6
Journal of Cell Science PTEN at a glance Yuji Shi 1 , Benjamin E. Paluch 2 , Xinjiang Wang 2 and Xuejun Jiang 1, * 1 Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA 2 Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA *Author for correspondence ([email protected]) Journal of Cell Science 125, 4687–4692 ß 2012. Published by The Company of Biologists Ltd doi: 10.1242/jcs.093765 Since its discovery in 1997 (Li and Sun, 1997; Li et al., 1997; Steck et al., 1997), the phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P 3 ] phosphatase and tensin homolog (PTEN) has been established as one of the most frequently mutated tumor suppressor genes in human cancer. PTEN is a phosphatase that catalyzes the conversion of the lipid second messenger PtdIns (3,4,5)P 3 to phosphatidylinositol (4,5)- bisphosphate [PtdIns(4,5)P 2 ] (Maehama and Dixon, 1998). As such, PTEN functions as a main regulator of the cellular PtdIns(3,4,5)P 3 concentration to antagonize the signaling cascades downstream of receptor tyrosine kinases (RTKs) and phosphatidylinositol-3-kinase (PI3K). Interestingly, PTEN might also possess protein phosphatase activity, and several potential protein substrates have been reported (Gu et al., 1999; Mahimainathan and Choudhury, 2004; Raftopoulou et al., 2004; Tamura et al., 1998). PTEN contains multiple domains, including an N-terminal phosphatase domain, a central C2 domain and a C- terminal tail. The phosphatase and C2 domains form a minimal enzymatic unit that is sufficient for metabolizing PtdIns(3,4,5)P 3 . The C-terminal tail is a long flexible fragment that is mainly involved in PTEN regulation. Despite having initially been discovered as a tumor suppressor, PTEN has attracted great interest from various research fields because of its diverse physiological functions. The functional diversity of PTEN demands a collection of delicate regulatory mechanisms, including transcriptional and post- translational regulation in a tissue- and context-dependent manner. This Cell Science at a Glance article summarizes the diversity of PTEN functions, and the mechanisms that underlie the regulation of PTEN expression, its enzymatic activity and subcellular localization. (See poster insert) Cell Science at a Glance 4687

PTEN at a glance - Home | Journal of Cell ScienceAKT (also known as protein kinase B) activation.BecauseAKTactivationrequires PtdIns(3,4,5)P 3, dephosphorylation of this ... 4688 Journal

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Journ

    alof

    Cell

    Scie

    nce

    PTEN at a glance

    Yuji Shi1, Benjamin E. Paluch2,Xinjiang Wang2 and XuejunJiang1,*1Cell Biology Program, Memorial Sloan-KetteringCancer Center, 1275 York Avenue, New York,NY 10065, USA2Department of Pharmacology and Therapeutics,Roswell Park Cancer Institute, Elm and CarltonStreets, Buffalo, NY 14263, USA

    *Author for correspondence ([email protected])

    Journal of Cell Science 125, 4687–4692� 2012. Published by The Company of Biologists Ltddoi: 10.1242/jcs.093765

    Since its discovery in 1997 (Li and Sun,1997; Li et al., 1997; Steck et al., 1997), the

    phosphatidylinositol (3,4,5)-trisphosphate[PtdIns(3,4,5)P3] phosphatase and tensinhomolog (PTEN) has been established as

    one of the most frequently mutated tumor

    suppressor genes in human cancer. PTEN is

    a phosphatase that catalyzes the conversion

    of the lipid second messenger PtdIns

    (3,4,5)P3 to phosphatidylinositol (4,5)-

    bisphosphate [PtdIns(4,5)P2] (Maehama

    and Dixon, 1998). As such, PTEN

    functions as a main regulator of the

    cellular PtdIns(3,4,5)P3 concentration to

    antagonize the signaling cascades

    downstream of receptor tyrosine kinases

    (RTKs) and phosphatidylinositol-3-kinase

    (PI3K). Interestingly, PTEN might also

    possess protein phosphatase activity, and

    several potential protein substrates have

    been reported (Gu et al., 1999;

    Mahimainathan and Choudhury, 2004;

    Raftopoulou et al., 2004; Tamura et al., 1998).

    PTEN contains multiple domains,

    including an N-terminal phosphatase

    domain, a central C2 domain and a C-

    terminal tail. The phosphatase and C2

    domains form a minimal enzymatic unit that

    is sufficient for metabolizing PtdIns(3,4,5)P3.

    The C-terminal tail is a long flexible fragment

    that is mainly involved in PTEN regulation.

    Despite having initially been discovered

    as a tumor suppressor, PTEN has attracted

    great interest from various research fields

    because of its diverse physiological functions.

    The functional diversity of PTEN demands a

    collection of delicate regulatory mechanisms,

    including transcriptional and post-

    translational regulation in a tissue- and

    context-dependent manner. This Cell

    Science at a Glance article summarizes the

    diversity of PTEN functions, and the

    mechanisms that underlie the regulation of

    PTEN expression, its enzymatic activity and

    subcellular localization.

    (See poster insert)

    Cell Science at a Glance 4687

    mailto:[email protected]

  • Journ

    alof

    Cell

    Scie

    nce

    PTEN has diverse functions inmammalian cellsPTEN as a tumor suppressor

    PTEN mutations occur frequently in avariety of human cancers, including

    endometrial carcinoma, glioblastomamultiforme, skin and prostate cancers(Chalhoub and Baker, 2009). They include

    a mutational spectrum that is scatteredalong the entire gene and predominantlyrepresent monoallelic mutations. A majorityof PTEN mutations cause truncations of the

    protein. In addition to cancer-associatedsomatic mutations, PTEN is often mutatedin tumor-prone germline diseases.

    Genetic studies in mice have

    unambiguously demonstrated that PTEN isa potent tumor suppressor in almost allorgans. Tissue-specific Pten-knockout

    mice develop tumors in numerous organs(Knobbe et al., 2008; Suzuki et al., 2008).Intriguingly, subtle changes in PTEN gene

    expression, mRNA regulation and proteinsynthesis are sufficient to have a substantialimpact on tumorigenesis, a phenomenonthat is referred to as quasi-insufficiency

    (Carracedo et al., 2011). Furthermore, thenotion of PTEN haploinsufficiency seems toapply to human cancer because monoallelic

    mutation of PTEN without loss or mutationof the second allele is prevalent in breastand prostate cancers (Salmena et al., 2008).

    PTEN is involved in multiple cellularprocesses

    PTEN is involved in regulating manycellular processes. Many of thesefunctions can be attributed to its lipid

    phosphatase activity. For example, PTENregulates cell proliferation and apoptosis.These effects are mediated by suppressing

    AKT (also known as protein kinase B)activation. Because AKT activation requiresPtdIns(3,4,5)P3, dephosphorylation of this

    lipid second messenger by PTEN results ininhibition of AKT and subsequent alterationof the function of AKT substrates, such asforkhead box protein O (FOXO), the E3

    ubiquitin ligase MDM2, and BCL2 antagonistof cell death (BAD) (Tamguney and Stokoe,2007). PTEN has a crucial role in regulating

    the self-renewal and differentiation of humanembryonic stem cells and hematopoietic stemcells as well as the timing of follicle activation

    through the regulation of oocyte growth(Reddy et al., 2008). PTEN also regulatesthe chemotaxis of neutrophils (Heit et al.,

    2008), and all these functions require its lipidphosphatase activity.

    In addition, PTEN can regulate variouscellular events independently of its lipid

    phosphatase activity. For example, it can

    inhibit cell cycle progression by modulatingthe activity of the anaphase-promotingcomplex/cyclosome (APC/C) in the

    nucleus in a manner that is independent ofPTEN enzymatic activity (Song et al.,2011). Furthermore, it can inhibit cellinvasion and migration, probably by

    making use of its protein phosphataseactivity (Tamura et al., 1999). PTEN cancontrol the size of DNA-damaged cells by

    regulating the actin-remodeling process(Kim et al., 2011) through a mechanismthat is likely to be independent of its lipid

    phosphatase activity. Deficiency of anyof these functions can contribute totumorigenesis.

    Transcriptional and post-transcriptional regulation of PTENAs mentioned above, subtle changes in theregulation of gene expression and mRNA

    of PTEN have a substantial impact onthe normal physiology of organisms.Therefore, both are delicately regulated

    through multiple mechanisms (see Poster).

    Transcriptional regulation of PTEN

    The PTEN promoter is regulated by many

    transcription factors that operate at specifictimes and in different cell types.Transcription factors, such as early

    growth response protein (EGR1), tumorprotein 53 (Tp53, also referred to as p53)and peroxisome proliferator-activated

    receptor gamma (PPARG) were reportedto positively regulate PTEN expression(Martelli et al., 2011). PTEN transcriptioncan also be repressed, for example, by the

    polycomb complex protein BMI1 duringepithelial–mesenchymal transition (EMT)of nasopharyngeal epithelial cells, or

    through b-catenin/transcription factor(TCF)-mediated downregulation of EGR1in ovarian cancer cells (Lau et al., 2011;

    Song et al., 2009). Intriguingly, in a tissue-specific manner, Notch signaling mightlead to upregulation of PTEN by inhibitingone of the PTEN downregulators, the

    recombining binding protein suppressorof hairless (RBPJ, also known as andhereafter referred to as CBF-1) (Chappell

    et al., 2005; Whelan et al., 2007) or,conversely, to its downregulation byactivating another PTEN downregulator,

    the transcription factor hairy and enhancerof split 1 (HES1) (Palomero et al., 2007).Furthermore, epigenetic silencing by

    hyper-methylation of the PTEN promoteroccurs in some breast and colorectalcancers, and in gastric carcinoma.

    Post-transcriptional regulation of PTENmRNA

    PTEN mRNA has been reported to besusceptible to post-transcriptional regulation

    by a variety of microRNAs (miRNAs),including miRNA-21, miRNA-22 andmiRNA-26a (Bar and Dikstein, 2010; Huse

    et al., 2009; Meng et al., 2007). ThesemiRNAs can, thus, impact both normalbiological and pathological functions ofPTEN.

    Additional complexity results from the

    regulation of PTEN expression throughnon-coding RNAs, such as the PTENpseudogene PTENP1 mRNA. PTENP1

    genetically resembles PTEN in its proteincoding region. Owing to a mutation in itsinitiator codon PTEN1 mRNA, unlike

    PTENP mRNA, cannot be translated intoa protein. The PTENP1 mRNA is generallysubject to same miRNA-mediated

    regulation and, thus, can function as‘decoy’ that sequesters miRNA-21.Interestingly, in sporadic colon cancer,PTENP1 undergoes a copy number

    loss that is concurrent with PTENdownregulation (Poliseno et al., 2010).Similarly, zinc finger E-box-binding

    homeobox 2 (ZEB2), which encodesanother endogenous RNA, has beenreported to serve as an miRNA decoy for

    the PTEN mRNA, and loss of ZEB2 mRNAcontributes to melanomagenesis (Karrethet al., 2011). However, it is important tobear in mind that only 25% of cancer

    patients portray a correlation between theloss of PTEN protein and its mRNA level(Chen et al., 2011), which emphasizes the

    importance of PTEN regulation at the post-transcriptional and post-translational levels.

    Post-translational modification ofPTENPTEN is subject to various post-translational modifications that regulateits enzymatic activity, interaction with

    other proteins and subcellular localization(see Poster).

    Phosphorylation

    The first phosphorylation sites mapped onPTEN were a cluster of serine and threonine

    residues in its C-terminal tail (Vazquezet al., 2000). Mutation of these residues toalanine leads to elevated membrane affinity,

    higher enzymatic activity and more-rapiddegradation of PTEN. When these residuesare phosphorylated, the C-terminal tail can

    interact with the N-terminal C2 andphosphatase domains (Odriozola et al.,2007; Rahdar et al., 2009), which suggests

    Journal of Cell Science 125 (20)4688

  • Journ

    alof

    Cell

    Scie

    nce

    that phosphorylation of the C-terminal tail

    functions as an auto-inhibitory mechanism

    that controls both PTEN membrane

    recruitment and its lipid phosphatase

    activity.

    Several kinases have been reported to

    phosphorylate PTEN. Casein kinase 2

    (CK2) mainly phosphorylates Ser370 and

    Ser385 (Torres and Pulido, 2001), whereas

    glycogen synthase kinase 3 b (GSK3B)targets Ser362 and Thr366 (Al-Khouri

    et al., 2005). In contrast to the function

    of C-terminal tail phosphorylation, it

    seems that Thr366 phosphorylation can

    promote PTEN degradation (Maccario

    et al., 2007). Additionally, glioma tumor

    suppressor candidate region 2 (GLTSCR2,

    also known as PICT-1) has been shown

    to interact with PTEN, enhance its

    phosphorylation at Ser380 and stabilize

    the phosphatase (Okahara et al., 2006; Yim

    et al., 2007). Moreover, RhoA-associated

    kinase (ROCK) has been shown to

    phosphorylate PTEN at Ser229, Thr232,

    Thr319 and Thr321, which are all located

    in the C2 domain and promote membrane

    targeting of PTEN in chemoattractant-

    stimulated leukocytes (Li et al., 2005).

    Recently, a Src family tyrosine kinase, the

    fyn-related kinase (FRK, also known and

    hereafter referred to as RAK) has been

    reported to interact with PTEN and

    phosphorylate it on Tyr336, thereby

    protecting PTEN from proteasomal

    degradation mediated by neural precursor cell

    expressed, developmentally downregulated-4

    (NEDD4) (Yim et al., 2009).

    Acetylation

    Similar to phosphorylation, acetylation can

    also regulate PTEN activity. The histone

    acetyltransferase K(lysine) acetyltransferase

    2B (KAT2B, also known and hereafter

    referred to as PCAF) has been reported to

    interact with PTEN and promote PTEN

    acetylation on Lys125 and Lys128 in

    response to growth factor stimulation

    (Okumura et al., 2006). As these residues

    are within the catalytic pocket, PTEN

    acetylation by PCAF negatively regulates

    its enzymatic activity. PTEN is also

    acetylated on Lys402, which is located

    within the C-terminal PDZ-domain-binding

    motif Thr-Lys-Val sequence. This,

    potentially, affects the interaction between

    PTEN and PDZ-domain-containing proteins

    (Ikenoue et al., 2008). CREB-binding

    protein (CREBBP, also known and

    hereafter referred to as CBP) and the sirtuin

    SIRT1 have been identified as the main

    PTEN acetyltransferase and deacetylase,respectively.

    Oxidation

    Another mechanism that can potentially

    regulate the catalytic activity of PTEN isdirect oxidation by reactive oxygen species(ROS). ROS can oxidize Cys124 in

    the active site, thereby forming anintramolecular disulfide bond with Cys71(Lee et al., 2002). Oxidative inactivation ofPTEN has been reported in studies

    describing the use of hydrogen peroxideor endogenous ROS production inmacrophages (Kwon et al., 2004; Leslie

    et al., 2003). PTEN activity can also beindirectly inhibited by oxidation throughmodulation of PTEN-binding partners.

    Oxidation of the antioxidant PARK7 (alsoknown as DJ-1) leads to binding to PTENand the subsequent inhibition of the PTEN

    lipid phosphatase activity (Kim et al.,2009).

    S-nitrosylation

    A few studies have demonstrated theimportance of another redox mechanism,

    S-nitrosylation, in the regulation of PTEN.The level of S-nitrosylation on PTENsubstantially increases in the early stages

    of Alzheimer disease, and this correlateswith reduced PTEN protein levels andelevated AKT phosphorylation (Kwak

    et al., 2010a). Nitric oxide (NO) signalinginduces PTEN S-nitrosylation, therebyinactivating the lipid phosphatase,downregulating its protein level through

    NEDD4-mediated degradation and leadingto downstream activation of AKT. Anotherreport has shown that PTEN is selectively

    S-nitrosylated on Cys83 by lowconcentrations of NO (Numajiri et al.,2011). Moreover, S-nitrosylated PTEN has

    been detected in the core and penumbraregions of ischemic mouse brains. S-nitrosylation and downregulation of PTEN

    activity in this region are likely to actas protective mechanisms through AKTactivation.

    Ubiquitylation

    Using a biochemical purification approach,

    NEDD4 was identified as an E3 ligase thatubiquitylates PTEN (Wang et al., 2007).NEDD4 physically interacts with PTEN and

    its overexpression leads to both mono- andpolyubiquitylation of PTEN. Interestingly,monoubiquitylation of PTEN appears to be

    crucial for its nuclear import (Trotman et al.,2007). Consistent with the function of thePTEN C-terminal tail in regulating its

    stability, deletion of this region makes

    PTEN a stronger binding partner and

    better substrate for NEDD4 (Wang et al.,

    2008).

    Two other E3 ligases have been reported

    to target PTEN, X-linked inhibitor of

    apoptosis protein (XIAP) (Van Themsche

    et al., 2009) and WWP2, a NEDD4-like

    protein family member (Maddika et al.,

    2011). Although the physiological

    relevance of these E3 ligases with regards

    to PTEN function has not yet been defined,

    it is possible that PTEN is regulated

    by multiple E3 ligases, depending on

    the context or special physiological

    circumstances.

    However, in most experimental systems,

    PTEN appears to be a rather stable protein.

    Thus, what is the biological relevance

    of PTEN regulation through ubiquitin-

    mediated proteasomal degradation? It

    appears that NEDD4 regulates PTEN in a

    context-dependent manner to achieve

    specific functions. For example, NEDD4

    is required for neuronal axonal branching in

    retinal ganglion cells (RGCs) and mainly

    functions through downregulating PTEN

    (Drinjakovic et al., 2010). Blocking

    NEDD4 function severely inhibits terminal

    branching in RGCs, whereas PTEN

    knockdown rescues the branching

    deficiency. Also, NEDD4-mediated PTEN

    ubiquitylation is essential in the regulataion

    of PI3K-AKT signaling for neuronal

    survival in response to Zn2+ (Kwak et al.,

    2010b). Furthermore, in cultured neuronal

    models, NO signaling not only induces

    PTEN S-nitrosylation but also results

    in enhanced PTEN protein degradation

    through NEDD4-mediated ubiquitylation

    (Kwak et al., 2010a).

    Interestingly, several cellular proteins

    have been reported to modulate the

    association between NEDD4 and PTEN,

    which might provide mechanistic insights

    into the context-dependent regulation

    of PTEN by NEDD4. In breast

    cancer cells, the tyrosine kinase RAK

    positively regulates PTEN stability by

    phosphorylating PTEN on Tyr336. This

    prevents PTEN from binding to NEDD4

    and its subsequent degradation (Yim et al.,

    2009). Recently, the PY (Pro-Pro-x-Tyr)-

    motif-containing membrane proteins

    NEDD4-family-interacting proteins 1 and

    2 (NDFIP 1 and 2, respectively), which are

    potent activators of NEDD4 family

    members, have been shown to promote

    NEDD4-mediated ubiquitylation and, thus,

    promote degradation and nuclear import of

    Journal of Cell Science 125 (20) 4689

  • Journ

    alof

    Cell

    Scie

    nce

    PTEN (Howitt et al., 2012; Mund and

    Pelham, 2010).

    PTEN regulation by its interactingproteinsThe enzymatic activity and the biological

    effects of PTEN are often regulated by its

    interaction with other proteins. The lipid

    phosphatase activity of PTEN can be

    stimulated by binding to p85, the regulatory

    subunit of PI3K (Chagpar et al., 2010). By

    contrast, the binding of shank-interacting

    protein-like 1 (SIPL1) or PtdIns(3,4,5)P3–

    RAC-exchanger 2 (PREX2) to PTEN inhibits

    its lipid phosphatase activity, thereby

    promoting signaling through the PI3K

    pathway (Fine et al., 2009; He et al., 2010).

    Binding of the scaffold protein

    b-arrestin to PTEN controls the outputof distinct PTEN signals during cell

    proliferation and migration; binding of

    b-arrestin to PTEN normally activatesthe lipid phosphatase activity and inhibits

    cell proliferation. However, following the

    activation of RhoA as a result of wounding,

    b-arrestin inhibits the lipid phosphatase-independent anti-migratory function of

    PTEN. In addition, the binding of several

    proteins to PTEN can regulate its stability

    (Lima-Fernandes et al., 2011). These proteins

    include membrane-associated guanylate kinase

    inverted 3 (MAGI), GLTSCR2, NDFIP1

    and RAK, whose binding affects PTEN

    phosphorylation status, complex recruitment

    or NEDD4-mediated ubiquitylation.

    Distinct subpopulations of PTENThe fact that the majority of cellular PTEN is

    found in the cytosol raises important

    questions, such as how PTEN is able to

    execute different cellular functions that often

    require its membranous lipid phosphatase

    activity. Accumulating evidence has

    suggested that a small subpopulation of

    cellular PTEN is sufficient for each specific

    biological function. A PTEN subpopulation

    can be defined by either specific post-

    translational modification(s) or its interaction

    with a particular associating factor. It

    should be emphasized that a functional

    subpopulation of PTEN might only

    represent a small portion of total cellular

    PTEN, thus it might evade evaluation when

    employing the approaches that are commonly

    used to monitor total cellular PTEN.

    Regulation of the membrane-associated

    PTEN subpopulation

    A subpopulation of PTEN is responsible for

    its lipid phosphatase activity at the plasma

    membrane. A study describing the use ofsingle-molecule microscopy in living cells

    has shown that the interaction of PTEN withthe plasma membrane is a dynamic process(Vazquez et al., 2006). PTEN binds tothe membrane for only a few hundred

    milliseconds, and this time period issufficient to hydrolyze PtdIns(3,4,5)P3. Theinteraction of PTEN with the membrane

    requires the N-terminal lipid-binding motif.Membrane interaction is negatively regulatedby C-terminal tail phosphorylation, which

    appears to constrain PTEN in a closedconformation and to limit its associationwith the membrane. Another study hasdemonstrated that phosphorylation of the C-

    terminal tail regulates an intra-molecularinteraction between the phosphatase and C2domains. This determines the percentage of

    PTEN that is associated with the membraneas well as the resulting PtdIns(3,4,5)P3levels (Rahdar et al., 2009). Interestingly,

    plasma membrane targeting of PTENgreatly enhances PTEN ubiquitylationthrough NEDD4, and both mono- and

    polyubiquitylation substantially inhibit PTENphosphatase activity in vitro, even inthe absence of proteasomal degradation(Maccario et al., 2010).

    The nuclear PTEN subpopulation

    Interestingly, PTEN also localizes into the

    nucleus, and loss of PTEN nuclearlocalization has been shown to correlatewith cancer progression in certain tissues

    (Song et al., 2008; Trotman et al., 2007).The nuclear subpopulation of PTEN iscontrolled by the dynamic regulation of itsubiquitylation, i.e. through NEDD4-

    mediated monoubiquitylation anddeubiquitylation mediated through thenetwork of ubiquitin carboxyl-terminal

    hydrolase 7 (USP7, also known asHAUSP) and PML (Song et al., 2008;Trotman et al., 2007).

    The nuclear subpopulation of PTENclearly has non-canonical functions(Lindsay et al., 2006). Earlier studieshave shown that PTEN regulates p53

    protein stability in both phosphatase-dependent and -independent manners (Liet al., 2006). A recent study has shown that

    genotoxic stress enhances the interactionbetween PTEN and the p53 family memberp73 in the nucleus. This facilitates the

    binding of p73 to apoptotic promoters andinduces the expression of p53-upregulatedmodulator of apoptosis (PUMA, also

    known as BBC3) and the apoptosisregulator BAX (Lehman et al., 2011).Nuclear PTEN has also been suggested to

    maintain chromosomal integrity through

    the physical interaction with centromere

    protein C 1 (CENPC1), which is an

    integral part of the kinetochore (Shen

    et al., 2007). Whether this function

    requires the lipid phosphatase activity of

    PTEN is under debate. More recently,

    nuclear PTEN has been found to interact

    with the anaphase-promoting complex/

    cyclosome (APC/C), an E3 ubiquitin

    ligase that promotes cell cycle

    progression by degrading components of

    the cell cycle machinery. Nuclear PTEN

    increases APC/C activity by enhancing

    the association between APC/C and its

    cofactor, CDH1 (also known as FZR1).

    This role of nuclear PTEN has been shown

    to be important for PTEN-mediated tumor

    suppression (Song et al., 2011).

    Conclusions and perspectives

    The function of PTEN as a tumor suppressor

    has been well established over the past

    decade. Recent studies have revealed more

    unexpected – particularly lipid-phosphatase-

    independent – roles of PTEN in both cancer

    biology and normal physiology. PTEN

    activity is tightly regulated by various

    mechanisms on the transcriptional,

    translational and post-translational levels.

    Accumulating evidence suggests that PTEN

    can exert diverse physiological and

    pathological functions through its context-

    specific regulation. Furthermore, a highly

    regulated and dynamic subpopulation of

    cellular PTEN might be required

    specifically for a given contextual function

    of PTEN. In summary, to understand the

    molecular basis of contextual regulation

    of PTEN is crucial in order to understand

    the biological function of PTEN and,

    subsequently, to develop appropriate

    approaches to therapeutically target PTEN

    signaling.

    Funding

    The work in X.J.’s laboratory that is related to

    this article is supported by a Geoffrey Beene

    Cancer Research fund, an American Cancer

    Society scholar award [grant number RSG-

    07-081-01-MGO] and the National Institutes

    of Health [grant numbers R01CA113890 and

    T32CA009072]. Deposited in PMC for

    release after 6 months.

    A high-resolution version of the poster is available for

    downloading in the online version of this article at

    jcs.biologists.org. Individual poster panels are available

    as JPEG files at http://jcs.biologists.org/lookup/suppl/

    doi:10.1242/jcs.093765/-/DC1.

    Journal of Cell Science 125 (20)4690

    http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.093765/-/DC1http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.093765/-/DC1

  • Journ

    alof

    Cell

    Scie

    nce

    ReferencesAl-Khouri, A. M., Ma, Y., Togo, S. H., Williams, S. andMustelin, T. (2005). Cooperative phosphorylation of thetumor suppressor phosphatase and tensin homologue(PTEN) by casein kinases and glycogen synthase kinase3beta. J. Biol. Chem. 280, 35195-35202.

    Bar, N. and Dikstein, R. (2010). miR-22 forms aregulatory loop in PTEN/AKT pathway and modulatessignaling kinetics. PLoS ONE 5, e10859.

    Carracedo, A., Alimonti, A. and Pandolfi, P. P. (2011).PTEN level in tumor suppression: how much is too little?Cancer Res. 71, 629-633.

    Chagpar, R. B., Links, P. H., Pastor, M. C., Furber,

    L. A., Hawrysh, A. D., Chamberlain, M. D. andAnderson, D. H. (2010). Direct positive regulation ofPTEN by the p85 subunit of phosphatidylinositol 3-kinase.Proc. Natl. Acad. Sci. USA 107, 5471-5476.

    Chalhoub, N. and Baker, S. J. (2009). PTEN and thePI3-kinase pathway in cancer. Annu. Rev. Pathol. 4, 127-150.

    Chappell, W. H., Green, T. D., Spengeman, J. D.,McCubrey, J. A., Akula, S. M. and Bertrand, F. E.

    (2005). Increased protein expression of the PTEN tumorsuppressor in the presence of constitutively active Notch-1. Cell Cycle, 4, 1389-1395.

    Chen, M., Pratt, C. P., Zeeman, M. E., Schultz, N.,

    Taylor, B. S., O’Neill, A., Castillo-Martin, M., Nowak,D. G., Naguib, A., Grace, D. M. et al. (2011).Identification of PHLPP1 as a tumor suppressor revealsthe role of feedback activation in PTEN-mutant prostatecancer progression. Cancer Cell 20, 173-186.

    Drinjakovic, J., Jung, H., Campbell, D. S., Strochlic,L., Dwivedy, A. and Holt, C. E. (2010). E3 ligase Nedd4promotes axon branching by downregulating PTEN.Neuron 65, 341-357.

    Fine, B., Hodakoski, C., Koujak, S., Su, T., Saal, L. H.,Maurer, M., Hopkins, B., Keniry, M., Sulis, M. L.,

    Mense, S. et al. (2009). Activation of the PI3K pathway incancer through inhibition of PTEN by exchange factorP-REX2a. Science 325, 1261-1265.

    Gu, J., Tamura, M., Pankov, R., Danen, E. H., Takino,

    T., Matsumoto, K. and Yamada, K. M. (1999). Shc andFAK differentially regulate cell motility and directionalitymodulated by PTEN. J. Cell Biol. 146, 389-404.

    He, L., Ingram, A., Rybak, A. P. and Tang, D. (2010).Shank-interacting protein-like 1 promotes tumorigenesisvia PTEN inhibition in human tumor cells. J. Clin. Invest.120, 2094-2108.

    Heit, B., Robbins, S. M., Downey, C. M., Guan, Z.,

    Colarusso, P., Miller, B. J., Jirik, F. R. and Kubes, P.

    (2008). PTEN functions to ‘prioritize’ chemotactic cuesand prevent ‘distraction’ in migrating neutrophils. Nat.Immunol. 9, 743-752.

    Howitt, J., Lackovic, J., Low, L. H., Naguib, A.,Macintyre, A., Goh, C. P., Callaway, J. K., Hammond,

    V., Thomas, T., Dixon, M. et al. (2012). Ndfip1 regulatesnuclear Pten import in vivo to promote neuronal survivalfollowing cerebral ischemia. J. Cell Biol. 196, 29-36.

    Huse, J. T., Brennan, C., Hambardzumyan, D., Wee,

    B., Pena, J., Rouhanifard, S. H., Sohn-Lee, C., le Sage,C., Agami, R., Tuschl, T. et al. (2009). The PTEN-regulating microRNA miR-26a is amplified in high-gradeglioma and facilitates gliomagenesis in vivo. Genes Dev.23, 1327-1337.

    Ikenoue, T., Inoki, K., Zhao, B. and Guan, K. L. (2008).PTEN acetylation modulates its interaction with PDZdomain. Cancer Res. 68, 6908-6912.

    Karreth, F. A., Tay, Y., Perna, D., Ala, U., Tan, S. M.,

    Rust, A. G., DeNicola, G., Webster, K. A., Weiss, D.,Perez-Mancera, P. A. et al. (2011). In vivo identificationof tumor- suppressive PTEN ceRNAs in an oncogenicBRAF-induced mouse model of melanoma. Cell 147, 382-395.

    Kim, J. S., Xu, X., Li, H., Solomon, D., Lane, W. S., Jin,

    T. and Waldman, T. (2011). Mechanistic analysis of aDNA damage-induced, PTEN-dependent size checkpointin human cells. Mol. Cell. Biol. 31, 2756-2771.

    Kim, Y. C., Kitaura, H., Taira, T., Iguchi-Ariga, S. M.and Ariga, H. (2009). Oxidation of DJ-1-dependent celltransformation through direct binding of DJ-1 to PTEN.Int. J. Oncol. 35, 1331-1341.

    Knobbe, C. B., Lapin, V., Suzuki, A. and Mak, T. W.(2008). The roles of PTEN in development, physiology

    and tumorigenesis in mouse models: a tissue-by-tissuesurvey. Oncogene 27, 5398-5415.

    Kwak, Y. D., Ma, T., Diao, S., Zhang, X., Chen, Y.,Hsu, J., Lipton, S. A., Masliah, E., Xu, H. and

    Liao, F. F. (2010a). NO signaling and S-nitrosylationregulate PTEN inhibition in neurodegeneration. Mol.Neurodegener. 5, 49.

    Kwak, Y. D., Wang, B., Pan, W., Xu, H., Jiang, X. and

    Liao, F. F. (2010b). Functional interaction of phosphataseand tensin homologue (PTEN) with the E3 ligase NEDD4-1 during neuronal response to zinc. J. Biol. Chem. 285,9847-9857.

    Kwon, J., Lee, S. R., Yang, K. S., Ahn, Y., Kim, Y. J.,

    Stadtman, E. R. and Rhee, S. G. (2004). Reversibleoxidation and inactivation of the tumor suppressor PTENin cells stimulated with peptide growth factors. Proc. Natl.Acad. Sci. USA 101, 16419-16424.

    Lau, M. T., Klausen, C. and Leung, P. C. (2011).E-cadherin inhibits tumor cell growth by suppressingPI3K/Akt signaling via b-catenin-Egr1-mediated PTENexpression. Oncogene 30, 2753-2766.

    Lee, S. R., Yang, K. S., Kwon, J., Lee, C., Jeong,

    W. and Rhee, S. G. (2002). Reversible inactivation of thetumor suppressor PTEN by H2O2. J. Biol. Chem. 277,20336-20342.

    Lehman, J. A., Waning, D. L., Batuello, C. N.,

    Cipriano, R., Kadakia, M. P. and Mayo, L. D. (2011).Induction of apoptotic genes by a p73-phosphatase andtensin homolog (p73-PTEN) protein complex in responseto genotoxic stress. J. Biol. Chem. 286, 36631-36640.

    Leslie, N. R., Bennett, D., Lindsay, Y. E., Stewart, H.,Gray, A. and Downes, C. P. (2003). Redox regulation ofPI 3-kinase signalling via inactivation of PTEN. EMBO J.22, 5501-5510.

    Li, A. G., Piluso, L. G., Cai, X., Wei, G., Sellers, W. R.and Liu, X. (2006). Mechanistic insights intomaintenance of high p53 acetylation by PTEN. Mol.Cell 23, 575-587.

    Li, D. M. and Sun, H. (1997). TEP1, encoded by acandidate tumor suppressor locus, is a novel proteintyrosine phosphatase regulated by transforming growthfactor beta. Cancer Res. 57, 2124-2129.

    Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S.,

    Wang, S. I., Puc, J., Miliaresis, C., Rodgers, L.,

    McCombie, R. et al. (1997). PTEN, a putative proteintyrosine phosphatase gene mutated in human brain, breast,and prostate cancer. Science 275, 1943-1947.

    Li, Z., Dong, X., Wang, Z., Liu, W., Deng, N., Ding, Y.,

    Tang, L., Hla, T., Zeng, R., Li, L. et al. (2005).Regulation of PTEN by Rho small GTPases. Nat. CellBiol. 7, 399-404.

    Lima-Fernandes, E., Enslen, H., Camand, E.,Kotelevets, L., Boularan, C., Achour, L., Benmerah,

    A., Gibson, L. C., Baillie, G. S., Pitcher, J. A. et al.

    (2011). Distinct functional outputs of PTEN signalling arecontrolled by dynamic association with b-arrestins. EMBOJ. 30, 2557-2568.

    Lindsay, Y., McCoull, D., Davidson, L., Leslie, N. R.,

    Fairservice, A., Gray, A., Lucocq, J. and Downes, C. P.(2006). Localization of agonist-sensitive PtdIns(3,4,5)P3reveals a nuclear pool that is insensitive to PTENexpression. J. Cell Sci. 119, 5160-5168.

    Maccario, H., Perera, N. M., Davidson, L., Downes,C. P. and Leslie, N. R. (2007). PTEN is destabilized byphosphorylation on Thr366. Biochem. J. 405, 439-444.

    Maccario, H., Perera, N. M., Gray, A., Downes, C. P.and Leslie, N. R. (2010). Ubiquitination of PTEN(phosphatase and tensin homolog) inhibits phosphataseactivity and is enhanced by membrane targeting andhyperosmotic stress. J. Biol. Chem. 285, 12620-12628.

    Maddika, S., Kavela, S., Rani, N., Palicharla, V. R.,

    Pokorny, J. L., Sarkaria, J. N. and Chen, J. (2011).WWP2 is an E3 ubiquitin ligase for PTEN. Nat. Cell Biol.13, 728-733.

    Maehama, T. and Dixon, J. E. (1998). The tumorsuppressor, PTEN/MMAC1, dephosphorylates thelipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375-13378.

    Mahimainathan, L. and Choudhury, G. G. (2004).Inactivation of platelet-derived growth factor receptor bythe tumor suppressor PTEN provides a novel mechanismof action of the phosphatase. J. Biol. Chem. 279, 15258-15268.

    Martelli, A. M., Evangelisti, C., Chappell, W., Abrams,

    S. L., Bäsecke, J., Stivala, F., Donia, M., Fagone, P.,

    Nicoletti, F., Libra, M. et al. (2011). Targeting thetranslational apparatus to improve leukemia therapy: rolesof the PI3K/PTEN/Akt/mTOR pathway. Leukemia 25,1064-1079.

    Meng, F., Henson, R., Wehbe-Janek, H., Ghoshal, K.,

    Jacob, S. T. and Patel, T. (2007). MicroRNA-21regulates expression of the PTEN tumor suppressor genein human hepatocellular cancer. Gastroenterology 133,647-658.

    Mund, T. and Pelham, H. R. (2010). Regulation ofPTEN/Akt and MAP kinase signaling pathways by theubiquitin ligase activators Ndfip1 and Ndfip2. Proc. Natl.Acad. Sci. USA 107, 11429-11434.

    Numajiri, N., Takasawa, K., Nishiya, T., Tanaka, H.,

    Ohno, K., Hayakawa, W., Asada, M., Matsuda, H.,

    Azumi, K., Kamata, H. et al. (2011). On-off system forPI3-kinase-Akt signaling through S-nitrosylation ofphosphatase with sequence homology to tensin (PTEN).Proc. Natl. Acad. Sci. USA 108, 10349-10354.

    Odriozola, L., Singh, G., Hoang, T. and Chan, A. M.

    (2007). Regulation of PTEN activity by its carboxyl-terminal autoinhibitory domain. J. Biol. Chem. 282,23306-23315.

    Okahara, F., Itoh, K., Nakagawara, A., Murakami, M.,

    Kanaho, Y. and Maehama, T. (2006). Critical roleof PICT-1, a tumor suppressor candidate, inphosphatidylinositol 3,4,5-trisphosphate signals andtumorigenic transformation. Mol. Biol. Cell 17, 4888-4895.

    Okumura, K., Mendoza, M., Bachoo, R. M., DePinho,

    R. A., Cavenee, W. K. and Furnari, F. B. (2006). PCAFmodulates PTEN activity. J. Biol. Chem. 281, 26562-26568.

    Palomero, T., Sulis, M. L., Cortina, M., Real, P. J.,

    Barnes, K., Ciofani, M., Caparros, E., Buteau, J.,

    Brown, K., Perkins, S. L. et al. (2007). Mutational loss ofPTEN induces resistance to NOTCH1 inhibition in T-cellleukemia. Nat. Med. 13, 1203-1210.

    Poliseno, L., Salmena, L., Zhang, J., Carver, B.,

    Haveman, W. J. and Pandolfi, P. P. (2010). A coding-independent function of gene and pseudogene mRNAsregulates tumour biology. Nature 465, 1033-1038.

    Raftopoulou, M., Etienne-Manneville, S., Self, A.,Nicholls, S. and Hall, A. (2004). Regulation of cellmigration by the C2 domain of the tumor suppressorPTEN. Science 303, 1179-1181.

    Rahdar, M., Inoue, T., Meyer, T., Zhang, J., Vazquez,

    F. and Devreotes, P. N. (2009). A phosphorylation-dependent intramolecular interaction regulates themembrane association and activity of the tumorsuppressor PTEN. Proc. Natl. Acad. Sci. USA 106, 480-485.

    Reddy, P., Liu, L., Adhikari, D., Jagarlamudi, K.,

    Rajareddy, S., Shen, Y., Du, C., Tang, W., Hämäläinen,T., Peng, S. L. et al. (2008). Oocyte-specific deletion ofPten causes premature activation of the primordial folliclepool. Science 319, 611-613.

    Salmena, L., Carracedo, A. and Pandolfi, P. P. (2008).Tenets of PTEN tumor suppression. Cell 133, 403-414.

    Shen, W. H., Balajee, A. S., Wang, J., Wu, H., Eng, C.,

    Pandolfi, P. P. and Yin, Y. (2007). Essential role fornuclear PTEN in maintaining chromosomal integrity. Cell128, 157-170.

    Song, L. B., Li, J., Liao, W. T., Feng, Y., Yu, C. P., Hu,

    L. J., Kong, Q. L., Xu, L. H., Zhang, X., Liu, W. L. et al.

    (2009). The polycomb group protein Bmi-1 represses thetumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngealepithelial cells. J. Clin. Invest. 119, 3626-3636.

    Song, M. S., Salmena, L., Carracedo, A., Egia, A., Lo-

    Coco, F., Teruya-Feldstein, J. and Pandolfi, P. P.

    (2008). The deubiquitinylation and localization of PTENare regulated by a HAUSP-PML network. Nature 455,813-817.

    Song, M. S., Carracedo, A., Salmena, L., Song, S. J.,

    Egia, A., Malumbres, M. and Pandolfi, P. P. (2011).Nuclear PTEN regulates the APC-CDH1 tumor-suppressive complex in a phosphatase-independentmanner. Cell 144, 187-199.

    Steck, P. A., Pershouse, M. A., Jasser, S. A., Yung,

    W. K., Lin, H., Ligon, A. H., Langford, L. A.,

    Baumgard, M. L., Hattier, T., Davis, T. et al. (1997).

    Journal of Cell Science 125 (20) 4691

    http://dx.doi.org/10.1074/jbc.M503045200http://dx.doi.org/10.1074/jbc.M503045200http://dx.doi.org/10.1074/jbc.M503045200http://dx.doi.org/10.1074/jbc.M503045200http://dx.doi.org/10.1074/jbc.M503045200http://dx.doi.org/10.1371/journal.pone.0010859http://dx.doi.org/10.1371/journal.pone.0010859http://dx.doi.org/10.1371/journal.pone.0010859http://dx.doi.org/10.1158/0008-5472.CAN-10-2488http://dx.doi.org/10.1158/0008-5472.CAN-10-2488http://dx.doi.org/10.1158/0008-5472.CAN-10-2488http://dx.doi.org/10.1073/pnas.0908899107http://dx.doi.org/10.1073/pnas.0908899107http://dx.doi.org/10.1073/pnas.0908899107http://dx.doi.org/10.1073/pnas.0908899107http://dx.doi.org/10.1073/pnas.0908899107http://dx.doi.org/10.1146/annurev.pathol.4.110807.092311http://dx.doi.org/10.1146/annurev.pathol.4.110807.092311http://dx.doi.org/10.1146/annurev.pathol.4.110807.092311http://dx.doi.org/10.4161/cc.4.10.2028http://dx.doi.org/10.4161/cc.4.10.2028http://dx.doi.org/10.4161/cc.4.10.2028http://dx.doi.org/10.4161/cc.4.10.2028http://dx.doi.org/10.4161/cc.4.10.2028http://dx.doi.org/10.1016/j.ccr.2011.07.013http://dx.doi.org/10.1016/j.ccr.2011.07.013http://dx.doi.org/10.1016/j.ccr.2011.07.013http://dx.doi.org/10.1016/j.ccr.2011.07.013http://dx.doi.org/10.1016/j.ccr.2011.07.013http://dx.doi.org/10.1016/j.ccr.2011.07.013http://dx.doi.org/10.1016/j.neuron.2010.01.017http://dx.doi.org/10.1016/j.neuron.2010.01.017http://dx.doi.org/10.1016/j.neuron.2010.01.017http://dx.doi.org/10.1016/j.neuron.2010.01.017http://dx.doi.org/10.1126/science.1173569http://dx.doi.org/10.1126/science.1173569http://dx.doi.org/10.1126/science.1173569http://dx.doi.org/10.1126/science.1173569http://dx.doi.org/10.1126/science.1173569http://dx.doi.org/10.1083/jcb.146.2.389http://dx.doi.org/10.1083/jcb.146.2.389http://dx.doi.org/10.1083/jcb.146.2.389http://dx.doi.org/10.1083/jcb.146.2.389http://dx.doi.org/10.1172/JCI40778http://dx.doi.org/10.1172/JCI40778http://dx.doi.org/10.1172/JCI40778http://dx.doi.org/10.1172/JCI40778http://dx.doi.org/10.1038/ni.1623http://dx.doi.org/10.1038/ni.1623http://dx.doi.org/10.1038/ni.1623http://dx.doi.org/10.1038/ni.1623http://dx.doi.org/10.1038/ni.1623http://dx.doi.org/10.1083/jcb.201105009http://dx.doi.org/10.1083/jcb.201105009http://dx.doi.org/10.1083/jcb.201105009http://dx.doi.org/10.1083/jcb.201105009http://dx.doi.org/10.1083/jcb.201105009http://dx.doi.org/10.1101/gad.1777409http://dx.doi.org/10.1101/gad.1777409http://dx.doi.org/10.1101/gad.1777409http://dx.doi.org/10.1101/gad.1777409http://dx.doi.org/10.1101/gad.1777409http://dx.doi.org/10.1101/gad.1777409http://dx.doi.org/10.1158/0008-5472.CAN-08-1107http://dx.doi.org/10.1158/0008-5472.CAN-08-1107http://dx.doi.org/10.1158/0008-5472.CAN-08-1107http://dx.doi.org/10.1016/j.cell.2011.09.032http://dx.doi.org/10.1016/j.cell.2011.09.032http://dx.doi.org/10.1016/j.cell.2011.09.032http://dx.doi.org/10.1016/j.cell.2011.09.032http://dx.doi.org/10.1016/j.cell.2011.09.032http://dx.doi.org/10.1016/j.cell.2011.09.032http://dx.doi.org/10.1128/MCB.01323-10http://dx.doi.org/10.1128/MCB.01323-10http://dx.doi.org/10.1128/MCB.01323-10http://dx.doi.org/10.1128/MCB.01323-10http://dx.doi.org/10.1038/onc.2008.238http://dx.doi.org/10.1038/onc.2008.238http://dx.doi.org/10.1038/onc.2008.238http://dx.doi.org/10.1038/onc.2008.238http://dx.doi.org/10.1186/1750-1326-5-49http://dx.doi.org/10.1186/1750-1326-5-49http://dx.doi.org/10.1186/1750-1326-5-49http://dx.doi.org/10.1186/1750-1326-5-49http://dx.doi.org/10.1186/1750-1326-5-49http://dx.doi.org/10.1074/jbc.M109.091637http://dx.doi.org/10.1074/jbc.M109.091637http://dx.doi.org/10.1074/jbc.M109.091637http://dx.doi.org/10.1074/jbc.M109.091637http://dx.doi.org/10.1074/jbc.M109.091637http://dx.doi.org/10.1073/pnas.0407396101http://dx.doi.org/10.1073/pnas.0407396101http://dx.doi.org/10.1073/pnas.0407396101http://dx.doi.org/10.1073/pnas.0407396101http://dx.doi.org/10.1073/pnas.0407396101http://dx.doi.org/10.1038/onc.2011.6http://dx.doi.org/10.1038/onc.2011.6http://dx.doi.org/10.1038/onc.2011.6http://dx.doi.org/10.1038/onc.2011.6http://dx.doi.org/10.1074/jbc.M111899200http://dx.doi.org/10.1074/jbc.M111899200http://dx.doi.org/10.1074/jbc.M111899200http://dx.doi.org/10.1074/jbc.M111899200http://dx.doi.org/10.1074/jbc.M110.217620http://dx.doi.org/10.1074/jbc.M110.217620http://dx.doi.org/10.1074/jbc.M110.217620http://dx.doi.org/10.1074/jbc.M110.217620http://dx.doi.org/10.1074/jbc.M110.217620http://dx.doi.org/10.1093/emboj/cdg513http://dx.doi.org/10.1093/emboj/cdg513http://dx.doi.org/10.1093/emboj/cdg513http://dx.doi.org/10.1093/emboj/cdg513http://dx.doi.org/10.1016/j.molcel.2006.06.028http://dx.doi.org/10.1016/j.molcel.2006.06.028http://dx.doi.org/10.1016/j.molcel.2006.06.028http://dx.doi.org/10.1016/j.molcel.2006.06.028http://dx.doi.org/10.1126/science.275.5308.1943http://dx.doi.org/10.1126/science.275.5308.1943http://dx.doi.org/10.1126/science.275.5308.1943http://dx.doi.org/10.1126/science.275.5308.1943http://dx.doi.org/10.1126/science.275.5308.1943http://dx.doi.org/10.1038/ncb1236http://dx.doi.org/10.1038/ncb1236http://dx.doi.org/10.1038/ncb1236http://dx.doi.org/10.1038/ncb1236http://dx.doi.org/10.1038/emboj.2011.178http://dx.doi.org/10.1038/emboj.2011.178http://dx.doi.org/10.1038/emboj.2011.178http://dx.doi.org/10.1038/emboj.2011.178http://dx.doi.org/10.1038/emboj.2011.178http://dx.doi.org/10.1038/emboj.2011.178http://dx.doi.org/10.1242/jcs.000133http://dx.doi.org/10.1242/jcs.000133http://dx.doi.org/10.1242/jcs.000133http://dx.doi.org/10.1242/jcs.000133http://dx.doi.org/10.1242/jcs.000133http://dx.doi.org/10.1042/BJ20061837http://dx.doi.org/10.1042/BJ20061837http://dx.doi.org/10.1042/BJ20061837http://dx.doi.org/10.1074/jbc.M109.072280http://dx.doi.org/10.1074/jbc.M109.072280http://dx.doi.org/10.1074/jbc.M109.072280http://dx.doi.org/10.1074/jbc.M109.072280http://dx.doi.org/10.1074/jbc.M109.072280http://dx.doi.org/10.1038/ncb2240http://dx.doi.org/10.1038/ncb2240http://dx.doi.org/10.1038/ncb2240http://dx.doi.org/10.1038/ncb2240http://dx.doi.org/10.1074/jbc.273.22.13375http://dx.doi.org/10.1074/jbc.273.22.13375http://dx.doi.org/10.1074/jbc.273.22.13375http://dx.doi.org/10.1074/jbc.273.22.13375http://dx.doi.org/10.1074/jbc.M314328200http://dx.doi.org/10.1074/jbc.M314328200http://dx.doi.org/10.1074/jbc.M314328200http://dx.doi.org/10.1074/jbc.M314328200http://dx.doi.org/10.1074/jbc.M314328200http://dx.doi.org/10.1038/leu.2011.46http://dx.doi.org/10.1038/leu.2011.46http://dx.doi.org/10.1038/leu.2011.46http://dx.doi.org/10.1038/leu.2011.46http://dx.doi.org/10.1038/leu.2011.46http://dx.doi.org/10.1038/leu.2011.46http://dx.doi.org/10.1053/j.gastro.2007.05.022http://dx.doi.org/10.1053/j.gastro.2007.05.022http://dx.doi.org/10.1053/j.gastro.2007.05.022http://dx.doi.org/10.1053/j.gastro.2007.05.022http://dx.doi.org/10.1053/j.gastro.2007.05.022http://dx.doi.org/10.1073/pnas.0911714107http://dx.doi.org/10.1073/pnas.0911714107http://dx.doi.org/10.1073/pnas.0911714107http://dx.doi.org/10.1073/pnas.0911714107http://dx.doi.org/10.1073/pnas.1103503108http://dx.doi.org/10.1073/pnas.1103503108http://dx.doi.org/10.1073/pnas.1103503108http://dx.doi.org/10.1073/pnas.1103503108http://dx.doi.org/10.1073/pnas.1103503108http://dx.doi.org/10.1073/pnas.1103503108http://dx.doi.org/10.1074/jbc.M611240200http://dx.doi.org/10.1074/jbc.M611240200http://dx.doi.org/10.1074/jbc.M611240200http://dx.doi.org/10.1074/jbc.M611240200http://dx.doi.org/10.1091/mbc.E06-04-0301http://dx.doi.org/10.1091/mbc.E06-04-0301http://dx.doi.org/10.1091/mbc.E06-04-0301http://dx.doi.org/10.1091/mbc.E06-04-0301http://dx.doi.org/10.1091/mbc.E06-04-0301http://dx.doi.org/10.1074/jbc.M605391200http://dx.doi.org/10.1074/jbc.M605391200http://dx.doi.org/10.1074/jbc.M605391200http://dx.doi.org/10.1074/jbc.M605391200http://dx.doi.org/10.1038/nm1636http://dx.doi.org/10.1038/nm1636http://dx.doi.org/10.1038/nm1636http://dx.doi.org/10.1038/nm1636http://dx.doi.org/10.1038/nm1636http://dx.doi.org/10.1038/nature09144http://dx.doi.org/10.1038/nature09144http://dx.doi.org/10.1038/nature09144http://dx.doi.org/10.1038/nature09144http://dx.doi.org/10.1126/science.1092089http://dx.doi.org/10.1126/science.1092089http://dx.doi.org/10.1126/science.1092089http://dx.doi.org/10.1126/science.1092089http://dx.doi.org/10.1073/pnas.0811212106http://dx.doi.org/10.1073/pnas.0811212106http://dx.doi.org/10.1073/pnas.0811212106http://dx.doi.org/10.1073/pnas.0811212106http://dx.doi.org/10.1073/pnas.0811212106http://dx.doi.org/10.1073/pnas.0811212106http://dx.doi.org/10.1126/science.1152257http://dx.doi.org/10.1126/science.1152257http://dx.doi.org/10.1126/science.1152257http://dx.doi.org/10.1126/science.1152257http://dx.doi.org/10.1126/science.1152257http://dx.doi.org/10.1016/j.cell.2008.04.013http://dx.doi.org/10.1016/j.cell.2008.04.013http://dx.doi.org/10.1016/j.cell.2006.11.042http://dx.doi.org/10.1016/j.cell.2006.11.042http://dx.doi.org/10.1016/j.cell.2006.11.042http://dx.doi.org/10.1016/j.cell.2006.11.042http://dx.doi.org/10.1172/JCI39374http://dx.doi.org/10.1172/JCI39374http://dx.doi.org/10.1172/JCI39374http://dx.doi.org/10.1172/JCI39374http://dx.doi.org/10.1172/JCI39374http://dx.doi.org/10.1172/JCI39374http://dx.doi.org/10.1038/nature07290http://dx.doi.org/10.1038/nature07290http://dx.doi.org/10.1038/nature07290http://dx.doi.org/10.1038/nature07290http://dx.doi.org/10.1038/nature07290http://dx.doi.org/10.1016/j.cell.2010.12.020http://dx.doi.org/10.1016/j.cell.2010.12.020http://dx.doi.org/10.1016/j.cell.2010.12.020http://dx.doi.org/10.1016/j.cell.2010.12.020http://dx.doi.org/10.1016/j.cell.2010.12.020http://dx.doi.org/10.1038/ng0497-356http://dx.doi.org/10.1038/ng0497-356http://dx.doi.org/10.1038/ng0497-356

  • Journ

    alof

    Cell

    Scie

    nce

    Identification of a candidate tumour suppressor gene,

    MMAC1, at chromosome 10q23.3 that is mutated in

    multiple advanced cancers. Nat. Genet. 15, 356-362.

    Suzuki, A., Nakano, T., Mak, T. W. and Sasaki,

    T. (2008). Portrait of PTEN: messages from mutant

    mice. Cancer Sci. 99, 209-213.

    Tamguney, T. and Stokoe, D. (2007). New insights into

    PTEN. J. Cell Sci. 120, 4071-4079.

    Tamura, M., Gu, J., Matsumoto, K., Aota, S., Parsons,

    R. and Yamada, K. M. (1998). Inhibition of cell

    migration, spreading, and focal adhesions by tumor

    suppressor PTEN. Science 280, 1614-1617.

    Tamura, M., Gu, J., Takino, T. and Yamada, K. M.

    (1999). Tumor suppressor PTEN inhibition of cell

    invasion, migration, and growth: differential involvement

    of focal adhesion kinase and p130Cas. Cancer Res. 59,

    442-449.

    Torres, J. and Pulido, R. (2001). The tumor suppressor

    PTEN is phosphorylated by the protein kinase CK2 at

    its C terminus. Implications for PTEN stability to

    proteasome-mediated degradation. J. Biol. Chem. 276,993-998.Trotman, L. C., Wang, X., Alimonti, A., Chen, Z.,Teruya-Feldstein, J., Yang, H., Pavletich, N. P.,

    Carver, B. S., Cordon-Cardo, C., Erdjument-

    Bromage, H. et al. (2007). Ubiquitination regulatesPTEN nuclear import and tumor suppression. Cell 128,141-156.Van Themsche, C., Leblanc, V., Parent, S. and Asselin,

    E. (2009). X-linked inhibitor of apoptosis protein(XIAP) regulates PTEN ubiquitination, content, andcompartmentalization. J. Biol. Chem. 284, 20462-20466.Vazquez, F., Ramaswamy, S., Nakamura, N. andSellers, W. R. (2000). Phosphorylation of the PTEN tailregulates protein stability and function. Mol. Cell. Biol.20, 5010-5018.Vazquez, F., Matsuoka, S., Sellers, W. R., Yanagida,

    T., Ueda, M. and Devreotes, P. N. (2006). Tumorsuppressor PTEN acts through dynamic interaction withthe plasma membrane. Proc. Natl. Acad. Sci. USA 103,3633-3638.

    Wang, X., Trotman, L. C., Koppie, T., Alimonti, A.,Chen, Z., Gao, Z., Wang, J., Erdjument-Bromage, H.,

    Tempst, P., Cordon-Cardo, C. et al. (2007). NEDD4-1 isa proto-oncogenic ubiquitin ligase for PTEN. Cell 128,129-139.Wang, X., Shi, Y., Wang, J., Huang, G. and Jiang,X. (2008). Crucial role of the C-terminus of PTEN inantagonizing NEDD4-1-mediated PTEN ubiquitinationand degradation. Biochem. J. 414, 221-229.Whelan, J. T., Forbes, S. L. and Bertrand, F. E. (2007).CBF-1 (RBP-J kappa) binds to the PTEN promoter andregulates PTEN gene expression. Cell Cycle, 6, 80-84.Yim, E. K., Peng, G., Dai, H., Hu, R., Li, K., Lu, Y.,Mills, G. B., Meric-Bernstam, F., Hennessy, B. T.,

    Craven, R. J. et al. (2009). Rak functions as a tumorsuppressor by regulating PTEN protein stability andfunction. Cancer Cell 15, 304-314.Yim, J. H., Kim, Y. J., Ko, J. H., Cho, Y. E., Kim,S. M., Kim, J. Y., Lee, S. and Park, J. H. (2007). Theputative tumor suppressor gene GLTSCR2 induces PTEN-modulated cell death. Cell Death Differ. 14, 1872-1879.

    Journal of Cell Science 125 (20)4692

    http://dx.doi.org/10.1038/ng0497-356http://dx.doi.org/10.1038/ng0497-356http://dx.doi.org/10.1038/ng0497-356http://dx.doi.org/10.1111/j.1349-7006.2007.00670.xhttp://dx.doi.org/10.1111/j.1349-7006.2007.00670.xhttp://dx.doi.org/10.1111/j.1349-7006.2007.00670.xhttp://dx.doi.org/10.1242/jcs.015230http://dx.doi.org/10.1242/jcs.015230http://dx.doi.org/10.1126/science.280.5369.1614http://dx.doi.org/10.1126/science.280.5369.1614http://dx.doi.org/10.1126/science.280.5369.1614http://dx.doi.org/10.1126/science.280.5369.1614http://dx.doi.org/10.1074/jbc.M009134200http://dx.doi.org/10.1074/jbc.M009134200http://dx.doi.org/10.1074/jbc.M009134200http://dx.doi.org/10.1074/jbc.M009134200http://dx.doi.org/10.1074/jbc.M009134200http://dx.doi.org/10.1016/j.cell.2006.11.040http://dx.doi.org/10.1016/j.cell.2006.11.040http://dx.doi.org/10.1016/j.cell.2006.11.040http://dx.doi.org/10.1016/j.cell.2006.11.040http://dx.doi.org/10.1016/j.cell.2006.11.040http://dx.doi.org/10.1016/j.cell.2006.11.040http://dx.doi.org/10.1074/jbc.C109.009522http://dx.doi.org/10.1074/jbc.C109.009522http://dx.doi.org/10.1074/jbc.C109.009522http://dx.doi.org/10.1074/jbc.C109.009522http://dx.doi.org/10.1128/MCB.20.14.5010-5018.2000http://dx.doi.org/10.1128/MCB.20.14.5010-5018.2000http://dx.doi.org/10.1128/MCB.20.14.5010-5018.2000http://dx.doi.org/10.1128/MCB.20.14.5010-5018.2000http://dx.doi.org/10.1073/pnas.0510570103http://dx.doi.org/10.1073/pnas.0510570103http://dx.doi.org/10.1073/pnas.0510570103http://dx.doi.org/10.1073/pnas.0510570103http://dx.doi.org/10.1073/pnas.0510570103http://dx.doi.org/10.1016/j.cell.2006.11.039http://dx.doi.org/10.1016/j.cell.2006.11.039http://dx.doi.org/10.1016/j.cell.2006.11.039http://dx.doi.org/10.1016/j.cell.2006.11.039http://dx.doi.org/10.1016/j.cell.2006.11.039http://dx.doi.org/10.1042/BJ20080674http://dx.doi.org/10.1042/BJ20080674http://dx.doi.org/10.1042/BJ20080674http://dx.doi.org/10.1042/BJ20080674http://dx.doi.org/10.4161/cc.6.1.3648http://dx.doi.org/10.4161/cc.6.1.3648http://dx.doi.org/10.4161/cc.6.1.3648http://dx.doi.org/10.1016/j.ccr.2009.02.012http://dx.doi.org/10.1016/j.ccr.2009.02.012http://dx.doi.org/10.1016/j.ccr.2009.02.012http://dx.doi.org/10.1016/j.ccr.2009.02.012http://dx.doi.org/10.1016/j.ccr.2009.02.012http://dx.doi.org/10.1038/sj.cdd.4402204http://dx.doi.org/10.1038/sj.cdd.4402204http://dx.doi.org/10.1038/sj.cdd.4402204http://dx.doi.org/10.1038/sj.cdd.4402204

    Fig 1Ref 1Ref 2Ref 3Ref 4Ref 5Ref 6Ref 7Ref 8Ref 9Ref 10Ref 11Ref 12Ref 13Ref 14Ref 15Ref 16Ref 17Ref 18Ref 19Ref 20Ref 21Ref 22Ref 23Ref 24Ref 25Ref 26Ref 27Ref 28Ref 29Ref 30Ref 31Ref 32Ref 33Ref 34Ref 35Ref 36Ref 37Ref 38Ref 39Ref 40Ref 41Ref 42Ref 43Ref 44Ref 45Ref 46Ref 47Ref 48Ref 49Ref 50Ref 51Ref 52Ref 53Ref 54Ref 55Ref 56Ref 57Ref 58Ref 59Ref 60Ref 61Ref 62Ref 63Ref 64Ref 65Ref 66Ref 67Ref 68Ref 69

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 150 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 200 /GrayImageDepth 8 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /FlateEncode /AutoFilterGrayImages false /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 600 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly true /PDFXNoTrimBoxError false /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox false /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (Euroscale Coated v2) /PDFXOutputConditionIdentifier (FOGRA1) /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /False

    /CreateJDFFile false /SyntheticBoldness 1.000000 /Description >>> setdistillerparams> setpagedevice