9
Prospective Prospective Thermoelectric Thermoelectric Tellurides Tellurides Patrik Čermák Patrik Čermák University of Pardubice, Czech Republic E2.1.8x67 61

Prospective Thermoelectric Tellurides

  • Upload
    katoka

  • View
    37

  • Download
    0

Embed Size (px)

DESCRIPTION

E2.1.8x6761. Prospective Thermoelectric Tellurides. Patrik Čermák University of Pardubice, Czech Republic. „Thermoelectrics as an ‘ energy gate ’ to deep space“. Space probes (e.g.): Voyager 1, 2 (1977) Galileo (1989) Ulysses (1990) Cassiny (1997) New Horizons (2006). - PowerPoint PPT Presentation

Citation preview

Page 1: Prospective Thermoelectric Tellurides

Prospective Thermoelectric Prospective Thermoelectric TelluridesTellurides

Patrik ČermákPatrik ČermákUniversity of Pardubice, Czech Republic

E2.1.8x6761

Page 2: Prospective Thermoelectric Tellurides

„„Thermoelectrics as an Thermoelectrics as an ‘‘energy gateenergy gate’’ to deep space“ to deep space“

Space probes (e.g.):

• Voyager 1, 2 (1977)

• Galileo (1989)

• Ulysses (1990)

• Cassiny (1997)

• New Horizons (2006)

Page 3: Prospective Thermoelectric Tellurides

I. Introduction to ThermoelectricsI. Introduction to Thermoelectrics

1. Seebeck effect 2. Peltier effect

Thermoelectric materials

• The main aim of researching of TE materials in general is enhance their efficiency in defined temperature range.

p-type n-type

U+ -

+++

---

Heating

Performance criterion for practical applications:

T

ZT2

TU ABAB TIQ

p-type n-type+++

---

- --

Cooling

Q

500 1000 15000

1

2

3

4

p - SiGe

ZT = 1

n - SiGe

p - Bi0.5

Sb1.5

Te3

n - PbTe

n - Bi2Te

2.95Se

0.05

Z*1

03 (K

-1 )

T ( K )

p - Ce Fe0.9

Co0.1

Sb3

p - Zn4Sb

3

500 1000 15000

1

2

3

4

p - SiGe

ZT = 1

n - SiGe

p - Bi0.5

Sb1.5

Te3

n - PbTe

n - Bi2Te

2.95Se

0.05

Z*1

03 (K

-1 )

T ( K )

p - Ce Fe0.9

Co0.1

Sb3

p - Zn4Sb

3

Page 4: Prospective Thermoelectric Tellurides

II. ResearchII. Research

Motivation

1. Optimize of figure of merit ZT of n-type Bi2+xTe3-x-y-zSeyIz polycrystalline system for enhance of efficiency of Peltier elements in room temperature range (300 K).

2. Preparation of „novel TE material – GaGeTe“ with enhanced electrical conductivity (focuse on figure of merit ZT) and development of complementary n-type.

Characterization

• X-ray Diffraction

• Seebeck coefficient (Tc)

• Electrical conductivity c

• Thermal conductivity

• Hall coefficient RH (B║c)

Bi2Te3

c

a

Sb

Sb

Te 1

Te 1

Te 2

Te 2

Sb

Te 1

Te 1

Sb

Te 1

Bi

Bi

Bi

Bi

c

a

Sb

Sb

Te 1

Te 1

Te 2

Te 2

Sb

Te 1

Te 1

Sb

Te 1

Bi

Bi

Bi

Bi

GaGeTe

Page 5: Prospective Thermoelectric Tellurides

III. ResultsIII. Results

Bi2+xTe3-x-y-zSeyIz

430 K

GaGeTe1-xIx

50 100 150 200 250 300 350 400 450

60

80

100

120

140

160

180

200

220

240

260

280

GaGeTe (no tempering) Bi

0,5Sb

1,5Te

2,9Se

0,1

(

V/K

)

T (K)

Page 6: Prospective Thermoelectric Tellurides

IV. DiscussionIV. Discussion

Bi2+xTe3-x-y-zSeyIz

The samples with tetradymite structure were prepared. For optimization of TE properties (focused on figure of merit ZT) was examined the influence of iodine by doping classical Bismuth-Telluride (Bi2Te3).

Iodine +1-e than Tellurium increment of the concentration of free charge carriers: Substitution of „Te“ for „I“ - Bi2+xTe3-x-y-zSeyIz:

n

GaGeTe1-xIx

This (ternary) system show high Seebeck coefficient then the state-of-the-art materials.

Is it a p-type semiconductor n-type = more –e.

I have prepared substitute compound TeI4 and doped the GaGeTe.

XRD shows minimal content of other phases successful doping.

T

n

Page 7: Prospective Thermoelectric Tellurides

V. ConclusionsV. Conclusions

Bi2+xTe3-x-y-zSeyIz

The character of the optimize TE material is possible to expect at Bi2Te2,9Se0,096I0,004 – lower concentration of iodine but also .

Now will follows the measurements of the other TE properties including „certainty“ identifications by XRD.

TeV

TeV

TeV

GaGeTe1-xIx

The first results promising great potential of this „novel ternary telluride“.

Will follows the continual research consists from: (1) increment value of iodine for development complementary n-type, (2) doping by another elements which can increment value of electrical conductivity (e.g. create defects of positive charge) and then optimized its TE efficiency (parameter ZT).

Page 8: Prospective Thermoelectric Tellurides

Thank you for your attentionThank you for your attention