132
1 M.P. Vaughan PY3101 Optics Revision Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course overview Wave Optics Electromagnetic Waves Geometrical Optics Crystal Optics

PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

1

M.P. Vaughan

PY3101 Optics

Revision

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Course overview

Wave Optics

Electromagnetic Waves

Geometrical Optics

Crystal Optics

Page 2: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

2

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Wave Optics

• General physics of waves with application to

optics

• Huygens-Fresnel Principle

• Derivation of Laws of Optical Propagation

• Rectilinear motion

• Reflection

• Refraction

• Diffraction

• Diffraction gratings (use in spectroscopy)

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Electromagnetic Waves

• The wave equation

• The electric susceptibility tensor• Light propagation in isotropic media

• Refractive index and dispersion

• Optical loss

• Polarisation• Polarising optical elements (linear, retardation

plates)

Page 3: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

3

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Geometrical Optics

• Fermat’s Principle (least time)

• Derivation of Laws of Optical Propagation

• Imaging with lenses and mirrors

• Perfect imaging

• Spherical lenses and mirrors

• Paraxial approximation

• Aberrations

• Systems of lenses and mirrors

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Crystal Optics

• The index ellipsoid

• Birefringence

Crystal Optics – light propagation in anisotropic

media

Page 4: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

4

Huygens-Fresnel Principle

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• You should be able to

• Write down the form of a spherical wave

• Define a wavefront

• State Huygens’ Principle

• Using Huygens’ Principle

• Derive the Law of Rectilinear Propagation

• Derive the Law of Reflection

• Derive the Law of Refraction

Huygens’ Principle

Page 5: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

5

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Spherical waves

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Spherical waves

Since the intensity of an EM wave is proportional to the squared modulus of the amplitude, by the conservation

of energy, the amplitude must vary as 1/r.

Moreover, the requirement that the amplitude be finite at r= 0 means that the spherical wave must be of the form

( ) .sin, krer

EtrE tir ω−=

Page 6: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

6

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Geometric wavefront

A geometric wavefront is the surface in

space containing all points in an optical

field that have the same phase.

A ray is a path through space that is

everywhere perpendicular to the

wavefront.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Geometric wavefront - spherical

Wavefronts –contours of

constant phase

Page 7: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

7

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Geometric wavefront - spherical

Wavefronts –contours of

constant phaseRays –

everywhere perpendicular to wavefronts

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Geometric wavefront - plane

Wavefronts –contours of

constant phase

Page 8: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

8

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Geometric wavefront - plane

Wavefronts –contours of

constant phaseRays –

everywhere perpendicular to wavefronts

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Huygens’ Principle

Each point on a wavefront acts as a source

of secondary, spherical wavelets.

At a later time, t, a new wavefront is

constructed from the sum of these

wavelets.

Page 9: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

9

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Huygens’ Principle – rectilinear propagation

All points on the wavefront act as sources of spherical wavelets

z0

constant phase over surface of sphere

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Huygens’ Principle – rectilinear propagation

Since all points on the spheres must have the same phase, the tangent to the leading edge of all the spheres must also be at a constant phase.

z0

Page 10: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

10

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Huygens’ Principle - reflection

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Huygens’ Principle - reflection

Page 11: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

11

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Huygens’ Principle - reflection

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Huygens’ Principle - reflection

Page 12: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

12

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Huygens’ Principle - reflection

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Huygens’ Principle - refraction

Page 13: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

13

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Huygens’ Principle - refraction

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Huygens’ Principle - refraction

Page 14: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

14

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Huygens’ Principle - refraction

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Huygens’ Principle - refraction

Page 15: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

15

The Huygens-Fresnel Principle

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• You should be able to

• Explain what is meant by coherence and

interference

• State the Huygens-Fresnel Principle

• Explain how this is different to Huygens’

Principle

Huygens-Fresnel Principle

Page 16: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

16

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Coherence

If two beams of light are coherent with

each other, then there is a fixed relation

between their phases

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Interference

Two coherent beams may add together via

the Principle of Linear Superposition to

obtain interference

Page 17: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

17

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The Huygens-Fresnel Principle

For light of a given frequency, every point

on a wavefront acts as a secondary source

of spherical wavelets with the same

frequency and the same initial phase.

The wavefront at a later time and position

is then the linear superposition of all of

these wavelets.

Diffraction

Page 18: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

18

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• You should be able to

• Describe the diffraction regimes (near-field

and far field)

• Derive the single-slit diffraction pattern

• Generalise to the multiple-slit case

• Explain the Rayleigh criterion

• Analyse diffraction gratings

• Discuss the applications of diffraction

• Sketch and explain basic monochromator

designs

Huygens-Fresnel Principle

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

What is diffraction?

• Diffraction is the ‘bending’ of

waves around objects or through

apertures

• It is an interference effect

Page 19: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

19

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Light passing through a narrow aperture

Huygens-Fresnel Principle

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Light passing through a narrow aperture

Maximum possible path difference

.max DABBPAP ==−=∆

Page 20: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

20

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Limiting cases: λλλλ >> D

∆max always less than λ – wavelets add constructively in all directions.

Emergent field looks like point

source.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Limiting cases: λλλλ << D

Both constructive and destructive interference outside shaded region

Wavelets add constructively in this region

Page 21: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

21

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Fresnel and Fraunhofer diffraction

Near field (Fresnel diffraction)

Far field (Fraunhofer diffraction)

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Single slit diffraction

EL is the field strength per unit

length

EP is the total field a the point P

Page 22: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

22

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Single slit diffraction

Field at x

.dxEdE L=

Contribution to field EP due to dE

( )( )[ ] .sin dxxkrt

xr

EdE L

P −= ω

Total field EP

( )( )[ ] .sin

2/

2/∫− −=D

D

LP dxxkrt

xr

EE ω

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Single slit diffraction

r(x) is given by the cosine rule

( ) ( )θπ −−+=2

222 cos2RxxRxr

x

or

( ) .sin2

1

2/1

2

2

−+= θ

R

x

R

xRxr

To find a closed form solution, we must approximate this expression.

Page 23: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

23

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Taylor series expansion of r(x)

The Taylor series expansion for a function (1 + ξ)1/2 is

( ) K+−+=+82

112

2/1 ξξξ

Hence,

( )

++−= Kθθ 2

2

2

cos2

sin1R

x

R

xRxr

and

( ) .cos2

sin 22

K++−= θθR

kxkxkRxkr

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The Fraunhofer condition

The third term in the expression for kr(x) takes its maximum

when x ± D/2 and θ = 0. That is

.48

cos2 2

2

2

22

2

R

D

R

kD

R

kx

λπ

θ =→

The condition that this term makes a negligible contribution to the phase is

.4 2

2

πλπ

<<R

D

Page 24: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

24

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The Fraunhofer condition

Neglecting the factor of 4 in the denominator of the condition just found, it may be re-written as

.DR

D λ<<

This is the Fraunhofer condition for far field diffraction.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Far field approximations

Assuming that the Fraunhofer condition is valid, the third term in the expression for kr(x) may be neglected and we have

( ) .sinθkxkRxkr −≈

The 1/r(x) factor appearing in the integral for EP is less

sensitive to changes in r(x) than the phase and we may simply put

( ).

11

Rxr≈

Page 25: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

25

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Integrating over x

Using these approximations, the expression for the total field EP becomes

To perform this integral, we note that

[ ] ( ){ }.Imsinsin sinθωθω kxkRtiekxkRt +−=+−

[ ] .sinsin2/

2/∫− +−=D

D

LP dxkxkRt

R

EE θω

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The total field EP

Integrating over the x-dependent part

where

.sin2

θβkD

=

,sin

sin

2/

2/

sin2/

2/

sin

ββ

θ

θθ D

ik

edxe

D

D

ikxD

D

ikx =

=

−−∫

Hence, the total field EP is

( ).sinsin

kRtR

DEE L

P −= ωββ

Page 26: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

26

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Intensity profile for a single slit

Averaging EPover time gives

The squared modulus of this will be proportional to the intensity, i.e.

.sin

2 ββ

R

DEE L

P =

( ) ( ) .sin

0

2

ββ

θ II =

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Intensity profile for a single slit

Page 27: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

27

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Intensity profile for a single slit

The zeros of the peaks occur at values of

where m is an integer. Hence, the first zeros around the central peak are given by

,sin2

πθβ mkD

==

.sinD

λθ =

Note that this result is only valid for λ < D. In other cases,

there are no zeros from –π to π.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Intensity profile for a circular aperture

Page 28: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

28

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The Airy disc

Airy pattern by Sakurambo. A computer-generated image of an Airy disk.URL: http://en.wikipedia.org/wiki/File:Airy-pattern.svg

Airy disc

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The Airy disc

Laser Interference by Petrov Victor. Diffraction of red laser beam by a circular aperture.

URL: http://en.wikipedia.org/wiki/File:Laser_Interference.JPG

Page 29: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

29

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The Rayleigh criterion

The first zero of the intensity profile for diffraction from a circular aperture occurs at

.22.1sinD

λθ ≈

This represents the minimum angular separation that two

points can be so that they may be separately resolved.

Using the small angle approximation, this becomes

.22.1D

λθ ≈

This is known as the Rayleigh criterion.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Diffraction limited imaging

Intensity profiles for two resolvable distant point sources.

Merged intensity profiles for unresolvable distant point sources.

Page 30: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

30

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Intensity profile for multiple slits

( ) ( ) .sin

sin

sin0

22

=ββ

αα

θN

NII

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Intensity profile for multiple slits

Page 31: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

31

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Diffraction condition

Note that the condition for constructive interference is

.sin λθ ma =

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Diffraction condition

We can re-write this as

.sin2

mka

πθ =

But this is just,mπα =

( ) ( ) .sin

sin

sin0

22

=ββ

αα

θN

NII

which gives the condition for the local maxima of the intensity

Page 32: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

32

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Diffraction – wavelength dependence

.sin λθ ma =

Red (longer wavelength) light is diffracted to a greater extent than

blue (shorter wavelength).

(Yellow arrow is incident light and specular reflection)

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Diffraction condition

Incident and diffracted wavevectors:

,zk k=

( ).cosˆsinˆ' θθ zxk += k

Page 33: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

33

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Diffraction condition: off-axis incidence

.sin,sin mi aOBaAO θθ ==

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The grating equation

( ) .sinsin λθθ ma im =+

For off-axis transmission, the diffraction condition is now

This reduces to the case of normal incidence when .0=iθ

This result may be further generalised by taking the incident angle around to the front of the grating – i.e. making the grating into a reflection grating.

Page 34: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

34

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Reflection gratings

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Reflection gratings

Light strikes the reflection grating at an angle θi. For certain angles θm, the diffraction condition will

be met:

The path lengths of rays from the incident

wavefront via the successive rulings of the

grating and leaving at the same angle must

differ only be integral multiples of the

wavelength λ.

Page 35: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

35

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Derivation of the reflection grating equation

Incident wavefront AC

Path from A to wavefront BD

.sin maAB θ=

Path from C to wavefront BD

.sin iaCD θ=

( ).sinsin imaCDAB θθ −=−Path difference

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The reflection grating equation

The diffraction condition for a reflection grating may then be expressed mathematically as

( ).sinsin imam θθλ −=

This is known as the reflection grating equation.

Page 36: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

36

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Dispersion

The dispersion of a grating is defined as

.λθ

θd

dD m=

Differentiating the grating equations, we have

.cos m

m

ad

dm θ

θλ

=

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Number of orders

Recall that

So the highest order m is the largest integral value of

( ) .sinsin λθθ ma im =±

( ).sinsin im

aθθ

λ±

.2

max λa

m <

Hence

Page 37: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

37

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Resolving power

The resolving power of a grating is defined as

,λλ∆

=R

where, via Rayleigh’s criterion, ∆λ is the minimum resolvable wavelength between the peaks of two wavelengths with midpoint λ.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Common example of a grating

Page 38: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

38

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Diffraction around a razor blade

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

X-ray diffraction (non-optical)

(See PY3105)

Page 39: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

39

Maxwell’s equations

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• You should be able to

• Define the electric susceptibility tensor

• Derive the wave equation for an isotropic

medium

• Write down plane-wave solutions of the wave

equation

• Explain the phenomena of dispersion

• Describe the mechanism of optical loss

• Starting with a complex wave vector, derive

the light intensity with distance and the

absorption coefficient

Maxwell’s equations

Page 40: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

40

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Maxwell’s equations

.1

and

,

,

,0

,

0

0 MHPED

DjH

BE

B

D

−=+=

∂∂

+=×∇

∂∂

−=×∇

=⋅∇

=⋅∇

µε

ρ

t

t

f

f

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The electric susceptibility tensor

The electrical polarisation P of a medium is given by

,0 EP Eχε=

where χE is the electric susceptibility tensor. χE

characterises the frequency response of the medium to an applied electric field E.

Page 41: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

41

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Linear, isotropic and homogeneous media

In a linear, isotropic and homogeneous (LIH) medium

.

00

00

00

0

0

0

=

χχ

χχE

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Wave equation in a LIH medium

In a dielectric the free charge density and free current are zero, so, from Maxwell’s equations

0=⋅∇ D

and

.t∂

∂=×∇D

H

( ) ,00 EEID εεχε =+= E

where ε is the relative permittivity.

Page 42: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

42

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Wave equation in a LIH medium

Similarly

,1

0

BHµµ

=

where µ is the relative permeability. Hence

00 =⋅∇=⋅∇ ED εεand

.

,1

00

0

0

t

tt

∂∂

=×∇→

∂∂

=∂∂

=×∇=×∇

EB

EDBH

µεµε

εεµµ

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Wave equation in a LIH medium

From Maxwell’s equations

.2

2

00tt ∂

∂−=

∂×∂∇

−=×∇×∇EB

E µεµε

Using the vector identity

,0=⋅∇ E

and

( ) EEE2∇−⋅∇∇=×∇×∇

Page 43: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

43

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Wave equation in a LIH medium

we have

.2

2

00

2

t∂∂

=∇E

E µεµε

The wave speed is

( ) 2/1εµ=n

where

( ) ,2/1

00n

cv == −µεµε

is the refractive index.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Plane-wave solutions

We look for solutions of the form

where E0 is a Jones vector containing information about the polarisation.

.

,

2

2

2

222

ω−→∂∂

=−→∇

t

kk

Now

( ) ( ),, 0

tiet ω−⋅= rkErE

Page 44: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

44

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Plane-wave solutions

So

which gives

.nk

=

,00

22

2

2

00

2EE

EE µεµεωµεµε =→

∂∂

=∇ kt

.k

=

We may put where k0 is the free space wave-vector, so

,0nkk →

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Frequency dependence

A simple analysis yields

showing that χE is frequency dependent. This gives rise to the phenomenon of dispersion (different frequencies of light travelling at different speeds in an optical medium).

( )∑ +−=

i ii

iiE

i

mq,

22

2

0 τωωωχε

Page 45: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

45

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Frequency dependence

The relative permittivity is

This means

.1 21 εεχε iE −=+=

21 innn −=and

,21 ikkk −=

where .0nkk =

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Relative permittivity

Page 46: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

46

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Optical loss

Using

Substituting for v using the complex refractive index,

( ) ,exp, 0

−=v

ztitz ωEE

( ) .expexp, 210

−=c

zn

c

zntitz ωEE

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The absorption coefficient

Now the intensity of the radiation I(z) is proportional to the squared modulus of the field

So

( ) .2

exp 22

0

2

−=∝c

znzI

ωEE

( ) ( ) ,0 zeIzI α−=

where

c

n22ωα =

is the absorption coefficient.

Page 47: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

47

Polarisation

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• You should be able to

• Define the polarisation of light

• Describe and analyse

• plane-polarisation

• circular polarisation

• elliptical polarisation

• Describe

• linear polarisers

• retardation (wave) plates

• Apply the Jones calculus to states of

polarisation and optical elements

Polarisation

Page 48: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

48

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Linear polarisation

( ),0

rkEE ⋅−= tie ω

A plane-wave may be written

where E0 is a Jones vector, containing information about the polarisation.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Linear polarisation

.sin

cos00

=

θθ

EE

For linear polarisation at an angle θ to the x-axis E0 is given by

Page 49: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

49

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Linear polarisation

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Linear polarisation – special cases

,0

100

= EE x

,1

000

= EE y

,0=θ

,2

πθ =

x-linearly polarised

y-linearly polarised

Page 50: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

50

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

y-linearly polarised light

(x-linearly polarised aligned with x-axis)

y-linearly polarised

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The dichroic sheet

Page 51: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

51

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The linear polariser

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• The most general form of polarisation

is elliptical polarisation

• the electric field spirals around the

propagation axis tracing out an ellipse.

• This may be understood by resolving

the electric field into orthogonal

components.

• So long as these components remain in

phase, the polarisation will be linear.

Elliptical polarisation

Page 52: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

52

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• If, however, a phase shift is introduced

on to one of the components, the

polarisation will become elliptical.

• This is illustrated in the next slide...

Elliptical polarisation

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Elliptically polarised light

Page 53: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

53

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Retardation

( ),sin

cos0

rkEE

⋅−

= ti

i

i

ee

ey

x

ωφ

φ

θθ

.xy φφ −=Γ

This phase shift is known as the between orthogonal components is known as the retardation Γ. For the polarisation

This is

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Retardation

( ).sin

cos0

rkEE

⋅−Γ

= ti

i

ie

ee x ωφ

θθ

.sin

cos00

= Γ θ

θie

EE

We may re-write the polarisation as

Since the x-phase factor is arbitrary,

Page 54: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

54

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Circular polarisation

iee ii ±== ±Γ 2/π

.1

2

0

0

±

=i

EE

,4

πθ =

In the case

and

we have

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Circular polarisation – x component

Page 55: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

55

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Circular polarisation – ΓΓΓΓ = ππππ/2

,2/ iee ii ==Γ π

( ).1

2

0 rkE

E⋅−

= tie

i

ω

[ ] ( )( )

.sin

cos

2Re

0

⋅−−

⋅−=

rk

rkEE

t

t

ωω

In the case

we have

The real part is then

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Circular polarisation – y component

2/πixy eEE =

Page 56: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

56

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Circular polarisation – left polarised

2/πixy eEE =

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Circular polarisation – ΓΓΓΓ = –ππππ/2

,2/ iee ii −== −Γ π

( ).1

2

0 rkE

E⋅−

= tiei

ω

[ ] ( )( )

.sin

cos

2Re

0

⋅−

⋅−=

rk

rkEE

t

t

ωω

In the case

we have

The real part is then

Page 57: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

57

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Circular polarisation – y component

2/πixy eEE −=

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Circular polarisation – right polarised

2/πixy eEE −=

Page 58: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

58

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Elliptical polarisation: general case

.sincos2 2

00

2

0

2

0

Γ=Γ−

+

x

x

y

y

x

x

y

y

E

E

E

E

E

E

E

E

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Elliptical polarisation: general case

xE

yE

E

α

. arbitrary, is 00 yx EE ≠Γ

Page 59: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

59

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• A retardation or wave plate is an optical

element that produces some

retardation between the orthogonal

components of the wave.

• The physical origin of this retardation

is due to the phenomenon of

birefringence

Wave plates

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• Birefringence is a phenomenon in

which the components of the wave see

a different refractive index depending

on the orientation of the polarisation

within some anisotropic material

• This leads to light with different polarisation

directions having different phase velocities

Wave plates

Page 60: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

60

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Fast and slow axes

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• The speed of the waves is determined

by the refractive index that it sees.

• This is determined by a construction

known as the index ellipsoid

The index ellipsoid

Page 61: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

61

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• Quarter wave plate

• Introduces a phase shift of

• Produces circularly polarised light from

linearly polarised light

• Half wave plate

• Introduces a phase shift of

• Reverses sign of y-component

• Hence, for linearly polarised light at an angle θto the wave plate axis, the light is rotated by

2θ.

Types of wave plate

2/π±

π±

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• Polarised light may be analysed by

passing it through a linear polariser

• In the case of initially linearly polarised

light, the emergent intensity follows

Malus’ Law

• Here, we consider the general case

The analysis of polarised light

Page 62: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

62

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The analysis of polarised light

( ) ( ),cossincos2sincos 222

0 Γ++= θθθθθ rrII

.0

0

x

y

E

Er =

The power intensity through an analyser is given by

where

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The analysis of linearly polarised light

( ) .cos20 θθ II =

,00 =yE

For x-linearly polarised light, we have

which gives

This is known as Malus’ Law.

Page 63: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

63

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The analysis of circularly polarised light

( ) ( ) .sincos 0

22 II =+= θθθ

.2

and1π

±=Γ=r

For circularly polarised light, we have

which gives

In other words, the time-averaged intensity is

constant.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Jones vectors

.sin

cos00

=

θθ

EE

Linear polarisation

General case

x-linearly polarised

,0

100

= EE x

y-linearly polarised

,1

000

= EE y

Page 64: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

64

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Jones vectors

Elliptical polarisation

General case

left-circularly polarised

.1

2

0

=+

i

EE

right-circularly polarised

.1

2

0

=−i

EE

.sin

cos00

= Γ θ

θie

EE

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Jones matrices

Polarisers

General case

x-linear polariser

.00

01

=xP

y-linear polariser

.10

00

=yP

.sinsincos

sincoscos2

2

=

θθθθθθ

θP

Page 65: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

65

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Jones matrices

Retardation plate

General case

Quarter wave-plate

.0

012/

±

=±i

πM

Half wave-plate

.10

01

=πM

.0

01

= ΓΓ ie

M

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Jones matrices

The effect of a series of optical elements may be modelled by multiplying the

corresponding Jones matrices together

to form a combined element.

Page 66: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

66

Fermat’s Principle

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• You should be able to• Define the optical path length

• State Fermat’s Principle

• Use Fermat’s Principle to

• derive the Law of Reflection

• derive the Law of Refraction

• Demonstrate perfect imaging

Fermat’s Principle

Page 67: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

67

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Geometrical wavefront

These points are all in phase with one another and constitute a geometric wavefront.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The optical path length

Putting T = t - t0, we may then multiply T by c to express the propagation time in dimensions of space

( ) ( ).0ttcr −=Λ

The quantity Λ(r) is known as the optical path length and is a function of distance.

Page 68: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

68

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The optical path length

Now, if

,n

cv

dt

dS==

then

( ) ,ndScdtrd ==Λ

so

( ) ( ) .,,0∫=Λr

dSzyxnr

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Homogeneous medium

In a homogeneous medium

( ) ,0,, =∇ zyxn

that is:

the refractive index is the same everywhere.

Page 69: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

69

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Isotropic medium

In an isotropic medium

( ) ,,, 0nzyxn =

that is:

the refractive index is the same in all directions

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Optical path length – LIH medium

We also make the usual assumption that the response of

the medium is linearly proportional to the applied field.

For a linear, isotropic homogenous (LIH) medium

becomes

( ) .0∫=Λr

dSnr

( ) ( )∫=Λr

dSzyxnr0

,,

Page 70: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

70

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Fermat’s Principle

The path taken between two points by

a ray of light is the path that can

traversed in the least time

or, equivalently in terms of optical path length,

Light traverses the route between two points for which the optical path

length is a minimum.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Rectilinear propagation

Using the calculus of variations, we can use Fermat’s Principle to derive Law of Rectilinear Propagation

In a LIH medium, light propagates in straight lines.

Page 71: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

71

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Reflection

We may also apply Fermat’s Principle under constraint.

For instance, we may impose the constraint that light

travelling between A and B in a medium of refractive index

n1 must touch some point on the interface between this

medium and another of refractive index n2.

This is the required constraint for reflection.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Reflection

Page 72: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

72

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Reflection

.11 BA SnSn +=Λ

( )[ ]( ) .

,

2/122

2/122

BBB

AA

yxxS

yxS

+−=

+=

Applying Fermat’s Principle, we have

.01 =

∂∂

+∂∂

=∂Λ∂

x

S

x

Sn

x

BA

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Reflection

( )

[ ]( ).

,

2/122

2/122

B

B

BB

BB

AA

A

S

xx

yxx

xx

x

S

S

x

yx

x

x

S

−=

+−

−=

∂∂

=+

=∂∂

But

.sinandsin r

B

Bi

A S

xx

S

xθθ =

−=

Page 73: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

73

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Reflection

So Fermat’s Principle implies

( ) .0sinsin1 =−=∂Λ∂

rinx

θθ

This is satisfied when

ri θθ sinsin =

or

ri θθ =

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Reflection

Thus, Fermat’s Principle reproduces the Law of Reflection

In a LIH medium, the angle of reflection equals the

angle of incidence.

Page 74: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

74

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Refraction

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Refraction

.21 BA SnSn +=Λ

( )[ ]( ) .

,

2/122

2/122

BBB

AA

yxxS

yxS

+−=

+=

Applying Fermat’s Principle, we have

.021 =∂∂

+∂∂

=∂Λ∂

x

Sn

x

Sn

x

BA

Page 75: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

75

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Refraction

( )

[ ]( ).

,

2/122

2/122

B

B

BB

BB

AA

A

S

xx

yxx

xx

x

S

S

x

yx

x

x

S

−=

+−

−=

∂∂

=+

=∂∂

But

.sinandsin t

B

Bi

A S

xx

S

xθθ =

−=

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Refraction

So Fermat’s Principle implies

.0sinsin 21 =−=∂Λ∂

ti nnx

θθ

This is satisfied when

,sinsin 21 ti nn θθ =

i.e. by Snell’s Law.

Page 76: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

76

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Refraction

Thus, Fermat’s Principle reproduces the Law of Refraction

In a LIH medium, the Law of Refraction is given by Snell’s Law

,sinsin 21 ti nn θθ =

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Perfect imaging – hyperbolic lens

Page 77: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

77

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Perfect imaging – elliptical lens

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Perfect imaging – elliptical mirror

Page 78: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

78

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Perfect imaging – elliptical mirror

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Perfect imaging – parabolic mirror

Page 79: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

79

Spherical lenses and mirrors

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• You should be able to• State the paraxial approximation

• Define the focal length

• Recall

• the thin lens equation

• the lens-maker’s equation

• the Gaussian lens formula

• the expression for a series of thin lenses in close

combination

• Recall and apply the rules for image construction

• Calculate transverse magnification

• Define the optical power of a lens

Spherical lenses and mirrors

Page 80: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

80

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• Cannot obtain perfect imaging

• Reasonable approximation possible

Imaging by a spherical lens

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Lens sign conventions

Page 81: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

81

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Lens sign conventions

• Light is always taken to

propagate from left to right.

• If A is to the left of B, then so is

taken to be positive (and vice

versa).

• If C is to the right of B, then si is

taken to be positive (and vice

versa).

• If the centre of the sphere is to the right of B, R is taken

to be positive. This is a convex lens.

• If the centre of the sphere is to the left of B, R is taken

to be negative. This is a concave lens.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• Requirement for perfect imaging is that

all the rays have equal optical path-

length.

• That is, we require Λ to be a constant

Imaging by a spherical lens

Page 82: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

82

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Imaging by a spherical lens

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The optical path length

.1221

o

o

i

i

io l

sn

l

snR

l

n

l

n−=

+

However

( )( ),,

,,

iii

ooo

sll

sll

φ

φ

=

=

so no closed form solutions.

Page 83: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

83

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The paraxial approximation

Small angle approximation

.1cos,sin ≈≈ φφφ

22

oo sl →

So

and

.22

ii sl →

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The paraxial approximation

With these approximations, we obtain

( ).112

21 nnRs

n

s

n

io

−=+

Page 84: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

84

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The focal length

In the case

,0 ∞→s

From this, we may define the focal length within the lens fi

( ).112

2 nnRs

n

i

−=

.12

2ii fR

nn

ns ≡

−=

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The focal length

Similarly, when

,∞→is

we may define the focal length outside the lens fi

.12

1oo fR

nn

ns ≡

−=

Page 85: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

85

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

A thick lens

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

A thick lens

Page 86: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

86

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

A thick lens

For the surface with radius of curvature R1,

( ).112

11

2

1

1 nnRs

n

s

n

io

−=+

( ).112

22

2

2

1 nnRs

n

s

n

oi

−−=+

For the surface with radius of curvature R2,

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

A thick lens

Combining these results

( )

+−−

−=

+

2

2

1

212

2112

1

11111

oioi s

n

snnn

RRssn

Inserting

,12 io sds −=

Page 87: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

87

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The thin lens equation

( )( )

.1111

11

212

2112

1

iioi sds

dnnn

RRssn

−−−

−=

+

.1111

211

12

−=+

RRn

nn

ss oi

Taking the limit and putting,0→d ,, 22 ooii ssss ==

This is the thin lens equation.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The lens maker’s formula

.111

211

12

−=

RRn

nn

f

If either or ∞→is ∞→os

.111

or111

211

12

211

12

−=

−=

RRn

nn

sRRn

nn

s io

But the term on the RHS is a constant, which we define to be the focal length f

This is the lens maker’s formula.

Page 88: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

88

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The Gaussian lens formula

.111

fss oi

=+

We must also have

This is the Gaussian lens formula.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Thin lenses in close combination

In general

.11

∑=i iff

Page 89: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

89

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Mirror sign conventions

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• Light is always taken to propagate from

left to right.

• The object distance so is positive when it

is to the left of the mirror surface.

• The image distance si is positive when it

is to the left of the mirror surface (real

image).

Mirror sign conventions

• The image distance si is negative when it is to the

• right of the mirror surface (virtual image).

• The radius R is positive if the mirror surface is to the right of the

centre of the sphere (convex mirror)

• The radius R is negative if the mirror surface is to the left of the

centre of the sphere (concave mirror)

Page 90: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

90

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Spherical mirrors

From the Law of Reflection

.φαθ +=

( ) .φββπφπθ −=−−−=

From inspection of the figure

Hence

.2 αβφ −=

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Spherical mirrors

Hence

.211

Rss io

−=+

Taking limits as before and defining the focal length f, we then have

,111

fss io

=+

which is the same expression as the Gaussian lens

formula.

Page 91: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

91

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• Sketch a ray from the tip of the object parallel to the

horizontal (the principle axis) to the centre line of the

lens. From there, sketch another ray passing

through the focus associated with the left-hand lens

surface.

• Sketch a ray from the tip of the object directly

through the centre of the lens without deviation.

• Sketch a ray from the tip of the object passing

through the focus associated with the right-hand

lens surface to the centre line of the lens. From there

sketch a line parallel to the principle axis towards

the image.

Image construction for convex lenses

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Convex lens

Page 92: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

92

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Convex lens

The image at i is real and inverted.

The magnification of the image M is given by

.o

i

y

yM =

Since yi is negative, so is M (inverted image).

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• Sketch a ray parallel to the optical axis of the

lens. Since f < 0, this must pass through f on

the left of the lens (as a virtual ray).

• Sketch a ray passing through the centre of

the lens without deviation

• Sketch a ray following the line through f on

the right of the lens (this extension is virtual

on the right) and emerging parallel to the

optical axis. The parallel line is then

extended to the left as a virtual ray

Image construction for concave lenses

Page 93: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

93

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Concave lens

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Concave lens

In this case, xo is the distance

between the object and f on the right of the lens.

xi is the distance between the image and f on the left of the lens.

Page 94: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

94

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Other types of lenses

plano-convex plano-convex doublet

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Optical power

.1

f=P

The optical power P of a lens is a measure of the degree to which it converges or diverges light.

P is defined as the reciprocal of the focal length.

The SI unit of P is called the dioptre (m-1).

Page 95: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

95

Optical instruments

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• You should be able to• Discuss the anatomy and function of the

human eye

• Describe common visual impairments

• Derive the angular magnification for a

magnifying glass

• Describe different types of refracting

telescope and their designs

• Describe the design of reflecting

telescopes

Optical instruments

Page 96: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

96

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The anatomy of the eye

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The lens

The curvature of the lens may be changed by muscle contractions in the eye.

Page 97: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

97

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Near and far points

• The near point is the closest distance for

which the lens can focus light on the retina

• Typically at age 10, this is about 18 cm

• It increases with age, ~ 25 cm for an adult

• The far point of the eye represents the

largest distance for which the lens of the

relaxed eye can focus light on the retina

• Normal vision has a far point of infinity

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Farsightedness – hyperopia

Distant objects may be focussed but not nearby objects.

Page 98: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

98

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Correcting farsightedness

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Nearsightedness – myopia

• axial myopia

• Lens too far from retina

• refractive myopia

• Lens-cornea system too powerful to focus properly onto the

retina

Page 99: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

99

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Correcting nearsightedness

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Angular size of unaided image

The object at o subtends an angle of αu at the viewing point.

Page 100: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

100

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Magnifying glass - aided image

The image i of an object placed at

o within the focal length of a convex mirror subtends an angle of αa at the viewing point.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Angular magnification

The angular magnification Mα is defined as the ratio of the aided and unaided viewing angles

.u

aMαα

α =

We shall employ the paraxial approximation to obtain an expression for this.

Page 101: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

101

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Angular magnification

.,i

i

o

oa

ou

d

h

d

h

D

h=== αα

From the diagrams

So

.ou

a

d

DM ==

αα

α

where D is the distance to the object in the unaided case.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Angular magnification

.fd

h

f

h

i

io

+=

From the diagram

,i

o

i

o

d

d

h

h=

.111

oi ddf=+

From the expression for αa,

Leading to

Page 102: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

102

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Angular magnification

From

,od

DM =α

.11

+=

idfDMα

We then have

Thus the shorter the focal length, the greater the angular

magnification.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• Terrestrial

• Produces upright image

• Employs a concave lens for the eyepiece

• Astronomical

• Inverts the image

• Employs a convex lens for the eyepiece

Types of refracting telescope

Page 103: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

103

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Galilean (terrestrial) telescope

Gives upright image. Note the focal points coincide.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Keplerian (astronomical) telescope

Gives inverted image. Note the focal points coincide.

Page 104: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

104

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Angular magnification

Galilean telescope Keplarian telescope

From the system matrix of each telescope, both are found to have an angular magnification of

.e

o

f

fM −=α

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Newtonian telescope

Page 105: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

105

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Newtonian telescope

.e

o

f

fM −=α

Essentially, we have the same magnification system as for the astronomical telescope.

Hence, the angular magnification is

Aberrations

Page 106: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

106

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• You should be able to• Discuss what is meant by third order

aberration

• List and describe common forms of

monochromatic aberration

• Explain the origin of chromatic aberration

and strategies to correct it

Aberrations

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Third order correction

θθ ≈sin

L++−=!5!3

sin53 θθ

θθ

Previously, we employed the paraxial approximation

In reality

The second term is referred to as the third order correction. The second term in the expansion of cos is also used in corrections to this order.

and.1cos ≈θ

Page 107: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

107

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Third order correction

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Third order correction

.1111

2

21

22

1221

−+

++

+−=

+

iioo

io

sRs

n

sRs

nR

nnRs

n

s

n

φ

Page 108: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

108

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Third order correction

Note that the Rφ2 term gives a measure of the displacement of the intersection of the ray with the lens from the optical axis.

Thus, in the third-order treatment, the new term increases in proportion with the square of the angular displacement.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• Spherical Aberration

• Coma

• Astigmatism

• Field Curvature

• Distortion

Third order corrections

Page 109: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

109

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Spherical Aberration

• Due spherical curvature of lens

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Longitudinal and transverse spherical aberration

The longitudinal spherical aberration LSA is defined as the distance between the intersection of a ray with the optical axis and the paraxial focus.

'.ooSA ssL −=

The transverse spherical aberration LSA is defined as the perpendicular distance above (or below) the paraxial focus that a ray actually passes.

Page 110: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

110

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Spherical Aberration

• Due spherical curvature of lens

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Soft image focusing

Page 111: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

111

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Coma

• Due to off-axis object points

• Transverse magnification is a function of ray height

• Pattern looks like a comet

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Coma in a lens

Page 112: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

112

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Coma in a parabolic mirror

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• Corrective lenses for Newtonian

telescopes with f numbers less than f/6

have been designed

• These employ a dual lens system of a

plano-convex and a plano-concave lens

fitted into an eyepiece adaptor

• An example of a correction strategy for

coma is Baader Rowe Coma Correction

Coma

Page 113: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

113

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Baader Rowe Coma Correction

Comparison of the coma in an uncorrected f/3.9 Newtonian telescope vs the affects of coma with the Baader Rowe Coma Corrector.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Astigmatism

• Vertical plane is the ‘tangential’ plane

• Horizontal plane is the ‘sagittal’ plane

• Astigmatism results in different focal length in each plane

Page 114: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

114

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Field Curvature

• A thin lens images a spherical surface onto a spherical surface

• Image is distorted in the image plane

• Important in lens design for close objects

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Distortion

• All points in the object plane are imaged to pointsin image plane

• Distortion arises when the magnification of off-axis image is a function of the distance to the lens center

Page 115: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

115

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Barrel distortion

• magnification decreases with distance from the optical axis

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Pincushion distortion

• magnification increases with distance from the optical axis

Page 116: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

116

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Moustache distortion

• Moustache distortion, in which initially the magnification decreases with distance from the optical axis, whilst at further distances, the magnification increases with distance.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Chromatic Aberration

• Blue refracts more than red (greater refractive index for normal dispersion

Page 117: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

117

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Achromatic doublet

• An achromatic doublet (achromat) is often used to compensate for the chromatic aberration.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Achromatic doublet

011

)(11

)(32

12

21

11 =

−−+

−−

RRnn

RRnn RBRB

BR

BRff

ff11

=→=

We require

Thus, we need to choose parameters such that

Page 118: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

118

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Example of the use of an achromatic doublet, using a doublet as the objective.

Achromatic doublet

The index ellipsoid

Page 119: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

119

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• You should be able to• Describe the modes of vibration of the light

• Explain the modes of vibration in terms of the index ellipsoid

and the k-vector direction

• Explain how the optic axes of the crystal are determined.

Hence, describe the different optical classes

• Derive the expression for the index ellipsoid from the energy

density

• Explain birefringence and apply to problems in uniaxial

crystals

• Describe the use of birefringence in wave plates

• Explain double refraction in anisotropic crystals

The index ellipsoid

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The wave equation

We look for solutions of the form

( ) .2

2

00

2

t

EE

x

iii

i ∂∂

−=∇−⋅∇∂∂

µεεµE

( ).ti

ieEE ω−⋅= rk

Page 120: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

120

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The wave equation

We obtain an eigenvalue problem with the characteristic equation

κ ii

ck=

where we have defined

,0222

222

222

=

−−−−

−−−−

−−−−

zzzyzx

zyyyyx

zxyxxx

nn

nn

nn

κκκκκκκκκκκκκκκ

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The wave equation

In the general case

and

( ),222222

zzyyxx ananana ++−=

( ) ( ) ( )222222222 111 xzyyzxzyx annannannb −+−+−=

.222

zyx nnnc −=

Page 121: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

121

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• The solutions for n2 correspond to two

modes of vibration

• Different components of the

polarisation see different refractive

indices

• These modes of vibration may be

visualised by means of the index

ellipsoid

The index ellipsoid

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

The index ellipsoid

Page 122: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

122

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• Consider some arbitrary wavevector k

• Taking the intersection of the plane

perpendicular to k with the index

ellipsoid defines an ellipse

• The semi-axes of this ellipse give

refractive indices n’ and n’’, which

correspond to the two modes of

vibration D’ and D’’

The index ellipsoid

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• In general, an ellipsoid has two circular

cross-sections

• In the case of just two distinct semi-

axes, we have a spheroid and there is

just one circular cross-section

• The normals to these cross-sections

are known as the optic axes of the

crystal

Optic axes

Page 123: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

123

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Optic axes

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• Biaxial crystals

• two optic axes (these are shown as N1 and N2

in the previous Fig.)

• Uniaxial crystals

• only one optic axis (taken, convention, to be

along the z-axis)

• Isotropic crystals

• No optic axis – refractive index the same in all

directions

Optic axes – optical classes

Page 124: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

124

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Optic axes

For certain special k directions, the quadratic will have repeated roots.

.042 =− acb

In these cases, the optical field will only see one refractive index (the cross-section with the index ellipsoid is circular)

These directions are therefore the optic axes of the crystal and determined by the condition

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Uniaxial crystals

Page 125: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

125

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Uniaxial crystals

In a uniaxial crystal, we have (by convention) nx = ny = no

and nz = ne. These are known as the ordinary and extraordinary refractive indices respectively. The coefficients of the quadratic equation for n2 are then

and

( )[ ],2222

zoeo annna −+−=

( ) ( )[ ]2222

0

2

0 11 zez anannb −+−=

.24

eo nnc −=

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Optic axes

The discriminant is

( ) ( ) .142222242

eozo nnanacb −−=−

For

the discriminant is zero when az = 1, i.e. when k is parallel

with the z-axis. Thus, this is the optic axis of the crystal

,22

eo nn ≠

Page 126: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

126

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Uniaxial crystals

The solutions for n2 are then

and

1

2

2

222 11

−+= z

o

ee a

n

nnn

.202 nn =

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Uniaxial crystals

k

Page 127: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

127

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Uniaxial crystals

we may obtain the explicit angular dependence

( ) .cos11

1

2

2

222

−+= θθ

o

ee

n

nnn

Putting

,cosθ=za

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Index ellipsoid (easier derivation)

The energy density due to the electric field is given by

This may be re-written

( ).21

21

zzyyxxE EDEDEDu ++=⋅= ED

.2

1

0

2

0

2

0

2

++=

z

z

y

y

x

xE

DDDu

εεεεεε

Page 128: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

128

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Index ellipsoid (easier derivation)

Making the change of variable (associated with a scaling)

,2 0

22

εE

ii

u

Dx =

we then have

.12

2

2

2

2

2

=++zyx n

z

n

y

n

x

This is the equation of the index ellipsoid.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Uniaxial crystal

For a uniaxial crystal, we have

Taking x = 0 with no loss of generality, from the figure,

.12

2

2

2

2

2

=++eoo n

z

n

y

n

x

( )( ) .sin

,cos

,0

θθθθ

nz

ny

x

=

−=

=

Page 129: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

129

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Uniaxial crystal

Substituting these expressions into the index ellipsoid

Rearranging this, we obtain

( ) ( ).1

sincos2

22

2

22

=+eo n

n

n

n θθθθ

( ) ,cos11

1

2

2

222

−+= θθ

o

ee

n

nnn

as found earlier.

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Birefringence in a uniaxial crystal

The birefringence is defined as

For a wave with extraordinary and ordinary components, Ee

and Eo, propagating in a direction r, we may write

( ) .0nnn −=∆ θ

( )

−=c

rntiEEe

θωexp0

.exp0

−=c

rntiEE o

o ω

and

Page 130: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

130

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Birefringence in a uniaxial crystal

The second of these equations may be re-written

( ) ( )[ ] .expexp0

−= rnnc

ic

rntiEE oo θ

ωθω

Hence, after a distance r, the ordinary wave acquires a retardation

( ) ( ).r

cr

θω∆=Γ

This provides the physical basis for retardation plates (see

Polarisation).

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• Further definition according to the

relative sizes of ne and no.

• A negative uniaxial crystal has ne < no

• E.g. calcite CaCO3 and ruby Al2O3.

• For ne > no, we have a positive uniaxial

crystal

• E.g, quartz SiO2

Uniaxial crystal

Page 131: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

131

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

• In negative uniaxial crystal, the

extraordinary axis is aligned with the

fast axis of the plate, since c/ne > c/no.

• For a positive uniaxial crystal, we have

the opposite case and the extraordinary

axis is aligned with the slow axis.

Uniaxial crystal – wave plates

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Birefringence - double refraction

Page 132: PY3101 Optics - Physics · PY3101 Optics Revision ColáistenahOllscoileCorcaigh, Éire University College Cork, Ireland ROINN NA FISICE Department of Physics PY3101 Optics Course

132

Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

ROINN NA FISICE

Department of PhysicsPY3101 Optics

Double refraction – example: calcite