoprene, butadiene, isobutylene, butane, 2-metylpentene-1, 2-metylpentene-2, styrene

    -2

    -1

    0

    1

    2

    3

    4

    5

    -2 -1 0 1 2 3 4

    Vapor pressure, mmHg

    LC50, m

    mol /

    m3

    LC50, mmol/m3

    Vapor Pressure, mmHg

  • 6

    No similar relationship of

    LC50/VP for NITRITESNITRITESNITRITESNITRITES

    -2

    -1

    0

    1

    2

    3

    4

    5

    -2 -1 0 1 2 3 4

    Vapor pressure, mmHg

    LC50

    , mm

    ol/ m

    3LC50, mmol/m3

    Vapor Pressure, mmHg

    LC50/VP relationship

    for AMINES

    -2

    -1

    0

    1

    2

    3

    4

    5

    -2 -1 0 1 2 3 4

    Vapor pressure, mmHg

    LC50, m

    mol /

    m3

    LC50, mmol/m3

    Vapor Pressure, mmHg

    Allylamine, CAS 107-11-9

  • 7

    ACRYLATES & METHACRYLATES

    -2

    -1

    0

    1

    2

    3

    4

    5

    -2 -1 0 1 2 3 4

    Vapor pressure, mmHg

    LC

    50, m

    mol /

    m3

    LC50, mmol/m3

    Vapor Pressure, mmHg

    For ACRYLATES & METHACRYLATES there is no relationship with Vapor Pressure but significant correlation with GSH reactivity

    LC50 vs GSH reactivity

    for acrylates and methacrylates

    LogLC50 = 0.28logEC50 + 2.01

    R2 = 0.91

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

    Log EC50,mM

    LogL

    C50

    , mm

    ol/m

    3

    -2

    -1

    0

    1

    2

    3

    4

    5

    -2 -1 0 1 2 3 4

    Vapor pressure, mmHg

    LC

    50, m

    mol

    / m

    3LC50, mmol/m3

    Vapor Pressure, mmHg

    LC50, mmol/m3

    EC50, mM

  • 8

    Solubility in air andLethal Concentrationvs Vapor Pressurefor narcotics (rat/4h)

    -6

    -5

    -4

    -3

    -2

    -1

    0

    -1 0 1 2 3 4

    Solubility in Air / LC50

    Vapor Pressure, mmHg

    Solubility in air andLethal Concentrationvs Vapor Pressurefor ethers (mouse//15 min)

    -3.5

    -3

    -2.5

    -2

    -1.5

    -1

    -0.5

    0

    0 0.5 1 1.5 2 2.5 3 3.5 4

    Vapor Pressure, mmHG

    Sol A

    ir &

    LC

    50,

    mol/l

    Solubility in Air / LC50

    Vapor Pressure, mmHg

  • 9

    � Fish and mammal inhalation baseline toxicity are not directly comparable because the external media are different

    �However, blood thermodynamic activity for LC50(nar) is the same in fish and mammal

    �At steady-state, the activity in air/water equals the activity in blood by definition :

    α = С x γ

    α – activity; C- concentration; γ-activity coefficient

    Baseline Toxicity

    � The thermodynamic activity at any concentration can be estimated by dividing by the solubility in the

    medium

    � activity for narcosis in fish = LC50(fish)/water solubility

    activity for narcosis in rat = LC50 (rat)/air solubility

    � if activity for narcosis in fish and rat were equal, the plot of LC50 versus solubility in exposure medium should be the same

    Baseline Toxicity

  • 10

    Solubility in Water or Air vs LC50 in Fish or Rat

    -5

    -4

    -3

    -2

    -1

    0

    -5 -4 -3 -2 -1 0 1

    Solubility, mol/l

    LC

    50,

    mo

    l/l

    LC50 fish vs WaterSolubility

    LC50 rat vs AirSolubility

    Solubility in Water or Air vs LC50 in Fish or Rat (combined)

    LC50rat vs LC50fish*Kh

    -8

    -7

    -6

    -5

    -4

    -3

    -2

    -1

    0

    -5 -4 -3 -2 -1 0

    log LC50 rat

    Lo

    g (

    LC

    50 f

    ish

    *Kh

    )

    LC50rat vs LC50fish*Kh

  • 11

    LogLC50 for fish or rat vs Solubility in water or air

    y = 0.7847x - 1.6059

    R2 = 0.889

    -6

    -5

    -4

    -3

    -2

    -1

    0

    -6 -5 -4 -3 -2 -1 0 1 2

    Solubility, mol/l

    LC50, mol/l

    LC50fish vs LogWsol

    LC50rat vs LogAirsol

    LogLC50 for fish or rat vs Solubility in water or air

    2.5 Endocrine active industrial chemicals:

    Release and occurrence in the environment

    Concentration response curves for all

    mixture components

  • 12

    -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

    -10

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    110

    E2 rbtER (cyto)

    SDP rbtER (cyto)

    E2 hERαααα (recomb-LBD)

    SDP hERαααα (recomb-LBD)

    solubility limit

    Binding Assays4,4'-sulfonyldiphenol

    RBA %

    0.0020

    0.0055

    Log Concentration (M)

    Bin

    din

    g (

    %)

    -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

    -10

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    110

    E2 rbtER (cyto)

    SDP rbtER (cyto)

    E2 hERαααα (recomb-LBD)

    SDP hERαααα (recomb-LBD)

    solubility limit

    Binding Assays4,4'-sulfonyldiphenol

    RBA %

    0.0020

    0.0055

    Log Concentration (M)

    Bin

    din

    g (

    %)

    CR

    TL

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Log Concentration (M)

    -10 -9 -8 -7 -6 -5 -4 -3 -2

    solubility limitRBA %

    0.0008

    ND

    Binding Assays ethylparaben

    E2 rbtER (cyto)

    EP rbtER (cyto)

    E2 hERαααα(recomb-LBD)

    EP hERαααα (recomb-LBD)

    Bin

    din

    g (

    %)

    CR

    TL

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Log Concentration (M)

    -10 -9 -8 -7 -6 -5 -4 -3 -2

    solubility limitRBA %

    0.0008

    ND

    Binding Assays ethylparaben

    E2 rbtER (cyto)

    EP rbtER (cyto)

    E2 hERαααα(recomb-LBD)

    EP hERαααα (recomb-LBD)

    Bin

    din

    g (

    %)

  • 13

    CR

    TL

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Log Concentration (M)

    -10 -9 -8 -7 -6 -5 -4 -3 -2125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    RBA %

    0.00057

    0.0098

    Binding Assays resorcinol sulfide

    E2 hERαααα (recomb-full)FP

    RES hERαααα (recomb-full)FP

    E2 rbtER (cyto)

    RES rbtER (cyto)

    Bin

    din

    g (

    %)

    Po

    lariza

    tion

    (mp

    )

    CR

    TL

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Log Concentration (M)

    -10 -9 -8 -7 -6 -5 -4 -3 -2125

    150

    175

    200

    225

    250

    275

    300

    325

    350

    RBA %

    0.00057

    0.0098

    Binding Assays resorcinol sulfide

    E2 hERαααα (recomb-full)FP

    RES hERαααα (recomb-full)FP

    E2 rbtER (cyto)

    RES rbtER (cyto)

    Bin

    din

    g (

    %)

    Po

    lariza

    tion

    (mp

    )

    4-n-Amylaniline

    CTRL

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    110

    AAN rbt Vtg

    -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

    Control rbt Vtg

    1.0×105

    1.0×106

    1.0×107

    1.0×108

    AAN rbtER (cyto)

    Log Concentration (M)

    [3H

    ]-E

    2 B

    ind

    ing

    (%

    )/F

    ecu

    nd

    ity

    (%

    dec

    rea

    se)

    VT

    G m

    RN

    A c

    op

    ies/4

    00 n

    g to

    tal R

    NA

  • 14

    4-n-Amylaniline

    CTRL

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    110

    AAN rbt Vtg

    -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

    Control rbt Vtg

    1.0×105

    1.0×106

    1.0×107

    1.0×108

    AAN rbtER (cyto)

    Log Concentration (M)

    [3H

    ]-E

    2 B

    ind

    ing

    (%

    )/F

    ecu

    nd

    ity

    (%

    dec

    rea

    se)

    VT

    G m

    RN

    A c

    op

    ies/4

    00 n

    g to

    tal R

    NA

    4-n-Amylaniline

    CTRL

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    110

    AAN rbt Vtg

    -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

    Control rbt Vtg

    1.0×105

    1.0×106

    1.0×107

    1.0×108

    AAN rbtER (cyto)Medaka Fecundity

    In vivo Water Exposure

    Log Concentration (M)

    [3H

    ]-E

    2 B

    ind

    ing

    (%

    )/F

    ecu

    nd

    ity

    (%

    dec

    rea

    se)

    VT

    G m

    RN

    A c

    op

    ies/4

    00 n

    g to

    tal R

    NA

  • 15

    4-n-Amylaniline

    CTRL

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    110

    AAN rbt Vtg

    -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

    Control rbt Vtg

    1.0×105

    1.0×106

    1.0×107

    1.0×108

    AAN rbtER (cyto)Medaka Fecundity

    In vivo Water Exposure

    Medaka Fecundity

    Predicted in vivo LiverSteady State Concentration

    Log Concentration (M)

    [3H

    ]-E

    2 B

    ind

    ing

    (%

    )/F

    ecu

    nd

    ity

    (%

    dec

    rea

    se)

    VT

    G m

    RN

    A c

    op

    ies/4

    00 n

    g to

    tal R

    NA