35
Pulsating Flow Impact on Turbocharger Turbines Ricardo Martinez-Botas Srithar Rajoo Turbocharger Research Group

Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

  • Upload
    lekien

  • View
    232

  • Download
    10

Embed Size (px)

Citation preview

Page 1: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

Pulsating Flow Impact on Turbocharger Turbines

Ricardo Martinez-Botas

Srithar Rajoo

Turbocharger Research Group

Page 2: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

Pulsating Exhaust Flow

Internal Combustion Engine: Reciprocating, positive

displacement

Turbocharger Turbine: Rotodynamic, steady flow device

Page 3: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

•Turbine design and matching is largely based on steady flow performance.

Turbine Design Methodology

Design Condition – m, P, T, W, N

Euler Turbomachinery Equations + free Vortex + Continuity + Sweifel Criterion +

losses

Velocity Triangles

Geometries

Final Geometry

Page 4: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

Unsteady Spectra

• Turbocharger is exposed to a wide range of unsteady events 1. Engine Load Transients(~1 Hz) 2. Exhaust pulse (10~100Hz) 3. Blade wake passing 4. Turbulent fluctuations

• Exhaust pulsations sit in an interesting area

•How does unsteady flow influence performance?

•Which components of the turbine can be treated as quasi-steady and which cannot

Page 5: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

Velocity Triangle – Pulsating Flow

Steady Flow Design Condition

incidence

W

U

Cm

0

0.1

0.2

0 6 0 12 0 18 0 2 4 0 3 00 3 6 0ωt (Degrees)

min

st ( k

g/s )

f = 40 Hz

f = 60 Hz

b

1

1

3

3

2

2

EXP

Page 6: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

-100

-80

-60

-40

-20

0

20

40

0 60 120 180 240 300 360

Inci

denc

e An

gle Phase Angle

20Hz 80Hz

Optimum Incidence

Most Energy

-100

-80

-60

-40

-20

0

20

40

0 60 120 180 240 300 360

Inci

denc

e An

gle Phase Angle

20Hz 80Hz

Optimum Incidence

Most Energy

Velocity Triangle – Pulsating Flow CFD

30kRPM

48kRPM

Page 7: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

Turbine Unsteady Performance

Page 8: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

0.00

1.002.00

3.004.00

5.00

6.007.00

8.009.00

10.00

1 1.4 1.8 2.2 2.6 3Pressure Ratio (P01/P5)

Mas

s Fl

ow P

ar. (

kg/s

T 0

1/P01

)

Lean VaneStraight VaneSteady Straight

x 1e-540Hz, 80% Speed, 40deg

0.00

1.002.00

3.004.00

5.00

6.007.00

8.009.00

10.00

1 1.4 1.8 2.2 2.6 3Pressure Ratio (P01/P5)

Mas

s Fl

ow P

ar. (

kg/s

T 0

1/P01

)

Lean VaneStraight VaneSteady Straight

x 1e-560Hz, 80% Speed, 40deg

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

1 1.4 1.8 2.2 2.6 3Pressure Ratio (P01/P5)

Mas

s Fl

ow P

ar. (

kg/s

T 0

1/P01

)

Lean VaneStraight Vane

Steady Straight

x 1e-540Hz, 80% Speed, 70deg

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

1 1.4 1.8 2.2 2.6 3Pressure Ratio (P01/P5)

Mas

s Fl

ow P

ar. (

kg/s

T 0

1/P01

)

Lean VaneStraight Vane

Steady Straight

x 1e-560Hz, 80% Speed, 70deg

Mass flow parameter vs. Pressure ratio

Turbine Unsteady Performance

Page 9: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

-1.00-0.80-0.60-0.40-0.200.000.200.400.600.801.001.201.40

0.2 0.4 0.6 0.8 1 1.2 1.4Velocity Ratio (U/Cis)

Effic

ienc

y (h

t-s)

Lean VaneStraight VaneSteady Straight

40Hz, 80% Speed, 40deg

-1.00-0.80-0.60-0.40-0.200.000.200.400.600.801.001.201.40

0.2 0.4 0.6 0.8 1 1.2 1.4Velocity Ratio (U/Cis)

Effic

ienc

y (h

t-s)

Lean VaneStraight VaneSteady Straight

60Hz, 80% Speed, 40deg

-1.00-0.80-0.60-0.40-0.200.000.200.400.600.801.001.201.40

0.2 0.4 0.6 0.8 1 1.2 1.4Velocity Ratio (U/Cis)

Effic

ienc

y (h

t-s)

Lean VaneStraight VaneSteady Straight

40Hz, 80% Speed, 70deg

-1.00-0.80-0.60-0.40-0.200.000.200.400.600.801.001.201.40

0.2 0.4 0.6 0.8 1 1.2 1.4Velocity Ratio (U/Cis)

Effic

ienc

y (h

t-s)

Lean VaneStraight VaneSteady Straight

60Hz, 80% Speed, 70deg

Efficiency vs. Velocity ratio

Turbine Unsteady Performance

Page 10: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

UNSTEADY PULSE FLOW MEANS TURBINE OPERATES OVER A

WIDE RANGE

OVERALL BEHAVIOUR IS PREDICTED FROM SIGNIFICANT DATA EXTRAPOLATION

PULSE FLOW RELIES ON TURBINE EXTRAPOLATION

Page 11: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

11

1D Simulation Treatment

Time

Pres

sure

Exhaust Manifold (Wave Action) Unsteady pulse at the Turbine node

Steady-state performance

Regulated two-stage Turbo GT-POWER

Page 12: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

Standard Procedure

GAS DYNAMICS INSIGNIFICANT

(ZERO PATH LENGTH)

1D WAVE ACTION MODEL OF ENGINE & EXHAUST

STEADY-STATE GAS TEST STAND PERFORMANCE

ASSUMPTIONS

TURBINE IS A NODE

(ZERO VOLUME)

STEADY STATE PERFORMANCE

RESPONSE

QUASI-STEADY ASSUMPTION

MODEL TURBINE

UNSTEADY PULSE FOLLOWING

EXTRAPOLATED MAP

Page 13: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

Map Extension in Simulation

• 1-D simulation take limited gas stand data and extrapolate • Unsteady pulse Wave Action in the manifold means that the model

relies on a significant amount of the off design extrapolation

Limited data

Extrapolation

Time

Pres

sure

Unsteady range

Page 14: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

NEED FOR EXPERIMENTALLY MEASURED EXTENDED TURBINE PERFORMANCE MAPS

Page 15: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

Steady & Pulsating Flow Test Rig Imperial College London

• Pulse generator has two rotating ‘chopper plates that produce pulses into a single or twin entry turbine

OUTER LIMB INNER LIMB

Rotating chopper plate produces pulsating flow

Eddy Current Dyno 60kW / 60kRPM

Page 16: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

MAP WIDTH: Conventional turbine maps are narrow in range • Efficiency → Velocity ratio, ≈0.6 ÷ 0.8 • Mass flow parameter → Pressure ratio, ≈1.9 ÷ 2.3 (at 100% speed)

0

1

2

3

4

5

6

7

1 1.5 2 2.5 3

MAS

S FL

OW

PAR

AMET

ER

PRESSURE RATIO

50% Speed 60% Speed 70% Speed

80% Speed 90% Speed 100% Speed

50% SPEED

100% SPEED

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2

EFFI

CIE

NC

Y

VELOCITY RATIO 50% Speed 60% Speed 70% Speed

80% Speed 90% Speed 100% Speed

50% SPEED

100% SPEED

Velocity Ratio 50%, 100% speed

0.6 ÷ 0.8

Pressure ratio 50% speed

Pressure ratio 100% speed

1.2 ÷ 1.4 1.9 ÷ 2.3 0

1

2

3

4

5

6

7

1 1.5 2 2.5 3

MAS

S FL

OW

PAR

AMET

ER

PRESSURE RATIO

50% Speed 60% Speed 70% Speed

80% Speed 90% Speed 100% Speed

50% SPEED

100% SPEED

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2

EFFI

CIE

NC

Y

VELOCITY RATIO 50% Speed 60% Speed 70% Speed

80% Speed 90% Speed 100% Speed

50% SPEED

100% SPEED

Maps obtained are 3-4 times wider than conventional (100% speed)

Maps obtained are 3-4 times wider than conventional (100% speed)

Maps Extension

Page 17: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

QUASI-STEADY ASSUMPTION WHAT DOES IT MEAN ?

Page 18: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

Quasi-steady assumption

PR(t) T(t)

TIME

PRES

SUR

E R

ATI

O

t

PR(t)

UNSTEADY PULSE

N(t) Nconst

PRconst Tconst

UNSTEADY CASE AT TIME = t STEADY CASE

Mas

s Fl

ow

Pressure Ratio

ṁquasi

PR(t)

STEADY-STATE MAP

ṁ(t) = ṁquasi ?

Page 19: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

Quasi-Steady Assumption: Efficiency

• Is the unsteady efficiency simply an integration of steady-states at each instance in the pulse ?

TIME

PRES

SUR

E R

ATI

O

t

PR(t)

EFFI

CIE

NC

Y

.

PRESSURE RATIO

UNSTEADY PULSE STEADY-STATE MAP

η(t)q-s

PR(t)

= ?

∑∑=

in

outavgUS tW

tW)()(

,

η

( )∑

∑−

− ⋅=

QSin

QSQSinavgQS tW

ttW)(

)()(,

ηη

Page 20: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

Filling and Emptying vs. Quasi Steady

• To illustrate this effect: The same pressure ratio across the turbine (1.6) produces two different unsteady mass parameters.

• Steady behaviour in between both (in this case).

turbine ‘filled’ steady

turbine ‘empty’

Page 21: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

VOLUME DISPLAYS ‘FILLING AND EMPTYING’ BEHAVIOUR

VOLUTE LENGTH DISPLAYS WAVE ACTION

UNSTEADY MASS FLOW OF TURBINE STAGE

BEHAVIOUR IS NOT QUASI-STEADY

Page 22: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

Turbine Modelling Options

Page 23: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

1-D turbine Model vs. Experiment

Experimental testing schematic diagram 1-D turbine model schematic diagram

• Volute modelled as series of “pipes” with finite length & volume. • Quasi-steady pressure loss boundary to represent the flow restriction due to the

rotor.

Page 24: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

Instantaneous mass flow rate:

1-D turbine Model vs. Experiment

Page 25: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

Modelling unsteady effects in 1D

Swallowing capacity:

1-D turbine Model vs. Experiment

Page 26: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

Modelling unsteady effects in 1D

Integration with Mean Line Model

1-D turbine Model vs. Experiment

Page 27: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

Modelling unsteady effects in 1D

Unsteady power:

1-D turbine Model vs. Experiment

Integration with Mean Line Model

Page 28: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

Modelling unsteady effects in 1D

Unsteady efficiency:

1-D turbine Model vs. Experiment

Integration with Mean Line Model

Page 29: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

INSTANTANEOUS EFFICIENCY DIFFICULT TO DEFINE ACCURATELY AVERAGED OVER A CYCLE, MEASURED UNSTEADY EFFICIENCY DEPARTS FROM THE QUASI-STEADY PREDICTION

UNSTEADY PULSE FLOW PERFORMANCE CANNOT BE

ASSUMED TO BE QUASI-STEADY

Page 30: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

ATTEMPTS TO IMPROVE TURBINE PERFORMANCE UNDER PULSATING FLOW

ONE IDEA

ACTIVE / PASSIVE CONTROL TURBINE

Page 31: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

Operation

tsp PPTcmW η

γγ

−=

−1

01

201 1

20 – 60 Hz pulse Frequency

Concepts

Page 32: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

Experiment

Internal Spring Stiffness = 12.3 N/mm

Picture of the Laboratory Arrangement

x∆

Page 33: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

-10

0

10

20

30

40

50

60

Turb

ine

Act

ual P

ower

(kW

)

One Pulse Cycle (~0.05s)

Case 1-20Case 2-20Case 3-20

A

B

-10

0

10

20

30

40

50

60Tu

rbin

e A

ctua

l Pow

er (k

W)

One Pulse Cycle (~0.05s)

Case 1-20Case 2-20Case 3-20

20 Hz Flow, N turbine ~ 30000 , Natural Oscillation

Results

20Hz Pulsation and ~30000rpm

Settings Cycle Average Power (kW)

Average Power (kW) A

Average Power (kW) B

Case 1 8.91 23.55 1.89

Case 2 8.62 21.83 2.24

Case 3 8.43 18.36 3.64

70deg 8.34 18.47 3.62

65deg 8.39 19.91 2.98

60deg 8.27 21.34 2.05

50deg 8.19 21.98 1.54

40deg 8.22 22.41 1.45

Case 1 8.91 23.55 1.89

Cycle Average Power in Case 1-20 is 6.2% higher than 65deg vane setting.

Page 34: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group

ACT SIMULATION

ACT bsfc 210.1g/kWh at amplitude 0.2 and phase shift ~70° 2.1g/kWh improvement over the standard VGT =2% bsfc improvement

bsfc

Page 35: Pulsating Flow Impact on Turbocharger Turbines · PDF filePulsating Flow Impact on Turbocharger Turbines Ricardo Martinez -Botas . Srithar Rajoo. Turbocharger Research Group