Ptc Ee Epse 3.2c Si.xmcd

Embed Size (px)

Citation preview

  • 8/13/2019 Ptc Ee Epse 3.2c Si.xmcd

    1/7

    Mathcad Enabled Content Copyright 2011 Knovel Corp.

    Electrical Power Systems Engineering Carl J. Spezia, Constantine I. Hatziadoniu 2011 Parametric

    Technology Corp.

    3 Electrical transients

    Section 3.2c Transformer Energization

    Disclaimer

    User Notices

    Saturation Compensation

    The effects of the transformer inrush can be minimized by adding a preinsertion resistor. This resistor is

    an automated device that inserts segments of resistance in series with the transformer terminals. The first

    segment has the highest resistance value. The resistance is gradually reduced to zero at predetermined

    time steps. The preinsertion resistor minimizes the inrush by influencing the system response in two

    ways: it reduces the transient overvoltage at the moment of energization, thereby reducing the maximum

    core flux, and it increases system damping, causing the flux offset to decay more quickly. The interest ina preinsertion resistor study is to determine the correct timing of the resistor switching and the total

    energy dissipation into the resistor.

    The preinsertion resistor in this simulation is defined as a time varying piece-wise linear resistor. The

    description is as follows:

    Define the number of segments for the piece-wise linear representation of the preinsertion resistor.

    M 5

    M M 1

    Define the time and resistance at the knee of each segment.

    ts

    0.0

    0.03

    0.06

    0.09

    0.15

    sec Rs

    80.0

    30

    20

    10

    5

    ohm

    Use ramps to define the resistor functions.

    m 1 2 M

    Calculate the slope of each segment.

    Sm

    Rsm Rsm 1

    tsm

    tsm 1

    m 2 M

    The preinsertion resistor function is given by

    r x( ) x( ) x

    Rp x( ) Rs0 S1 r x( )

    m

    Sm Sm 1 r x tsm 1

    PTC_EE_EPSE_3.2c_si.xmcd Mathcad Enabled ContentCopyright 2011 Knovel Corp.

    Page 1 of 7

    Click to View Mathcad Document

    http://localhost/var/www/apps/conversion/tmp/scratch_10/knovel2/view_hotlink.jsp?hotlink_id=439224394
  • 8/13/2019 Ptc Ee Epse 3.2c Si.xmcd

    2/7

    Plot the preinsertion resistor as a function of time.

    x 0.0 sec 0.003 sec 0.15 sec

    0 0.075 0.150

    20

    40

    60

    80

    resistance

    Rp x( )

    x

    Fig. 3.2.9 Resistance as a function of time

    The transformer saturation characteristic is defined as:

    Imo 6 amp steady-state magnetizing current in pu, underrated voltage

    Xs 8 ohm transformer leakage reactance in pu

    Vs 7000 volt rated primary voltage

    K 1.1 transformer voltage at saturation knee-point in pu

    377 radsec

    source frequency

    Lm

    2

    3Vs

    Imo Lm 2.527 henry

    Ls

    Xs

    10 Ls 0.212 henry

    Determine the core flux at the knee point.

    23

    Vs K

    16.676 weber

    Determine the magnetizing current at the knee point.

    Im

    Lm Im 6.6 amp

    PTC_EE_EPSE_3.2c_si.xmcd Mathcad Enabled ContentCopyright 2011 Knovel Corp.

    Page 2 of 7

  • 8/13/2019 Ptc Ee Epse 3.2c Si.xmcd

    3/7

    Im x( )1

    Lm

    r x r x

    1

    Ls

    r x r x Im

    Similarly the source data are

    Vs 7000.0 volt voltage amplitude

    10 deg

    V t( )2

    3Vs cos t

    5 weber residual flux

    System data:

    RL 3.5 ohm line resistance

    XL 25 ohm line inductive reactance

    LXL

    L 0.066 henry

    XC 200 ohm shunt capacitive reactance

    corresponding to

    C1

    XC C 1.326 10

    5 farad

    Define maximum simulation time.

    T 0.2 sec ms 103

    sec dt 0.3 ms

    h1 1.5 dt h2 0.5 dt

    N floor T

    dt

    k 2 N iteration counter

    Dvc IL VC IL Im VC

    C capacitor voltage

    derivative

    Define the initial conditions for the system.

    Initialize time.

    t0 0.0 sec

    t1 0.0 secCompute time at each interval.

    tk k dt

    Initialize the capacitor voltage. Assume fault condition in the system prior to energization.

    vc0

    0.0 volt

    vc1

    0.0 volt

    PTC_EE_EPSE_3.2c_si.xmcd Mathcad Enabled ContentCopyright 2011 Knovel Corp.

    Page 3 of 7

  • 8/13/2019 Ptc Ee Epse 3.2c Si.xmcd

    4/7

    Initialize the line current.

    i0 0.0 amp

    i1 0.0 amp

    The initial value of core flux is the residual flux defined above.

    0

    1

    Due to the presence of the preinsertion resistor the total system resistance is changed. This change

    affects the state equation of the line current. The new equation is

    Di IL VC t RL Rp t( ) IL VC V t( )

    L

    ik

    vck

    k

    ik 1 h1 Di ik 1 vck 1

    tk 1 h2 Di ik 2 vck 2 tk 2

    vck 1

    h1 Dvc ik 1 k 1 h2 Dvc ik 2 k 2

    k 1 h1 vck 1 h2 vck 2

    The system response is shown below.

    0 0.05 0.1 0.15 0.210

    0

    10

    20

    inrush current

    Im

    k

    tk

    Fig. 3.2.10 Magnetizing current

    PTC_EE_EPSE_3.2c_si.xmcd Mathcad Enabled ContentCopyright 2011 Knovel Corp.

    Page 4 of 7

  • 8/13/2019 Ptc Ee Epse 3.2c Si.xmcd

    5/7

    0 0.05 0.1 0.15 0.220

    10

    0

    10

    20

    core flux

    k

    tk

    Fig. 3.2.11 Transformer flux response

    0 0.05 0.1 0.15 0.240

    20

    0

    20

    40

    60

    line current

    ik

    tk

    Fig. 3.2.12 Line current response

    PTC_EE_EPSE_3.2c_si.xmcd Mathcad Enabled ContentCopyright 2011 Knovel Corp.

    Page 5 of 7

  • 8/13/2019 Ptc Ee Epse 3.2c Si.xmcd

    6/7

    0 0.05 0.1 0.15 0.21 10

    4

    5 103

    0

    5 103

    1 104

    bus voltage

    vck

    tk

    Fig. 3.2.13 Bus voltage response

    The preinsertion resistor reduces the 2nd harmonic resonant effects. The initial case exhibited a harmonic

    instability around the second harmonic (120 Hz). The preinsertion resistor increases the system damping

    around this resonance, reducing the transient over-voltages and overcurrents seen in the first case.

    When designing the preinsertion resistor, it's a good idea to know how much power it must dissipate, so

    that it will not be overstressed thermally. The energy dissipated in the preinsertion resistor is found as

    follows:

    Initialize variable:

    E1 0.0 jouleCalculate energy at each time step:

    Ek Ek 1 Rp tk ik 2

    dt

    The maximum energy dissipation is

    EN 1.109 103

    joule

    The energy is shown as function of time below.

    PTC_EE_EPSE_3.2c_si.xmcd Mathcad Enabled ContentCopyright 2011 Knovel Corp.

    Page 6 of 7

  • 8/13/2019 Ptc Ee Epse 3.2c Si.xmcd

    7/7

    0 0.05 0.1 0.15 0.20

    500

    1 10

    3

    1.5 103

    energy

    Ek

    tk

    Fig. 3.2.14 Energy diss ipation of the preinsertion resistor

    Additional User Notices

    PTC_EE_EPSE_3.2c_si.xmcd Mathcad Enabled ContentCopyright 2011 Knovel Corp.

    Page 7 of 7