49
QCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators of QCD Giessen, January 2018 1 / 22

QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Embed Size (px)

Citation preview

Page 1: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

QCD from quark, gluon, and meson correlators

Mario Mitter

Brookhaven National Laboratory

Giessen, January 2018

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 1 / 22

Page 2: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

fQCD collaboration - QCD (phase diagram) with FRG:

J. Braun, L. Corell, A. K. Cyrol, W. J. Fu, M. Leonhardt, MM,J. M. Pawlowski, M. Pospiech, F. Rennecke, N. Strodthoff, N. Wink, . . .

Temperature

µ

early universe

neutron star cores

LHCRHIC

AGS

SIS

quark−gluon plasma

hadronic fluid

nuclear mattervacuum

SPS

FAIR/NICA

n = 0 n > 0

<ψψ> ∼ 0

/<ψψ> = 0

/<ψψ> = 0

phases ?

quark matter

crossover

CFLB B

superfluid/superconducting

2SC

crossover

[Schaefer, Wagner, ’08]

large part of this effort: vacuum QCD and YM-theorywhy?

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 2 / 22

Page 3: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

fQCD collaboration - QCD (phase diagram) with FRG:

J. Braun, L. Corell, A. K. Cyrol, W. J. Fu, M. Leonhardt, MM,J. M. Pawlowski, M. Pospiech, F. Rennecke, N. Strodthoff, N. Wink, . . .

Temperature

µ

early universe

neutron star cores

LHCRHIC

AGS

SIS

quark−gluon plasma

hadronic fluid

nuclear mattervacuum

SPS

FAIR/NICA

n = 0 n > 0

<ψψ> ∼ 0

/<ψψ> = 0

/<ψψ> = 0

phases ?

quark matter

crossover

CFLB B

superfluid/superconducting

2SC

crossover

[Schaefer, Wagner, ’08]

large part of this effort: vacuum QCD and YM-theory

why?

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 2 / 22

Page 4: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

fQCD collaboration - QCD (phase diagram) with FRG:

J. Braun, L. Corell, A. K. Cyrol, W. J. Fu, M. Leonhardt, MM,J. M. Pawlowski, M. Pospiech, F. Rennecke, N. Strodthoff, N. Wink, . . .

Temperature

µ

early universe

neutron star cores

LHCRHIC

AGS

SIS

quark−gluon plasma

hadronic fluid

nuclear mattervacuum

SPS

FAIR/NICA

n = 0 n > 0

<ψψ> ∼ 0

/<ψψ> = 0

/<ψψ> = 0

phases ?

quark matter

crossover

CFLB B

superfluid/superconducting

2SC

crossover

[Schaefer, Wagner, ’08]

large part of this effort: vacuum QCD and YM-theorywhy?

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 2 / 22

Page 5: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

QCD from the effective action (gauge fixing necessary).Γ[Φ] =

∑n

∫{pi} Γ

(n)Φ1···Φn

(p1, . . . , pn−1)Φ1(p1) · · ·Φn(−p1 − · · · − pn−1)

full information about QFT encoded in Γ[Φ]/correlators:I bound state spectrum: pole structure of the Γ(n)

e.g. [Roberts, Williams, ’94], [Alkofer, Smekal, ’00], [Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, ’16]

I form factors: photon-particle correlatorse.g. [Cloet, Eichmann, El-Bennich, Klahn, Roberts, ’08], [Sanchis-Alepuz, Williams, Alkofer, ’13]

⇒ decay constants e.g. [Maris, Roberts, Tandy, ’97], [MM, Pawlowski, Strodthoff, in prep.]

I thermodynamic quantities: Γ[Φ] ∝ grand potentialF equation of state e.g. [Herbst, MM, Pawlowski, Schaefer, Stiele, ’13]

F fluctuations of conserved charges e.g. [Fu, Rennecke, Pawlowski, Schaefer, ’16]

I further quantities: Γ[Φ] ∝ eff. potential, propagators, ’t Hooft determinantF chiral condensate(s)/〈σ〉

e.g. [Schaefer, Wambach ’04], [Fischer, Luecker, Mueller ’11], [MM, Schaefer, ’13]

F (dressed) Polyakov loope.g. [Fischer, ’09], [Braun, Haas, Marhauser, Pawlowski, ’09], [MM, et al., ’17]

F axial anomaly e.g.[Grahl, Rischke, ’13], [MM, Schaefer, ’13], [Fejos, ’15], [Heller, MM, ’15]

F spectral functions e.g. [Tripolt, Strodthoff, Smekal, Wambach, ’14]

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 3 / 22

Page 6: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

QCD from the effective action (gauge fixing necessary).Γ[Φ] =

∑n

∫{pi} Γ

(n)Φ1···Φn

(p1, . . . , pn−1)Φ1(p1) · · ·Φn(−p1 − · · · − pn−1)

full information about QFT encoded in Γ[Φ]/correlators:

I bound state spectrum: pole structure of the Γ(n)

e.g. [Roberts, Williams, ’94], [Alkofer, Smekal, ’00], [Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, ’16]

I form factors: photon-particle correlatorse.g. [Cloet, Eichmann, El-Bennich, Klahn, Roberts, ’08], [Sanchis-Alepuz, Williams, Alkofer, ’13]

⇒ decay constants e.g. [Maris, Roberts, Tandy, ’97], [MM, Pawlowski, Strodthoff, in prep.]

I thermodynamic quantities: Γ[Φ] ∝ grand potentialF equation of state e.g. [Herbst, MM, Pawlowski, Schaefer, Stiele, ’13]

F fluctuations of conserved charges e.g. [Fu, Rennecke, Pawlowski, Schaefer, ’16]

I further quantities: Γ[Φ] ∝ eff. potential, propagators, ’t Hooft determinantF chiral condensate(s)/〈σ〉

e.g. [Schaefer, Wambach ’04], [Fischer, Luecker, Mueller ’11], [MM, Schaefer, ’13]

F (dressed) Polyakov loope.g. [Fischer, ’09], [Braun, Haas, Marhauser, Pawlowski, ’09], [MM, et al., ’17]

F axial anomaly e.g.[Grahl, Rischke, ’13], [MM, Schaefer, ’13], [Fejos, ’15], [Heller, MM, ’15]

F spectral functions e.g. [Tripolt, Strodthoff, Smekal, Wambach, ’14]

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 3 / 22

Page 7: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

QCD from the effective action (gauge fixing necessary).Γ[Φ] =

∑n

∫{pi} Γ

(n)Φ1···Φn

(p1, . . . , pn−1)Φ1(p1) · · ·Φn(−p1 − · · · − pn−1)

full information about QFT encoded in Γ[Φ]/correlators:I bound state spectrum: pole structure of the Γ(n)

e.g. [Roberts, Williams, ’94], [Alkofer, Smekal, ’00], [Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, ’16]

I form factors: photon-particle correlatorse.g. [Cloet, Eichmann, El-Bennich, Klahn, Roberts, ’08], [Sanchis-Alepuz, Williams, Alkofer, ’13]

⇒ decay constants e.g. [Maris, Roberts, Tandy, ’97], [MM, Pawlowski, Strodthoff, in prep.]

I thermodynamic quantities: Γ[Φ] ∝ grand potentialF equation of state e.g. [Herbst, MM, Pawlowski, Schaefer, Stiele, ’13]

F fluctuations of conserved charges e.g. [Fu, Rennecke, Pawlowski, Schaefer, ’16]

I further quantities: Γ[Φ] ∝ eff. potential, propagators, ’t Hooft determinantF chiral condensate(s)/〈σ〉

e.g. [Schaefer, Wambach ’04], [Fischer, Luecker, Mueller ’11], [MM, Schaefer, ’13]

F (dressed) Polyakov loope.g. [Fischer, ’09], [Braun, Haas, Marhauser, Pawlowski, ’09], [MM, et al., ’17]

F axial anomaly e.g.[Grahl, Rischke, ’13], [MM, Schaefer, ’13], [Fejos, ’15], [Heller, MM, ’15]

F spectral functions e.g. [Tripolt, Strodthoff, Smekal, Wambach, ’14]

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 3 / 22

Page 8: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

QCD from the effective action (gauge fixing necessary).Γ[Φ] =

∑n

∫{pi} Γ

(n)Φ1···Φn

(p1, . . . , pn−1)Φ1(p1) · · ·Φn(−p1 − · · · − pn−1)

full information about QFT encoded in Γ[Φ]/correlators:I bound state spectrum: pole structure of the Γ(n)

e.g. [Roberts, Williams, ’94], [Alkofer, Smekal, ’00], [Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, ’16]

I form factors: photon-particle correlatorse.g. [Cloet, Eichmann, El-Bennich, Klahn, Roberts, ’08], [Sanchis-Alepuz, Williams, Alkofer, ’13]

⇒ decay constants e.g. [Maris, Roberts, Tandy, ’97], [MM, Pawlowski, Strodthoff, in prep.]

I thermodynamic quantities: Γ[Φ] ∝ grand potentialF equation of state e.g. [Herbst, MM, Pawlowski, Schaefer, Stiele, ’13]

F fluctuations of conserved charges e.g. [Fu, Rennecke, Pawlowski, Schaefer, ’16]

I further quantities: Γ[Φ] ∝ eff. potential, propagators, ’t Hooft determinantF chiral condensate(s)/〈σ〉

e.g. [Schaefer, Wambach ’04], [Fischer, Luecker, Mueller ’11], [MM, Schaefer, ’13]

F (dressed) Polyakov loope.g. [Fischer, ’09], [Braun, Haas, Marhauser, Pawlowski, ’09], [MM, et al., ’17]

F axial anomaly e.g.[Grahl, Rischke, ’13], [MM, Schaefer, ’13], [Fejos, ’15], [Heller, MM, ’15]

F spectral functions e.g. [Tripolt, Strodthoff, Smekal, Wambach, ’14]

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 3 / 22

Page 9: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

QCD from the effective action (gauge fixing necessary).Γ[Φ] =

∑n

∫{pi} Γ

(n)Φ1···Φn

(p1, . . . , pn−1)Φ1(p1) · · ·Φn(−p1 − · · · − pn−1)

full information about QFT encoded in Γ[Φ]/correlators:I bound state spectrum: pole structure of the Γ(n)

e.g. [Roberts, Williams, ’94], [Alkofer, Smekal, ’00], [Eichmann, Sanchis-Alepuz, Williams, Alkofer, Fischer, ’16]

I form factors: photon-particle correlatorse.g. [Cloet, Eichmann, El-Bennich, Klahn, Roberts, ’08], [Sanchis-Alepuz, Williams, Alkofer, ’13]

⇒ decay constants e.g. [Maris, Roberts, Tandy, ’97], [MM, Pawlowski, Strodthoff, in prep.]

I thermodynamic quantities: Γ[Φ] ∝ grand potentialF equation of state e.g. [Herbst, MM, Pawlowski, Schaefer, Stiele, ’13]

F fluctuations of conserved charges e.g. [Fu, Rennecke, Pawlowski, Schaefer, ’16]

I further quantities: Γ[Φ] ∝ eff. potential, propagators, ’t Hooft determinantF chiral condensate(s)/〈σ〉

e.g. [Schaefer, Wambach ’04], [Fischer, Luecker, Mueller ’11], [MM, Schaefer, ’13]

F (dressed) Polyakov loope.g. [Fischer, ’09], [Braun, Haas, Marhauser, Pawlowski, ’09], [MM, et al., ’17]

F axial anomaly e.g.[Grahl, Rischke, ’13], [MM, Schaefer, ’13], [Fejos, ’15], [Heller, MM, ’15]

F spectral functions e.g. [Tripolt, Strodthoff, Smekal, Wambach, ’14]

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 3 / 22

Page 10: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

e.g. EOS and axial anomaly in “QCD-enhanced” modelsequation of state

Nf = 2 + 1 PQM model with FRG

unquenched Polyakov-loop potentialfrom [Braun, Haas, Marhauser, Pawlowski, ’11]

0

1

2

3

4

5

6

7

8

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

(ε -

3P

)/T

4

t

Wuppertal-Budapest, 2010

HotQCD Nt=8, 2012

HotQCD Nt=12, 2012

PQM FRG

PQM eMF

PQM MF

[Herbst, MM, Pawlowski, Schaefer, Stiele, ’13]

[Haas, Stiele, Braun, Pawlowski, Schaffner-Bielich, ’13]

η′-meson screening mass

Nf = 2 PQM model, extended MF

running ’t Hooft determinantfrom [MM, Pawlowski, Strodthoff, ’14]

0

200

400

600

800

1000

120 140 160 180 200 220 240

m/[

Me

V]

T/[MeV]

mηPQM

mσPQM

mπPQM

[Heller, MM, ’15]

.

phase diagrams e.g. [Schaefer, Wambach ’04], [Fischer, Luecker, Mueller ’11], [MM, Schaefer, ’13]

spectral functions e.g. [Tripolt, Strodthoff, Smekal, Wambach, ’14]

fluctuations of conserved charges e.g. [Fu, Rennecke, Pawlowski, Schaefer, ’16]

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 4 / 22

Page 11: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

e.g. EOS and axial anomaly in “QCD-enhanced” modelsequation of state

Nf = 2 + 1 PQM model with FRG

unquenched Polyakov-loop potentialfrom [Braun, Haas, Marhauser, Pawlowski, ’11]

0

1

2

3

4

5

6

7

8

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

(ε -

3P

)/T

4

t

Wuppertal-Budapest, 2010

HotQCD Nt=8, 2012

HotQCD Nt=12, 2012

PQM FRG

PQM eMF

PQM MF

[Herbst, MM, Pawlowski, Schaefer, Stiele, ’13]

[Haas, Stiele, Braun, Pawlowski, Schaffner-Bielich, ’13]

η′-meson screening mass

Nf = 2 PQM model, extended MF

running ’t Hooft determinantfrom [MM, Pawlowski, Strodthoff, ’14]

0

200

400

600

800

1000

120 140 160 180 200 220 240

m/[

Me

V]

T/[MeV]

mηPQM

mσPQM

mπPQM

[Heller, MM, ’15]

.

phase diagrams e.g. [Schaefer, Wambach ’04], [Fischer, Luecker, Mueller ’11], [MM, Schaefer, ’13]

spectral functions e.g. [Tripolt, Strodthoff, Smekal, Wambach, ’14]

fluctuations of conserved charges e.g. [Fu, Rennecke, Pawlowski, Schaefer, ’16]

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 4 / 22

Page 12: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

e.g. Center symmetry order parameters [MM, Hopfer, Schaefer, Alkofer, 2017]

quenched (scalar) Quantum Chromodynamics

correlators from Dyson-Schwinger equation (DSE)

lattice gluon input and vertex models

0

0.5

1

1.5

2

2.5

3

100 150 200 250 300

Σ(T

)/Σ

(T=

27

7 M

eV

)

T [MeV]

m=1.5 GeV, d1=0.53m=2.0 GeV, d1=0.53m=1.5 GeV, d1=0.45

from scalar propagator:

2π∫0

dϕT∑n

D2ϕ(~p = ~0, ωn(ϕ))

✥�✥✁

✥�✥✂

✥�✥✄

✥�✥☎

✥�✆

✆✥✥ ✁✥✥ ✝✥✥ ✂✥✥ ✞✥✥ ✄✥✥

❚ ✟✠✡☛☞

❙✶ ✟✌✡☛✲✶☞

❙q ✟✌✡☛✸☞

from quark propagator:

2π∫0

dϕT∑n

[1

4trD S(~0, ωn(ϕ))

]2

cf. e.g. [Fischer ’09], [Braun, Haas, Marhauser, Pawlowski, ’09],. . .

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 5 / 22

Page 13: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

e.g. Debye mass in SU(3) YM theory [Cyrol, MM, Pawlowski, Strodthoff, 2017]

correlators from Functional Renormalisation Group (FRG)

screening mass:fit to exponential decay of chromo-electric gluon propagator

FRG

first order HTL

second order HTL, cp = 1

second order HTL, cp = 0.88

0.5 1.0 1.5 2.0

2.0

2.1

2.2

2.3

2.4

2.5

2.6

T [GeV]

mS/T

0.1 0.2 0.3 0.4 0.5

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

T [GeV]m

S[G

eV]

excellent agreement with beyond leading order Debye mass of [Arnold, Yaffe, ’95]for T & 0.6 GeV

smooth transition to nonperturbative regime

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 6 / 22

Page 14: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Nonperturbative QCD

two crucial phenomena: SχSB and confinement

very sensitive to small quantitative errors

similar scales - hard to disentangle

crawling towards QCD at finite density:

quenched matter part [MM, Strodthoff, Pawlowski, 2014]

pure SU(N) YM-theory [Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

Nf = 2 QCD [Cyrol, MM, Strodthoff, Pawlowski, 2017]

YM-theory at finite temperature T > 0 [Cyrol, MM, Strodthoff, Pawlowski, 2017]

use results from lattice gauge theory to check truncation:what do we need from the lattice?

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 7 / 22

Page 15: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Nonperturbative QCD

two crucial phenomena: SχSB and confinement

very sensitive to small quantitative errors

similar scales - hard to disentangle

crawling towards QCD at finite density:

quenched matter part [MM, Strodthoff, Pawlowski, 2014]

pure SU(N) YM-theory [Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

Nf = 2 QCD [Cyrol, MM, Strodthoff, Pawlowski, 2017]

YM-theory at finite temperature T > 0 [Cyrol, MM, Strodthoff, Pawlowski, 2017]

use results from lattice gauge theory to check truncation:what do we need from the lattice?

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 7 / 22

Page 16: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Nonperturbative QCD

two crucial phenomena: SχSB and confinement

very sensitive to small quantitative errors

similar scales - hard to disentangle

crawling towards QCD at finite density:

quenched matter part [MM, Strodthoff, Pawlowski, 2014]

pure SU(N) YM-theory [Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

Nf = 2 QCD [Cyrol, MM, Strodthoff, Pawlowski, 2017]

YM-theory at finite temperature T > 0 [Cyrol, MM, Strodthoff, Pawlowski, 2017]

use results from lattice gauge theory to check truncation:what do we need from the lattice?

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 7 / 22

Page 17: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

(Euclidean) Correlation functions with the FRGmass-like IR regulator:

I S [Φ]→ S [Φ] + 〈Φ,RkΦ〉I (renormalised) initial action ΓΛ→∞[Φ] = S [Φ]

use only perturbative QCD input:I αS(Λ = O(10) GeV)I mq(Λ = O(10) GeV)

∂k ⇔ integration of momentum shells: [Wetterich ’93]

∂kΓk [A, c , c , q, q] = 12 − −

⇒ full non-perturbative quantum effective action

gauge-fixed approach (Landau gauge): ghosts appearfunctional derivatives ⇒ equations for correlatorsaim for “apparent convergence” of Γ[Φ] = lim

k→0Γk [Φ]

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 8 / 22

Page 18: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

(Euclidean) Correlation functions with the FRGmass-like IR regulator:

I S [Φ]→ S [Φ] + 〈Φ,RkΦ〉I (renormalised) initial action ΓΛ→∞[Φ] = S [Φ]

use only perturbative QCD input:I αS(Λ = O(10) GeV)I mq(Λ = O(10) GeV)

∂k ⇔ integration of momentum shells: [Wetterich ’93]

∂kΓk [A, c , c , q, q] = 12 − −

⇒ full non-perturbative quantum effective action

gauge-fixed approach (Landau gauge): ghosts appearfunctional derivatives ⇒ equations for correlatorsaim for “apparent convergence” of Γ[Φ] = lim

k→0Γk [Φ]

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 8 / 22

Page 19: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

(Euclidean) Correlation functions with the FRGmass-like IR regulator:

I S [Φ]→ S [Φ] + 〈Φ,RkΦ〉I (renormalised) initial action ΓΛ→∞[Φ] = S [Φ]

use only perturbative QCD input:I αS(Λ = O(10) GeV)I mq(Λ = O(10) GeV)

∂k ⇔ integration of momentum shells: [Wetterich ’93]

∂kΓk [A, c , c , q, q] = 12 − −

⇒ full non-perturbative quantum effective action

gauge-fixed approach (Landau gauge): ghosts appearfunctional derivatives ⇒ equations for correlatorsaim for “apparent convergence” of Γ[Φ] = lim

k→0Γk [Φ]

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 8 / 22

Page 20: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

(Euclidean) Correlation functions with the FRGmass-like IR regulator:

I S [Φ]→ S [Φ] + 〈Φ,RkΦ〉I (renormalised) initial action ΓΛ→∞[Φ] = S [Φ]

use only perturbative QCD input:I αS(Λ = O(10) GeV)I mq(Λ = O(10) GeV)

∂k ⇔ integration of momentum shells: [Wetterich ’93]

∂kΓk [A, c , c , q, q] = 12 − −

⇒ full non-perturbative quantum effective action

gauge-fixed approach (Landau gauge): ghosts appearfunctional derivatives ⇒ equations for correlatorsaim for “apparent convergence” of Γ[Φ] = lim

k→0Γk [Φ]

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 8 / 22

Page 21: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

(Euclidean) Correlation functions with the FRGmass-like IR regulator:

I S [Φ]→ S [Φ] + 〈Φ,RkΦ〉I (renormalised) initial action ΓΛ→∞[Φ] = S [Φ]

use only perturbative QCD input:I αS(Λ = O(10) GeV)I mq(Λ = O(10) GeV)

∂k ⇔ integration of momentum shells: [Wetterich ’93]

∂kΓk [A, c , c , q, q] = 12 − −

⇒ full non-perturbative quantum effective action

gauge-fixed approach (Landau gauge): ghosts appearfunctional derivatives ⇒ equations for correlatorsaim for “apparent convergence” of Γ[Φ] = lim

k→0Γk [Φ]

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 8 / 22

Page 22: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Mesons via dynamical hadronization [Gies, Wetterich, 2002]

change of variables: particular 4-Fermi channels → meson exchangeefficient inclusion of pole structure ⇒ no spurious singularitieslow-energy effective model parameters from QCD - range of validity

∂kΓk = 12 − − + 1

2

0

50

100

150

200

250

0.1 1 10

(bosoniz

ed)

4-f

erm

i-in

tera

ction

RG-scale k [GeV]

h2π/(2 m

2π)

λπ

[MM, Strodthoff, Pawlowski, 2014]

0

5

10

15

20

25

30

1 10

Yukaw

a inte

raction h

π

RG-scale k [GeV]

[Braun, Fister, Pawlowski, Rennecke, 2014]

[MM, Strodthoff, Pawlowski, 2014]

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 9 / 22

Page 23: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Mesons via dynamical hadronization [Gies, Wetterich, 2002]

change of variables: particular 4-Fermi channels → meson exchangeefficient inclusion of pole structure ⇒ no spurious singularitieslow-energy effective model parameters from QCD - range of validity

∂kΓk = 12 − − + 1

2

0

50

100

150

200

250

0.1 1 10

(bosoniz

ed)

4-f

erm

i-in

tera

ction

RG-scale k [GeV]

h2π/(2 m

2π)

λπ

[MM, Strodthoff, Pawlowski, 2014]

0

5

10

15

20

25

30

1 10

Yukaw

a inte

raction h

π

RG-scale k [GeV]

[Braun, Fister, Pawlowski, Rennecke, 2014]

[MM, Strodthoff, Pawlowski, 2014]

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 9 / 22

Page 24: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Nf = 2 Landau-gauge QCD [Cyrol, MM, Pawlowski, Strodthoff, 2017]

Truncation:

systematics of improving the truncation?

⇒ BRST-invariant operators, e.g. ψ /Dnψ

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 10 / 22

Page 25: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Nf = 2 Landau-gauge QCD [Cyrol, MM, Pawlowski, Strodthoff, 2017]

Truncation:

systematics of improving the truncation?

⇒ BRST-invariant operators, e.g. ψ /Dnψ

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 10 / 22

Page 26: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Some representative equations (numerics-heavy)[MM, Strodthoff, Pawlowski, 2014],

[Cyrol, Fister, MM, Strodthoff, Pawlowski, 2016]

cf. FormTracer [Cyrol, MM, Strodthoff, 2016]

∂t = + + 12

+ −+

−1

∂t = − − − − − 12

+ 2 − + perm.

∂t = − − − −

− −−

2

+ perm.

+

=∂t

+ 12

− 2

− − +2 − + perm.

=∂t + perm.−+2−

=∂t + perm.− −

=∂t

=∂t−1

−1

+ 12

∂t =−1

+− 2

+ perm.∂t = − − − + 2

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 11 / 22

Page 27: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Some representative equations (numerics-heavy)[MM, Strodthoff, Pawlowski, 2014],

[Cyrol, Fister, MM, Strodthoff, Pawlowski, 2016]

cf. FormTracer [Cyrol, MM, Strodthoff, 2016]

∂t = + + 12

+ −+

−1

∂t = − − − − − 12

+ 2 − + perm.

∂t = − − − −

− −−

2

+ perm.

+

=∂t

+ 12

− 2

− − +2 − + perm.

=∂t + perm.−+2−

=∂t + perm.− −

=∂t

=∂t−1

−1

+ 12

∂t =−1

+− 2

+ perm.∂t = − − − + 2

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 11 / 22

Page 28: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Some representative equations (numerics-heavy)[MM, Strodthoff, Pawlowski, 2014],

[Cyrol, Fister, MM, Strodthoff, Pawlowski, 2016]

cf. FormTracer [Cyrol, MM, Strodthoff, 2016]

∂t = + + 12

+ −+

−1

∂t = − − − − − 12

+ 2 − + perm.

∂t = − − − −

− −−

2

+ perm.

+

=∂t

+ 12

− 2

− − +2 − + perm.

=∂t + perm.−+2−

=∂t + perm.− −

=∂t

=∂t−1

−1

+ 12

∂t =−1

+− 2

+ perm.∂t = − − − + 2

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 11 / 22

Page 29: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Chiral symmetry breakingχSB ⇔ resonance in 4-Fermi interaction λ (pion pole):

β-function of momentum independent 4-Fermi interaction:

∂tλ = 2λ+ a λ2 + b λα + c α2, b > 0, a, c ≤ 0

∂t = − −2 + . . .

λ

∂tλ

g > gcr

g = gcr

g = 0

g = 0, T > 0

[Braun, 2011]

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 12 / 22

Page 30: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Chiral symmetry breakingχSB ⇔ resonance in 4-Fermi interaction λ (pion pole):

β-function of momentum independent 4-Fermi interaction:

∂tλ = 2λ+ a λ2 + b λα + c α2, b > 0, a, c ≤ 0

∂t = − −2 + . . .

λ

∂tλ

g > gcr

g = gcr

g = 0

g = 0, T > 0

[Braun, 2011]

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 12 / 22

Page 31: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

(transverse) running couplings [Cyrol, MM, Pawlowski, Strodthoff, 2017]

0

0.5

1

1.5

2

2.5

0.1 1 10

mπ=247 MeV

run

nin

g c

ou

plin

gs

p [GeV]

αc-cAαA

3

αA4

αq-qAαcr

-0.1

0

0.1

∆A3

∆A4

agreement in perturbative regime required by Slavnov-Taylor identities

non-degenerate in nonperturbative regime: reflects gluon mass gap

αqAq > αcr : necessary for chiral symmetry breaking

area above αcr very sensitive to errors⇒ use STI in perturbative regime

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 13 / 22

Page 32: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Quark propagator [Cyrol, MM, Pawlowski, Strodthoff, 2017]

Γqq(p) = Zq(p)(/p + M(p)

)

0

0.2

0.4

0.6

0.8

1

0.1 1 10

qu

ark

pro

pa

ga

tor

dre

ssin

gs

p [GeV]

error estimate

mπ=140 MeV

mπ=60 MeV

mπ=285 MeV

lattice, β=5.20, mπ=280 MeV

lattice, β=5.29, mπ=295 MeV

SχSB: Mq(0)� Mq(p � ΛQCD)

FRG vs. lattice: bare mass, scale setting, lattice Zq?

very sensitive to qqA-interaction, relative scales

lattice data: O. Oliveira, A. Kzlersu, P. J. Silva, J.-I. Skullerud, A. Sternbeck, A. G. Williams, arXiv:1605.09632 [hep-lat].

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 14 / 22

Page 33: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Quark-gluon interactions [Cyrol, MM, Pawlowski, Strodthoff, 2017]

quark-gluon interaction most crucial for chiral symmetry breakingtransverse tensor basis (8 tensors), e.g. γµ, i

(/p + /q

)γµ, 1

2

[/p, /q]γµ

λ(i)(p, q)→ λ(i)(p2, q2, p · q)

-1

0

1

2

3

4

5

0.1 1 10

mπ=140 MeV

qu

ark

-glu

on

ve

rte

x d

ressin

gs

p [GeV]

error estimate

λ(1)q-qΑ

, mπ=285

λ(7)q-qΑ

, mπ=285

λ(4)q-qΑ

, mπ=285

lattice, λ(1)q-qΑ

, β=5.20, mπ=280 MeV

lattice, λ(1)q-qΑ

, β=5.29, mπ=295 MeV

3 leading tensors:I classical tensor:

constrained by STIat large momenta

I chirally symmetricI break chiral symmetry

systematic lattice error?

chirally symmetric tensors from operator q /D3q worsen result

counteracted by tensor structures in Γ(4)AAqq and Γ

(5)A3qq

from q /D3q

⇒ expansion in BRST-invariant operators improves convergence?

lattice data: O. Oliveira, A. Kzlersu, P. J. Silva, J.-I. Skullerud, A. Sternbeck, A. G. Williams, arXiv:1605.09632 [hep-lat].

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 15 / 22

Page 34: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Quark-gluon interactions [Cyrol, MM, Pawlowski, Strodthoff, 2017]

quark-gluon interaction most crucial for chiral symmetry breakingtransverse tensor basis (8 tensors), e.g. γµ, i

(/p + /q

)γµ, 1

2

[/p, /q]γµ

λ(i)(p, q)→ λ(i)(p2, q2, p · q)

-1

0

1

2

3

4

5

0.1 1 10

mπ=140 MeV

qu

ark

-glu

on

ve

rte

x d

ressin

gs

p [GeV]

error estimate

λ(1)q-qΑ

, mπ=285

λ(7)q-qΑ

, mπ=285

λ(4)q-qΑ

, mπ=285

lattice, λ(1)q-qΑ

, β=5.20, mπ=280 MeV

lattice, λ(1)q-qΑ

, β=5.29, mπ=295 MeV

3 leading tensors:I classical tensor:

constrained by STIat large momenta

I chirally symmetricI break chiral symmetry

systematic lattice error?

chirally symmetric tensors from operator q /D3q worsen result

counteracted by tensor structures in Γ(4)AAqq and Γ

(5)A3qq

from q /D3q

⇒ expansion in BRST-invariant operators improves convergence?

lattice data: O. Oliveira, A. Kzlersu, P. J. Silva, J.-I. Skullerud, A. Sternbeck, A. G. Williams, arXiv:1605.09632 [hep-lat].

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 15 / 22

Page 35: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Quark-gluon interactions [Cyrol, MM, Pawlowski, Strodthoff, 2017]

quark-gluon interaction most crucial for chiral symmetry breakingtransverse tensor basis (8 tensors), e.g. γµ, i

(/p + /q

)γµ, 1

2

[/p, /q]γµ

λ(i)(p, q)→ λ(i)(p2, q2, p · q)

-1

0

1

2

3

4

5

0.1 1 10

mπ=140 MeV

qu

ark

-glu

on

ve

rte

x d

ressin

gs

p [GeV]

error estimate

λ(1)q-qΑ

, mπ=285

λ(7)q-qΑ

, mπ=285

λ(4)q-qΑ

, mπ=285

lattice, λ(1)q-qΑ

, β=5.20, mπ=280 MeV

lattice, λ(1)q-qΑ

, β=5.29, mπ=295 MeV

3 leading tensors:I classical tensor:

constrained by STIat large momenta

I chirally symmetricI break chiral symmetry

systematic lattice error?

chirally symmetric tensors from operator q /D3q worsen result

counteracted by tensor structures in Γ(4)AAqq and Γ

(5)A3qq

from q /D3q

⇒ expansion in BRST-invariant operators improves convergence?

lattice data: O. Oliveira, A. Kzlersu, P. J. Silva, J.-I. Skullerud, A. Sternbeck, A. G. Williams, arXiv:1605.09632 [hep-lat].

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 15 / 22

Page 36: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Quark-gluon interactions [Cyrol, MM, Pawlowski, Strodthoff, 2017]

quark-gluon interaction most crucial for chiral symmetry breakingtransverse tensor basis (8 tensors), e.g. γµ, i

(/p + /q

)γµ, 1

2

[/p, /q]γµ

λ(i)(p, q)→ λ(i)(p2, q2, p · q)

-1

0

1

2

3

4

5

0.1 1 10

mπ=140 MeV

qu

ark

-glu

on

ve

rte

x d

ressin

gs

p [GeV]

error estimate

λ(1)q-qΑ

, mπ=285

λ(7)q-qΑ

, mπ=285

λ(4)q-qΑ

, mπ=285

lattice, λ(1)q-qΑ

, β=5.20, mπ=280 MeV

lattice, λ(1)q-qΑ

, β=5.29, mπ=295 MeV

3 leading tensors:I classical tensor:

constrained by STIat large momenta

I chirally symmetricI break chiral symmetry

systematic lattice error?

chirally symmetric tensors from operator q /D3q worsen result

counteracted by tensor structures in Γ(4)AAqq and Γ

(5)A3qq

from q /D3q

⇒ expansion in BRST-invariant operators improves convergence?

lattice data: O. Oliveira, A. Kzlersu, P. J. Silva, J.-I. Skullerud, A. Sternbeck, A. G. Williams, arXiv:1605.09632 [hep-lat].

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 15 / 22

Page 37: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Gluon propagator [Cyrol, MM, Pawlowski, Strodthoff, 2017]

ΓAA(p) = ZA(p) p2(δµν − pµpν/p2

)

0

0.5

1

1.5

2

2.5

3

0.1 1 10

glu

on

pro

pa

ga

tor

dre

ssin

g 1

/ZA

p [GeV]

error estimate

mπ=140 MeV

mπ=60 MeV

mπ=285 MeV

lattice, β=5.29, mπ=150 MeV

infrared suppression ⇔ “confinement”

insensitive to pion mass

smooth transition to pert. theory

scaling solution: lattice comparison?

lattice data: A. Sternbeck, K. Maltman, M. Muller-Preussker, L. von Smekal, PoS LATTICE2012 (2012) 243.

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 16 / 22

Page 38: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

More correlators [Cyrol, MM, Pawlowski, Strodthoff, 2017]

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

gluon momentum k [GeV]

an

tiq

ua

rkm

om

en

tum

p[G

eV]

λ(1)

1.251.501.752.002.252.502.753.00

-5

0

5

10

15

20

0.1 1 10

mπ=140 MeV

fou

r-fe

rmi ve

rte

x d

ressin

gs

p [GeV]

p2λ

(η’)q-q-qq

p2λ

(S+P)-adj

q-q-qq

p2λ

(V-A)

q-q-qq

p2λ

(V+A)

q-q-qq

p2λ

(V-A)adj

q-q-qq

p2λ

(S-P)-q-q-qq

p2λ

(S-P)-adj

q-q-qq

p2λ

(S+P)+q-q-qq

p2λ

(S+P)+adj

q-q-qq

0

2

4

6

8

10

12

0.1 1 10

mπ=140 MeV

Yu

ka

wa

in

tera

ctio

n d

ressin

gs

p [GeV]

h(1)q-qπ

p*h(2)q-qπ

p*h(3)q-qπ

p2h

(4)q-qπ

-4

-3

-2

-1

0

1

2

3

4

5

0.1 1 10

mπ=140 MeV

2-q

ua

rk-2

-glu

on

ve

rte

x d

ressin

gs

p [GeV]

p2λ

(1)q-qΑ

2

p2λ

(2)q-qΑ

2

p2λ

(3)q-qΑ

2

p2λ

(4)q-qΑ

2

p2λ

(5)q-qΑ

2

p2λ

(6)q-qΑ

2

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 17 / 22

Page 39: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Pure SU(N) YM-theory

[Cyrol, Fister, MM, Pawlowski, Strodthoff, ’16]

[Cyrol, MM, Pawlowski, Strodthoff, ’17]

Truncation (blue: magnetic (transverse) leg, red: electric (longitudinal)leg):

1/Zc(p) λMccA(p) λM

A3(p) λMA4(p)

1/ZMA (p) 1/ZE

A(p) λEA3(p) λE

A4(p)

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 18 / 22

Page 40: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Vacuum [Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

truncation: momentum dependent dressing functions for all classical tensors

hardest part of solution: fulfilling the modified STI (⇒ scaling solution)

Γ(2)AA(p) ∝ ZA(p) p2

(δµν − pµpν/p2

)IR-suppression ⇔ “confinement”

smooth transition to perturbation theory

0.1 1 10p [GeV]

0

1

2

3

glu

on p

ropag

ator

dre

ssin

g

FRG, scaling

FRG, decoupling

Sternbeck et al.

running couplings

degeneracy at large p due to STI

test of truncation

0.1 1 10 100p [GeV]

10-6

10-4

10-2

100

run

nin

g c

ou

pli

ng

s

0.5

1

1.5

2

αAcc

αA

3

αA

4

lattice data: A. Sternbeck, E. M. Ilgenfritz, M. Muller-Preussker, A. Schiller, and I. L. Bogolubsky, PoS LAT2006, 076.

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 19 / 22

Page 41: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Vacuum [Cyrol, Fister, MM, Pawlowski, Strodthoff, 2016]

truncation: momentum dependent dressing functions for all classical tensors

hardest part of solution: fulfilling the modified STI (⇒ scaling solution)

Γ(2)AA(p) ∝ ZA(p) p2

(δµν − pµpν/p2

)IR-suppression ⇔ “confinement”

smooth transition to perturbation theory

0.1 1 10p [GeV]

0

1

2

3

glu

on p

ropag

ator

dre

ssin

g

FRG, scaling

FRG, decoupling

Sternbeck et al.

running couplings

degeneracy at large p due to STI

test of truncation

0.1 1 10 100p [GeV]

10-6

10-4

10-2

100

run

nin

g c

ou

pli

ng

s0.5

1

1.5

2

αAcc

αA

3

αA

4

lattice data: A. Sternbeck, E. M. Ilgenfritz, M. Muller-Preussker, A. Schiller, and I. L. Bogolubsky, PoS LAT2006, 076.

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 19 / 22

Page 42: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Propagators at T 6= 0 [Cyrol, MM, Pawlowski, Strodthoff, ’17]

Zeroth mode correlation functions

T = 0

T = 0.45 Tc

T = 0.93 Tc

T = 0.98 Tc

T = 1.01 Tc

T = 1.10 Tc

T = 1.81 Tc

0.1 0.2 0.5 1 2 50

1

2

3

4

5

p [GeV]

magnet

icglu

on

pro

pagato

rdre

ssin

g

SU(2)

T = 0

T = 0.45 Tc

T = 0.98 Tc

T = 1.02 Tc

T = 1.07 Tc

T = 1.36 Tc

T = 1.80 Tc

0.1 0.2 0.5 1 2 50

1

2

3

4

5

p [GeV]

magnet

icglu

on

pro

pagato

rdre

ssin

g

SU(3)

T = 0

T = 0.45 Tc

T = 0.93 Tc

T = 0.98 Tc

T = 1.01 Tc

T = 1.10 Tc

T = 1.81 Tc

0.1 0.2 0.5 1 2 50

2

4

6

8

10

12

p [GeV]

elec

tric

glu

on

pro

pagato

rdre

ssin

g T = 0

T = 0.45 Tc

T = 0.98 Tc

T = 1.02 Tc

T = 1.07 Tc

T = 1.36 Tc

T = 1.80 Tc

0.1 0.2 0.5 1 2 50

2

4

6

8

10

12

p [GeV]

elec

tric

glu

on

pro

pagato

rdre

ssin

g

lattice data: A. Maas, J. M. Pawlowski, L. von Smekal, D. Spielmann, Phys.Rev. D85 (2012) 034037. (SU(2))

P. J. Silva, O. Oliveira, P. Bicudo, and N. Cardoso, Phys. Rev. D89, 074503 (2014). (SU(3))

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 20 / 22

Page 43: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Propagators at T 6= 0 [Cyrol, MM, Pawlowski, Strodthoff, ’17]

Zeroth mode correlation functions

T = 0

T = 0.45 Tc

T = 0.93 Tc

T = 0.98 Tc

T = 1.01 Tc

T = 1.10 Tc

T = 1.81 Tc

0.1 0.2 0.5 1 2 50

1

2

3

4

5

p [GeV]

magnet

icglu

on

pro

pagato

rdre

ssin

g

SU(2)

T = 0

T = 0.45 Tc

T = 0.98 Tc

T = 1.02 Tc

T = 1.07 Tc

T = 1.36 Tc

T = 1.80 Tc

0.1 0.2 0.5 1 2 50

1

2

3

4

5

p [GeV]

magnet

icglu

on

pro

pagato

rdre

ssin

g

SU(3)

T = 0

T = 0.45 Tc

T = 0.93 Tc

T = 0.98 Tc

T = 1.01 Tc

T = 1.10 Tc

T = 1.81 Tc

0.1 0.2 0.5 1 2 50

2

4

6

8

10

12

p [GeV]

elec

tric

glu

on

pro

pagato

rdre

ssin

g T = 0

T = 0.45 Tc

T = 0.98 Tc

T = 1.02 Tc

T = 1.07 Tc

T = 1.36 Tc

T = 1.80 Tc

0.1 0.2 0.5 1 2 50

2

4

6

8

10

12

p [GeV]

elec

tric

glu

on

pro

pagato

rdre

ssin

g

lattice data: A. Maas, J. M. Pawlowski, L. von Smekal, D. Spielmann, Phys.Rev. D85 (2012) 034037. (SU(2))

P. J. Silva, O. Oliveira, P. Bicudo, and N. Cardoso, Phys. Rev. D89, 074503 (2014). (SU(3))

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 20 / 22

Page 44: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Backgrounds, ghost and zero crossing [Cyrol, MM, Pawlowski, Strodthoff, ’17]

〈A0〉 important near Tc , cf. [Herbst et al., ’15]

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5

T [GeV]

Kaczmarek et al. ’02Huebner ’06L[ϕ]

<L>ren+mult

magnetic zero crossing in 3g -vertex

0.0 0.2 0.4 0.6 0.8

0.20

0.25

0.30

0.35

0.40

0.45

T [GeV]

p0[G

eV]

T = 0

T = 0.45 Tc

T = 0.93 Tc

T = 0.98 Tc

T = 1.01 Tc

T = 1.10 Tc

T = 1.81 Tc

0.5 1 2 51.0

1.5

2.0

2.5

3.0

p [GeV]

ghost

pro

pagato

rdre

ssin

g

T = 0

T = 0.075 GeV

T = 0.125 GeV

T = 0.200 GeV

T = 0.400 GeV

T = 0.800 GeV

0.05 0.10 0.50 1 5 10-1.5

-1.0

-0.5

0.0

0.5

1.0

p [GeV]

magnet

icth

ree-

glu

on

ver

tex

dre

ssin

g

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 21 / 22

Page 45: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Backgrounds, ghost and zero crossing [Cyrol, MM, Pawlowski, Strodthoff, ’17]

〈A0〉 important near Tc , cf. [Herbst et al., ’15]

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5

T [GeV]

Kaczmarek et al. ’02Huebner ’06L[ϕ]

<L>ren+mult

magnetic zero crossing in 3g -vertex

0.0 0.2 0.4 0.6 0.8

0.20

0.25

0.30

0.35

0.40

0.45

T [GeV]

p0[G

eV]

T = 0

T = 0.45 Tc

T = 0.93 Tc

T = 0.98 Tc

T = 1.01 Tc

T = 1.10 Tc

T = 1.81 Tc

0.5 1 2 51.0

1.5

2.0

2.5

3.0

p [GeV]

ghost

pro

pagato

rdre

ssin

g

T = 0

T = 0.075 GeV

T = 0.125 GeV

T = 0.200 GeV

T = 0.400 GeV

T = 0.800 GeV

0.05 0.10 0.50 1 5 10-1.5

-1.0

-0.5

0.0

0.5

1.0

p [GeV]

magnet

icth

ree-

glu

on

ver

tex

dre

ssin

g

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 21 / 22

Page 46: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Status and Outlook

vacuum QCDI QCD from αS(Λ = O(10) GeV) and mq(Λ = O(10) GeV)I good agreement with lattice correlatorsI more checks on convergence of vertex expansion

finite temperature YM-theory:I good agreement with magnetic lattice correlatorsI electric correlators: argued for importance of backgrounds near Tc

I Debye mass consistent with perturbation theory at T & 0.6 GeV

next stop: QCD @ T , µ > 0I equation of stateI fluctuations of conserved chargesI order parameters

further applications:I input for “QCD-enhanced” modelsI other strongly-interacting theories

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 22 / 22

Page 47: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Status and Outlook

vacuum QCDI QCD from αS(Λ = O(10) GeV) and mq(Λ = O(10) GeV)I good agreement with lattice correlatorsI more checks on convergence of vertex expansion

finite temperature YM-theory:I good agreement with magnetic lattice correlatorsI electric correlators: argued for importance of backgrounds near Tc

I Debye mass consistent with perturbation theory at T & 0.6 GeV

next stop: QCD @ T , µ > 0I equation of stateI fluctuations of conserved chargesI order parameters

further applications:I input for “QCD-enhanced” modelsI other strongly-interacting theories

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 22 / 22

Page 48: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Status and Outlook

vacuum QCDI QCD from αS(Λ = O(10) GeV) and mq(Λ = O(10) GeV)I good agreement with lattice correlatorsI more checks on convergence of vertex expansion

finite temperature YM-theory:I good agreement with magnetic lattice correlatorsI electric correlators: argued for importance of backgrounds near Tc

I Debye mass consistent with perturbation theory at T & 0.6 GeV

next stop: QCD @ T , µ > 0I equation of stateI fluctuations of conserved chargesI order parameters

further applications:I input for “QCD-enhanced” modelsI other strongly-interacting theories

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 22 / 22

Page 49: QCD from quark, gluon, and meson correlators fileQCD from quark, gluon, and meson correlators Mario Mitter Brookhaven National Laboratory Giessen, January 2018 M. Mitter (BNL) Correlators

Status and Outlook

vacuum QCDI QCD from αS(Λ = O(10) GeV) and mq(Λ = O(10) GeV)I good agreement with lattice correlatorsI more checks on convergence of vertex expansion

finite temperature YM-theory:I good agreement with magnetic lattice correlatorsI electric correlators: argued for importance of backgrounds near Tc

I Debye mass consistent with perturbation theory at T & 0.6 GeV

next stop: QCD @ T , µ > 0I equation of stateI fluctuations of conserved chargesI order parameters

further applications:I input for “QCD-enhanced” modelsI other strongly-interacting theories

M. Mitter (BNL) Correlators of QCD Giessen, January 2018 22 / 22