73
n• Jofo!,, ,'Sil.,., !:'·' PROJECT PANDORA (U) Final Report ..... C!f:lll'ltaJN lftt'onnalioo U.. .. at,:. .. ... _ ..1 •"- n-: •• .t e •••.• ···'•L ,_ •• MRT-4-046 QM-66-072 DRC- H- 9331- oO ;(,., , 2 " F;::: R 167. 7., ... - ! ... : Prepared by V. Byron November 1966

QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

n• Jofo!,, H~kint U,i....,..si~ •LI~ •HYIIC~ "1~!H!QitATQl!IV

,'Sil.,., Sp..lw;~, !:'·' ·~1::,~ ·.·~·

PROJECT PANDORA (U)

Final Report

..... !1•,!-_<:ta.;:v~ C!f:lll'ltaJN lftt'onnalioo all'~u U.. .. at,:. .. ..~..._, ... _ ..1 •"- n-: •• .t e •••.• ···'•L ,_ ••

MRT-4-046 QM-66-072 DRC- H- 9331- oO ;(,.,

,

2 " F;::: R 167. 7., ... - -· ! ... :

Prepared by

Eug~ne V. Byron

November 1966

Page 2: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

·~ .. / .,. J.ohn• H:::>pki,..,unrw.nity &.li'i1PHYStC. l.AaOAATO•Y ~it..,., Spri;-9, Metyland .

11!6R£ I MRT-4-046 QH-66-072

ABSTRACT

This is the final report on the Applied Physics Laboratory's

contribution to Project PANDORA - specifically, aid in the implementa­

tion, and the evaluation of a microwave test facility at Walter Reed

Army Institute of Research. An "expandable" conical horn transmitting

antenna, and monitor dipole receiving antennas were designed for use in

the anechoic chamber constructed by Emerson and Cuming, Inc. A mechan­

ical field traversing mechanism was designed and constructed for the

chamber evaluation, the microwave equipment was fun~tionally assembled,

and the completed facility was thoroughly evaluated. The evaluation

ncluded the mea3urement of power variations in the quiet zone with and

without the sample container (with and without the test sample) in the

required position, and the measurement of the power density in the quiet

zone usi~g the Microwave Associates high power TWT and the appropriate

transmitting horn sections.

,

Page 3: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

. Th.:'Johnt HOI)kiill Ur~i...,ity .. • ~f01'1.1£D I"ICYIICS LAM•ArO•T liZ I

s;r.,., Sptir.g, M~ryleftd MRT-4-046 QM-66-072

TABLE OF CONTENTS

Section Title Page

I INTRODUCTION 1

II DESCRIPTION OF TilE MICROWAVE FACILITY 2

A .MICROWAVE ANECHOIC CHAMBER 2

B MICROWAVE EQUIPMENT 3

c TRANSMITTING HORN 4

"'' D POWER MONITORING 4

1 Transmitted Power Monitor 4

2 Standard Gain Horn Monitor 5

3 Monitor Dipole 6

E SELECTION OF TRANSMITTING HORN SECTIONS 6

1 Design Frequency Range 6

2 Horn Sections for Higher Power Densities 8

F DETERMINATION OF POWER DENSITY 8

III EVALUATION: PROCEDURE AND RESULTS 9

A MICROWAVE CHAMBER EVALUATION 10

B EVALUATION OF THE TEST SAMPLE CONTAINER, A~TD 13

THE TEST SAMPLE IN THE CONTAINER

1 Test Sample Container 13

2 Evaluation Procedure 13

3 Test Sample 14

c POWER DENSITY MEASUREMENTS 15 I

D CONCLUSION 16 !

I

Page 4: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

~ Jo,ns H~iM Ufti--.ity A"PLI[D PHY!IIC:S LA.O .. ATOR'Y

sa._., St:wing, MMyl....ct

Section

APPEl\TDIX. ~

APPENDIX B

APPENDIX C

TABLE OF CONTENTS (continued)

Title

TRANSMITTING .HORN, DESIGN AND TEST RESULTS

SLEEVE DIPOLt ANTENNA

FIELD TRAVERSING MECHANISM

Al

Bl

Cl

FIB&Ua MRT-4-046 Q:l-66-072

,

Thia doeu~nee' oolltaiQI illformatioe aJreetiae tD. utio'IUI.I defeu. of t.he Ullited Stat. whhie tiM~ me&Ai ... of the Elpio....,. t.a ...... TitJe JS •· <:I':' e-...;... .... - • .. .a '!'IW "'"'- ._,.._;_;....,. - •"- --•·•""" ,.., hA ...... t.o .. ta '" ,.,.., .... ,._,. t.n .,. nn-.ut~ ..,.,...... i.a nrnhibiucl bv Law.

Page 5: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

The J'*-n• Hot)tlil'l Uni,.,lltv AP,.L.IIO ,.MYatca 1.A80"•\TOIIY

~:sa- St;wi,..i' MMy141f'Cf

LIST OF ILLUSTRATIONS

Figure No. Title

1 Micrmvave Anechoic Chamber

2 Microwave Anechoic Chamber - General

Arrangement Drawing

3 Rack Arrangement of Microwave Equipment

4 P~ndora Microwave Equipment - Functional

Block ·Diagram

5 Expandable Conical Horn

6 Absolute Gain of Conical Horn

7 E Plane 3 db Beamwidth of Conical Horn

8 H Plane 3 db Beamwidth.of Conical Horn

9 Typical E and H Plane Patterns of Conical Horn

10 High Power TWT Monitor - Meter Reading vs.

Transmitted Power

11 Power Density per Watt Transmitted for Each

Horn Section

12 Received Power Density, Monitor Channel No. 1

13 Monitor Dipoles

14. Change in Relative Amplitude for Various Fixed

Angles vs. Frequency; Horn S~ctions Dl to D6

15 Change in Relative Amplitude for Various Fixed

Angles vs. Frequency; Horn Sections D7 to DlO

16 Typical Reflection from Chamber Walls

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

HRT-4-046 cy-1-66-072

,

Page 6: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

The,,John• HopkiM Uni¥4tf'sily I~P~fED rMUICI uao•&TOaY

$iiV'M ~~in;, Mefyl...cf

Figure No.

17

18

19

20

21

·22

23

24

Bl

B2

B3

Cl

C2

LIST OF ·.ILLUSTRATIONS (continued)

Title

Chamber Evaluation - Frequency - 2.6 GHz 33

Chamber Evaluation - Frequency - 2.8 GHz 34

Chamber Evaluation - Frequency - 3.0 GHz 35

Chamber Evaluation Frequency 3.25 GHz

Chamber Evaluation - Frequency - 3.25 GHz (with Standard Gain Horn)

Chamber Evaluation Frequency 3.45 GHz

Chamber Evaluation Frequency 3.8 GHz

36

37

38

39

Field Perturbations Due to Sample Container 40

Sleeve Dipole Antc:nna B2

"Gooseneck" Monitor Dipole B3

VSWR of Dipole Antennas B4

Field Traversing Mechanism C2

Wiring Diagram, Field Traversing Mechanism C3

1111&CM£1• NRT-4-046 QH-66-072

,

Page 7: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

Th• John• HopkiM Ur~l....,lity APPLI£:; PHYSic:.a LA80RATO•'t

Silvor $ptil'l'lJ, MerylWid

Table No.

1

2

3

Al

A2

A3

LIST OF TABLES

Title

Quiet Zone Volumes and Power Variations

Surmnary of Sample Cortainer Perturbations

Measured versus Calculated Power Densities

Transmitting Horn Dimensions

Measured versus Calculated Gain

Measure-d versus Calculated E & H Plane Beamwidths

aii!GIIEF MRT-4-046 QM-66-072

Page

11

14

15

A3 .,

A4

A5

Page 8: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

· .. Th• John• H01)kin1 Ul'll..,.,.lty

APPLilO .. Hl'IIU UMIATOR'I Sil......, ~irof, MMyleftd

I. INTRODUCTION

This is the final report on the contribution of the Johns

Hopkins University Applied Physics Laboratory, to Project PANDORA -

specifically, aid in the implementation and the evaluation of a micro­

wave test facility at the Walter Reed Army Institute of Research, Forest

Glen Section. APL 1 s responsibilities were divided into roughly three

areas: (1) aid in determining the suitability of the microwave equip­

ment to be procured, and the functional assembly of this equipment (2)

the design and fabrication of necessary specialized equipment,· - trans­

mitting horn, monitoring dipole antennas, a field traversing mechanism, ,

etc., and (3) the evaluatJort' of the microwave anechoic chamber, the

calibration of the measurement equipment, and the test of the completed

facility. The test and evaluation of the completed facility included

the measurement of the power variations in the quiet zone of the anechoic

chamber with and without the sample container (with and without the test'

sample) in the required position, and the measurement of the power den­

sity in the quiet zone.

In addition, a familiarization session was conducted for Army (1)

personnel scheduled to operate the facility. A companion report de-

scribes the operational procedure, the procedure for determining the

power requirements and which "add-on" section of the expandable conical

horn to use for a desired power density, and a description of the moni­

toring equipment.

The commerically available microwave equipment was specified

and purchased by the Air Force Avionics Laboratory (AFAL), Wright-Patterson

AFB, Columbus, Ohio - the· program managers. The microwave anechoic chamber

was designed and constructed by Emerson and Cuming, Inc., Canton, Mass.

The high power microwave traveling wave tube was designed and built by

Microwave Associates, Burlington, }~ss., with the associated power supplies

furnished by Alto Scientific, Inc., Palo Alto, California.

(1) "Operational Procedure for Project PANDORA Nicrowave Test Facility11

APL/JHU Report 'MRT-4-045; (QH-66-071) dated October 1966 (U)

s~==-1.'~· ..... d~~-~'- ~t&i~ .!...n{oc;mu~o afr~~ t.hlt.~t.io~ ~~~~ .~ t.be .tJ~i~ St.a&.ee withio. them~ f?1 ~be Eap~na,aw .~~·.'fit~. II

Page 9: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

r.. J~nns Hopkin• Univtot'sity '1.1[0 PHYSII:a LA8011ATO•'Y

Silv:tr S~:.,.ii'IQ, M.lryl411'1d MRT-4-046 QM-66-072 Page 2

II. DESCRIPTION OF THE MICROWAVE FACILITY

The microwave test facility implemented at Walter Reed con­

sists of a microwave anechoic chamber, an expandable conical transmit­

ting horn attached to one end wall of the chamber, and the microwave

control and monitoring equipment installed in four equipment racks

which are housed in the control room adjacent to the transmission end

of the chamber. Also, a standard gain horn power monitor, and two

sleeve dipole monitoring antennas are installed in the microwave chamber.

The facility was designed to operate at S-Band, with conver- , sion potential through X-Band, such that a suitable quiet zone - minimum

dimensions, 3' wide x 2' high x 1' deep, fo.r: two 'test samples side by

side- would be illuminated uniformly; a power.density of 2 mw/cm2 ± 1.0 db

over the frequency band was the design goal, with a potential for a power

density of 10 mw/cm2 over a reduced volume and ai fixed frequency.

A. MICROWAVE ANECHOIC CHAMBER

The microwave anechoic chamber (Eccosorb Anechoic Chamber No.

650) is approximately 15' wide by 15' high by 35' long. The proposed

four foot cubic quiet zone is symmetric about a point 25 fee~ from the

tra~.~mitting end wall, and equidistant between the floor, ceiling and

side walls. Figure 1 is a photograph of the chamber; figure 2 is the

general arrangement drawing, and also. shows the mounting detai 1 for the

transmitting horn.

The design requirements for the chamber specified that the power

variations should not exceed.± .25 db superimposed on the transmitted gain

"droop" measured in the quiet zone.with an absorber backed dipole over the

frequency band of interest. As noted in Section III of this report, ·

these values were not realized, and power "amplitude ripples" as great as

± 1.0 db were observed. The chamber evaluation showed that for the minimum

· quiet zone dimensions- 3' wide x 2' high x 1' deep, - power variations of

Page 10: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

.•

Th4 Jokt~: HOf)kiM Uni....,..ily AP,.LI£0 f'HYIIC8 UIIQaATO•Y

Silwoet Spti~. MMylMd MRT·4-046 QM-66-072 Page 3

± 1. 75 db "Were possible over the S-Band frequency range. When a stan­

dard gain horn "Was used as the field probe instead of the absorber backed

dipole, considerable improvement "Was observed; amplitude ripples were·less

than± 0.25 .db. This is discussed further in Section III.

B. MIC.ROWAVE EQUIPNENT

The microwave equipment is assembled in the four racks shown in

figure 3. Equipment rack number on~ contains the Spectrum Analyzer R. F.

and Display sect ions. Rack. number ;'Wo contains the auxiliary low. power

micro"Wave. generation and modulation equipment, and some ancillary equi~-., ment, in addition to the control panel for the field traversing mechanism.

Rack number three contains the primary lo'W-power microwave generation and

modulation equipment, and the necessary monitoring and recording equip:..

ment. Rack number four contains the high power microwave amplifier and

associated po'Wer supplies and R. F. power monitors.

The equipment in rack number t'WO is not interconnected (nor is

the spectrum analyzer). The interconnection of racks number three and four

'With the expandable conical horn is shown in figure 4 "Which is a functional

block diagram of the micro"Wave system. Also shown in this figure are the

"do"Wnstream" po"Wer monitors in the anechoic chamber.

All of the equipment assembled in racks number t"Wo and three are

cormnercial ''off the shelf" units (traveling mechanism control panel ex­

cepted) and constitutes the best and most versatile, in terms of possible

R. F. modulations, microwave equipment available. This 'Was particularly

necessitated by the unkno'Wn nature of the desired signal for an experimental

facility. These units "Were specified and purchased by the program managers

(AFAL). Compatability and suitability of this equipment 'Was monitored by

APL and the equipment "Was functionally assembled and tested at APL and .de­

livered as a unit to Walter Reed.

The high po"Wer microwave amplification equipment in rack four

was purchased under separate contract (from AFAL) to Microwave Associates

and 'WaS delivered as a unit.

Page 11: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

T"• JohM Hot:~iim U"i-sily . A,.l"f...IEO PM'fllt.\1 LA80.ATOin'

· sa,., Spr•l"'ff· M.Jrtl.-d

w&EcstelJt MRT-4-046 QM-66-072 Page 4

C. TRANSMITTING HO&.~

The transmitting horn characteristics were dictated by the

dimensions of the quiet zone to be upiformly illuminated. This de­

sign rationale and the test results are discussed in Appendix A of this

.report. In order to provide a constant gain and beamwid th over the de­

sired fr~quency band, "add-on" sections were provided as depicted in

figure 5.

The first section of this "expandable" conical horn incor­

porates a rectangular to circular transition obviating the need for a

separate rectangular to circular waveguide transition.

Gain measurements and antenna patterns· were taken for each

horn section at the center, and at the low and high ends of the S-Band

frequency range. The results of these measurements are summarized in

figures 6, 7, 8,, and 9. Figure 6 shows the absolute gain of each of

the sections across the frequency band. Also shown, is the design fre­

quency range for eacb s·ection. Figures 7 and 8 show the E and H plane

3 db beamwidth respectively, and figure 9 is a typical E and H plane

pattern (section D3) in its design frequency range.

D. POWER MONITORING

,

One of the prime requirements for the microwave test facility

was the ability to accurately determine the power density in the quiet

zone of the anechoic chamber and to observe the transmitted signal, within

the limits afforded by commercially available test equipment.

Three monitoring channels were incorporated in the system, and

several couple~ outputs are available for observing signal wave form,

either on an oscilloscope (detected outptits), or directly on the _spectrum

analyzer (see figure 4).

1. Transmitted Power Monitor

To measure .the transmitted power, two coaxia 1 direc tiona 1 couplers

and a thermistor mount were installed in the high power equipment rack (fig­

ur~ 4). The thermistor output is connected to the HP 431C power meter in

rack number three. The loss in this coupled transmission path was measured

ctt~· Till• d,oe,IMG\ ccet.&i• iaiOI'fi\Alioa alf~iq t.he D&tiooaJ defeDAIII ol the Uaiwd Stata witbia the DM~SDiQC ot tbe Eepioft.IP La-. Tit.le Ill II,S.C .. ~ 791 aacl 1M. The \raumieeioca or \be revelatioa ot iw cooteata ia uy mao.aer to u UD&utbori.lled peregft il pi"'bibic..d bylaw.

Page 12: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

Tt-.. Jonnt Hopkil'ls Uniwuity AP!"LI'O ,.MYIICI LA•OAATOIII'Y

Sii\I"'W _S,:wing, ..... -yl¥-.d

MGaSIN 1-lRT- 4-046 QM-66-072 Page 5

over the 5-Band frequency range. The resultant calibration was incor­

porated with the measured loss of the output cable and the waveguide to

coax adapter on the trans~itter horn, to plot the transmitted power curve

shown in figure 10. This curve is a plot of corrected power meter reading

versus transmitted power. Included in this figure is the legend for deter­

minins tr~nsmitted power from the corrected meter reading, and conversely,

the method for setting the·transmitLed power by observing the meter reading.

This figure in conjunction with figure 11 (Power Density per Watt Trans­

mitted for Each Horn Section) can be used to determine the on boresight

power density in the quiet_ zone. This is explained in greater detail in,

section II E.

2. Standard Gain Horn Monitor

The standard gain horn monitor (monitor number 1 in figure 4),,

is the primary "downstream" power density monitor. The gain deviation ver­

sus frequency curve of the standard gain _horn, and the measured loss of the

connecting cable and waveguide to coaxial adapter were incorporated into

one frequency correction curve, shown in figure 12. This·figure is a plot

of the power density as a function of the corrected power meter reading.

The power density thus measured is the power density at the_ position where

the standard gain horn is placed in the chamber, and not the on boresight

power density alluded to in the section above. It is possible to measure

the power density i~ the anechoic chamber directly, only if the horn moni­

tor can be physically placed at the desired position without interfering

with the experiment in progress. If this is not possible, then the power

density can be determined by extrapolating the measured power density, to

the power density at any other position in the quiet zone by using the

known gain-beamwidth characteristics of the transmitting horn section. In

a similar fashion, the on boresight power density determined from the meas­

ured transmitted power can be extrapolated to any point in the quiet zone.

The determination of power density for other than on boresight (and meas­

'lred) conditions is discussed in Section II F.

TJ1ia doeumeat eoata.hu ia.lormu*o• &lf'ee\iq the utiouJ d.efeue ol U. United Sta'- •lthia tt. meaaiq ol the Eap*o....- ta. .... Title IS .,o,.. D ............ :: ... --"""""_ ...... tfll\.ll ,..._ ... •-----:--:~- -- •t. .. --·~·•-•=-- -• a .......... -• .. ·•- t- --~· ----·· .... -- ... - ...... ~•\..-....1--A ---- :. --'":'"'=•-.A t..- •--

Page 13: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

Tf,eJohns Hopei~ U"i-.ity AP,.LI[D ,.HY&ICI LA80aATOitY

sa_. Spring, M.ryl<ll'ld

.. £ __

MRT-4-046 QM-66-072 Page 6

3. Monitor Dipoles

In addition to the standard gain horn monitor, two sleeve di­

pole monitors are available in the chamber for the observation of signal

waveforms. ·These dipole monitors are shown in figure 13. , The design

dimensions and the measured results are discussed in Appendix B.

·It was originally intended that these dipoles would be cali­

brated ~nd used to measure. the abso~ute power density at any position in

the chamber. Unfortunately, the rather large amplitude ripples caused by

the reflections from the chamber walls, precluded this possibility. (The

standard gain horn integrates the ripples over its considerably larger , area and, consequently, was substituted as the prime power density monitor.)

However, since the dipoles are light-weight and easily movable, they were

retained for signal waveform observation, and for the "gross measure" of

power density. Since the two monitors have identical characteristics, by·

'lacing one at a region of known power density, qnd placing the other at

dny desired position, the power density at any position can be determined.

This is a "gross measurement" because the amplitude ripples can cause an

error ~s great as 2.0 db.

E. SELECTION OF TRANSMITTING HORN SECTIONS

As stated previously, the microwave facility was designed such

that a suitable quiet zone- minimum dimensions, 3' wide by 2' high by 1'

deep for two test samples side by side - would be uniformly illuminated;

a± 1.0 db power variation in the quiet zone was the design goal. The quiet

zone starts at a transmission length of 23.0' and is symmetric about the

chamber horizontal and vertical axis.

1. Design Frequency· Range

As discussed in Appendix A, the quiet zone dimensions set the

beamwidth characteristics of the transmitting horn; and a conical trans­

mitting horn with uadd-on" sections was designed to give maximum gain with

the required beamwidth over the S-Band frequency-range. Under these condi-

ions, figure 11 shows the "design frequency range" for the appropriate

~ If: C ....

Tbia ~mea' ooowu iDIOf'1'n&lioa alree'\lG.c tblt oatiou.l defezue of the Uaited Sta\ee -.ithU. the meu.iac ot the &piotaap LaW"a, Titw 18 v.s.c_ .E.ietiau 7'!1.1 Uld '7N. The II'&DIImiaioo. or Uw n!Velat.ioa of Ita mn ... nt. in -y man,._ tn &D unaut~ .... _. ...... ...,.),ih.ot.-1 hv ...

Page 14: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

TN! Johns Hopltina Ul'liwnity APPLilO "~YIIetl LA8011ATOIIY liME I

s;· :1\9 • .,..,,..,.. • MRT-4-046 QM-66-072 Page 7

sections (Dl through D6). This figure is a plot of power density (in mw/cm2)

per watt transmitted - Pd/W - versus frequency for each of the horn sections

at a transmission length of 23.0 feet. These curves are obtained by plotting

the expression:

p 1 r

X = A PT r

where GT is the measu.red

and R = 23.0 feet is the

GT Pd 4rr~

= w

gain of ea\,.h

transmission

as a function of frequency,

of the transmitting horn sections,

length. Thus pr A

r X

1 is the

, power density per watt transmitted when PT is the transmitted power.

It can be seen from figure 11 that, for the design frequency

a mtl1/ cma + lOo'o. ranges, Pd/W is 1.6 x 10- h For 250 watts of transmitted -watt -

lOwer - the recommended upper limit for continuous operation of the high

power TWT - the power density is 4.0 mw/cm2 ± 10%, which adequately meets

the design goal of 2 mw/cm2 in the quiet zone.

Neglecting reflections in the chamber, the power· density vari­

ation for angles off boresight is dependent upon the transmitting horn sec­

tion used (the gain), the frequency, ·the angle, and the transmission length.

The change in relative amplitude versus frequency for angles of 2, 4, and 6

degrees for each of the horn sections is shown in figures 14 and 15. The

change in relative amplitude is defined as the maximum relative power ampli­

tude at a designated frequency (the gain at boresight), minus the relative

amplitude at the off boresight angle indicated, at the same frequency. The

curves were obtained from the measured an.tenna patterns. Thus, the curves

in figures 14 and 15 show the change in power density, for a fixed trans­

mitted power and transmission length, at the angles indicated for each of

the horn sections. For the minimum quiet zone dimensions, starting at a

transmission length of 23', the maximum off boresight ang.le, in the H plane

(vertical polarization) is: l

tan 0 ~ 1.5 = ± 3.75 , and in theE plane 9E =+tan 23

., .;·).f''·i·J' ·· .. ·.r·a.t.t a

l 23

0 = + 2.5.

Page 15: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

n.. Joh,t Hopki,s 'Ur~ilo4f'Jity 'PI.IED f'MYSie.l UIORATOilT

Silver S;.rin;, MMyi...G

Jt:CFt£¥4 MRT-4-046 QN-66-072 Page 8

It can be seen from figure 14 that in the design frequency range, the

maximum change in relative amplitude is 0.75 db, which occurs for horn

section Dl at frequency 4.0 GHz, (H plane, 4 degrees). Adding another

0.4 db due to the change in transmission length in the quiet zone (one

foot deep), the total change in relative amplitude, and hence the change

in power density for a fixed power transmitted,. is 1.15 db~± .6 db)

which is well within the+ 1.0 db goal set for the quiet zone.

For a qui.et zon~·4' wide X 3' high X 1' deep (9H';;: .±5°, eE'::. .± 4.0°),

the power density would be within+ 1.0 db (neglecting reflections). This

was borne out by the chamber evaluation discussed in Section III. ,

2. Horn Sections for Higher Power Densities

To increase the versatility of the facility, additional "add-on"

horn sections were designed to uniformly illuminate successively smaller

quiet zone volumes with increased gain. Thus, at the upper end of the fre.­

·tency band (3.95 GHz) horn section DlO will illuminate uniformly ~.± .5 db)

quiet zone large enough for a single test sample- 1.5' wide x 1' high x 0

1' deep. This can be determined from figure 15 where for DlO and 9H= .± 2 ,

9 = + 1° ~A= .5 db. At this frequency, DlO gives the maximum p.ower den-E - , . sity obtainable for the system. From figure 11, for horn section DlO at

Pd/W _a

3.95 GHz, = 3.83 X 10 and the power required for a power density of

10 mw/cm2 is: 10

260 watts which is obtainable from the high to-2 = 3.83 X

power TWT in the system.

F.· DETERMINATION OF POWER DENSITY

As discussed in Section II D, the power density can be determined

by direct measurement using the standard gain horn monitor and figure 12, if

the monitor can be physically placed at the desired position. The on bore­

sight power density can .also be det~pmined from the measured transmitted

power and figure 11. From the discussion in Section E above, it can be seen

that this value will be correct to better than + 1.0 db for any point in the

Quiet zone in the design ranges.

Page 16: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

!w Jot.ns Hopkint Univenity '1.111) f'MYSIC-a L.A80RATOR1' ·sa.,.,. s~;~, M.ryi.-:J ~6

QM-66-072 Page 9

In using the larger section to illuminate the 3' wide by

2' high by 1' deep quiet zone, the power density at any position can

be determined from the on boresight power density/watt transmitted

curve (figure 11), and the 6A curves given in figures 14 and 15.

As an example, for horn section DlO with 200 watts trans­

. mitted at 3.95 GHz, the power density at boresight is Pd = Pd/W x a

power transmitted. Pd/W = 3.83 x 10- from figure 11, therefore, . l

Pd = 7.66 . 0

mw/cm2 • At the edge of the 3' quiet zone, 9H = ~ tan- 1.5/23 =

+ 3.75. Interpolating from figure 15 for DlO, a.H = .::!:: 3. 75; 6A is ap-

proximately - 2.25 db = 60% of the maximum amplitude, and the power ,

density is approximately 7.66 x 60% = 4.56 mw/cm2 at the quiet zone edge.

In a similar manner, the on bo.res igh t power density can be."

determined from the measured power density at any point in the quiet

zone. Actual values measured during a preliminary experiment are used

;s an example. The standard gain horn monitor was placed 2.5' off bore­

sight in azimuth, and its meter reading was 2.4 dbm. From figure 12, at

3.2 GHz (the transmitted frequency) the frequency correction term is 2.2

db. Thus, the corrected meter reading is+ 2.4 dbm + 2.2 db = 4.6 dbm,

which (from figure 12) corresponds to a power density of 3.1 mw/cm2 at

the point of m~asurement. The monitor horn position gives a 9H = ± tan 0 0

2.5/23 = ~ 6~ 1 , and from figure 14 for ~H = 6 and horn section D6

(the horn section used) 6A = 1.9 db= 65%. Therefore, the on boresight

power density is 3.1 mw/cm2 x 6~% = 4.78 mw/cm2 • For this experiment,

the measured transmitted power (210 watts) gives an on boresight power

density of 4.72 mw/cm2. (from figure 11) which is in good agreement with

the above calculated value (4. 78 mw/ crrf) .:

III. EVALUATION: PROCEDURE AND RESULTS

1

The evaluation of the microlvave test facility was divided in three

phases: (1) the evaluation of the reflection from the walls and ceiling of t~e

.... ~~~

-Tt.la ,..,_,....,..,, ....et.aJ- laltw"'atV. ... aflf-«.iu tha n.stinftal dafea.ae ol the Uaitfod Sta&et withiD the me&!Uu o1 the Eaoiol:la..a Lan. Title 11

•.. ~

Page 17: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

The Johns Hopl&ina Ul'li-'tity APPLIED I"~'UIC• I.AaOitATOIIY

~:· Sc:wing, MaryiMd

'!JESI IE I MRT-4-046 0.'1- 66-072 Page 10

empty microwave chamber as measured with an absorber backed dipole and

a standard gain horn, (2) the measurement of the reflections from a

single sample container (both occupied and unoccupied) in the quiet zone

and (3) th~ measurement of the power density in the chamber using the high

power source and the various horn secti.ons.

A. MICROWAVE CHAMBER EVALUATION

The·results of the evalua~ion of the microwave anechoic chamber

are summarized in Table I. It can be seen from this tabulation, that for

the required minimum quiet zone dimensions- 3' Wide x 2' High x 1 1 Deep.-, a total power variation of± 1.75 db is possible over the frequency band of

interest. At selected frequencies, adequate quiet zones with ~ 1.25 db

variations are possible. The measurements, performed with an absorber backed

dipole, indicate that .the power variations are primarily due to "amplitude

ripples" caused by reflections from the chamber walls. Maximum ripples as

great as± 1.0 db were observed. Figure 16 is a typical example of the

power variation due to reflections. This data is for a 25' transmission

length at F = 3.25 GHz.

The values obtained with a standard gain horn at 3.25 GHz (gain = 16.5 db) are also shown in Table I, (from figure 21) as an example of the

optimistic conclusions resulting from the use of a large area receiving

antenna. The horn integrates the reflected ripples over a !eceiving area

considerably larger than that Qf the dipole. Maximum ripples as observed

with the standard gain horn were less than+ 0.25 db.

The chamber was evaluqted by taking horizontal cuts, through the 4

foot cubic quiet zone which is centered equidistant between the side walls,

and the floor and ceiling; a distance 25.0' from the transmitting end wall.

The horizontal cuts extending + 2.0' from this quiet zone center, were taken

at elevation increments of± 1.0', ± 1.5', and± 2.0' for each transmission

length increment of± 1.0', ± 1.5', and~ 2.0' from the 25.0' center point.

These measurements were repeated at each of the six different frequencies in

the design range of each of the horn sections. Relative power as a function

f horizontal distance was recorded on an X-Y recorder, equipped with a roll

chart adapter, for each of the measurement increments.

'P :IQII • %

..... ~- .... ____ ·-· ... _ .. ' ....

Page 18: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

TABLE I I'U<.T-4-U~o .t'age ll '1"'6 Jo"'"' Hopl.iftt Univenity

APP'LIED i"NYSICI LAIOIATORY

Sil..- Sp~i~. M¥-,1~ Quiet Zone Volumes and Power Variations • :we•

quer I Volume Dimensions for Power Variations of: Sect +l.Odb +1. 25db · ··+l.Sdb +1. 75db +2. Odb ~.::!:2. 25db - -

None None 2'Wx2'Hx3 1 D 4 1Wx3 1Hxl 'D 4 1Wx4' Hxl 'D 4 1Wx4 1 Hx4 1 D 6GHz 3 'Wx3 1 Hx3 1 D 4'Wx3'Hx2 1D (2.75db) D6)

4'Wx2'Hx3\'D

3 'Wx4'Hx2 'D

-2 1Wx3'Hxl 1D 4 1Wx3 1 Hx l' D 4 1Wx3 'Hx2 'D 4 1Wx3 1 Hx3 1 D 4'Wx4'Hx4'D

8GHz 3 'Wx2'Hx2'D 3 1Wx4 1 Hxl'D 3 1Wx4 1 Hx3\'D DS) 2'Wx3 'Hx_2 'D 3'Wx::i'Hx3~'D 3 1Wx3'Hx4'D

2 'Wx4'Hx\'D 2 'Wx4' Hx2 'D 2 'Wx4 'Hx4. 1D

3'Wx2'Hx%'D 4'Wx2 1Hxl 'D 4'Wx3 1 Rxl'D 4'Wx3'Hx2'D 4'Wx4'Hxl'D 4 1 Wx4 1 Hx4 1D , OGHZ 3'W'3'Hxl'D 3'Wx3 1 Hx2 1 D 3'Wx4'Hx3~'D 3'Wx4 1 Hx4'D (2.5db)

:n4) 3'Wx2'Hx3'D 3'Wx2'Hx4'D 3'Wx3'Hx4 1D

2'Wx4' Hx2'D

3 'Wx2'Hxl'D 4 'Wx2 1Hx2 'D 4 'Wx3'Hxl'D 4 1Wx4'Hxl'D 4 'Wx4' Hx2 'D 4 1Wx4'Hx4'D '

25G. 4'Wx2 1 Hx3 1 D 4 I v1x3 I Hx3 I D 4'Wx3 'Hx4 'D {2.25db)

:n3) 3'Wx2'Hx3~'D 4'Wx2'Hx4'D 3'Wx4'Hx3'D

3 1Wx3 'Hx4'D

.25GHz 4 1 Wx3 1 Hxl 1 D 4'Wx4 1 Hxl'D Great many 4 1Wx4'Hx4'D ,)

:n3) 3 1\<7x2 1 Hx2 4'Wx3 1 Hx3 1 D options

1rd Gain Many others )rn

None None 2 'Wx4'Hxl'D 3 1 \vx4'Hxl'D 4'Wx4'Hx2'D 4 1Wx4'Hx4'D

.45GHz 2'Wx2 1 Hx2 1 D 3 1 Wx2'Hx3~ 1 D 4'Wx2'Hx3 1D (2.25db)

(D2) 2 ~Wx4' Hx2 'D 3 'Wx3 1 Hx4 'D

2'Wx3'Hx4 1D

2'Wx2 'Hx%'D ·3 'Wx2 'Hx~ 1 D 4'Wx2'Hxl'D 4 1 Wx4'Hx%'D 4'Wx4'Hx4'D

.8GHz 2 'Wx3 'Hx2 'D 3'Wx2'Hx3'D 4 'Wx3' Hx4 'D (Dl) 2'Wx3 'Hx4 1 D

;

= Width H = Height D = Depth ::>tes·

.) All quiet zone volumes start at a transmission length of 23 feet and are symmetric about the chamber width and height center points.

(2) variations whose dimensions are ~minimum required values

Tbia doeumea\ coat&iu iAIOI"ft'la4ioa alfeeiilaa tbe na\ioa.al defeaa. of \be UD.ited St.aloee witbia ~be me.niac Df the Eapionap La ... Ti~le 11 li.S.C. ~ 791 ud TN. The~~« &be revelatioa ol ha C011t.eDta iD llD)' manoer to &D uft.llutbon.ed pel"'Ia ia prohibited by law.

Page 19: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

Tht Jo),,, Hopltins Univenity IP,.LIE'O rHYIICI LAaO•·HOIIIY

• Silv ' '"J1a, ""-tyiWid

of missing "worst point'' cases, it is felt that the very large number of

data points measured represents a good statistical sampling, and the con­

clusions summarized in Table I are represenoative of the chamber behavior.

B. EVALUATION OF TEST SAMPLE CONTAINER AND TEST SAMPLE IN THE CONTAINER

1. .Test Sample Container

Tests were conducted with a single test sample container in the

quiet zone. For the container havir~ no microwave absorbing liner, fairly

large amplitude ripples resulted (greater than± 5.0 db). With· the container

almost completely lined with a microwave absorber (the "radiation window" ex-, cepted), these variations are reduced to approximately~ 3.5 db. Removing

the plexiglass back that was on the container (the container is irradiated

from the back) and replacing it with a thin plexiglass back (1/16" thick)

further reduced these variations to approximately± 2.5 db. By absorber . 1 ining certain braces that are within the radiation window (and cannot be

emoved), the perturbations are reduced_ still further, to approximately

i 2.0 db, however, portions of the radiation window are blocked. In any

event, the test sample in the container perturbs the field in some different

manner and the question arises as to what constitutes a valid set of measure­

ments: the sample and container immersed into an unperturbed field, or the

sample placed in an unperturbed field within the container (if this were

possible). In either case (the test ~ample and container, or the sample

alone), complex multiple reflections result.

Consideration should be given to the possibility of constructing

a suitably lossy microwave container with a radiation window of the desired

dimensions.

2. Evaluation Procedure

The evaluation of the test sample container in the microwave cham­

ber was performed by mounting the container in the center of the four foot

cubic quiet zone (at a transmission length of 25.0 feet) on the horizontal

traversing mechanism. A monitor dipole was placed at a transmission iength

! 23.0' on the horizontal and vertica.l center point. Received power was re­

corded as a function of the-horizontal traverse of ~he contain~r in the quiet.

Page 20: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

The Jonru H~ina u,;..,.rtity .APP\.1[0 Plol'f'SIU t.A801UTOIIIY

Si!- S9tiNJ, ~~~ MRT-4-046 QM-66-072 Page 14

zone. The dipole was then moved toward the container in 3-inch increments

and the measurement repeated. This procedure was repeated for several dif­

ferent elevations of the monitor dipole and several different frequencies.

The test sample container was moved behind the dipole monitor, rather than

the monitor being moved in front of the container, because, in the latter

case, the traversing mechanism would ''shadow" the container. Typical re­

sults of the container evaluation are shown in figure 24.

To mount the container at the proper elevation level, the travers­

ing mechanism was fitted with an absorber pedestal, upon which the container

was placed. The pedestal by itself (and the traversing mechanism) was evalu­, ated as described above with negligible perturbations of the R. F. field re-

sulting.

3. Test Sample

The ··evaluation of a single test sample in the test sample cont;ainer

was performed in a manner identical to the procedure described above. Results

of these tests show that the sample in the container does· not greatly increase

the magnitude of the field perturbations over those observed for the container

alone - ±. 2.88 db versus.± 2.63 for the two cases respectively - however, the

phase of the reflections is changed such that where a maximum was obeerved

without the test sample, a minimum might now exist. Table II, below, is a

summary of the evaluation of the test sample and the test sample container.

TABLE II

Summary of Sample Container and Sample-in-Container Measurements Test Condition Field Variation

A. Sample Container Alone (Worst Case*)

B.

c.

Absorber Lined Container (3/8' ple;Kiglass back) + 3.63 db

" tt " (no back) + 4.88 db

" " tt ( 1/ 16" plexiglass back) + 2.63 db

Sample in Sample Container

Absorber Lined Container ( 1/ 16" plexiglass hack) + 2.88 db

Sample Alone** + .88 db

* Worst Case = greatest maximum to greatest minimum power variation in the quiet zone, for all positions of dipole monitor (see figure 24).

** Perturbations due to Sample movement alone, container and dipole monitor jiff-·

.IECREI. Thia doevD'!IIIta\ coataiu in.fotmMioa affee\iq tlM utloD.&I defeDall of tbe Uait.ed Stat.el withiD tbe mMDiD& of tbe bpioaap l.aW'I, Tit'S. 18 U.S.C,. ~ 711 aACI nt. Tbe t.raumiaioa 01' the revelatilm ol it.e coateota ia a.a7 mno.r to u uuu&bori.Md. pereoo;. probibiwo b7 Lt.•.

Page 21: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

· TH• Johnt Hop&i,, Ur~i-aity APPLIED PHYSIC. LA&OaATOIIY

Sil-...r Sprii'I'IJ, !Mryl-cl

IIM!ft!i MRT-4-046 Qz-.1-66-072 Page 15

C. PO\.JER DENSITY

The final evaluation phase of the microwave test facility was

the measurement of the power density in the quiet zone, utilizing the com­

plete microwave chain . . The power density was meas~red with the standard gain horn monitor

as outlined in Section II F, for various frequencies, and for values of trans­

mitted power between 200 and 300 watts with the appropriate horn sections.

These measured values were compare~ with the power density calculated from

the measured transmitted power and the gain of the horn sections. The re­

sults are summarized in Table III.

Freq.

(GHz)

2.6

2.7

2.7

2.8

2.9

2.9

3.0

3.1

3.2

3.3

3.4

3.6

3.6

3.7

3.8

3.9

3.95

4.0

, TABLE III

Measured versus Ca leu la ted Pmver Densities

Tx .• Horn

Section

D6

D6

D5

D5

D5

D4

D4

D4

D3

D3

D2

D2

Dl

Dl

Dl

Dl

Dl

D1

Tx. Hornl Measured Calc. Power Measured ~ = G . Tx. Power Density -mw/cm2 Power Density Calc.-aln I ....2 :a {Watts) (PTGT 4rrK-) mw/cm- Meas.

99.6

105.0

91.2

95.6

102.0

89.0

93.5

100.0

93.5

100-.0

91.2

102.0

89.0

95.6

100.0

105.0

110.0

112.0

228

226

220

216

210

236

234

232

226

232

232

236

245

260

278

250

250

250

3.40

3.55

3.0

3.09

3.20

3.14

3.27

3.47

3.16

3.47

3.17

3.61

3.27

3.71

4.16

3.93

4.12

4.19

3.70

3.90

3.0

3.2

2.9

2.85

.- , 3.1

3.35

3.0

3.45

3.0

3.6

3.6

3.6

4.15

4.0

4.35

4.25

-0.30

-0.35

0.00

-0.11

+0.30

+0.29

+0.17

+0.12

+0. 16

+0.02

+0.17

+0.01

-0.33

+0.11

+0.01

-0.07

-0.23

-0.06

NOTE:. For these measurements R = 24.0' (" ," · ... -·-~~

Thi• doeumeat eoataiaa ht!ormatioa all'eetiq tbe D&t.iob&l defe~ of the Un.it.ed St.aw withia the me&Aia,r of the EapiGa.aae IAW"', Title-IS V..S.C,. 8eet.ao. m &Del 1M. Til. tnt.camiaioa or the revel.a\ioo ol ita oo11teot.a ira aD)' maGDer to ao unau\bori.lled periOD il probibiw.d b-' Jaw.

Page 22: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

·Tnit Jot"" H09lti-;.,a U,iwnity A,.P'I.I£0 ,.MYtlCI uaOJtATOU'

sa_. ~ii'IQ, ""-'YI-.:t

D. CONCLUSION

The microwave equipment at the Walter Reed facility is capable

of producing a power density of approximately 4.0 mw/cm2 in a quiet zone

adequate ;or two test samples side-by-side (3'W x 2'H x l'D) over the

S-band frequency range, with a transmitted power of 250 watts - the

recommen-ded upper limit for continuous operation of the high pow~red

traveling wave amplifier:

For reduced quiet zone volumes, a power density of 10 mw/cm2

is possible.

When evaluated with an absorber backed dipole, total power ,

variations of+ 1.75 db were observed in the 3'W x 2'H x l'D quiet zone

over the S-Band frequency range, primarily due to reflections from the

chamber walls <± 1.0 db). Using a standard gain horn as the field

probe reduces the observed "ripples" to less than + 0.25 db.

For a single test sample in an absorber lined test sample

container, field variations of + 2.63 db were measured. The movement

of the sample alone produced variation of + 0.88 db in the power

measured with the dipole antenna.

Page 23: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

Fig. 1 MICROWAVE ANECHOIC CHAMBER

L·u".L- "+- V'+U

QM-66-072 Page i7

Page 24: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

' I

~~·

I

w~:-:,::.• '

':·

.

. t l ..

~· .

I .·.:. ~·, .... i !

:_j '.i"'.

1-:

I

Page 25: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

~ RtJCI( PWR.SUI.

j

I ... I

SPECTRtiM llNAI.VZcR

./)I..SPI.AV HP8518

.Sfl'CTRUIA llNIJlf/LcR

1-/P 8551 B

12~ .:JE'CT!ON

PE:JK.

J

QM-66-072

FIIN\ t'tJt.O WliTE'R

,tl . r· If 110 IJC

~ ~ ~ /~ t / 1Zt1CI< PWR. SW. ~~CK PW/2, SW. rwr

10/V TWT AMPl/FI~R MtCROW~VE PSJOC,

YOtTMET£.1? TJ./EP..I/1 .STtJL: PlFREO 5·6868 TPP€ M4 c."'OIZ B 111'-410 ~ CIJliiJRIIT:.;R

JJP84C?L Nore0 NOTE@ /IIICROW~VE 4MPt.IF. NIGH VOL TAG£

UPI/.9/C PIN MOO. A/()Tc@ POWE~ SUPPI. V RANOOM HP8?3t. A

Pt.TO SCieNT/FtC 410/Stt dEN.

.:5We TWTI.IONI!lJ~ 0.1-3.:1 P·IOOCJ (;~1~908

McTcli!.. PW,f.MUE~ CONr.eo' P-'JNEL

1-flt.S£ CEN. &1?139.5 II IIP415E IIP4Jie .PC. POWclf!.

~q: ~~ ~~ ~~!'! ~~~ ~ -~ STRIP CIII1RT ..:51/PPty'

itt~ !l ~ .. ~t ~-~ "i~ .. .,. Rc~ORPEIZ ·tSRTEf t: /01 r

t!t~ ~~ ~~ !1,1'1 ... t NIOSl.Ef/ 7J(J()8 lo.'

~~ .....

~~ ~~ cf~ ~~ ~~ MIC(OWIJVE oJC. ('IIPNNctZ CHilNN£1.. I

GR131>0 B pqwEI! POW£/?

TRAIIE/..1/JG ,IIICHRNISAA METER METE I!

CONTROL P/INE£ HP4.!1a IIP4J'I C.

/)£5K. 5KEP OSC'It.ti?TOI? 1-tP 69ec

i MOP lit R roe HIGH VOlTRG~

i 1-/P 8403 IJ POW'cR SI/PPt. V

I 11lTO SCiciVTIFIC

rVM:TION 6'l'NcRIJTtJI! ·(),/··3.3 p 1()0()

I I IIPJgtJo 11 I lrcr~t@ Pl'li'/EI. Co-1/TRIVS ~Win:'l-le.J' UWICN COA./1,J£Cr r~J?,ovr MO~,Jiroceo ,&:"vNCTtCV!

TO TH~ STI'!IP.:HR;.i!T ~~C~~~4!..·8EI-IIAIPPNA.IELJ 8J?A.IOP~$SFII.r~,e(;;.c84J!tP), .?0.//J

iJIUCTIO-Vq!. .:..7:JvP£~.£(HP;971>), IOdl> Ft,I'ED IJT!?'AI.(WEINC#tt. /-ION), ,(TIJL PeTECroK.{JIPt/.:?319).

f/or&tj) IUFI.'€() S'·Dl/68 ()tiTPVT YARI/i&c PTT£Nt.l4Tt:Jtf?:. (IVI'J~DR 79t'). NOT&@ 111'69£(! .:!W~t.P OfC. IJVTPVT J/.4R./R8(.£ /1TTEA.IU/!;ToR (NP.J<J'),tl 79£), . .

Page 26: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

PANDOR& MICIIOWlYE EOUIPMEMT FUNCTIONAL BLOCK DIAGRAM

FIGURE 4

r·-·-·-·-·-·-·---·-·-·---, I UU!rllt!f IU('I( !114 •

i

........... ....... , . .,.,,.. III'Kftuii .. AlUU

i i i

L----·-·---·-·-·-·-·-·j

IOtl"•un•

lllfWI OtPOUt ... r-

1 I I I I

&llthi.ff -.•ta••r ....

I I

I I I

' I

MRT-4-046 ·Qt-1-66-072

Page 27: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

.. -~ .

·.:..

r ··. I

<·'·: i'

<. :•

/~.A!N<!/$1' I"V~

V<!$f'"'SS1"9')/.:.-

r-·· -· I I i I

· z. ,.,,.,.,.c.K -,.t.,.N":::.r .,.,,. ·._,.;,_,.,., • ""'"~<: • ,.,-..,.."'""'"""'-s r.r::/'fNn:;v.r. ·;.,rr,..,oD

00 NO"f SCALE

. ~. - ·- ·----· --·-·

I ..4

I ·A,. ~h~

,.,&IVAI :.

I .!

I . I I . i

I .- L

/ I .....

I _] ~~

-....:$1i"' p,.r rA"": _4

.. ~ .. -: t

A(".-..... 4'. ~"'f' _,.v~c-:r-<t.r

...,r,.,,a,.,.,.,.,. ......,.. "'Oi c...- ;.At~.,>!(! ... ~ ..... ~_,.,,.,t$

......,.......# AJIYrAJI~N..,., t:""--IY.-"C'"A4- ,S,Ifl"'cr;~$

ct~-- ....__._ . ·-­-.u:.,. ......

MY.1'- 4- 046 . QH-66-072 i'age 21

~T

.-·: ~ :.:.::ir/~ ·. ~i!<t. ... ~:.~~r~~~:

----~--------.--------___.,:·~:t:...·• ____ __.:.____:,_ _____________ --.:...~=-:...............:___...-_:__ _____ ·---~

Page 28: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

. ·~ Jrefl .. .,..,.._~,_, INDICATES FREQUENCY RANGES FOR

- ·. 3'w x 2'H x 1'0 QUIET ZONE

.0 "a

I z cr. (,::)

LIJ .... I. :::> _,j

0 en CD c:c

18

16~------~~---+--~--~------~~---+------~--~~

2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 .

FREQUENCY -GHz

Fig.6 ABSOLUTE GAIN, EXPANDABLE CONICAL HORN

MRT-4-046 QM-66-072 Page 22

Dto 24.50 .. Dia Dg 22.25" II

o8 20.00 .. 07 18.25

11

06 16.75"

Ds 15.2511

04 14.00"

03 13.0011

02 ll.75

Ds 10.75

·-

Page 29: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

-;; QJ QJ ... 0 QJ c -:t: t-c :. 2 c:r LLJ CXI .ca ~ ,

22

20

18

16

4

2.6 2.8

c )lr INDICATES FREQUENCY RANGES FOR

3'W x 2'H x 1' 0 QUIET ZONE

MRT-4-046 QM-66-072

, . Page 23

-+---- --·-· .. - -- ---· ·---+---+---+------1

. I 3.0 .3.2 3A 3.6 3.8 4.0

FREQUENCY- GHz

Fig. 7 E PLANE 3db BEAN WIDTH, EXPANDABLE CONICAL HORN

Page 30: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

-fi C" • Q -:z:

:& ct L&J c:D

.a , ,

4.____..... INDICATES FREQUENCY RANGES FOR 3'Wlz'Hx 1•0 QUIET ZOfttE

MRT-4-046 QM- 66-072 ·

Page 24

28~--~--~~~--~~--~~~--~~~,~

. - -~---·· ----!...----

26

1 I --t--

-·--+--

20

18

16

84---~~---+--~--+---~~---+--~--+---~~~~--~

Dro

2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 FREQUENCY- GHz

Fig.8 H PLANE

Page 31: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

~Itt I

i 1 1 -~ ; : i i . L L.i ~- L ! ! : : i · 1 : ~ ~~: ; . ,. · -f-l-·~ ..... -f--... ~~~-~-7 ""-·: :, ~ ~--:~ 7 ~ _..:

I .' 1. : . ,: •.'. ,·_·L '! I j ! I I • I • • •

~- . I ' ; I . " ; I i • . •

. L. I I I

i l .i . I i ---; -r· i I :

1'J.J:\..L.- .... -v""~ u QM-66-072.._

Page 25

I i 'I _jlJ . I !

J1

! ·l· ! ·,' I i 1 ! i t 1 i : : ,. 'l}:~~;~~ J;i. T~!T: ~#~~we.:·;-... I ~..Pi,~~ ~;

_: J ~-- j_: .. LL:: -~l-1 ~-1 : : !': : . : ... : ;_. : J'l· ._: .. ! _i ·;·-~\:' ~ .•• ~-! I I.;-~ j j I ! ; i ,. :~ I I i . : ! i I . ! . . : . :' .'.· il I '· · 1 t , t 11 · . . : .. 1

~------~--·----~------~----~----~~------~------+-------~----~-------+--! !

l : ; .... - ~- ....

I :

.I j

r J

' I

, I !

I

.. !

; ! i . . . . ' -·· . --~-~ :!

'T .. ;-· -I ;

'..Jir.

1 : ~- -' - lV .; :-.\1~ H H ! ; ' f I i i • •

I I I I . : ! - : ____ _l_~

'; -,;- · .. ,, -,-rr .. : · . ~-•• 'I ·• :, •

I i ! • I

.• '. ~- !_, i ~H+++HH JH i :I tt\~~ll .~L ....1:..:?_' ~·. ..... ~ .. - : .. 36°: . : 1: I i+&; Ill Ill H-' 1· i *.0

. r+·l-rt.,oT · +·t-f1;-l ! 136, I I . . I . I I I 172l

ASGLE

Page 32: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

1.0 -.a .I

-~· ~ ~ .. ~ .1 ..... 6 :11: 9 .5

qSte\Pe ,. · . Fig. tO .HIGH POWER TWT MONITOR- METER READING Vs .

TRANSMITTED POWER

FREQUENCY CORRECTION CURVE

-..:;i.

f .:i~

-~ f

.M.t<. J. - '+- \)q. 0

QM-66-072· Page 26

~ -# ... ~

t; A ----~-- --~ ~ .:;; t'"* ...., a: .l ct: 8 .z

.I

0

I~ ~ ..j~ Exc mp/e.-, ~ ~ ~-

~ f.s- ~ I I J J I J I I

.... u 2.1 2.1 3.0 3.1 3.2 3.3 !.4 3.5 3.1 3.7 3.1 '·' 4.0 FREQUENCY (GHz) ,

TO MEASURE TRANSMITTED POWER: ADO CORRECTION TERM TO TWT MONITOR POWER METER READING.

Example: AT 2.7 GHz, THE CORRECTION TERM : .38 POWER METER READING : 2.00

CORRECTED METER READING 2.38 dbm:;. 140 Watts Pr

TO SET TRANSMITTED POWER: SUBTRACT CORRECTION TERM FROM CORRECTED METER READlNG WHICH CORRESPONDS

TO DESIRED POWER. AD.:UST POWER TO OBTAIN THIS VALUE ON TWT MONITOR POWER . METER.

CORRECTED METER READING Vs TRANSMITTED POWER +I

7 ~ ~

-I IE

~ ' -

-6

---- ----'"--- --· ·--

;Z -. -- ··-

~ ~

-::# ...

~ .

t & I I 1 1Jj _f l 1 .... .. .. ...

-

-- -- !-- ~- ---

-::::. ~

.~ ~

-,;;r. ~ ..

_LI.il

. ....

~ ~

L-# ~ -#~ ~

_I __ -- ...... -----£ ~ -~ I

i

-~ ~ ;z~ i - I

r2i ~ i-r- Example I

i i

I . I

I I

I

i I I I I I I I . I 1 I I I 1 • I l I • J II I I - ·- ..... ·- .,..,..

Page 33: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

N

·fE c: u

T ffi 2.5• ao-2 .... .... :i Cl) z c:r a: .... ~ z.o .,o·Z 0."'0

.... !; :. ·a: ~ 1.5 110-z

> !::. (f)

z LIJ c a:: 1.1.1 ~ 1.0 110-2 0 ...

2

MRT-4-046 · QM-66-072

Page 27

Fig. II POWER DENSITY PER WATT TRANSMITTED FOR EACH HORN SECTION

(FOR TRANSMISSION LENGTH: 23.0')

l ...,.,

..-~ ~~ _, ,

~ ~ .JIIIII' ~ ..

,!"'\ ..-,. . ~ ..,-, .... · i

~ ,.•.c\0 ~ ,..

./ ,.

.... a "~ ;,;"" /i..- ./:' ~

, 7~ t'\C\ !_./ /~ ~

~ ,..

./ t7" / ./' / /" v / ,.. : / _,.. ~

~ ~ v 7 ..., ,/ ·:_/ v ... V / ~V /1 I ~ ~ v / '(\1 v / I _V

..-V ../.,. v /,.,. I .. /·I , ./"' v / ,.. . I v: ~·,

/ ~ / t)~V / / ~

./ ~ / ~ 7 _/ .../ ../ / ./"' ..-7 II'.. ~

""""' ,;""'" ; _/

./ ,.. v 71

""""' ,;""'" ~~

~ ~ v 7 ../

,. V"! I~ ""' . , / ../ \1~ , v ! '/' ...,

/ ../"' ./ ,..

~V _,'-/"' A :

A -~ ,.

~ .,

~"'J .... ~ ~ '/ I ..,. , I ../·,_ ~

,_ I__.,,~: . ...,.,~ ..,..'~' !

/ ,_,... ~

Ill"" ../

',ttl''ifl' 03 ..... , [ 2 -::;;;- """""""' . ! ~ """" l :""06. ~ "D.t .. ...,.. _,iii' 04- .../ I ,/ """""'" 01

. - f4- I

.../"" ~ ,.

~"""" ~~ I _, [7

> ....,.,-~ ...-~

'/" ,... _,-'r"'

... ~ ("\\ ~~

,- ...,,~

~ ,_.

! !

! I I I I I I

2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3

FR EOUENCY - GHz

Page 34: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

5.0

....... ~ 4.0 ....... ~ ct: ~ 5.0

:t 0

2.0 -..... c., l&.l

~ 1.0 8

0

-r--f

FR[I ~UENC Y COJ RECTI

2 ~

? ~ ---· --- ---~ ~

.,.,..,- +-Exo rnp/1 ...-. ,.... Ill I 1 I l I I I I I I l II I I I I I 111 I IiI

ftfECliVE AREA-289 CMt:

-'JN CLJ RVE ~~

I

~

~~ v

~

I I I I a II I I I 1·1 I I I I II II I I I

·-

I I I I

TO MEASURE POWER DENSITY: ADD CORRECTtON TERM TO METER REA ..

EKomple: AT 3.0 GHz, CORRECTION TERM : 1 .. 4 db. METER READING = 3 .Odbm

CORRECTED METER READING : 4.4 dbm 4.4dbm * 3.0 Mllllwolts/ctn2

TO SET POWER DENSITY: SUBTRACT CORRECTION TERM FROM METER READI~ WHICH CORRESP.ONDS TO REQUIRED POWER DENSIT'

. ADJUST POWER TO OBTAIN THIS VALUE ON MONITO CHANNEL N2 I POWER METER.

2.1 • 2.1 21 2.t 3.0 3.1 3.2 3.5 3.4 s.a 3.6 3.1 s.a 3.9 4.0

-tiO

9

3

4

5

6

-

FREQUENCY {GHz) .

I CORRECT£ ) METER READh ~G Vs POWl RD r-Ns I

i I I

"7

: ~~ ~

I -··

~ ~----..;--- ---- ~---- !--- r-- - -- f-- ·- ·- -·-f-- ------r· ------ --- !---.;z~

I Exampl~f ./ ~

.# ~

i .;;a .£' I ~

l.:o~ p~ ~

;;iii ;;iZ ~ -I ~ ~ I ~

' ! -:~ ~

;" I i

i ~ ~ I

i ~ ..I

--~

. ~ 1 ll I 11 • • l I A I I 1 I I I I I Ill Ill II I

.25 .30 .55 .40 .50 .60 .10 .80 .90 1.0 1.5 2.0 Z.5 3.0 4.0

POWER DENSITY ( Milliwolls/ cm 1}

9 tJ' r IJ'

~',!! [:: r: TY

~~ ~ ~ ~

~..c g .;r

~ ~

'

--

OJ• OQ (I)

• N :I Ill 00

N

,.o &.o 1.0 &.o 9.0 ro.o

Page 35: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

TOP OF''ECCOSORB" CV- C818(F) WALKWAY

SL~EVE . DIPOLE

3'611

r'-n!" 2

QUIET ZONE

MRT-4-046 QM-66-072 Page 29

---· t .T

---·-----------·]:__ QUIET ZONE LOWER LIMIT

5 SPLINE CABLE

"TYPE N" TO

1.

NOTE: COMPLETE UNIT IS WRAPPED WITH

''E:CCOSORB" AN 75

5 SPLINE CABLE TRANSITION

SUPPORT ROO

SUPPORT BASE

Fig. 13 FIXED DIPOLE MONITOR , STRAIGHT DIPOLE

·~ M.' stsr ('~ljN

Page 36: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

~ 2 ......._~~ .... -::.-41'--,.___- +-~--+--.....;

~

0~--~--~--~--~--~--~--~ 2.6 '·

~ 2 -+---+---+----lr~~~--+-+---+---l "'':)

c:r c:r

4.0

H PLANE

--- E PLANE

QM-66-072 Page 30

J:)·:>::"2:>:;.:;j !lESIGN FAEO. RANGE

o 1-~-4---+-... _,~..,..F~~~-2 ~ 3.0 3.2 3.4 . 3:6 3:8 4.0

FREQUENCY-GHz

Fia. 14 CHANGE IN RELATIVE ANPLITUOF C/\41 FnR VdRintJ~ I=IYI='n

Page 37: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

< <J.

.0 , -Cf ~

5~--+---r---~-4--~---+--~ , /

3

2

· QM-66-072 Page, ·31 ---H PLANE

---- E PLANE

6 -~-~;N sfcno~1 DJ~

/ I

I ~

~ ----rr---a..L ,-,- r v I' ~ :t60 /

5

~/ 1// / I I

v j

/ I 4

~

/~

3 _, .. ,..... ......

..., .. ~ /

.,.,. .,-""" ~ , v ("

~ :!:40 ~

,--' .,.. y I

/ 2

_.,. ~ ±20

_.

_ ........... ~-.fL~-: ~~-

0

3

~, 2 . ._ ..j,

l 1 .

o o~--+---+---~~~~--~--~ •·~~ 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 2.6

FREQUENCY· GH z

Page 38: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

~ ..- ~~ ....,..., ~ MRT-4-046

I~ ~.1 111 •_ QM-66-072 .&J• r-1 ~d Paee 32

I T I I I I I T l I I -1 I . I I I I : I I i I ! I I : I ~~ : I I I I I I I I I I I

1 1 , , 1 1 1 .I ' ' 1 , ' 1 I 1 1 1 1 ... ' T 1 1 T r 1 ' , 1 1 • ! ,-

T 1 T 1 J : 1 1 ~~~ -~ _..r 1 1 : 1 1 1 1 ~' 1o. 1 "' 1 I I ! ! I

I I I ~---- I ~.... I ,; I I I I -v ! """"\'" f' "' I I ' i f I I I ,... I ; • I ~,.. I I I I I· "' 1'\; I i I I I l

t I I t1" t ! , i t 1.;1 • I I I I I f il' I I i i I .ill"; I I I I I I t 1- '~ I I ' I i I "' i IT i f'· i ,/1 I I I 1 1• ! · I I · I I I

I i I i i I ! i~.... ' I I 7, jl I I I

' 'I ! I : I I ' 1'1... 1 "" I I I I l ~ if\\ I I I

T "' r....: i I I ! ! l\ ! I I I .~ ':"' I i I I I I t

I I !"'> i I I ! i I II -I 1 I ! I I L.., ~ i I ~ I j I I j ! : I I ' ' :. I 1,1" I I I IiI f ~ A II' I·! I I i I i : I

I I' /I I ,. I I I I I I: ... , T ,,; !"'\;. -1 I I :

j I , , r ~ , ~ 1 1 _1 1 1 J , ~ 1 r~ ~ t t~ ; ' ' I j " ~ :# : I "' 1 .. I I I . ! I I u1 ., :...... I I I I I

I " i.o'"' 1 I I I "I I • • l • I lll I I I I I I i'\ I I.J' I I I . • I l ~ """ ~ I I I I

I i i' .....-; I ! I I !'( I I I I I T ! I Ll I L..oiil"' I I I " ! • I La I I I I I 1 I r T I I 1 I if • • I l.i .,.. ! ....._I I I I i I I -t I lo... i I I : ~ ,. I :ot I I I i : I

'J ;.... I i I '"""""'' l.o;o • .., II I tl I . "" IV i I ; I ~ io-'1' I r-1... ...:,.. ....... '... I . j,. I I : ' •' I ' I 1\. I I

l ! IJ I ! I I j,.oo' I I : f I I -TI : ~1 I J : I ! T I

. ~ T I I I { I i ~ , •• I ' I ! ' ', !". 1 I l I 1 I

! ' I " I I U' "! i I I ~ I I I I I I . ~ ~ 1 "" ! I I 1\ I '~ I I I I I !'- ! i l I I I :.."' I ' I

l I I I ~ I , ! . I ' I ~ ! I I I I l i'"\1 I 'li

I / I I i 1..., I.. I I ~ • ~ I # : I I I ' I T I i ' I I ~ L..., :"( ......... T --.;..,: : I ~ - '..,!/ i I ! • ' i I I I 1 ; I l.t AI I l... it' ...('!

~:-...::~, ... ,~,..;_.j.....<IH-+-+--t-H-+-+++*-,.r-+,-+ ~. I i i I l • ' I l I I 1 i I :.:-.. !.. ;..... r.:: j I I I ,... '"'-' I I """"' : • I 1 I I I i I ~ "~ ~"' I' .:"\j I I

I ; 1 IJ root.., o...· , 1 ,,, I I I~ 1 - I I 1 • i I • '-1 1.:.., I V

I ! I ; T . '"!"'- ..._.,. : I I I • 1 I I i I I i "' :.... ~ ;.,;: ~ I : I 1 i ' I I I., .. ~, I I T I T 1 ' T T ' I L : .... "

I I · I I : t I ! I ' I I I I ! I I I

! ' ~~ j i.,.. I j

r T , ' I I" i I I .T !\.... I I I ! : ; I ! I I I ~ I I I ... I I T I 1 I I I r T i I .... I I 1 !

: I , I il~' ; I I a I"C I ! I I T r I I v I I : I IT I ·~ ., I· I I I I I ~ It I l ; I l I ~. 1\~ I i I I I I 1.1"' I 1""'1" I I I l I I I I l i i! .-- .... I~~ J...~. I 1 ' ·! I I I l I I I I 1 I ~ 1 .... 1 I;. I ! r I I 1 I -.,; I 1 I ·: ! : I : I I I ' :"""' I I I ' ITT I t t i I I'" . "' I : I I !

i !' .... ! I l I I . l 1 ·~!I I I I I I ; I I ! I I ! I I I r I 11 ! I ! t '1 '1 . I ; l l ,.,. I lla ~ I I ' I i I I !~ Ill I f I I

I "' i I I i J J l II I ! 1 ! I

I l . ! J I I I · I I · l f I I I I

: T I I io"', 1.... •• I I I ., I I I I I I I I I

I • l I : :, I l.oorl ·~ : I ! ; I • -. I I 1 ! ; I I i i ; .f I I !\.. " : i l I ! ! I I i I I I I ' i · -r ~ , '· ! ! 1 • 1 1 ' , i 1.

I l l t l1 I I I' • ! I I I I . I I I !II.. II"' l f .. .._ I I I I i I I

r • , i""looa "'- 1 •J 1 ! 1 1 , 1 i ' I ! ~""' I r"'l~ ,. I ! 1 I I I I f t I ,...,.... ~ I '.J ; -T 1 I

()

0

Page 39: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

,...--.-'IUNS HIBIIOH LIHCTH • 23.01

AL uu.nvs PCIIII UViL (db)

IN HOIJZ OHTAL DIITANCII or KU. Cl

;tl.O' tl.S' _:tl.O atfrtl

HAl :::~LO::: : ~:t:il:::: :~:t;n .... ~ +1.0 2.0'

KIN : ::~t:s: :: :~j;2s::: =~:k7 r··· -l.O

KU ~ ::;: ~/. l'h //- ~ '/,; /~ +l.O t.s• '/ ,,_, ~ :;I' ~ :1.~ 'l. ~ ~ 0 KlH '/ z ,, -0.75

KU . ,., . +0.5 1.01

KIN -o.s HAl ~

')(

+O.S . t o.o

KlJ -0.5

KU '· +O.S 1.0' KIN -O.S

.J.s• KA.I ~ /1./h 0~1"~/ "l./: +0.5

KIN ~&Y'~ ~o@?-~~ t¥~ -0.5 ..... ~ ~ .... ···*····· ~ ...... ·····

KU ::.:o:.:u::. :;.;0~25::: 2.0'

:;.;Q~l s:::. +O.S

MIN ::.;1:.:25::: : ;..:1~2~::: . ;.;1:2 s:::. -0.0

TRAHBtCSSION UUfCTH -26.t'

:AL IlLATIVE POII!R UVIL (db)

lN HORIZONTAL DISTANC!I or: HAl. tiC I

!2.0 1 ;!l.S' ±1.0' RIPPL2

HAX -2.25 -2.25 +0. 75 2.0'

KIN -4.25 -4.25 -l.OD

f ~ IWi MAX +0.5 1.5'

"HIH .

~~ lUi -1 5

KU I /: I i-Q. 75 l!O' KIN '/

-0.25

HAl .'// z r/ /,-/ +O.S 1/

R 0.0 ~ ~f': '/ '//. I' 0 KIH I / -0.75

II I 0 v,~ '// l.O' MAX '/. +1.0

/I / I' -0.5 KIN

l.S' .MAX II ~ +l.O

KIN II ~ -0.75

2.0' HAl -0.25 -0.25 +O.S

HIM -t.n -t. 75 -D.S

'I'IJJIBMllllON UHCtH • U.S'

uunva fOlia UVIL (db) lH HOUlOlf'UL DlltPCIS Of

~ ~~ ~ ~~~~~ ~ ~~~09~

v~~~ '.1£

~rr. ~ 1.~~~ '

Rltrt.l

+0.7S

-0.75

+O.S

-0.5

+O.S

-0.5

+0.5

-0.5

+0.5

+0.5

-0. 7'i

+0.5

-0.5

TIAHBK188IOH URC111 . 26.5'

uunva PCIIIR LIVIL (db) IN HOIIlONTAL DlltABCII or, HAl.

±2.0' ±1.5 1 !1.0'. lllrtl

-2.5 -2.5 -2.5 +1.0

-4.75 -4.75 -4.5 -1.0

II ~U lUI II ~ . ~ ....... ::;.::l;o:::: ::.:.~.:o:::: +0.75

III.UIHIII : ::::~;s:: :: : :.:.::J.:2s::: -l. 00

: ~ ~~~ i o::: ............ .. . . . . . . ~ .. :: ;,=1; 0:::: ; =~:z:.:g: ::: +0.5

::~:j:~::: :::~;5:::: ::~J;s:::: -0 75 ::;.:q:s::: ::~o;~:::; : :~&L5:;;: +l.O ............ :::2:25:: ::.i;is:: :::..::z:zs:: -0.75 ••• 4 ~ ••••••

::~n;;:::: ::~o:s:::: +O.S :: ;.:o~s::: ... ······· ::~2:2:;:: ::~:.::75:: :: ;..::z~z':: -0.5

!IIH~.IUII :::o:13:: ::~o:rs:: +0.75

•tH~I.I~tll ::~2;23:: ::~i:is:: -0.7S

-o.s -D.S -0.5 +0. 75

-2.0 -2.0 -2.0 -0.75

tUHIHI881011 LIHCTH • 24.01

UUTIVI I'OII!R LIVIl. (db) IN ltOIIlON1AL DtSUMCII 01 KU.

+2.0' !l.S' _:tl.O' Untl

'/frt'~ ~~0~~ +l.O

~ ~0::~ ~~~ 0(0: -0.75

1'/T-~'0~4~0 ~~ +0.5

0 ~(0/~" ~~ %~ -0.5

~ .~ ~~0 0 (.// 7h1'~ 'l/. '/ j!/ '/ //}"/ 'l ~ ~

+0.15

-0.5

+O.S

-0.5

+0.5

~;;% iZ -0.75

~V.:i% (.1~~~0 +0.5

~~ ~~~~~·-o.s ~~ %o/~ ~~ ~ ~ +0.5

@a'/~~ /1~~~ -o.s

TUHSKI&SIOH UNC1B • 21. O'

uunvs r011a uvu (en~) IN HOillONTAL DlltANCII or lUI.

:!:2.0' :!:l.S' ;!1.0' IIPPLI

-l.O -l.O -l.O +0. 75

-4.5 -4.~ -4.5 -0.75

I +0.75

I -0.50

I +o.75

-0.75

+0.75

-0.75

+0. 7S

-0.75

<tO. 75

-1.0

-0.75 -0.75 -0.75 +0:0

-2.25 -2.25 -2.25 -0.0 .J

TUIIIMIUIOH LIIICTH • · 25 .0'

UUTIVI ,...,.. LIVIIL (cllt) II HOlllONtAL DliTARCII OP.

:!:'·'' +1.0'

HNtmll .: ;.:1:1'::. :~LJS: :: .....................

IHHtHII : : ;..:} : s : : .. :; l ~ 5: : : :

- ::-;r.:r::::~AZt~r~ ·~ ::;,L;~·::: ::;.oj~L:::io.~;s:::

Figure t 7 CliAHBER "EVALUATION

HAl.

llfnl

+l.O

-1.0

+0.5

. -0. s +0.5

- 1. 25

+0.75

-0.75

+0.5

-0.75

+0. 75

-0.50

+0.5

-1.0

FREQUENCY: ____ z_._6 _cH_z ________ __

TRANSMITTING HORN SECTION :_o6 __

RECEIVING ANTENNA: Absorbt-r

backed dipole

OATE: ______ s~-2~2-·6_6 ____________ _

NOTES:

;:::::·:·:·:·:·:-:-:·:·:·:·: • +0. 5 t 0 - 1 . s •. .! l . Od b

• +0.5 to -2.0 • !l.25db

~~~ • +0 .. 5 to -2.5 • _!I. Sdb

• +0.5 to -3_.0 • !I. 75db ~---.. • +0.5 to .).5.• !2.0db JliM!iMWflil

• +0.5 to -4.0 • !2~2Sdb ,_..illiiiii;WC

• +0.5 to -5.0 • !~.75d~ ..._ _ __..

Page 40: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

CAL

lfCI

J.o•

t.s•.

t.o•

l o.o

1.0'

.t.s•

2.0'

ICI

l o.o

t.o•

l.S'

z.o•

HIM

MAl

HIM

MAl

KIN

HAl

KIN

HAl

KIN

HAl

HIH

HU

KIN

TIANI~IIIOI LINCTH • IJ.O'

ULlTIVI POIIEI UYIL (ctb) lR HOIIIONTAL DlltlHCII OP M&l.

~2.o• tt.s• • :t.o IJPPLI

::::i~l:::~:::::::;: -2.75 v'\.'V\.'l.ILI(.>t -0.25

···o·o .... -H» s : :-: . ~ .. = :; ~. .

::.:1~3::::: -0.5 ....... ~ .. "

:~:.,;~::::: +0.5

:;.:1~(!::::: -0.5

::.:oic:;::::: -H».5 . ~ . ' . . . . . . . . .:c;u::::: -o.s

. ,... ::.:o;~::::: +O.s

:::.::~t::·::s:::::::::: -1. 5

::::::::::!:;:)::::::::: -2. 75

::.:ti!)::::· -0.5

::.;o;5::::: +o.s ::.:1;~::::: -0.25

-H».S -0.5

TUNStCSSICII UNC111 • 26. t• IILATIVI POWIR LIVIL (db) H llOiiZOHTAL DJSTANC!I orr KAI,

•z.o• ~l.S' .:!;1.0'. RJPPU .

KIN . :-:·:•a:·:D:·:·:·:·: -2. 2S • 2. 0 -0. 75

TIAMiimlllOM LINGTH • 2l.S'

ULATIVI.I'CIIIR UVIL (clb) Ill HOUI.OilUL DIIUICII OF

~ -1.5

=:~u;:~,:

::;.:t;7j: ::.:.o;o:::

: :.:t:;s:::

::.:.o.:o:::

::.:t:;n::

::.;t:;o:::

:::.;z:.:o:::

: :.;o:.:s:::

:::.;1:.:]5::

-~ ~ -2.5 r'll'll'~

lUI.

RIP.U

+0.75 -0.5

+O.S -

-0.5

+O.S

-0.5

+O.S

-0.25

+0.5

-0.5

+O.zs·

-0.25

+0.5 -0.5

TllAN8Kli8Ulll UNCTH • 26. S'

R!LATIVI fCIIII tiVIL (clb) IN HORIZONTAL DIIUJICII ora HAl.

~ ~ ~ - l. 7 5 • 1. 7 5 +0. 2 5

~?.: ~ -2.75 -2.50 -0.25.

~~~~ ~ -1.25 -1.25 -t-0.5

~ ~ ~ -2.5 ·2.0 -0.5

~ ~ ~ -1.25 ·-1.25 +0.75

~ ·(:{ ~ -2.75 -2.75 -0.75

% ~ ~ -1. 75 -I. 75 +0 5

v. ::j ~ -1.0 -1.0 -0.25

:.; ~~ -1.5 -I. s +0. 75

/.)(t;~ -1.0 -2.5 -0.75

IIAHINJ8110w LIIGTH • 14.0'

IIUTIVI fCIID LIVIL (4b) 111 HORIION'bJ.. DUtliCII 01 ti.U.

IJtfLI

-l.2S ... 25. +0.5 -3.0 -2.25 -o.s

::~o;s:::: :..:a.:1::::: +O.ls .... ~ ~ . . .. .. . ~ ........ . ::;.:t;s:::: :.a:.:o::::. -0.25

. . . . . . . . . . . . .... ~ .... ::;.:t;s:::: :..;t:.:ls:::: -0.5 ....................... .:o.o;s:::: :..:o:.:s:::::: +0.5 ...................... ·::.2;a::: :.;a:.:s:::::: -t.s

........................... ::i-2;0:::: :;2:.:0:::::: -0.5

·::.· -1.5 -l.S +0.5

-2.75 -0.75

TllANSH1881DII LI'NCTI • 2J .0'

ULATIVI PCIIII UVIL (4b) 1M HOIIIOHTAL Dll~ll OP HAl.

!2.0' t1.5' !1.0' RIPPLI

w~~~=~2Us<;( -H».25

8"(~ ~~ ~~~~~~\~i~( -0. 25

:::~:t:·:::rs:::::::: ::::~::f::;i:::::: :;;::i:~:;:s:::::::::::: +0 . s :::::~j~:~J»::::::: :~z;~::7i::::::::;: -0.5

\1:{2:;:::::::: ::\:I:/23::/:- -+{). 75

:::~i4t::::: \::::~::::~~):::::::: ::::1~:~.\g:::::::: -0.75

:::~:t)i::::::::::: :::::~::t:~:~:::::::::~: :~~r~::t.::::::::::::::: +0. s .~ .............. . :::~:l~::s::::::::::: :::~~~::s::::::::::: :~!~:s::::::::::::::: -o. s :::;::t;::~::::::::::: .:::~:j~:~::::::::::: ~:i:::(;::::::::::::::: +0. ~

\3~::5::::::::::: :::*:~~:25:::::::: :~3~25::::::::{ -0. s ;:~::t:::~::::::::::: :;:t::.::::i:::::;:;:;: ~::1:::j:::;:;:;:::::;: +1. 0

:::~3~::£::::::::::: ::::~:3~:<r:::::::::: :~~~:~~::::::::::: - '· o ~~ W"~ :~:j:~:2f:::::::: +0. 5

~~ Vff/}f0 :)}:;:~i:;:~:~:~t~: -0. S

TIAJIMIIIlOM LIHCTH • 2'.0'

ULlTIVI I'CJift UVIL (db) t• BOIIZONTAL DIITANCII 0~ ~·

!2.o• ,!t.s• !l.O' um.a :::::~:L:i//::: <::~:i~:~:::::::::: - t. s +0. 5

.:::::::}:::~:;:;:;:;:: ::::~:~:~:~:::~::: - 2 . s -0. s -1.0 -1.0

-1.0 -1.0

-0.5 r~x-_.' +O.S

-2.!5 .t<-Y ~: .,.il1 v ~--0.75 +O.n -2.25 • .... =:>.'~~-~. r .. <.-: -0.75

-l.S

-1.0

-l.O

-1.0 -2.25 -0. ')

+0 ) ::::~i~::):~:::::::: ::: -1 75

Figure 18_ CIIAMBER EVALUATION

-0.5

FREQUENCY: ___ 2_.s __ cH_z ________ __

TRANSMITTING HORN SECTION: ns RECEIVING ANTENr~A: Absorber

backed dipole

DAT£; _____ s_t_2_JI_66 __________________ __

NOTES:

;

• 0 0 • 2.0 db •! l.O db

• 0: 0 - 2. S db • ! l. 2S db

• 0.0- l.O db • + l.S db

•O.O-J.5db•;! 1.15db

• 0.0- 4.0 db.! 2.0 db

Page 41: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

I CAL

lHCJ

2.0'

1.-S'.

t.o•

m o.p

t.o•

J..S'

2.0'

£CAL

lHCI

2.0'

t.s•

1.0'

!R 0.0

1.0'

t.s•

2.0'

MAX

KUI

HAl

TIAH8HIS810H LIHCTH ~ Jl.O'

ULlnVI PalER UV!L (clb) IN HORIZONTAL DIITANC!S Of HAl.

~~~ ~:'i. c-.~ ~ ~) '.% ~' ~~'%

RlfPLI

+O.S

-o • .s

HIN v ~~~~~ HA.I ~ '"' ~ =~~~~~?~~ =~~~~l~~~iii~~ +0.5

Hl.N

MAX

MlN

HA.I

KIN

·MAX

MIN

TRANI!'ISSIOH UNC'nt • ~6 ...

IBLATIVI PalER LIVIL (db) 'H HORIZONTAL DlSTANC!8 or: MAl.

~2.0' ~1.5' :!;1.0' RIPPLR

+0.75

-0.5

+0.25

-0.25

+0.25

-0.25

TIJ.NSHIIIIOH LINCTB • U.S'

RBLATlYE fCIIBR LIVIL (db) · IN HO&IZOHTAL DIBTANCII Of MAJ.

:!;2.0 1

::~4~~::.w

+1.0' RlfPU -=--at---... +0.5

x ·~ '-"-"' ~~~ .... :-....,, ... .._.,"-,". -0.5

+0.5

>< ~:~' :~~ "'

~~ ~ }~~~~li:~: {~~~1)\i t'-' ~-- ~ .~ ~I'll

:: :•t:.;JS.::

+0.2S

-0.25

+0.5

-o.s +0.2S

-0.25

T0.75

-o.s +0.5·

-o.s

TRAH8ftl8SIOH LIHC'nt • 26.5 1

RELAnVI PCJIIR LIVIL (db) IN HORIZONTAL DliUHCU orr KAX.

:!;2.0 1 :!:1.5' !1,01 RlfPLI

Ill~~ I ~llln~~u;,.x. L~~w.. +0. s --III~HlNIII ~x·· . .....-~:ID.: -o.5 :::-::z~~-:: ::~~;~::: ::~~~~:::: +0,75 ::~4~z5:· ::~4~25:: ::~li~2s< -1.0

[• (; ~<..r_,.

+0.5

\~ K) -O.S

~ )'. ~; ~ +0.25 :,;:-; " -0.5

~- +0.25

!X -0.5

:i~z:~~:.::: :;.;~:-~:::: ::.:~~:Q;:: ;.o.s ::~:.:~:is:;: ~~:s.:o~:~: :~1:.~::: .o.s f1Hl~I11Jl ·~~ ~x.~.J'Il'.v. +0.5

HlUU~III ,..v,.-.. ,...v .o. s

TUHSKI8810H UIIGT11 • 24.0'

ULATIVI I<IIBI LEVEL (db) IN HOII!ONTAL DIBT.A.NC!I 01 tid.

:!;2.0' +1.5 1 +1.0'

~"~ ~--.,:;.:: ~ '~~ : : :~ J:-]9: : ~ ~ ":~

llffLI +0.5

-0.5

+O.S

-0.25

+0.25

-0.2S

+0.5

.. o. 1s

+0.5

-0.5

T0.25

-0.25

T0.5

-o.s

1'1Alf8Kl881CRI LIHCTB • 27 .o• ULAn VI IOWD UVIL (db)

lN HORlZORTAL DlBZANCII Of MAl.

ltrPLI

-2.75 :.;.2~ 1S:: . :~2:~?!i::: +1.0

-s.o :~4~o::~: ::~,.~~:::: -1.2~ :::-:~~~E:v ~J '~/.~ ~ +0.25

:: ~~~': J~ -){_ '/~~ ?0. -0.5

~~~\ • r.l'. ~ +O.S

~~~ ~ :~ >-: :r .o.s W'~ 'l. ~, ~\ ;.o.s ~ ~ '0 1>.. ~ .. o.s ~~· ~ '/It", +O.S

~ ~ /.~ -o.s :::-:~·J:::~ ~~~ ~ ~~~ +0.5

: :;.:3·~: .. ('l ,;, ~-~ ~J~ .o.s -1.75- :~1:~75;: ::~r..:n::: +O.s

'IUJ(JHJastOll u~~:m • n.o• ULATIVI rowD UVIL (db)

II HORIZONTAL DIITANCII 0~ MAJ.

+2.0' · +I.s• :tt.o•

!l ~ Ill~ II ~ Ill~ ~:?: -~ 1.!' r:?~

~' 0~· • ·X

~"~~~ :;<. v: ·>. • ~ ~ :1.~ .'-\. •• ·,r~ -<,

anna · +O.S

-0.5

+0.5

-0.25

+O.S

.o.s ;.o.s -0.5

+O.S

-0.5

+0.75

-o.so +0.5

-0.5

Figure 19 CHAMBER EVALUATION

. FREQUENCY: __ 3 ·_o_c_.n_E -----

TRANSMITTING HORN SECTIQN:._0_4 _

RECEIVING ANTENNA: Abgorber

backed dtpole

DAT[: _____ a~/2_2_16_6 ____________ _

NOTES:

Page 42: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

'I CAL

~HCI

HAl a.o•

KlH

1.s•. . MAl

KIN IIAI .,,.,. KIN HAl

D 0.0 KIM

HAl 1.0' KIN

.l.s• HAl

KIN

J.o• HAl

HIM

I CAL

A.NCI

HAl .. 2.0' HIM

HA.I l.S'

KIN

HAl l.O' HIH

MAX II 0.0

KIM

1.0' HAl

··, -HIM

t.s• MAl

HIN . ·· a.o• HU .....

HUt. i .

ti.AN8KISIIOR U~ • U.O'

ULAnVI fOIEi UVIL (clb) IH HORIZONTAL DJITAHCII Of MAJ.

,:t2.0' tl.S' ;:!1.0

r/.1. '/ ~ • 'jl .t.JV<:J-.

~~~[\ ~~-,~--~

I"-"".,~~ ~~~~~t:$.Hj~ )~l~;~~j:~:~~ ,, -'-' :'>..'- ....... ~\

z '/. '//.

llffLI

+0.1)

.. o. 75

+O.S -O.S

+O.S

-0.5

+0.5

-0.25

+O.S

-0.75

+0.5

-o.s +0.25 -0.50

TRANIHIISION LIHGTH • 26.11

... IILATIVI POU!R LBVIL (db) ~M HORIZONtAL,DISTAMC!8 OF: HAl.

!2.0' .::!:1.5' ±1.0' RIPI'U

-2.75 :~LiS::: ::.:Li;::;: +0. 75

-4.5 :..:4~=5:::: ::.:It ~=5::::: -0.15 .... ~ .. ~ .... V/. r/. '/ '/ '17/ +0.5

~ '/ ~[I ~ -0. s •/,

~ ·, +O.s

I' ~ -0 'i

+0.5

-0.5

+0.5

:') " ~~- -o.'s I; '//

r.;: '/ '/ +0.5-

~ VA :/ '/

':I' '/ '/'. //,WVK//.1. -o.,. . . ~ .... " .. , .........

-2.75 :.:z~n::: ::.:2irs:::: +0.5 .,, 5 .1'11111 :.=4;:z:s::: : ~' ;~:~ ~:: -1.0

~ ~~. ~~ Zf:.c;-·~11 Dr..~ ~ .. t L.fl,...~ ~

TUNSHtSIIOH LINCTH • U.S'

UIATIYI fOlia LIVIL (clb) JH BOIIZONtAL DI8tAHCI' Of MAl.

IIPPLB

+0.5

-O.S

+0.5

-0.5

+0.5

-0.5

+.25

-.s +0.25

-0.25

+O.S

-0.5

+0.15

-.5

TBANSMISSIOM LIHCTH • 26.5'

RIIAnYB PCJIIR LIYIL (db) IH HORIZONTAL DllliNCII Of1 MAl.

:t2.0' ±l.S' :!;1.0' llfPLI

-2.5 -2.5 -2.5 +0.75 -0.5

+0. 75

-o.5o +0.5

.0,5

+0.75

ljj jl ~~

V/ I{ -0.75

f?'/. ~~ '//I'

::~~:.:u:: '/ rl) 7 /

+0, 75

-0.75

+0. 75

-0.75

-2.75 -2.75 -2.75 +O.S

-4.75 -4.75 -4.0 -0.5

TUIIIH18110H UIICTII • 24.0 1

UL.ATIYI r<llll. LIYIL (clb) Ill HOIIIONUL DIITAJICII oil MAJ.

!2 .0' +l.S' ;tl.O'

~ ~ ;;:~ z '/. ~ z

R · i ~~~~~;.-~0<

llrrtl

+0.75

-0.75

+0.1S

-1.00

+0.5

-0.5

+0.5

-0.25

+0.5

-0.5

+0.5

-0.5

+0.5

TIWC8HI88101 LIHC'IH • 27.0'

IILlTIVI POWER LIYIL (db) IN HOIIIOHTAL DIItANCII OF HAl.

,:t2.0' .::tt.S' :!;1.0' llPPLI

-2.0 -2.0 -2.25 +0.5

-1.25 -).0 -J.O -0.5

:;~i~~:::~ ~ ~ t/0 ~ /",0 +0.75 : ::.:]:.:s: ;:~ ~

//_ V/ '/ ~ -0.75 "L· "/:.

~ u. z v z 'l/.l% ~ ~ +0.75 "r :// ~ ~~ :;(;: ~I'/ r/ 0 -0.75

t% Y. 0~ z ~ +0.5 '~.

rl.~:~ ~[I :; :/~ Cl .;;; -0.5 '/ '/

~~ v '/ :1' ~ +0.5

~ ~ ~[/ .'/ z ~ -0.5 ;-', ............

~//~ ~ ~ :: :.:2~:,s:: +0.75

:: =~4~2;:: ~ ~ ... /. r-y ~ -0.50

-2.75 -2.75 -2.75 +0.75

-5.0 . -4.5 -4.0 ~· -0.75

11AUM11110N 1..111:111 • 15.0.

ULATJVI fOIID UVIL (db) 11 BOllZOWTAL DIIT.ANCII OP. MAl.

+2.0' +1.S' +t.O' llft'U ...... ~ ... "' .. . ~ ... ~ .... ::r-2;1~:: ·::;.:J:Q:: ::-o:t.:O:::· +0.1S :::.1i;n:. ::::.4;:z:s: ::~l.:.:q.:::· -o.1s ~~~~0 vf0;~ ~ +0.1s

~~~~ ~ ~~~~?:% -0.75

~ ~~.~ \ ~fS'' ~ +0.5

~ s ~~~\ ~,~.:'\.' ~ -0.5

~ \ ~~~~ ~~ ~~ +0.5

~ ~~"" ~ ~ -0.5

~ ~ .~ ~ ),'-~ ~ ~ +0.5

~ ~ ~~ \: ... '~ -0.5

~ ~~~~0~ 0 ~ +0.5

0 ~ )Z~/:~ ~ ~ ~ v; -0.75

:=~~:.:s:::: :::~:~~L: :~r.:~:::: +.2s ... ::.;.J;s::: :::;.J;s::: ::..:)~:s::: -.25

Figure 20

CHAMBER EVALUATION

FREQUENCY: ____ ~l-~2s~cn_z ______ ___

TRANSMITTING HORN SECTION:__::.o.;;...l _

RECEIVING ANTENNA: Abaol'ber

backed d t pole

• OATE; ______ ~s/~2~2~16~6--~at~z~l~/6~6 ____ _

NOTES:

• 0 s - z. 5 • ! l. 0 db

. . o: 5 - ). 0 • ! l. 2S db

•0.5- ).5•!;1.5db

~. 0.5 • 4.0. +' '· 75 db

~: ::: : ::: : ~ :::~: .

Page 43: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

CAL

N~

HAl 2.0 1

HlN HAl t.s•· . KIN

MAl · l.O'

HlN

HAl • o.o KIN

MAX 1.01

KIN .. MAl

.J.S' KIN

2.0' K.\1

KIN

CAL .NCI

MAX 2.0 1

MIN

K.\1 1.5'

KIN

1.0' KAX

taN KA.I.

:a o.o MIN

1.0' HAl

KIN

~·'' MAX

MIN

2.0.~., MAX

liiN

TIANSHISIION LINGTH • 2J.O'

UU.TIVI PCIID LIYIL (db) lH HORIZONtAL DIBTANC!S OF MAl.

;:::::;:::{:~:¥~:::: :::::::~:t~:j~:::::: :::::~:2::::s:::::::::: ::::::~~~:s::::::::- :=::::::;;2:i:ft::::: . :;::::~~:~~::::::::: :;::::~:t:~~:;:::::. :::::::~:!:~&:::::::::

:::::::;:K~i::::: :::::::~:t:::s::::::::::

llflU

TRANS"'SSIOH L!NCTH • 26.81

~RILATIVI PMR LIVIL (clb) ~N HO~IZONTAL DIStANCES OF: MAJ. , ~2.0' :!;l.S' :!;1.0' RIPPLI.

. 1/.~ ~t%~~ 0W#M " 1l~=~~~:~~(

~:;:~:i ;:~(1~:~;

~~1~f~~1( .. :::;;:t;;:~ol::

~H~~i~i~i.~~~~ ~H~i~H

+.l2S

-.us

+; l2S

•. us

TRAHSHIBiiOit UNGTI • U.S'

ULATIVI fOIIII UVIL (clb) IH HOUZOHtAL DIBTAMCII OF MAX.

:!;2.0' +1.5' :!;1.0' RIPPI.E

r.t'VVV'.IV<.X ::::::~t.+:~~:::::: ::::::~~;:~s::::: :;:;::;;:jl:S::::::::: ·::::::~~~:5ii:>

:::::::~fl::i:::::::;: ::::::~{t:;:i;;:::::: ::::::~~:;:);:;:::::. +0. l2S

:;::;::~i~:j~;::::: ::::\:t::~:s:::::::::: ::::::~:t~if::::: -o. 12 s ·::::::~:Q:~:if::;: ::::::~;P.:~:Ji:::: ;:;:;:~~:~i~::;:: +.l2S

::::::::;:i:::2:S:::::: :::::::~H:1i::::: ::::\:t:~i~::::: -. 12 s . ::::::~:1:~:5:::::::::: :::::::.:::f~:J:::::::::: ::::::~:);:~:~:::::::::

. . .................. . ;:;:;:;~:i:~:(j:::::::::: :::::::~:i;:u.::::::::

• TRANSHIISJOH LIHGTH • 26.5'

RELATlVI PCJI!R,J.BVIL (db) IN HORIZONtAL DlltANCI8 OPt MAJ.

±2.0' ±'·'' ±l.O' IIPPL!

..

TUMSHJIIICII LI1IGTH • 24.01

ULATIVI taml UVIL (db) lH HORIZONtAL DUTANC!I 01 HAl.

:::::::~::~:~:((::::: ::::::::~:ht.:::::: :::::~:;~:~:~f?\ :::\~~:~:~:::::::: :::::::::~:2:~:\f::::

UPft.l

:::::::~:h¥::::: •::::::~:t:~~:::::: :::\t:~:;:;:~:::: +0. l2S

::::::::~:2:~:0::;:::: ::::::~:E1:::::::::::: .• o. 12S

·:::::::~~:;:~:~:::: :::::::::~:f~:~;f: ::::::~:z:~:cf:::::::::.

~~i;" . ......A.a.~·

TIWfSMIBSUII LINC111 • 27.0'

ULATIVI PCJIIR LBVIL (cll:l) IN IIORUCIITAL DIIT.AHCII or M.Ai.

:!;2.0' ±l ·'' ;!:l.O' liPPU

~ :.::i:u···lW .. - . . . : '/ ~ ~ ::::1:1s:w ··- ., .. ' ~~ ~~ v~ ~ ~ Y.: 0V~,~ ~// :-.,.-..,

w ~~[/~ ~ H~ 2'ir.; Jl,><;,.

~ f)V l", ?i :;::~:f::»s:::::::

~ :./

·:::::~:2::;:~:::::::::: .. ~

~ ~......: :::::~i~:u:::::;::::: +.2SO

~ V;(% }' -.zso

~'" :::::~:i:~:ii:::::: +.125

~z z :::::~t{~~::::::: -.125

~~ ~w +.l2S

~~ ~~~ '? 09'. -.US : .. :)·:o·:·~ ··- ·. ··: t'/. ~0 vA ~'0:. +.125

:::.:):.:5::~~ ~~ ~ (~ -.125

TI.&IIBKIIIIOH Lltr:Til • 2S.O'

IILATIVI fOII!R LIVlL (db) IH HORIZONTAL DIITANCII 0~ HAl.

;!2.0' ,:!'l. S' +1.0' atPJU

&/##/h ~~ ~ t%0'/iV~

:~ ~ $: :'::C x K9 ::~!(i~:<: - .12~

~~ ~~~~ij($~

Figure 21 CHAMBER EVAWATION

FREQUENCY: ___ 3·_2_s_c1_1z ________ __

TRANSMITTING HORN SECTION:. __ 03_

RECEIVING ANTENNA:_st_a_nd_nr_d_c_.a_1"-

Horn (Narda Hodel

·DATE: _______ s~t~2l~/~66~----------

NOTES:

~ ~ (: ~::::::::)

• 0.5 • 2.S

• 0.5 • J.OO

• o.s. 3.5

• 0.5 - 4.0

• .! t.O db

• !: I. ::!5 dh

~ !: 1. 5 db

• !: I. 7S db

Page 44: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

~teAL

:ANC!

2.0'

1.5'

l.O'

:n o.o

t.O'

I .1.5 1

2.0'

71C~l.

:ANC!

2.0'

1.5'

l.O'

rtR 0.0

1.5'

KIN

KIN

MIN

KIN

KIN

MIN

HIN

MAX

KIN

MIN

MAX

MIN

HlN

KIN

MIN

MIN

T1WISMISSION L!NC111 • 23.0'

RILA,'IVI PalER LEVEL (db) IN HORIZONTAL DISTANCES OF

~2.0' !l.S' ~1.0

.. . ........... . ::::::+:o:~i~:::::: ::::t:a::::i:t:::::: ·············· .............. . ::::::~:2:~::ii::::: :::~::}::::i:s::::::::

HAl.

RIPPI.!

+0. 75

-0.5

+0. 75

-0.75

+0. 75

-0. 7S

+0.5

-0.5

-0.75

+0.5

-0.5

+0.5 -0.5

TRAN8MISS10R LENGTH • 26.0'

RELATIVE POWER LEVEL (db) ~H. HORIZONTAL DISTANCES OF: MAX:

_±2 .0' _:!:1. 5' ~1.0' RIPPLE

........................ :::.:t~::~s:: :;.~~;~:s::: ::.:~;:z:s:::: +0.5"

:::.:t~o::::::.:t;o:::: ::.:1;o::::: +0.75

::;.;z~:n:: ::.:a:r.s::: :;..:a:2:s:::: -0.75

~~~·,)(~ :~2:o::::: -0.5

~~%', J't.V.l<.. i0.75

TRANSHlSIUOil LP.W-;TH • 23.5'

RILATlV! PallR LIVEL (db) IN HORlZOUTAL DISTANCES Of

~2.0 1 ~1.5' ~1.0'

r. :: ~:~; P.::: ::::::~:{::(;::::::::

:: ~~-~~:~:: ::::::~n::::2f/:

MAX.

RIPPLE

-0.5

+{),5

-0.5

TRANSMISSION L!HGTII • 26. S'

RELATIVE POWER LIVBL (db) IN HORIZONTAL DISTANClS OFr MAX,

RIP Pl.!

+1.0

-1.0

+0. 75

-0.5

-0.5

iO. 7S

-0.75

TRANSMISSION LKNGTH • 24.0'

lliLATlVI P~Jl UVIL (db) IN HORIZONTAL DISTANCES OR . HO.

!2.0' ~1.5' !1.0' RIPPLI

?.;X < f:{.-~: ·:::::~1~:0:::::::::: ::::::/t::::o:::::::::: +o. 15

· t~~ ~;'{):::: ::::::~l~:l~:::::: ::::::~::kz~:::::: -o. 1s ~~ :j):~~. :::::~:f~t.::::::::. :::\):~:~:-:>::::: +0. s 88:f: ~ ~:.:-: ::)·v?~:::::: ::::::~:t:;::~·~:>::: -o. s ~ -;., ~· :::::~::f::n:::::::::: ::::::::::t:::~::::;::::: +o. 15

~· KX~ ·':'-. :::::~i:::IS:::-::: :::::~:f:::s::::::::::: -0. 5

·~?;f'J-; < ::::~:{:1(<:: ::::F~:~Xt:> +{). 5

. ~~·1: (.-\( ::::~:i::s:::::::::: :::::~:(is:::;::: -o. s &(ti~ '·::::~:~):(::: :::::~:~{~t::::: +{). 5

~ ~~· . :~ :::\:h:f::::::: .:::>:t:~~:::::::::: . -0. 5

~ . ~ ~ :::\~~:~i::::: ::::::~~~:~!:\> +0. 2 5

...,-... c::- . ~ ::::::~:x:::i::::::::: ::::<t::::o::::::::::: IX: : i~· :::\{{:~:::::::::: ::::\{1:::5:::::::::: ffi. s ~". t~~~ :::::~:;:~:~{::::: ::::::~::()f:::: -0.5

TRAHSH18910N LINCTR • 27.0'

RILAnVI POWER LEVBL (db) IN HORIZONTAL DJSTARCII OF MAJ.

±2.0 1 ~1. 5' !1.0'

:::::~:f::~:::::::::::

~ ::::~::r~:n:::::::::::

l'\.-". .. ''1. ~J.~\.'\..f.Nfi...~.?VY: :.;.Q;~::::

~~ : :. 2; 25 : : .

~;.-:~ ~ :>cs:::::

RlPPLI

+0. 5

-0. s +O. 1s -0. 7S

+0.5 ..:o.s +0.5

-0.5

+0.5

-0.5

+0. 75

-0. 75

+0.5

-0.5

TRA~SJQ!ISIOH Ll~nt • 25.0'

IIUTIVI I'O'J!R UVlL (db) IM DOllZONTAL Dl8TANCl8 0~

+2.0' !1.5' !1.0'

figun• 22

CIIAHRER EVALl'ATJON

K.U.

UFPtZ

FREOUENCY: ________ 3·_4_5 _c_11z ______ ---

TRANSMITTING HORN SECTION: Dl

RECEIVING ANTENNA: __ Ah_s_ur_b_t'r __

OATE: __________ s_;2_2_1_66--------·------------

NOTES:

niiOIDliD. +0.25- 2.25.! 1.~5 dh

~. +0.~5- 2. 75. ~ 1.5 d~

~ +0 '5- 3.25.! 1. 75 J~ ~ +0:;5- 3.75.! ~.0 d~ w +0.25. ~.z~ • + !.15 dh

~~ ~I .. OJ 0\ I

()Q ()\ "' fl) I I oc

w~.,

00 N C

• f

Page 45: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

L

I

2.0 1

1.5'

1.0'

0.0

1.0'

l.S'

2.0'

L

I

2.0'

1.5'

1.0'

0.0

1.0'

1.5'

2.0'

MIN

KIN

MIN

KIM

HIN

KIN

KIN

KIN

'MAX

KIN

MAX

KIN

HAX

KIN

MAX

TRANSM1S810N LENGTH • 23.0'

·uunn Pawn LEVEL (db) IN HOR~ZONTAL DISTANCES OP MAX.

,:t2.0' ;!1.~ 1 _±1.0 RtPPLB

TRANSHISSIOH LENGTH • 26.1'

R2LATIV! POWER UVZL (db) N HORIZONTAL DISTANCES OF: MAX.

RlPPLB

+0.75

-0.75

+0.75

-0.75

+0.75

-0.50

+0. 75

-0.75

+0.75

+0.50

+0.5

-0.5

+0.5

-0.75

TRANSHlSIION LINCTH • 2l.S'

RELATIVE JIOI!R LIVEL (db) IN HORIZONTAL DISTANCIS OF

±2.0' ±l.S' ,:tt.o•

~~~;/~ Vh (/, ~~-~~: , <:~t>:·

)o; ~, : ~ ~ ~ :::;:~t~Q}::

·~ ·~ ' ~ ::::=~~:~;2~:::: ,..: \ ~ ~ ::::::~:~~:};~::::

I~·"'~~ I? ~ ~ ~ :::;::~:({}$:} l" ~ ~:::}~X;::~::::::

MAX.

RIPPLE

+0.5

-0.5

+0.5

-0.5

+0.5

-0.5

+0.5

-0. 7S

+0.5

-0.25

+0.5

-0.5

+0.25

-0.25

TRANSMISSION LIRGTH • 26.5'

R£t.AnVB POW'BR LBV!L (db) IN HORIZONTAL Dt8TANCI8 OPt MAX,

,:t2.0' !1.5' !l,O' RIPPl.!

:::.:r.:s::: 1?-?>vUh~ ~·/.'l~ +o. 75 . . . . . . . . . . . f'l/"..tY::"/ /..t , ...r. v,J.?. ~'.I

TRANSHl9610N Lltllcnf • 24.0 1

RILATIVI POW'!R LEVEL (db) IN HORIZONTAL DISTANCES OJ HAl.

:!;2.0' ±1.5' .:tl.O' RIPPLI

:::.a:.:Js:· :~:t:75::·::;..:t~1.5::: +t.o :::~~:.:o::: ::-:4;Q::: ::~J;:~s::: .o.1s w~~'» -~ . . <.<: !~ ~ +o.s ~~~:><~~~~~ ~~ ~ -0.5

·/ L;(}Z ~:> ~- ~-:)(~' ~,: ~ ~ +O. 5

g v. ~-~/· "~: yl~·-· ~ ~ -0. s • -~~£;:~:: :;:~ ·~ ~~ ~ ~;-: ~ +0. 25

ll, .;, ;, i ~~~~~~ ~ -0.25

~!:~:.-~~.-~: ">;.: -;. • '-'I~ ~ :\~ . +o. 25

~i'~ }: Xll.. ~ >:~ ~ ~~ -0.50

w~-o/ ·>l~ ~ ~ ·t-{).25

w~~ ·~ .. .-"~-~ ~ ~ .o. 25

:::~:cs::: ::~r.:s:::: ::.:r.:s:::: -H).5

.::::j:s::: ::~~:_:o:::: ::.:~:.:o:::: -o.5

1'RA.HSM1SSION LINC'l'R • 27. 0'

R!LATIVI POWER LBVIL (db) IN IIORIZONTAL DlBTANCII OP HAl.

:!;2.0' :!;1.5' :!;1.0' RIPPLI

·: :;.:t; s: .. : :.; r.:s:::: R-.6t:,: ·~« +o. 1s .::3 .. :2·c;: ....... o···· ·-:'X'.l=~a.~ -0 .. 75

• .,. • .,) • • ·- LJ-.· • • ' ·-::~'){· ~~'·.~~

f~M r:.('"t'l'"i:!><x~~tl-X:f.'.-:1}}~ +0.5

@<.~ ~<~. ~:,. ·;::"<V.i}·:~ .:o. 5

~~// ·r,?.~' -~-~'Y x~ ~· +0. 75

~~ ~~~~ ~: ~) ;~ ;0 -0. 7')

~w ·· '.,)., r:··..., ~· ~~Q +0. 5

~00 ~ : .... 1;·::- ~=> =~ -~~ -0.5'

t~y;,:,ij: ,,. J'. eye~' < ~X +0. 5

~ ~-< 0·: ·~ ~~t~ ~:r~- -0.75

~:..-,...~·;·X ~· ~ .. ~ -~l;.:. ~ +0. 5

~'/: ~ .. '~ ~ ~r-;x ~~ ~ -0.5

:::~~.:25=: ::~2:.:ts:::r;::~~;~o ~ +O.s

TRA1118Hl£810N LIICTH • 25.0'

RIUTtV! POl!'l t.EV!L (db) 1M ROllZOHTAL DISTANC!S 0~ HAl.

±2.0' !1.5' +1.0' IUm.l

Figure 2)

CHAMBER EVALUATION

+0. 75

-1.0

+0. 75

-0. 1~

+O.S

+0. 5

-O.S

+0.5

-0.75

+0.5

-0.7)

+0. 5

FREQUENCY: ____ J_.~B~G~Hz~-------

TRANSMITTING HORN SECTION :_0.._1 _

RECEIVING ANTENNA: Ah:wrtu::r

backed dlpo\('

DATE: Bt2Jt66

NOTES:

0. 0 - 7. 0 • ! l. Odb

0.0. 2.5.! 1.25d~

0.0- J.O •! l.Sdb

0.0- ).5-! \. 75dh

0.0 • 4.0 • ! l.Odh

Page 46: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

MR.T-4-046 J QM-66-072 ---..:1,_1~ . Page 40 ~ u h - -~II 'tt! . : · . ..!.._;,_L_H--1 +r ~[ '-rii' ::=r.:~-l-+ :-r:-+-t++ 1, -H-11H-tt·!1=t"tt:l ' I I I .. ; _.:.._ ·~· '!-, I '. :-r- .L ,_ .. ' I I I

I J mT I L ·JJ._ -~i_,.-:...Sf, ~,1 i. :-i .. i i ·:,-,:I ;-~:Lw-~,-+++-H++-H-t-r-11-r-n - -

1

I -tj±-'_Lt. ' · .1....~ I :...:- -:"' ~ -:-- ~ 1 i . · ! ' ' ! : I ' ' I ...L ,_uJ.IDW'-++-t-t'-++1-1-tt-rH-r-, :t':::tl :-- IT I I I ' ' .. --,- i T : J I I I I ' ' I ! fll j _ 1-r- 'I 1, ·' ' I I ' I " · ; , 1 , 1 • 1 1 ' I ' : 1

1

; ; I I , 1

:

~~L.il~;~~;~';~:. ,.~l·l 11 t~i.:t.'L5':-t;il~j1:~~·'~;~f~~~f3!~f,3;~~~~~~l~E:·~~1~~1~~~~~~~t~~t~~t~~~~~~~f~~f~~ -H +--H-k-E=f: I I I' l! I : + ; : 1 : ; : ~.- I ~ ! ~ , : : T -~ I I _I I ! I I _,_.,_.,_t-Tilf• ·r;n -- , "'' _!,! : . ' . ' ' ' . ''- ' ' . I I ' ; I : I

_L I I .0. i I I I I~ i .l ! ! I I .l J ·: """' II I I • !',. : ' I I ..... l.o. ~ I I i J-L j f ....... I . I I I ! I I •I _j I..,J ;, ' ' I I !

I 1 l I I \0 ! I ' ' I : I :r' I

1 I I I I I I I ~.I ~ ~ : ••

. I l\l ~ I I I ! I I I ' : ! .• ,. ~ . ..J.. ·' ':::ttl:::_d!=t=tH!f~!=H'=t~'Ffj;4rtf:t±ijj.,t~tt:t:+=t=i:fDiit'=1 ~ ~, I, I , ! ' , ' r-~pr:-·.. ;_· :±l:'tu'':ttt=tt+=4+tR1 f¥ ..... t:H±nt±j:"~~~~~~+H~ '-<: "; c·<4 ~ , ....... , ' : i : ' = ·~-- ~--i~' ! '±±tr1:Jt~~;~~+~++=R--+++-HH§:fdctttt:J~~~ L" ,~ r"<l I

1

"'t....J.. :....~ .:. I ;

1 1

;. ...... • + ~ ;i-: : •' ~ tttj1j '!~~~~....-r=+1 ++=~' i-hH-f+t§!jttttlj!~~~ ~- ..:'! J ~ i I .-:~~~-'--:l.L,"}-:_ ~~~:L}:;; ~;,I: I ' "'

i\J "'lJ J I , l I , 1 : -- - ~t· : ~:-r:.-~· ~--~· ~-t.Z~t~~ +~++' +-+afJt'i1Ei~Ei=tti~t+~t~ .... ~t.~~t:+i~t;~':::1r:t·~.,a N {\J "("! i . ! ' I . . . . ' ·;- ; ; ' ·-:---:-+ "!' • I t'(·. :::'ctttj~+', ~~~~-p'=t !. +R++H±tti·~a::tttt:J::tqi:~H~ :_!; ; ... ~~ J. I ! ' I ....;.-+-+-;-,....,.-...... : . :-;-r-~-,1' I . .LI . .i I I l i

1 1\J ;

1

'

0

, • : • • • ' ' • _i_l ~~~. ·i : I ' ·· 1 .+, N 1'- I ' I I . ! ' I , ' . ' -~, . . •. . • . : ; ' ' ' ! . I I

- [\I T I I ' . . . I i I ~ I{"'" .•• L - . • I '[D-l-H-~H--H+1F-Hr-tt1ID ' . I I I ' _.:_' ; ~ ,-r-t :r~ l• o .- • . ~ J!f-.f--~ ' ' I I I ! I I I ; ' ; .. · _I • -~ ; I • I ; I : .. f' _1._:_:_ ~ I ! J ; I ! _t , j. • ' I I • • : i · . .I -'- ·;p- o : 1 I I , ~I I I I I ! i ! I I i T ~ i ...... ·~· :'-. ... ;, . I t i W~lcti Jl:.:r·, l=~++-i++-H+-Hrtt:tri:I!JC!J lf1 I I 1' 1. :l'·i!r•·~,.,~;_~.~-l . .t~~.·~.:-~-r;1 l('•

·-.;:,:; i I I I I I I ' : •· - or~;j~tt:ll~t1~~~·~+R=F+H+±t:i:±±ttttw+:Pf=l ~ j ' I l . ' 1 l ..1 ' : ... ' ~-:- I .l 1:lJtCIU+-l+t+-H+H-tijjttt!!Jt::O._ --1- .,- i I I ~ i J

1 .l...d i ' ' -+-t 1 :~~ •• ~-;-rj;:::tj+=f:+tQ=f=+=R+-hH+±:t±±ijtt:tpq:~~ ·w lo : 1 o , ~ ! I ' I I ' 1 • --~""'~, . 0 1

1 • ' " , ~ i I ; .-+ ; , , , , .. ! ! • ·: /. ~ r- I ' • I

· l·' I , • • : · · ; ~ ·' ~ ~ j:::j!~{~t't··~·fr=··t'~~t~~:~i~rf:Ift~1rJt-1{Jr~r-1tLJt=t2f}~f~ff~f~~f~r~~ t ji :t:t=~1++' +~-HH-~~-ti..J1

r-tjj·:·tt f· J!~-:It:1·:=~' ··~~.l.fl-.~ • · · 1 !· I : J I J I ~- . -~-·....:. . . IJ·-:J=t--t-W~++--HH-t-t-HH:tiiJD ' .l I

1

! l ' "!. I ~ r . ~~ ~ : I I .!....f:~··:;L: .,· LW.-t++HH-++nHT1:1JDI~J. t!jtt~PO:=I=H+H+H++-i-ti1 ]'=:t!'.:'tt·:!!I::r. ...!:·-::r~r·....:.~r:· ~.. · ~: """; . ~~..L..;--:1. ...... i , • 1 i , • I , , ~ -l-~-- . -~-- --- , "; ; I , . • I . , ·J,:I· ;:. o:..t.+-.t....~-++-1-H-+-t-t-H:r::tn lj::!:.t:l: ~~~-:I=~-=t++-H-t+t-.rl-t±:t, j1t::!:I, ~·:.I.L.:...:_:.....:.. .e:. .. -: ' · ~ -,+- ·:-:-: ·....-r..:L-;..: o~::r:r=LW-+++-H-t+t-H!~~tt:l

OQ=!=L lf--J-J..++-~H++-HH-t. -t.lDt..LI,::: .... !:~ 1l:::::::: :~-~~~:~ :-: 1t~~ . --~- ~~[~_1-~:-l:..i; ~i=t:~+=H-+++-H~t-ttj:t' :t:ttJ::J r-ro:~u~~~+H++H-H,-H,:,cnt·C:Jt I ~-:~~--· ~-~~~·j'~~~;~~·=~~~~R+~~±~~±~~t~~ I I I I : I I ! 1 'I ! ; [' - ~ . . ' . ' -: ' It • ; ._

fTT I l I .1 I I I I I: I I I I I· I I I I I I I : I l I ; I Ill I II: I I ' II H;. :l-t -~- l I I II I I J I I' . I I J l I I ! I I .

Page 47: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

Tn. Jonna Hopkin• UnivMsity .PPLIE.O P'HYIICI LABOAATOU'

sa .... , s"'·in<;~. M.ryl•l"M:f

.,5&8&= MRT-4-046 QM-66-072 Page A 1

l-

APPEl'-tTDIX A

Transmitting Horn, Design and Test Results

INTRODUCTION

Th~ anechoic chamber specifications originally called for a

four foot cubic quiet zone; however, it was determined that a quiet zone

3' wide x 2' high x 1' deep would be suitable for two test samples in con­

tainers side-by-side. Wit~ a minimum transmitted power of 200 watts, a

power density of 2 mw/cm2 ± 1.0 db was required in the quiet zone. To

allow for a margin of safety, a uniform illumination (within± 1.0 db) in

a 4 1W x 3'H x 2'D quiet zone was the design goal for the transmitting hor~

antenna.

A conical transmitting horn antenna design was chosen because it

has an H plane toE plane beamwidth ratio close to that required (4 to 3),

without the narrower beam in the intercardinal planes associated wi~~ the.

pyramidal horn antenna.

Because gain and beamwidth vary with the wavelength, the horn

design incorporates "add-on'' sections for the various incremental band­

widths. This is discussed further under beamwidth considerations. The

first section includes a built-in rectangular to circular transition ob­

viating the need for a separate waveguide transition. Figure 5 in the main

section of this report is an illustration of the transmitting horn.

BEAMWIDTH CONSIDERATIONS

The geometry for the horn illumination of the quiet zone is shown

in the following sketch.

~D:2.o'--f

~~r:T I . I 9 . -t-' ~ -. r-, fi

l~·fllllt---23.01 ------:llillol-.f . I tj 'Tit:AL RIZArtON

'--~-~ /1 Q/..11/:T l.: 20NE

Page 48: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

n,. Johns Hopkint Uni.,..rtity A•PU£0 PHYaiC8 U8011ATOIIT

sa_.. Spfin;, ~1-.;

-¥lUAU a Z.lRT-4-046 QM-66-072 Page A2

The chamber specifications called for a maximum of .5 db (~ .25 db)

change in amplitude due to reflections from the walls. This value, added to

the .75 db (~ .~7 db) change in amplitude due to the change in transmission 1 .

length (i? loss), dictated that the change in amplitude due to the beamwidth

of the transmitting horn could not exceed .75 db in order to meet the design

goal of± 1.0 db change in power density in the quiet zone volume. l .., e - o above sketch, then, the .t5 db beanwidth is 2 2 = 2. tan 1_ = 9.2.

25

From the

From

the figure in reference 3, the ratio of the .75 db beamwidth to the 3 db

beamwidth is .5/ Thus,

eH <. 75 db)

eH< 3 db) = .5 eH (3 db)=

9H(.75 db>

.5 = 9.2 .5

..,

=

The .S-Band frequency range from 2 to 4 GHz was divided into e~ght

··increments, each representing approximately 10% of the band, in order to keep

the beamwidth (and gain) nearly constant. To compensate for this ten percent

bandwidth, the design beamwidth was increased by ten percent, resulting in a ·

desired H plane 3 db beamwidth of 20°.

The horn aperture diameter in wavelengths(D/X) was determined from

the approximate expression from the H plane beamwidth (4)

- 70 9H(3 db)= D/"A

0 For 9H(3 ~b)= 20 , D/X = 3.5. Starting at 2.0 GHz, the approxi-

mate 10% incremental frequencies, wavelengths, and the diameter of the horn

section computed from D/"A = 3.5 are shown in Table Al. Also shown in this

table are the lengths of the various sections computed from the geome~ry in

the following sketch.

~ D 2 · 1

(2) X 2¢

For D ~ 4X ¢=1 4

(chosen) ,_, ___ ......,,.... __

e:- --L=-Sf>,7S''-'-----..::~~-. L = BJ...

1966, Page 174.

Page 49: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

Tn. Jo..,,, Hoplr.int Univ.,aity "PLIED PMYSICI LA8011ATORY

Silvttt Spr:;'lg, M.tryl.w,d

......

~ QM-66-072 Page A3

Thus L = 8~ determined the lengths of the various sections

as tabulated.

TABLE AI

Horn Dimensio::!s

Freq. ).(in.) Diameter (in.) Section L (in.) D = 3.5). Designation n

2.00 5.8 20.00 DB· 21.5

2.20 5.35 18.75 D7 17.5

2.45 4.80 16.75 ·n6 14.0

2.70 4.35 15.25 D5 10.5

2.95 4.00 14.0 D4 7.50

3.20 3.70 13.0 D3 5 .. 25

3.55 3.35 11.75 D2 2.25

3.90 3.05 10.75 Dl 0

The recommended frequency range for S-Band WR 284 waveguide is

2.6 to 3.95 GHz, therefore horn sections larger than D6 may not be required.

However, should higher power densities be needed (over smaller areas) horn

.sections D7 and DS, and two additional sections, D9 and DlO were constructed . •• The diameters for D9 and DlO are 22.5 "and 24.5", and the lengths are 26.75

" and 31.75 respec·tive ly, based on the same criteria as the other sections.

GAIN REQUIREMENTS

The above analysis assumes an aperture with sufficient

gain to provide a pow~r density of 2 mw/cm2 for a minimum of 200 watts

of transmitted. powe~.. Reference 5 gives the gain of a conical horn as

4nA G (db) = 10 log (7) - L, where L is the loss term (in the reference figure)

.versus the phase deviation at the aperture edge. For the selected phase

deviation of A/4, L = 1.5 db; and for D/). = 3.5

rrD 2

G = ~~) - 1.5 db = 20.85 - 1.5 - 19.4 db

(5)Antenna Engineers Handbook H . .Jasik, Ed. McGraw Hill (1961) Chap 10-4

Page 50: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

The Johns Hopltin1 Univeraity PLI[O PH'U'CI LABORII.TORY

Sil.,.• • · .,9, M.rylend

The power

Pd =

density pr

= Ar

is PTGT

where PT 200 watts 4nR2 =

GT 19.4 db =

R 24 ft

Pd = 2.6 mw/cm2 , which is adequate.

MEASURED VERSUS CALCULATED VALUES

(min)

87

911Mi1 n MRT-4-046 QM-66-072 Page A4

The calculated gain~bove) was 19.4 db at the design frequencies,

which included a 1.5 db l~ss ·due to efficiency and phase error. The meas-'

ured gains at the design frequencies are t~bulated below along with the dif-

ference between the measured and calculated gain (6G).

TABLE A2

Measured versus Calculated Gain

Horn Design Measured Calculated ilG Section frequency Gain Gain

Dl 3.9 20.3 19.4 +0.9

D2 3.55 20.0 19.4 +0.6

D3 3.20 19.7 19.4 +0.3 D4. ·2. 95 19.7 19.4 +0.3

D5 2.7 19.6 19.4 +0.2

D6 2 .. 45 19. 4_(es t) 19.4 +0.0

From this table, it can be seen that the measured gain is very

slightly higher than calculated. This is due in part to the beamwidth being

slightly narrower than the design value; and in part to the phase deviation

at the ~perture edge being less than A/4, and consequently, the loss due to

phase error and efficiency being slightly less than the 1.5 db allotted.

Table A3 below compares the measured and calculated 3 db beam­

widths, which again are in good agreement. These values indicate that the

expression for the H plane 3 db beamwidth is more nearly

for theE plane SE ~ 55/DA ..

;

- 68 98 (3 d~ = D/A and

Page 51: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

e Johl'lt Ho-pkii'IS Univei'lity .I £0 PHYSIC" L.ABO .. ATO•Y $il'¥et S~···"'l, Maryla~

TABLE A3

Measured versus Calculated E & H Plane Beamwidths Calculated Measured Measured

Plane 3dbB.W 70 Horn Frequency H 98 (3db )=D/''A. E Plane 3dbB.W Section (GHz) (Degrees) (Degrees)

Dl 3.9 18.9 20° 15.8

D2 3.55 19.3 20° 15~7

D3 3.2 '19. 7 20° 15.7

D4 2.95 19.6 20° 15.5

D5 2.7 19.5.· 20° 15.5 ,.

D6 2.45 19.5 20° 15.5

"Ail£! MRT-4-046 QH-66-072 Page AS

Calculated 60

9E (3db )=D/1-.

17°

17°

17°

17°

17°

i/0

Page 52: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

It Johnt Hopkint Uni.,.nity .lED PHYSICS uaORATORY

Sil"'"' Sr"'ing, ,M.tryiM~d ,

APPENDIX B

Sleeve Dipole Antenna

Page Bl

A dipole was chosen as the field probe antenna for the chamber

evaluation in order to observe virtually all of the reflections from the

walls (and the ceiling and floor), which contribute to the perturbation of

the field in the chamber. The sleeve (or skirt) dipole design was selected

because of its natural configuration for an upright power monitor of a ver­

tically polariz"ed field, and becaust ~f its ease in construction utilizing

the APL 5-spline semirigid coaxial cable which was available; the dipole

probe tip simply screws into the cables hollow.center conductor. The di­

pole is illustrated in figure Bl. This figure gives the pertinent design,

dimensions which were arrived at empirically us{ng the basic tenets set

forth by Silver(6).

Figure 13, in the main section of this repor~ illustrated the

fixed monitor version of the sleeve dipole used as a power monitor in the

~hamber.

Figure B2 illustrates the "gooseneck" version used to evaluate

the chamber.

The VSWR of both versions is shown in figure B3. These values

include the mi-smatch from the Type N to 5-spline cable transition. A sur­

prising feature of these dipoles is that the VSWR was less than 2:1 from

2.6 GHz to 11.4 GHz (the limits of the then available equipment).

( 6 )M. A Th . . d D . S .. Ed 1crowave ntenna eory !£_ es1gn . Silver, . MIT Rad Lab Series, Vol 12 McGral~ Hill (1949) Chap 8.2

...,, : ... ~-·---• --·-:--:_, ____ ,:,,.·«-lOr ... th.o> tali 1 ddeiUie of the United Stat.H wiihio t.he rneani~ of the Eapion.a,n l.a"'-., Title 18 . • . • . :~ ---'-a .. ; ...... """- •·-

Page 53: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

1.

At • Hopkin• Univeraity .MYIICI \.A80RATORY

,. Spring, Mllryland

OPERATIONAL PROCEDURE FOR

PROJECT PANDORA MICROWAVE

TEST FACILITY

MRT-4-045 QM-66-071

Prepared by

E. V. Byron

October 1966

Page 54: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

T

""' · Hopkins Univertity

YltCS LAaORATORY ,prin;, Mairyland

ABSTRACT

.MRT-4-045 QM-66-071

This report describes the operational procedure for the Project

Pandora microwave test facility. It. is intended primarily for non­

microwave oriented technical personnel ~o enable them to operate the

facility·with a minimum of training. Included is the Turn-On, Turn­

Off Procedure, the procedure for measuring transmitted power and power

density, and a description of the power monitors.

-i-

Page 55: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

... ,_ ..

AP Hoplcifts Uftlw,.lty

AVIICI uae•A JO•V .( Spring, •ryland

Section

I.

II.

III.

IV.

TABLE OF CONTENTS

MRT-4-045 QM-66-071

Title Page

Introduction 1

Equipment Operat"ion 1

. A. .Pr~liminary· Turn~ On Procedure 2

B. Operational Turn-On Procedure 3

c. Turn-Off Procedure 4

Procedure for Selecting Horn Sections, and Power 5

for Desired Power Density

A. Design Frequency Range for 5

"Expandable" Conical Horn

B. Horn Section for a Reduced Quiet.Zone 6

Microwave Power Monitor 7

A. Monitor No. 1 7

B. Monitor No. 2 and Alternate Monitor No. 1 8

- ii-

Page 56: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

• :J ..

1 Hopt&iM Uftlwnlty AP. !MYIIC. LAaoaAro•Y

., .. ver Sprino • .._,,and

Figure No.

1

2

3

5

6

LIST OF ILLUSTRATIONS

Title

Pandora Microwave Equipment Racks

Pandora .Microwave Equipment - Functional Block.Diagram

Power.Density per Watt Transmitted for Each Horn Section

High P~er Monitor - Meter Reading . versus Transmi·tted Power

Received Power Density-Monitor Channel Number 1

Table of Horn Section Aperture Diameter

-iii-

MRT-4-045 QM-66-071

9

10

11

.. ·.·

12

13

14

Page 57: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

.. T Hopkiftl \Jftivenity

APP 1YI1CI LA•o•ATOaV ..... ... f Spfinv, tNryiMKI

I. INTRODUCTION

MRT-4-045 QM-66-071 Page 1

This report describes the operational procedure for the

Project Pando.ra microwave test facility. It is intended pri­

marily for non-microwave oriented technical personnel, to

enable them to operate the facility with a minimum of training.

Sect.ion II of this report del.:neates the· basic turn-on, turn-off

procedure for the equipment. Section III describes the procedure

for determining which of the "add-.on" sections of the expandable

conical horn to use, and the power requirements for a desired

power density. Section IV describes the _p·owE!r monitors in the

microwave anechoic chamber.

The microwave equipment for Project Pandora is assembled in

the four equipment racks illustrated in figure 1~ Rack No. 1

contains the Spectrum Analyzer R.F. and Display sections. Rack

No. 2 contains the auxiliary low-power microwave generation and

modulation equipment. The equipment in this rack is not inter­

connected (nor is the spectrum analyzer). Rack No. 3 contains

the primary low power microwave generation and modulation equip­

ment, and the necessary monitoring and recording equipment. Rack

No. 4 contains the high power microwave amplifier and power sup­

plies. The interconnection of these two racks, with the "expandable

horn" transmitting antenna in the anechoic chamber, is shown in

figure 2 which is a functional block.diagram of the microwave sys­

tem.

II. EQUIPMENT OPERATION

The following instructions pertain to the operation of the

equipment assembled ·in equipment racks 3 and 4 with reference to

figures 1 and 2.

Note: For operation of the various individual pieces of

equipment, refer to the manufacturers' operation

manuals which are available at the test facility.

Page 58: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

Hoplllna Uftlwraity tvatea LAao••ro•v Sprift9, M.lryland

MRT-4-045 QM-66-071

Page 2 A. Preliminary Turn On Procedure

~: Connect the ·proper transmitting horn section for

the required frequency and power·denstty as outlined

in Section III of this procedure.

1. Equipment·!!£! Number 4

a. Turn on water supply. Pressure should be between I

15 and 50 psi.

b. Turn on low voltage A.C. power supply. Set Heater

Vol~age to 6.3 volts.

c. Turn on D.C. power s~pply (solenoid power). Set

to 33 volts.

Note: Under no circumstances should the solenoid .

be operated without water cooling or perma­

nent damage will result. If the over current

light is energized, the door interlock is

·open or there is insufficient water pressure

or solenoid current.

d. Set the Cathode Voltage switch on the high voltage

power supply to the Burn-in position and turn on the

high voltage.

Note: There is a 3 minute delay before the high

voltage comes on. Allow 15 minutes warm-up.

2. Equipment Rack Number 3

a. Turn on A.C. power to rack number 3.

b. Turn the Grid Control on the Alfred 5-6868, 10 watt

TWT amplifier to -250 volts. Turn Helix Control

completely CCW.

c. Turn HP692C Sweep Oscillator to Standby position.

d. Turn on power to all equipment, allow 15 minute

warm-up.

Page 59: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

n APP

HopkiM Uniwnity 'fltC8 ueOIATO•Y

,pr inv. M.tryl~

MRT-4-045 QM-66-071

Page 3

e. Zero all HP431C power meters. For. maximum ac-·

curacy, the power meters should be "re-zeroed1'

periodically. Refer to the ·HP431C instruction

manual.

f. Turn Sweep Oscillator Output Attenuator and TWT

Output Attenuator completely CW (max. attenuation).

g. Set HP692C to desired frequency and connect for

desired modulation.

Note: Refer to the instruction manuals of the HP692,

HP8403A, and the HP3300A for the possible

modulation options and their settings. If

the auxiliary low power R.F. generation and

modulation equipment is to he used, refer to

the appropriate instruction manuals for pos­

sible interconnections and operating instruc­

tions.

·h. Turn HP692C to Operate position.

B. Operational Turn On Procedure

1. Equipment Rack Number 4

a. Set Cathode Voltage switch to the . l/3.3KV position

and observe high voltage and current meters.

Note: Do not allow high voltage to exceed 3250

volts and t~e current to exceed 560 rna.

b. If necessary, adjust high voltage screwdrive adjust­

ment for high voltage meter reading of 3250 volts.

DO NOT EXCEED 560 MA. CURRENT.

2. Equipment Rack Number 3

a. Turn Helix Control on Alfred 5-6868 'IWT completely CW.

b. Turn Grid Control on Alfred 5-6868 TWT completely CW.

Page 60: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

..•

The APP'\.

.. "iopkiftl Uniftraity

·aac.t LA.ORAto•Y lift9, Mlrylend

MRT-4-045 QM-66-071

Page 4

c. Adjust Sweep Oscillator Output Attenuator for

maximum power output as observed on TWT Monitor

Power Meter. Lock in position.

d. Adjust TWT Output Attenuator for the required

transmitted power as observed on the TWT Monitor

Power Meter. Ll•ck in .position.

Note: The transmitted power required for a desired

power density can.be determined from figure 3

·and Section III of this procedure.

The transmitted power can be determined from

the meter reading and figure 4; (High Power

Monitor, - Meter Reading vs. Output Power).

DO NOT EXCEED 250 WATTS TRANSMITTED POWER FOR

EXTENDED PERIODS OF TIME WITH THE INITIAL TUBE

SUPPLIED.

e. Set the monitor switches on the monitor switch panel

to connect the desired function to be .monitored to

the strip chart recorder. The normal setting of these

switches is TWT Monitor to the recorder channel No. 2,

and Monitor Channel No. 1 to recorder channel No. 1.

f. Connect "Available Inputs" to the scope or the HP415

as required.

C. Turn Off Procedure

1. Equipment Rack Number 3

a. Turn 10 W TWT Output Attenuator max. CW (max.

attenuation).

b. Turn Sweep Oscillator Output Attenuator max. CW.

c. Turn Grid Control on Alfred 5-6868 10 Watt TWT to

-250 volts. Turn Helix Control completely CCW.

Page 61: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

..

T' API

Hopkint \hllveraity 1\'ttea LA•o•.uo•v $prinv, MA!ryland

MRT-4-045 QM-66-071

Page 5

d. Turn HP692C Sweep Oscillator to Standby position.

·e. Rack powet may now be turned off.

2. Equipment Rack Number 4 \

a. Set the Cathode Voltage switch on\high voltage

b.

c.

d.

e.

power supply to Burn-in position.

I Turn off high voltage . .'

Turn off low voltage A.C. power supply.

Ttirn· off D.C. power supply.

Turn off water supply.

III. PROCEDURE FOR SELECTING HORN SECTION AND OUTPUT POWER FOR DESIRED

. POWER DENSITY

A. Design Frequency Range for "Expandable" Conical Horn

The microwave facility was designed such that a suitable

quiet zone - minimum dimension, 3' wide by 2' high by 1' deep

for two "test samplesu side ·by side - would be illuminated

uniformly a + l.Odb power variation in the quiet zone was

the design goal. The quiet zone, as discussed in this report,

starts at a transmission length of 23.0 feet and is symmetric

about the chambers horizontal and vertical axis. These quiet

zone dimensions, therefore, set the beamwidth characteristics

of the transmitting horn; and a conical transmitting horn with

"add-on" section was designed: to give maximum gain with the

required bearnwidth over the S-Band frequency range. Under

these conditions, figure 3 shows the "design frequency range"

for the appropriate sections (D1 through D6). This figure is

a plot of power density (in rnw/cm2) per watt transmitted - Pd/W -

versus frequency, for each of the horn sections. It can be seen

that, for the design frequency ranges, Pd/W is 1.6xl0- 2 mw/cm2 ± 10%. watt

Page 62: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

Thr APPI

·•opkina Ut\i-nity · tltCI uao•AToaY

.pring. M.tylend

MRT-4-045 QM-66-071

Page 6

Thus, for 250 watts transmitted, the power density in the

quiet zone is 4.0 mw/cm2 ± 10%.

1. .. To determine specifically the transmitted power ·required

for a desired power density (at a given frequency in the

design range):

2.

a. Determine Pd/W tor the known frequency and horn

section from figure 3.

b. Solve: Pd/W X Power = Power density

Power = Power densit~

Pd/W

3.0 GHz, density ' 2 c. Example: At a power of 2mw/cm

is required. (Horn Section D4)

Pd/W -2 from figure 4. = 1. 58xl0

Power 2 126 watts = - -2 = 1.58xl0

To determine .power density from a known transmitted power:

a. Determine Pd/W for the known frequency and horn

section from figure 3.

b.

c.

Solve: Power density = Pd/W x Power

Example: At 3.5 GHz, 200 watts are transmitted (Horn

Section D2).

Pd/W = 1.56xl0- 2 from figure 3.

-2 2 Power density= 1.56xl0 x200 = 3.13 mw/cm

B. Horn Section for a Reduced Quiet Zone

To increase the versatility of the test facility, additional

·"add-on" horn sections were designed to uniformally illuminate suc­

cessively smaller quiet zone volumes with incr~ased gain. The

determination of the quiet zone volume is dependent upon the beam­

width of the v~rious sections and is beyond the scope of this re­

port. Suffice it to say that, at the upper end of the frequency

band (3.95 ~Hz) horn section D10 will essentially illuminate uni-

Page 63: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

T' "'"' HopltiM Uftiwrtity Af •MYIICa LAaCIIAto•v

S.Wint, M.ryland

MRT-4-045 QM-66-071

Page 7

formly a quiet zone large enough fo·r a single test sample -

1.5'W x l'H x l'D. At this frequency, n10 gives the maximum

power density obtainable for the system. As the frequency is

decreased, horn section n10

will uniformally illuminate a

proportionately larger volume with reduced gain.

1. The power required for a desired power density can be

determined as in Al &hove.

a. Example: 2 10 mw/cm power density.is desired at

3.95 GHz (Horn Section n10)

Power = Power Density

Pd/W

. Pd/W -2 = 3.83 x 10 from figure 3

Power = 10 -3 ° 260 3.83 x ·10 = watts

IV. MICROWAVE POWER MONITORS

In addition to the high power TWT monitor, there are 3 power

monitors in the anechoic chamber. Two of these, Monitor #1, a

standard gain horn, and Monitor fF2, a· sleeve dipole, are connected

to the. HP431C power meters in rack number 3. These two monitors

may be switched to the Mosley 7100B strip-chart recorder (see figure 2).

The third monitor, alternate monitor number 1, is a sleeve dipole and

has an available output as shown in figure 2.

A. Monitor Number 1

Monitor number 1, the standard gain horn, is the primary

"down stream" power density monitor. Power readings on the

Channel No. 1 power.meter can be converted to power density

at the point of measurement with reference to figure 5.

Note: It must be reemphasized that this monitor, in conjunction

with .. figure 5, measures the power density ~ the point

where the monitor is placed in the chamber, and not the

power density at the center of the quiet zone as determined

in Section III.

Page 64: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

14' "' Hopkina Univenity •MVIICI LAeORATORV ' S.,inv. ~rvl•nd

B. Monitor Number 2 and Alternate Monitor No. 1

MRT-4-045 QM-66-071 Page 8

These monitors are available to measure relative power

density and for the observation of signal waveforms at any

point in the chamber.

By placing monitor number 2, with its alternate monitor

line connected, at a point of known power density (previously

determined as in Section III. or IV A above), and placing alter­

nate monitor number 1, at any other point in the chamber; a

gross measurement ·of power density can be made by observing

the relative readings. Due to the nature of the chamber re­

flections, the power density measured in this manner can be in

error by± 2 db; ~owever, as a "gross" power density measurement

technique, these monitors are useful sinc.e they are lightweight

and easily movable.

Page 65: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

......

I<IJCK PWIC.SW.

SPECTRUM IINAli/ZcR. .PI.SPJ..~V tiP851 B

. ..SPECrRUIA 1/NI/LyZcR.

HP 8551 B

IZF. SE'CTIOIV

Dc~K.

rage ':J

110 QC

+ - v

'I

~ ~ eY / -

,~.o / IZ4CK. PW/l. SW. ~tiCK PW/2, SW. rwr

· 10/V ·rwT AJAPt.IF/£/Z .MICROWIJV£ PSSOC" V0£1MET£1l TIIERMI SllJI! /)lFREO 5-h868 TPP£ M4 20IZB liP- 410 t! . Clll/BRIITOR

J.IPB402 .NOT£0 Nor£@ MICKOWIJVE 4t11Pt.lr:. . /-1/GI-i VOl TA6£

J.IP491 t: PIN MOO. NOTE@ PtJWI.il!. SVPPi V RIIN00/111 J.IP 8732 A

IJLTO SCieNTIFIC AIO!S€ dEN, .swe 7WTAitJNI~ O.I-3.S P·/000 GRI~908 - CONTROl. PRNEL

Me TEll!. PW..(. M£f£1i!

,PULSE GEN. GR 1395 R HP415e J.IP431C P.C. PO Jill E If!

~ct ~~ ~ ~~ If~ &):~ STRIP CNilRT

~t/PPtyl ~~ ~~ ~ :

~~ ~~ ~'«\ ~~ ~~ RE~ORPEIZ 611TEf C: /01 F ~~ ~~ ~~ ~~ M051.EY' 71dOB "' ~~ ~~ "'' ~~ ~~ ~~ ~~ ~~

MICRO Wt1VE 05C, CllllAINEt.Z CJIIlNNEt. I

Gil 136tJ·B PtJW£e powee

TRI/VEliNG NlCHIINISNf METER MET£~!

CONTR()L PRNEL HPI/.J'I C. IIP4J'I C

.DESK SKtP ()SCILti?TOe

11Ptb92C

MoPVl R rt:JI!!! H/CiH VOLTRGC:

/IP 8403 tJ POWeR St/PPt. V

~LTO SCI~NTIFIC

FVM:TIOAI 6'ENc~AT$1! 0.1-~.3 p 1000 v JIP .S300 .'1

~

R~CK 4

/Yt:Jr~@ PAW£'1. CovT~IAIS .5WITr:HeS- UIHICH COAIAJE'CT J;'Aii't()VS' l'..fOAJtro~t:D ~V~CTtOI\IS ro TH4 STI!!tP.OI~r ,eeca~o£1!. BtHIA/P PNA.IEL" 6RJ.Jop,qss rtirc.e(IIPB4.3t-4)) cod6

PI~EcrtoNRt.. C't?vPtee.(HP797D)J tt:Jo'6 Ft.K'et:>lJTrcA/,(w£1NCJIEt. 1-toN), xr1:n. atecrOfi!!(!IP/~311). /JtJT£ ® Ill. FReD G'-/,868 OVTPl.lr YA~I,t:l&c PTT£Nll~Tae. ( NR~t:J,q 79e) • . Nor£® III'6'12C swc~P osc. tJf!TPtlr 1/RR/~Bt£ ,4rrEMu~roP fiV,qRo~ ?q?\

Page 66: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

·-·-·---------~,

0£1ECT£0 OUTPUT

AVAILABLE INPUT TO HI'41S£

OR SCOP£

CRYSTAL O£TECTOR

HI'42:SA

PANDORA MICROWAVE EQUIPMENT FUNCTIONAL BLOCK DIAGRAM

FIGURE 2

r·-·---·---------·--------, i EQUIPMENT RACK N! 4 i i i I I I BANDPASS ~Odb I

1-......:-----'-:--t ~~~:~~;AB OI:~:~~:AL

PIN 1100. 81A

1S

I I I I I I I I I

SWEEP OSCILLATOR

HP 69ZC

l ___ _

MODULATOR

HI' 1403

AVAILAILE INPUT TO MP41$ £ 01 SCOPE

CHAit. I IIOIIITOA PWR. IlEfER

HPUIC

CHAN. 2 MONITOR PWR IIETf:l

HP Ul C

HP4UA I·ZON I ··L·-----·-· ____ .;...___________ _ __ ..J

HIGH VOLTAGE PWR. SUPPLY

ALTO SCIEftTIFIC 0.1 ·3.5P 1000

lOW VOLTAGE PWR. SUPPlY

ALTO SCIENTIFIC

LA 40 N NARDA 3003

zo db DIRECTIONAL

COUPLER

L ___ -·-· -------·-· _____ J

AVAILABLE INPUTS 10 HP4t5E OR $COPE

100' RGt CABlE I

At T. MONITOR .,

SLEEVE DIPOLES

APL.

St'O GAIN HORN

NARDA 644

IIOIIITOR ez

I I I I I I I I

AlTERNAf£ IIONITOP. •z

liNE I I I I I I I I I

WEINSCHEL I·ZON

I . I i . I . I I I i I . I I I

I I

I L _______________ J

~~ (JQI (I) 0'1 '

0\ t-' I I

0 0 < ....., ~

t-'l

Page 67: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

' .

4.0 • 10-z

T ~ Z.5.,o-z ...... ...... s U') z ca: rt:: ......

~ z.o aao·Z o.."a

...... ti ~

a: ~ 1.5 aro·Z

>­...... u; z ..... 0

a: ...... 3& 1.0 ato·Z ~

z

............ -..,.-v"'+J

QM-66-071 Page 11

Fig. 3 POWER DENSITY PER WATT TRANSMITTED FOR EACH HORN SECTION

I .

""""""*

"""""'

,. -"""

,. ~ ~

~ """""""

,.. ..... ~~ ~ ../

,.. ~ ~

"""" .~~,o~ ~ ~ ·"' ./ ~,.

~~ ,.

./ ...

_/ ~ ·. :/' 1"\Q

_7'"' ~ L ,. --

' t'\~ ,., ,.. ' '

./ 7 L ""' ,..

/ ,. v -- ./ ""' ,.. v

~ ~ v 7 -""" v ~ ~ _..V / ... v / A ""' v 7 (')1 v / _.V"

... V _./,. v / 'fl"". v v· /~ v '/ I;" ~ / ,

/ ,. 7 ~~ ~ ~ /

,. .., " / -""" V. V· / ~ ./

,~"" ./"' ... 7 -L _/. ..., , ~

/ fll""' v 7 ....., ,.. ./

. ./ , v / AI"' ~ / v ""' v ~ / \l~ ~ V' ~ / v .../"" ./

, ... ,- ~ ~ """' .A ~ ,. ~ rr -~..., .... ~ f"" . / i ~ ,.

I ~ ,.... _., ,.,. .1"""' ~ •

~ ,..

~ ...ol!ll

~ ~ ...... ./.,""

""""' ~,..

03 .... ,

[12~ """"""' ~ !I""'

~o~ ~ -flp - """' """"'04-~ ./ ~ Jllf"':' . . IDI -J ._

~~ ~~ .Jill ~~ ~ ... I

~ ...., ,., -~ ,. > , ,_,-~

-~ > ~ ,_,- ...,. ~

~ ..

2.8 2 . ., 2.8 2.9 5.0 5.1 5.2 5.5 5.4 5.$ 5.1 . 5.7 5.1 5.9 4.0

FREOUENCY - GHz

ARROWS SHOW FREQUENCY RANGES f'f\D 't 1 tll- ~•u - ,1"' 1"\t·ll,...,. ""• .. .,

Page 68: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

1 •

+I .7

....

1.0

I

• ., I

'

FiCJ.4 HIGH POWER TWT MONITOR- METER READING Vs ~ ·.TRANSMITTED POWER

FREQUENCY CORRECTION CURVE

~

lF .:i ~

-....... f

__ ..,..,. -.. -v"'t'J

QM-66-071 Page 12

~.~ ..#-~-

--- -- """-~ r-s-.... _;i t'-

... • I

0

-----....

I~ 11111:. .. ~ Ere ~p/f.A, ~ ~ /

---:! ~ ~ --I . I I I J I J I . 1.1 2.1 z.e 2.1 a.o s.1 s.a s.s s.4 s.s s.e s.1 s.a s.t 4.o ·

FREQUENCY (GHzJ

TO MEASURE TRANSMITTED POWER: ADD CORRECTION TERM TO TWT MONITOR POWER· MEiER READING.

E_.mple:· AT 2.7 GHz, THE CORRECTION TERM : .38 POWER METER READING : 2 .00·

CORRECTED METER READING 2.38 dbm sO: 140 Watts P1 · ·

· TO SET TRANSMITTED POWER:

~----

SUBTRACT CORRECTION TERM FROM CORRECTED METER READING WHICH CORRESPONDS TO DESIRED POWER. ADJUST POWER TO OBTAIN THIS VAL.UE ON TWT MONITOR POWER METER.

CORRECTED METER READING vs· TRANSMITTED. POWER

~ ~

~ ~

·~ ~

_£· ; ~

·--- --· r--- ---- 1-- ·--· - ---~ ~

-~ I iii

-iii ;iii!~~ ,_r- i

i

~ ~ ~ I

Exomp/1 · :::.

... - ;;Jit. ~ ="""

;iiii!-;JI!!.C ! -

i~ ~ ; -~

~ I

! ~ - i

I I II I l Ill II 111 I i l I I I I I I I I I I 11·11 ·• II I Ill

20 · 25 SO Sl 40 41 50 10 70 10 10 100 150 200 250 . 300 350 400 500

TRANSMITTED POWEfl {Watts}

Page 69: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

...... ~ 4.0 ..._

~ ~ s.o =-: C) ~ 2.0~---~--4---4---4---4-~~--4----r---~--~--~---~--~~

~ ~ 1.0 --~--~--4-..,_,.~---+--~--4--4--4--~-~--+----~-~~ 8 o~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2.1 2.7. 2.1

4

5

• -7

~---

~~

z.t s.o s.e s.z ·s.s ·sA FREQUENCY (GHzJ

--- ----1--- ~-.... _ ·-··

-~ 't!"'

·~ F-

~ ~

-::

~ ~

~ ~ ~

1 • 1 l t 11 Ll

3. I S.l 3. 7 5.8 3.9 ·4.0

CORRECT£. ~METER

-----r· ---·-Emmpl1f

-# -7iil ~

~ .:3:iil ~~

~ ez ~

I ' I t· I I I I

TO MEASURE POWER DENSITY: ADD CORRECTION TERM TO METER READI'

Example: AT 3.0 GHz, CORRECTION TERM · .. 4 do METER READING = 3 . O.dt!m

CORRECTED METER READING = 4.4 dbm 4.4dbm * 3.0 Mllliwotts/cm2 ~

To· SET POWER DENSITY: SUBTRACT CORRECTION TERM, FROM MElER READING WHICH CORRESPONDS TO ·REQUIRED POWER DENSITY. ADJUST POWER TO OBTAIN THIS VALUE ON MONITOR CHANNEL N! t POWER METER.

.rt~ READ/I ~G Vs FOWl RD ~NS TY

~:-z ~ ~

~ ~~

~ ~ .:211

'!~ ~

--- ~-~ '£

L ~.

~

I I I I I II J II Ill• IIIII

.20 .zs .30 .55 .40 .50 .10 .10 .eo .10 1.0 1.5 2.0 2.5 s.o 4.0 5.0 ID 7.0 1.0 9.0 10.0

. POWER DENSITY ( Milliwillfs/ tm1}

Page 70: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

J :

lt APP

Hoptlim Univenity ntcs uaoaAton·

.liprino. Mlryllltld

FIGURE 6

Horn Section Dimension

Horn Section Diameter (inches)

D1 10.75

D2 11.75

D3 13.00

D4 14.00

D5 15.25

D6 16.75

D7 18.25

Da 20.00

D9 22.25

D10 24.5

MRT-4-045 QM-66-071 Page 14

Page 71: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

Af ' Hopkins Univ.rr.itv HYIICI t..ABOilATOilY

( Spring, M.tryland

External Distribution:

. p. Tamar kin

R. s. Cesaro/5

H. M. Grove

R. w. Beard

F. Koether

J. Sharp

MRT-4-045 QM-66-071 Page 15

Page 72: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

The Johnt totopklna Uftiv.rtlty 1\Pr "' PHYSICS I.A80RATOIIY

r lpfinrg, Maryland

Internal Distribution:

R. E. Gibson/2

A. ~ossiakoff

A. M. Stone

J. w. Follin/2

J. L. Queen

T. c. Cheston

E. V. Byron

Archives/2

MRT-4 File

MRT-4-045 QM-66-071 Page 16

Page 73: QM-66-072 DRC-H-9331-oOdoxit.weebly.com/uploads/2/4/7/4/24749526/project_pandora_final_r… · contribution to Project PANDORA - specifically, aid in the implementa tion, and the

. , J~,, Ho..,lr.i"a U~$ity liD f'oHY:..oCS LABPIIIATOitY Sil""" Spring, ~land

External Distribution:

P. Tamarkin Copy No. 1

R. s. Cesaro 2

R. s. Cesaro 3

R. s. Cesaro 4

R. s. Cesaro 5

R. s. Cesaro 6

Ho M. Grove 7

R. w. Beard W/o enclosures

F. Koether W/o enc losure·s

..&Eifil& I~ MRT-4-046 OM-66-072 Page Dl

i